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Abstract: Diabetes Mellitus (DM) is a multi-factorial chronic health condition that affects a large 

part of population and according to the World Health Organization (WHO) the number of adults 

living with diabetes is expected to increase. Since type 2 diabetes mellitus (T2DM) is suffered by the 

majority of diabetic patients (around 90–95%) and often the mono-target therapy fails in managing 

blood glucose levels and the other comorbidities, this review focuses on the potential drugs acting 

on multi-targets involved in the treatment of this type of diabetes. In particular, the review considers 

the main systems directly involved in T2DM or involved in diabetes comorbidities. Agonists acting 

on incretin, glucagon systems, as well as on peroxisome proliferation activated receptors are 

considered. Inhibitors which target either aldose reductase and tyrosine phosphatase 1B or sodium 

glucose transporters 1 and 2 are taken into account. Moreover, with a view at the multi-target 

approaches for T2DM some phytocomplexes are also discussed. 
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1. Introduction 

Diabetes Mellitus (DM) is a multi-factorial chronic health condition triggered by several genetic 

and/or environmental factors [1,2]. Indeed, this pathology is characterized by strong familiarity and 

the frequency of diabetes varies in different ethnicities, such as black and Hispanic people, and some 

minorities, like American Indians and Natives of Alaska, are more likely to have diabetes for a 

specific genetic profile. 

The World Health Organization (WHO) Global report on diabetes shows that the number of 

adults living with diabetes has almost quadrupled since 1980 to 422 million adults [3] and is expected 

to increase to 693 million by 2045 [4]. The disease is characterized by high blood sugar levels, due to 

a deficiency of concentration and/or of activity of insulin, the pancreatic hormone involved in 

managing glycaemia. 

There is no cure for diabetes so far, but it can be treated and controlled. Pharmacological therapy 

and/or insulin may be required in order to maintain the blood glucose level as near as possible to 

normal and to delay or possibly to prevent the development of diabetes-related health problems. 

However, disease management can be helped also by healthy eating and physical exercise. 

For determining the right therapy, the involved type of diabetes plays a key role and in 2018 

American Diabetes Association (ADA) proposed the following classification [5]: 

1. Type 1 diabetes mellitus (T1DM): due to autoimmune β-cell destruction, usually leading to 

absolute insulin deficiency; 

2. Type 2 diabetes mellitus (T2DM): due to a progressive loss of β-cell insulin secretion frequently 

on the background of insulin resistance; 
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3. Gestational diabetes mellitus (GDM): diabetes diagnosed in the second or third trimester of 

pregnancy that was not clearly overt prior to gestation; 

4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as 

neonatal diabetes and maturity-onset diabetes of the young (MODY)), diseases of the exocrine 

pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as 

with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation). 

Since T2DM is suffered by the majority of diabetic patients (around 90–95%) this review focuses 

on the potential drugs acting on multi-targets involved in the treatment of this type of diabetes. 

1.1. Type 2 Diabetes Mellitus (T2DM) 

Type 2 Diabetes Mellitus (T2DM) has been referred for long time as non-insulin dependent 

diabetes, or adult-onset diabetes characterized by insulin resistance, which could progressively 

worsen to absolute resistance, but in the past decade reduced β-cell function has been recognized as 

a key problem in T2DM [6]. 

Indeed, in the past two decades, T2DM emerged as a new and very serious health problem also 

in children [7,8]. The studies carried out on children demonstrated the co-existence of obesity, insulin 

resistance, and β-cell dysfunction as observed in older T2DM patients [9]. 

This association can be appreciated in Figure 1. 

 

Figure 1 Pathophysiology of type 2 diabetes mellitus (T2DM). 

The adipose tissue is an endocrine organ that can secrete several hormones and cytokines [10], 

namely TNF-α, IL-6, resistin, which are able to induce a chronic inflammation state and insulin-

resistance. Furthermore, in obese patients with metabolic syndrome is more common to observe low 

adiponectin levels [11] and a leptin-resistance state [12]. Leptin is a hormone with orexigenic activity, 

that helps to regulate energy balance by inhibiting hunger [13], while adiponectin is a peptide 

synthetized by adipocytes that exhibits anti-inflammatory, anti-atherogenic effects, and it also is an 

insulin sensitizer [14]. This metabolic dysfunction leads to insulin-resistance with consequences 

primarily on adipose, muscular, and hepatic tissues [15]. In this situation, insulin has no anti-lipolytic 

effect, consequently there is an increased production and secretion, in the systemic circulation, of 

fatty free acid (FFA) [16] that also are responsible for the insulin-resistance state. Elevated plasma 

FFA concentrations are associated with increased liver production and secretion of glucose [17]. 

Moreover, cholesterol and triglycerides concentrations also are increased, especially LDL, [18] with 

a negative impact on the cardiovascular system [19]. 
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Furthermore, thanks to genome-wide investigations (GWAS) many genes that increase T2DM 

risk have been also identified and some genes are believed to be important for β-cell function, β-cell 

development, or the regulation of β-cell mass [20,21]. These findings have supported the relative 

contributions between insulin resistance and β-cell dysfunction to the pathophysiology of T2DM [22]. 

Usually, the early stage of this pathology could be asymptomatic, or symptoms could be so mild 

that they go unnoticed. Therefore, it could be remained undiagnosed for many years, thus rendering 

truly difficult an accurate estimation of the people suffering from the disease. When present, 

symptoms include frequent urination, excessive thirst and hunger, fatigue, blurry vision, slow-

healing wounds and tingling, pain, or numbness in the hands/feet. Since diabetes could be 

asymptomatic for a long period of time, T2DM’s diagnosis often coincides with a concomitant 

disease. When symptoms are missing, diagnosis is made when Fasting Plasma Glucose (FPG) is 

greater than or equal to 126 mg/dL or when Oral Glucose Tolerance Test (also called the OGTT) is 

greater than or equal to 200 mg/dL or when HbA1c (i.e., glycated hemoglobin) is greater than or equal 

to 48 mmol/mol (6.5%). When the symptoms are present, diabetes is diagnosed when blood glucose 

is greater than or equal to 200 mg/dL. A significant role in the pathology is played by the chronic 

hyperglycemic exposition to tissues, and especially to blood vessels, that increase the risk of 

development of comorbidities, namely micro and macrovascular complications. The former include 

retinopathy, nephropathy, and neuropathy. The latter, which can be often found in patients with 

longstanding diabetes, include stroke, congestive heart failure, coronary heart disease, myocardial 

infarction, and peripheral vascular disease. 

All of these complications result in a reduction in life expectancy by even ten years among 

diabetic patients. 

Furthermore, several risk factors are associated with T2DM: 

 Genetic influences 

Genetics play a very strong role in the development of T2DM [23]. The most common forms of 

T2DM are polygenetic, so there are changes in multiple genes, but there are also some rare forms 

of diabetes that are caused by single gene mutation, known as monogenic diabetes. It is 

important not be confused with T1DM, so it is crucial to have a correct diagnose in order to 

receive a proper treatment. 

 Environmental influences 

New understandings of the progression of T2DM are related both to the lifestyle and to the gut 

microbiota and the dynamics that leads to microbiome dysbiosis [24]. This change in the 

microbiota composition is able to reshape intestinal barrier functions and to induce metabolomic 

and signaling pathways related to the insulin resistance. 

 Age 

Until two decades ago, T2DM was usually found in adults and seniors. This was consequential 

to the increase of insulin resistance due to body composition modification (less muscle in favor 

of more adipose tissues), to the reduced “sugar burning” capacity and to the progressive 

decrease of physical activity. 

Leading to the impressive growth of obesity rate, the average age of onset is lowering, and 

diabetes can now be found even in children. 

 Obesity 

A person with a body mass index (BMI) equal to or greater than 30 kg/m2 is generally 

considered obese [25,26]. 

The increase of adipose tissue is a primary risk factor in diabetes. In fact, there is a direct 

correlation between fat percentage and insulin resistant cells, especially if the fat is 

concentrated in the abdominal area. 

Around 80% of T2DM patients are obese, which is not, however, a necessary condition to 

develop diabetes. 

 Poor physical fitness 

Sedentary lifestyle may increase risk of T2DM [27,28]. Physical activities help to control body 

weight and lower blood glucose in addition to many other benefits. 
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 Hypertension and high triglycerides levels 

These are conditions usually associated with insulin resistance, so they increase diabetes risk. 

 Smoking 

Smoking is associated with diabetes and other health conditions such as cancer and heart 

diseases. 

 Gestational Diabetes 

Women, that develop diabetes during the pregnancy, have higher risk of suffering for T2DM 

later in life. 

 Polycystic Ovary Syndrome 

Polycystic Ovary Syndrome (PCOS) is a common hormonal disorder that causes irregular 

menstrual cycles, hirsutism, acne, and, frequently, obesity. 

Intervening on modifiable risk factors can be extremely efficacious: by taking proactive changes 

the risk for diabetes can decrease or delay its progression, in addition of improving the overall life 

quality. 

The treatment of patients with T2DM is challenging, since there is no cure available at the 

moment, but glycaemia can be controlled by pharmacological therapy. Furthermore, a reliable 

glycemic control is not the only goal of a proper diabetic management, and other important objectives 

to be pursued should include reducing the body weight as well as alleviating the symptoms and 

preventing micro and macrovascular damage. 

There are many anti-diabetic drugs that exert clinical effects via different mechanisms. The four 

major groups of anti-diabetic agents are: 

a) biguanides, like metformin, which reduce gluconeogenesis in the liver; 

b) insulin secretagogues which stimulate the pancreas to secrete insulin and include drugs 

such as sulfonylureas; 

c) insulin sensitizers which improve sensitivity of peripheral tissues to insulin and include 

thialzolidinediones and; 

d) insulin or its analogues which provide insulin exogenously in the form of recombinant 

insulin. 

Metformin is the first-line pharmacotherapy for T2DM. Besides reducing the glucose level, this 

has an insulin-sensitizing effect with multiple actions on tissues such as the liver, skeletal muscle, 

endothelium, adipose tissue, and the ovary. Only if after three months the levels of HbA1c is higher 

than 7.0%, a second medication can be added. Unluckily, metformin has several side effects (from 

mild to serious) that cause lack of adherence and therefore it is the antidiabetic oral therapy with the 

lowest compliance [29]. 

Although the existence of plenty of diabetic drugs, other drug monotherapy proved 

unsuccessful in providing satisfactory managing blood glucose levels and the other comorbidities 

and therefore therapeutic management is often achieved by combinations therapy with drugs that 

act with different mechanism of actions as illustrated in Figure 2 [30]. However, this strategy may be 

affected by problems related to the polypharmacological approach, such as several side effects, 

toxicity and unwanted drug–drug interactions. Nevertheless, the benefit of these combinational 

therapies is often compromised by low patient compliance, which could be improved by the 

development of two or more active components co-formulated in a single tablet. 

An alternative strategy in order to combine all these needs is a single molecule that selectively 

modulates different targets and may have potential for an improved balance of efficacy and safety 

compared to single-target agents. 
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Figure 2. Glucose-lowering medication in T2DM. 
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1.2. Multi-Target Compounds 

Traditionally drug design had the aim of targeting selectively a single biological entity in order 

to avoid other interactions that could potentially lead to unwanted side effects. However, this 

approach is now considered outdated and over the past years most efforts in drug design were made 

to develop compounds that are able to exert numerous physiological actions especially for diseases 

of complex etiology, such as cancer, inflammation, central nervous system (CNS) disorders, and 

diabetes. 

The design of this multi-target ligands must focus on the selection of suitable targets, which have 

to be well characterized and preferably implicated in different pathways of the disease, and on the 

optimization of the relative potency of the compound towards each receptor. 

Screening and knowledge-based approaches represent the classical way to design multi-target 

ligands, nevertheless fragment-based and in silico screening have been proposed as a potentially 

attractive route for the multi target drug design process. 

The knowledge-based approach also known as “framework combination” relies upon structure–

activity relationship (SAR) knowledge of every single target involved, in which the pharmacophores 

are combined in different ways (as represented in Figure 3), where they can be connected by a linker, 

or they can be overlapping in the same compound or highly integrated in a multi-target drug [31]. 

 

Figure 3. Different strategies to design multi-target ligands. 

Another way is to screen sets of compounds against several targets. A modern approach is the 

high-throughput screening (HTS), which allows large, diverse compound sets to be screened against 

several targets of interest, in parallel. 

Finally, in silico methods gained an increasingly popularity as multi-target drug design tools. A 

promising tool is the fragment based drug design (FBDD) approach where fragments, even when 

binding weakly to the biological target, are identified. These fragments are then expanded or linked 

together to produce drug leads with a high affinity. 

Other well-known in silico methods, such as molecular docking, pharmacophore analysis, 

quantitative structure activity relationship (QSAR), machine learning, and their various 

combinations, have been extensively used. 

Though the multi-target approach has only been purposely applied in the last decades, many of 

the previously known therapeutic agents are in fact multi-target ligands [32], which is especially true 

for those drugs that were discovered by serendipity, phenotypic screening, or traditional medicine. 

Nevertheless, in the state of metabolic disturbance, several major enzymes are abnormally 

expressed, and they could be interesting targets in drug development. Hence, again, multimodal 

drugs, which could reduce hyperglycemia and concomitantly inhibit the progression of 

complications, may offer a valuable therapeutic option. 

  



Molecules 2020, 25, 1987 7 of 20 

 

2. Incretin-Based Therapies 

2.1. Overview 

Enhancing the incretin effects is a prominent approach to successfully treat diabetes and to 

control obesity. 

Incretin-based therapies exploit the actions of the glucose dependent insulinotropic polypeptide 

hormone (GIP) and the glucagon like peptide 1 (GLP-1) [33], which are represented in Figure 4. These 

enteroendocrine incretin hormones are released from the gut in response to intraluminal 

carbohydrates [34] and they act as important regulators of post-prandial glycemic control. More 

specifically, they are involved in several beneficial pancreatic effects, including stimulation of insulin 

secretion and insulin gene expression, promoting β-cell survival, improving β cell glucose sensitivity 

and decreasing glucagon secretion. In addition, incretin hormones not only target pancreatic islet 

cells, but they also possess numerous extra-pancreatic actions that impart positive effects in terms of 

slowing the gastric emptying and reduction of food intake and weight loss [35]. 

In the metabolically disturbed state, T2DM subjects show a lacking glucose lowering response 

mediated by incretin hormone [36]. This is due to reduced activity or desensitization of the GIP-

receptors and reduced postprandial circulating level of GLP-1 [37,38]. However, restoring GIP 

efficacy in T2DM patients is possible: preclinical and clinical studies show that this can be achieved 

with the enhancement of hyperglycemia due to drugs [39,40] or weight loss [41]. Regarding the 

glucose dependent insulinotropic hormone, patients treated with GLP-1 for six weeks exhibit an 

improved insulin-sensitivity and reduced levels of glycated hemoglobin HbA1c [42]. 

The incretin hormones have indeed a great potential for the treatment of diabetes, but the 

extremely short biological half-life of these peptides, due to efficient enzymatic degradation by 

Dipeptidyl Peptidase (DPP)-4 and subsequent renal filtration, severely limits therapeutic 

applicability [43]. 

 

Figure 4. Amino acid sequences of glucagon-like peptide 1 (GLP-1), glucagon, and of glucose-

dependent insulinotropic polypeptide (GIP). 
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2.2. Targeting the Incretin System 

2.2.1. Dual Agonists 

Although the currently approved GLP-1 receptor (GLP-1R) agonists (Exenatide and Liraglutide) 

lead to important metabolic improvements, long-term glucose control is still not perfect and 

reduction in adiposity remains far below from desired. Increasing the dose to gain greater efficacy is 

not a practicable option for most patients because GLP-1R agonists are source of significant 

gastrointestinal side effects (i.e., nausea and vomiting) [44]. Therefore, combination therapy appears 

to be the preferred path to enhance efficacy while maintaining an appropriate tolerability and safety 

profile. 

The design for a dual drug clearly focuses on compounds capable of activating both the 

predominant endogenous incretins, GLP-1 and GIP. Furthermore, the absence of adverse 

cardiovascular side effects or neuropsychological complications increases the interest in incretin-

based drugs. The design process starts from the observation that GLP-1 and GIP share a high degree 

of sequence similarity, as shown in Figure 4, which can be modified in order to obtain potent and 

balanced co-agonism. More specifically this was achieved with the substitution of residues Glu3 and 

Lys16 of GIP sequence with the obtained peptides having almost no in vitro glucagon activity. 

Furthermore, the modifications could include substitution with Lys40 that allows site-specific 

lipidation or PEGylation of the peptide in order to avoid DPP-4 inactivation and consequently to 

permit less frequent administrations [45]. 

Several in vivo studies show promising results in terms of decreasing glycated hemoglobin and 

weight loss in both healthy subjects and patients with T2DM [46]. 

2.3. Targeting the Incretin/Glucagon Systems 

2.3.1. Dual Agonists 

The design of GLP-1 and glucagon dual agonist has been explored, as well. 

Glucagon is a hormone, which participates with insulin in glycemic homeostasis and, while 

remaining unclear whether low glucose levels directly stimulate glucagon release, it is a fact that 

T2DM patients suffer from hyperglucagonemia [47], an excess of glucagon secretion, possibly as a 

result of alpha cell insulin resistance. 

Glucagon can be utilized therapeutically as a satiety factor, which also increases energy 

expenditure and weight loss [48]. Since the incretin hormones and glucagon have some overlapping 

functions, their combined use could lead to synergistic effects on diabetes and related metabolic 

diseases [49]. 

Nevertheless, several studies [50] also verified that acute co-infusion of low doses of GLP-1 and 

glucagon significantly reduced food intake and increased energy expenditure and this effect was 

achieved with peptide infused alone as well. 

In addition, they have similar peptide sequences at the N-terminal region that allow the 

development of single-sequence multi-receptor agonists. 

Based on the above findings, investigation of compounds simultaneously targeting the GLP-1R 

and glucagon receptor (GcgR) have been carried out. The research groups of Day et al. [51] and Pocai  

et al. [52] have first reported peptides that act as such dual drugs and some representative peptides 

are shown in Figure 5. In preclinical studies, they showed that the treatment with these co-agonists 

induces superior weight loss and lipid lowering, without causing hyperglycemia or any other 

adverse effects in diet-induced obese (DIO) mice. 

Clearly, the pharmacokinetic profile of these peptides had to be investigated in order to optimize 

their and co-agonist analogs were rationally designed to possess a spectrum of relative activity ratios 

at GLP-1R and GcgR. This study [53] revealed that derivatives endowed with comparable activity at 

each receptor provide optimal weight and blood glucose lowering properties. 

The relevance of the results reached with this approach stimulated big Pharma companies such 

as Sanofi-Aventis and Eli Lilly to invest further in the field. Nevertheless, the risk of unwanted effects 
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of these co-agonists must be carefully assessed, particularly the long-term ones and those affecting 

cardiovascular health. 

 

Figure 5. Structure of glucagon, GLP-1 and chimeric peptides. (a) Amino acid sequence and structure 

of glucagon and GLP-1 chimera. Underlined residues indicate site of lactam formation. (b) Helical 

wheel representation of glucagon, GLP-1 and chimeric peptide showing residues 12–29. 

Researchers are also working on oxyntomodulin mimetics. Oxyntomodulin (OXM) is a gut 

hormone that, similarly to GLP-1, is secreted in response to feeding. Its biological effects are 

attributed to a dual activation of GLP-1R and GcgR. However, OXM is rapidly inactivated (around 

12 minutes) in plasma by DPP-4 which cleavages the first two N-terminal amino acids of the peptide. 

Therefore, OXM mimetics should inevitably involve a modified N-terminus in order to protect the 

compound against DPP-4 inactivation and possibly to avoid decreasing of the efficacy. On these 

bases, investigation of OXM-analogues has been performed [54] to improve half-life. For example, 

the strategy proposed by Pocai [52] was to introduce a D-Ser2 (S) substitution, while an enhanced 

metabolic stability was achieved through a cholesterol moiety (chol) at the C-terminus of these 

peptides. Furthermore, the polyethylene glycol spacer minimizes the loss in agonist potency because 

of plasma protein/lipid binding (Figure 6). Finally, the treatment with these compounds induced 

similar improvements in glycemic control compared to selective GLP-1R agonists and additionally it 

has been shown to decrease bodyweight and food intake. 
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Figure 6. (a) Sequence alignment and receptor agonist potencies of Oxyntomodulin (OXM) and 

related peptides. Conserved residues are highlighted: (b) Structure of a Glucagon-Like Peptide 

1/Glucagon Receptor Dual Agonist and (c) in vitro receptor agonist potencies (cAMP release) against 

mGLP1R and mGCGR and ED50 (nM) in the ex vivo mouse liver glycogenolysis assay (mGlyco). 

2.3.2. Triagonists 

Further studies have investigated engineered peptides to combine the beneficial effects of the 

incretin hormones and glucagon. Interestingly, both incretin peptides and glucagon are substantially 

increased following bariatric surgery [55,56], but unfortunately similar benefits cannot be achieved 

with current pharmaceutical options. 

All three of these gastrointestinal hormones share similar N-terminal sequences, simplifying the 

design of single-sequence multi-receptors agonists. A key factor that has to be considered is the 

relative potency of the compound towards each receptor. Triagonists can be designed in order to 

achieve a balanced agonism or with an agonism ratio that favors one receptor over the others in 

function of the desired effects. For example, YAG-glucagon, a glucagon-derived triagonist [57], has 

reported to have no effect on body weight while significantly improved glycaemia in high fat fed 

mice due to unbalanced agonism and submaximal potency. The two analogues, namely analogue 1 

and analogue 2, shown in Figure 7, were also designed by modification of the amino acid sequence 

of human glucagon by substituting key amino acids with those that are known to be important in the 

biological function of GIP, as shown in Figure 4. Balanced triagonists were investigated as well, and 

recently MAR423, developed by Novo Nordisk, entered initial Phase I testing. 

 

Figure 7. Amino acid sequences of glucagon, the incretin hormones, and triagonist. 
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2.4. Targeting Not Only the Incretin System 

Recently, there is a significant interest towards modified drugs designed to possess the ability 

to modulate the incretin signaling combined with other system involved in diabetes comorbidities. 

Literature also reported new strategies in order to lower glycaemia while simultaneously suppressing 

appetite, such as peptides that act like GLP-1 and other gastrointestinal hormones that participate in 

the hypothalamic control of appetite. An example could be EP45 (Figure 8), which contains amino 

acid sequence motifs present within the blood glucose-lowering agent exendin-4 (Ex-4), a GLP-1 

ligand, and the appetite-suppressing agent peptide YY (3-36) (PYY(3–36)) [58]. Another example 

could be a GLP-1/xenin fusion hybrid that incorporates the key amino acid sequences of the same 

GLP-1 ligand previously mentioned, Ex-4, and a xenin mimetics, xenin-8-Gln, linked via an 8-amino-

3,6-dioxaoctanoic acid group [59]. 

 

Figure 8. Sequence alignment of peptides Y2, EP45, glucagon, and incretin hormones. 

3. Targeting Other Systems 

3.1. SGLT-1/SGLT-2 Inhibitors 

Sodium-glucose co-transporter-2 (SGLT-2) is responsible for major glucose reabsorption in renal 

proximal tubules (around 80–90%) [60,61]. Since its inhibition leads to a reduction in blood glucose 

level, there is a potential use in the treatment of T2DM. A possible treatment regimen combines SGLT-

2 inhibitors plus GLP-1R agonists [62]. These combined inhibitors improve glycaemia control 

independent of insulin secretion with a low risk of hypoglycemia by decreasing renal glucose 

reabsorption and increasing urinary glucose excretion [63]. 

Due to the beneficial effects of inhibiting SGLT-2, a novel strategy involves the development of 

dual SGLT-1/SGLT-2 inhibitors. SGLT-1 is the major transporter for glucose absorption in intestine 

and is also expressed in renal proximal tube. These dual drugs aim to reduce glucose absorption in 

the gastrointestinal tract, due to the SGLT-1 inhibition, and to reduce renal glucose reabsorption via 

the inhibition of both transporters. Interesting literature results reported that Sotaglifozin (LX4211), 

depicted in Figure 9, which inhibits both SGLT-1/SGLT-2 increases glucagon-like peptide-1 and 

peptide YY levels [64] and demonstrates that this approach minimizes the risk of hypoglycemia and 

body weight gain, two main challenging clinical goals in a glucose-lowering treatment. Sotagliflozin 

is now under development by Lexicon pharmaceuticals for the treatment of T1DM and T2DM. 

 

Figure 9. Structure of Sotaglifozin, a Dual SGLT1/SGLT2 Inhibitor. 
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3.2. AR/PTP1B Dual Inhibitors 

Novel molecular targets are also investigated like aldose reductase (AR) and protein tyrosine 

phosphatase 1B (PTP1B), two key enzymes involved in different events which are critical for the onset 

and progression of T2DM and related comorbidities. The former is a key enzyme in the polyol 

pathway which could induce an excessive accumulation of intracellular reactive oxygen species 

(ROS) in several tissues, such as heart, vasculature, eyes and kidneys, which could be implied in 

many diabetic complications. Regarding PTP1B, this enzyme has been implicated in the negative 

regulation of both insulin and leptin. Furthermore, it may be also involved in insulin-resistance and 

obesity. The research group of Ottanà [65] developed several 4-thiazolidinone derivatives as potential 

inhibitors of both AR and PTB1B (Figure 10). These compounds will be further optimized in order to 

balance the inhibitory profile since they show a much more potent activity toward human AR. 

 

Figure 10. General structure of aldose reductase (AR)/protein tyrosine phosphatase 1B (PTP1B) 

inhibitors. 

Since disease management also takes care of cardiovascular risk factors such as arterial 

hypertension, alteration in triglycerides, cholesterol levels, and increased production of uric acid, 

which usually coexist in the same patient, other current therapeutic strategies are targeting the entire 

spectrum of these dysfunctions and their relatively regulatory pathways. In this context, a noticeable 

trend is focused on the design and synthesis of dual peroxisome proliferation activated receptors 

(PPARs) agonists. 

4. PPARs-Based Therapies 

4.1. Overview 

PPARs comprise a group of nuclear receptor proteins, codified by different genes that have three 

subtypes with a specific tissue distribution: PPAR-α, PPAR-δ (also known as PPAR-β), and PPAR-γ. 

PPAR-α is highly expressed in tissues with high fatty acids oxidation such as liver, kidney, heart 

muscle, and vascular endothelial cells since its activation promotes lipid metabolism and 

consequently increases plasma HDL-Cholesterol (HDL-C) levels. Moreover, several studies have 

demonstrated anti-atherogenic and anti-inflammatory activities of PPAR-α which can be attributed 

to the inhibition of several inflammatory mediators and adhesion molecules [66,67]. The reducing of 

lipotoxicity and inflammatory mediators in long-term treatment with PPAR-α agonist have shown 

an improvement in cardiac performances in diabetic patients and a reduction in diabetes-associated 

cardiovascular risk factors [68]. 

PPAR-δ has a broad expression pattern and plays important roles in the regulation of 

proliferation and differentiation of several cell types, including adipose cells. Studies on PPAR-δ 

show also its implication in the inflammatory status of the macrophage, which suggests that its 

modulation has the potential to attenuate inflammation and slow down the progression of 

atherogenesis [69]. PPAR-γ is expressed mainly in the adipose tissue, intestinal cells, and in 

mononuclear leukocytes, where it is involved in adipocyte proliferation and differentiation. Several 

studies show that PPAR-γ ligands have pleiotropic effects in cardiovascular complications [70]. 

PPARs can regulate gene transcription by binding to specific DNA response elements upon 

ligand activation and heterodimerization with the 9-cis retinoic acid receptor (RXR). The different 

subtypes can be activated by different endogenous ligands like free fatty acids, eicosanoids, and 
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Vitamin B3, but they are also several marketed drugs, such as fibrates, a hypolipidemic class which 

acts through PPAR-α, and thiazolidinediones, antidiabetic agents which can activate PPAR-γ. 

The design of dual PPARs agonists are currently under development in order to produce 

synergistic anti diabetic (reduce hyperglycemia and hyperlipidemia) and cardioprotective effects that 

could be more efficient than the treatment with selective agonists [71]. 

4.2. Dual Agonists 

The most promising efforts were made in the development of PPAR-α/γ dual agonist which 

revealed potent therapeutic effects for DM, cardioprotective effects, and dyslipidemia. 

Figure 11 reports some recently investigated PPAR-α/γ dual agonists: naveglitazar, 

netoglitazone, muraglitazar, ragaglitazar, tesaglitazar, imiglitazar, MK-767, and LY-929. 

 

Figure 11. Structures of several peroxisome proliferation activated receptor (PPAR)-α/γ dual 

agonists. 

Clinical trials with dual PPAR-α/γ agonists demonstrate reduction in triglycerides 

concentration, an increase in cardioprotective HDL-C level with consequently improvements in 

insulin sensitivity [72]. 

Evidences reported in literature demonstrated the positive effects of the dual agonist 

ragaglitazar in decreasing cardiovascular risk factors by inducing an efficient hypotensive effect in 

spontaneously hypertensive rats and in the improvement of the endothelial function in Zucker 

diabetic fatty rats [73]. 

Ragaglitazar was also reported to have some carcinogenic effects in rodent but there are not 

enough available data that support this, as well as the effects have been never observed in human. 

MK-767 has slightly less activity on PPAR-γ when it compared with pioglitazone. MK-767 effectively 

normalizes hyperglycemia and hyperinsulinemia in the diabetic ab/ab mouse model. In healthy 

human subjects, it still reduces triglyceride, FFA, LDL, VLDL, and fasting plasma glucose level. 

Furthermore, it increases adiponectin levels in healthy subjects [71]. 

The clinical program of MK-767 was developed by Merck in collaboration with Kyorin 

Pharmaceutical Co., but it was halted at phase III, in a long-term safety assessment program, due to 

the identification of a rare form of malignant tumor in mice. 
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Unexpectedly, the developments of other dual PPARs agonist such as tesaglitazar has been 

withdrawn in phase III clinical trials because it may cause an increase in fibro sarcoma formation. 

Muraglitazar has been discontinued as well because, despite it is responsible for an increase in 

HDL-C levels, and a decrease in total cholesterol, apolipoprotein B, triglycerides and HbA1c, this 

agent is associated with an increased risk of adverse cardiovascular events and heart failure. 

These unsatisfactory results led to the investigation of the agonist ratio in order to avoid the 

exacerbation of adverse effects and the gained lines of evidence show that supra activation of PPAR- 

α or γ may be associated with diabetes comorbidities such as renal dysfunction, fluid retention, heart 

failure, and carcinogenesis. 

Tesaglitazar and muraglitazar also lack of balance in binding affinity: the former has high 

affinity towards PPAR-γ while the latter is more active on PPAR-α. 

Hence, one of the challenges is the design of a dual agonist with balanced PPAR-α/γ activity and 

good safety profile. 

Further studies have been looking for combining the potential effects of PPAR-α/δ and PPAR-

γ/δ, which may show interesting proprieties like the dual activation of PPAR-α/γ. For example, (R)-

3-{2-ethyl-4-[3-(4-ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-phenyl}propionic acid (Figure 12), a PPAR-

γ/δ agonist, has been shown to lower the glucose level inducing less weight gain than rosiglitazone 

[74]. 

 

Figure 12. Chemical structure of a PPAR-γ/δ agonist. 

Furthermore, these agents possibly avoid weight gain, an adverse effect associated with 

thiazolidinediones treatment, but still further studies must be done to investigate the efficacy and 

safety of these compounds. 

4.3. Pan Agonists 

On the other hand, development of pan agonists, which can act on more than two targets, is 

current under investigation. Pharmacodynamic tests on benzafibrate demonstrate that this lipid 

lowering drug acts on all the three PPARs subtypes and induces lower LDL cholesterol and 

triglyceride levels, while increasing HDL. Additional studies show that in patients with impaired 

glucose balance, benzafibrate may delay progress of diabetes by improving insulin sensitivity, 

inhibiting atherosclerosis, and preventing ischemic heart injury [75]. Furthermore, these agents are 

also expected to avoid weight gain. Benzafibrate analogues (Figure 13) such as LY 465608 and 

BPR1H036 are under investigation as novel PPARs pan agonist [76]. However, in vitro and in vivo 

studies have to be performed to collect more clinical evidence of their efficacy. 
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Figure 13. Different example of PPARs pan agonist. 

5. Herbal Medicines Approach 

Like multi-target ligands, phytocomplex exploits the “herbal shotgun” effect where multiple 

constituents interact with different targets. The multi-targets approach is in contrast with the “silver 

bullet” one that refers to the effect of a single substance acting at a single target. Several plant extracts 

were tested to corroborate their synergistic and multifactorial effects towards DM [77]. Here are 

represented a few of those. Among the herbal products that are not mentioned in this review, gurmar 

(Gymnema sylvestre), ivy gourd (Coccinia indica), cinnamon (Cinnamomum cassia), psyllium 

(Plantago ovata), and garlic (Allium sativum) deserve a particular mention for their therapeutic 

effects on T2DM [78]. 

5.1. Momordica Charantia 

Momordica charantia, also known as Bitter Melon (BM), is a plant indigenous to tropical and 

subtropical regions including South America, Asia, India and East Africa and has been traditionally 

used in Asian phytotherapic treatment of T2DM. Several studies were carried out in order to 

investigate the different pharmacological mechanisms of actions [79], but they are not completely 

elucidated yet. The increased expression of PPAR-γ and reduced leptin expression in white adipose 

tissues, as well as the promotion of GLUT4 expression in skeletal muscles in high-fructose-fed rats 

are among the proposed mechanisms. Regardless the mechanisms, its extracts improved insulin 

sensitivity, glucose tolerance and insulin signaling pathway in high fat-fed rats [80]. Furthermore, 

other pharmacological effects include the suppression of postprandial hyperglycaemia [81], while 

cucurbitane-type triterpene glycosides and trehalose isolated from the seeds inhibited alpha-

glucosidase enzyme activities [82]. 

5.2. Panax Ginseng 

The activity as anti-diabetic agents of different ginseng species seems due to its saponin and 

polysaccharide constituents which might be involved in the double activation of AMP-activated 

protein kinase (AMPK) and PPAR-γ [83]. They act with different mechanisms including the 

stimulation of insulin biosynthesis and its secretion. Furthermore, consumption of ginseng increases 

insulin-regulated receptor (GLUT-4) in skeletal muscle and in liver in obese mice and increases 

lipoprotein lipase (LPL) and PPAR-γ in adipose tissues [84]. 

5.3. Trigonella Foenum-Graecum 

Historically Trigonella foenum-graecum, fenugreek, was used for a variety of health conditions, 

including diabetes. Studies report that it can inhibit carbohydrate metabolic enzymes [77] leading to 

hypoglycemic effects. Furthermore, its seeds can decrease glucose-6-phosphatase and fructose-1,6-

bisphosphatase in liver and kidney. 



Molecules 2020, 25, 1987 16 of 20 

 

5.4. Scutellariae Radix 

Scutellariae Radix (SR) is a dry root of Scutelleria baicalensis Georgi which has been used to treat 

different types of diseases. Its biological activities include anti-inflammation, anti-cancer, and anti-

oxidation effects. The pharmacologically active components are flavonoids, such as baicalin, 

wogonoside, baicalein, and wogonin and their main beneficial effects involve the improvement in 

insulin resistance and the suppression of gluconeogenesis. 

5.5. Coptidis Rhizoma 

Coptidis Rhizoma (CR) is a dried rhizome of Coptis chinensis. It mainly contains alkaloids, such 

as berberine, coptisine, and palmatine, as pharmacologically active components. Recently studies 

have shown that CR has anti-bacterial, anti-cancer activities. Moreover, berberine was found to be 

able to lower blood glucose and promoting the secretion of insulin. 

Therefore, SR and CR could alleviate inflammation, insulin resistance, hyperglycemia and 

hyperlipemia, which are mostly contribute to diabetes disease. The combined extracts of SR and CR 

(1:1 ratio) have been used in therapies of traditional Chinese medicine to obtain a synergistic effect to 

treat T2DM. However, their compatibility mechanism remains unknown, but the metabolomics and 

MAPK/PI3K/Akt signaling pathway helped to unraveled it. 

6. Conclusions and Future Directions 

As mentioned in the Introduction section, since diabetes has a multifactorial pathological nature, 

it comes as no surprise that concurrent interactions of more than one potential modulator appear to 

have promise for future treatments. This may be achieved with a new approach, more specifically 

through the development of multi modal compounds. Unfortunately, the clinical development of 

some multifunctional ligands has been discontinued because of their undesirable side effects, maybe 

due to their imbalanced and/or supra-therapeutic activity. Given this, the potential promise of 

compounds able to modulate the activity of multiple targets still requires detailed investigations. 

Future advances in the understanding of the genetics base and of the signaling pathways which 

characterize the disease, coupled with their therapeutic applications, should lead to an expansion of 

new treatments, like personalized medicine [85,86], that could exploit new clinically available multi-

target drugs. Tailoring medical therapies to the patient’s biological characteristics may help to 

optimize disease treatment, thereby improving overall prognosis and decreasing comorbidities’ risk. 
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