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Lymphangioleiomyomatosis: what do we

know and what are we looking for?
S. Harari*, O. Torre* and J. Moss#

ABSTRACT: Lymphangioleiomyomatosis (LAM) is a rare disease characterised by proliferation of

abnormal smooth muscle-like cells (LAM cells) leading to progressive cystic destruction of the

lung, lymphatic abnormalities and abdominal tumours. It affects predominantly females and can

occur sporadically or in patients with tuberous sclerosis complex.

This review describes the recent progress in our understanding of the molecular pathogenesis

of the disease and LAM cell biology. It also summarises current therapeutic approaches and the

most promising areas of research for future therapeutic strategies.
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L
ymphangioleiomyomatosis (LAM) is a rare
multisystem disorder affecting predomi-
nantly young females in their reproductive

years. It is characterised by progressive cystic de-
struction of the lung, lymphatic abnormalities and
abdominal tumours (e.g. angiomyolipomas) [1–5].
The main feature of the disease is the proliferation
of abnormal smooth muscle-like cells (LAM cells),
leading to the formation of thin-walled cysts in the
lungs and cystic structures (i.e. lymphangioleio-
myoma) in the axial lymphatics. LAM is also
characterised by high prevalence of angiomyolipo-
mas (AMLs), benign tumours which involve pri-
marily the kidneys, composed of smooth muscle
cells and adipocytes together with incomplete blood
vessels [1–5].

LAM arise sporadically in otherwise healthy
females and in about 30% of females with tuberous
sclerosis complex (TSC), an autosomal dominant
syndrome characterised by hamartoma formation
in multiple organ systems, cerebral calcifications,
seizures and cognitive defects [6–9]. In the past
decades, the finding that LAM lesions in patients
with TSC (TSC-LAM) and sporadic LAM (S-LAM)
are histologically identical was consistent with the
hypothesis that these diseases may share common
genetic and pathogenetic mechanisms. In this
review, we will focus on current concepts of the
molecular pathogenesis of LAM and the rationale
of currently available and experimental treatment.

PATHOGENESIS
Pathology of LAM lesions and characterisation
of LAM cells
Lung lesions in LAM are characterised by lung
nodules or small cell clusters of LAM cells near

cystic lesions and along pulmonary bronchioles,
blood vessels and lymphatics (figs 1 and 2). LAM
cells consist of two types of cell subpopulations:
myofibroblast-like spindle-shaped cells expressing
smooth muscle-specific proteins, such as a-actin,
desmin and vimentin, and epithelioid-like cells,
which express glycoprotein gp100, a marker of
melanoma cells and immature melanocytes show-
ing immunoreactivity with human melanoma
black 45 (HMB45) monoclonal antibody [10–12].
Although the significance of gp100 expression by
LAM cells is still uncertain, it appears to corre-
late inversely with the expression of proliferating
cell nuclear antigen (PCNA), a marker of DNA
synthesis and cell proliferation [13]: the spindle-
shaped cells forming the core of the nodules show
low gp100 expression and high PCNA expression
while epithelioid cells in the periphery of the nod-
ule exhibit the reverse pattern. Thus, the spindle-
shaped cells may represent the proliferative element
of LAM lesions [14].

LAM cells also express oestrogen and progesterone
receptors and LAM may worsen during pregnancy
[10, 11], suggesting that cell proliferation may
be modulated by hormonal factors [15–17]. The
HMB45-positive LAM cell phenotype also includes
the muscular elements of AMLs [18] where they
are combined with dysplastic blood vessels and
adipocytes [19, 20]. In the axial lymphatics, LAM
cells form chaotic clumps of cells, leading to
thickening of lymphatic walls, obliteration of the
vessel lumen and cystic dilatation.

Although the origin of LAM cells remains unclear,
recent data indicate that they can metastasize,
suggesting similarities between migrating LAM
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cells and either mesenchymal stem cells [13, 14] or migrating
cancer stem cells [21]. Indeed, LAM cells have been found in the
blood, chylous fluids, and urine of some LAM patients [22],
demonstrating that LAM cells can leave primary lesions and
disseminate through blood or lymph vessels. A LAM cell lesion
of recipient origin was detected after single-lung transplantation
in a patient with LAM [23]. Identical TSC2 gene mutations in
pulmonary LAM cells and AMLs of TSC patients with LAM
have also been reported [24]. Lesions with identical mutations of
the tumour suppressor TSC2 gene in the lymph nodes of
patients with LAM were also found [23, 25].

Genetic and molecular pathogenesis
Mutations in the tuberous sclerosis genes TSC1 and TSC2 are
considered to be the cause of LAM, with TSC2 mutations
arising more frequently than TSC1 mutations (the majority of
LAM, and ,60% of TSC cases) [21, 26, 27]. The current
accepted model for LAM is consistent with Knudson’s ‘‘two-
hit’’ hypothesis of tumour development [28]: an initial
mutation in either TSC1 or TSC2 is followed by a second hit
represented by loss of heterozygosity, causing the loss of
function of either TSC1 or TSC2 gene products. S-LAM
develops due to two acquired mutations (usually in TSC2),
while patients with TSC-LAM have one germline mutation
(again usually in TSC2) and one acquired mutation [10]. These
findings clarify why LAM is frequent in patients with TSC,
while S-LAM is a particularly rare disease.

The protein products of TSC1 and TSC2, whose names are
derived from characteristic phenotypic features of patients
with TSC, are hamartin and tuberin, respectively [29, 30].
Hamartin is a 130-kDa protein containing a potential trans-
membrane domain near its N-terminus, a coiled-coil domain,
an interaction site with tuberin and ezrin-radixin-moesin
(ERM) family-binding domain [31, 32]. Its C-terminal domain
binds to neurofilament L (NF-L) in cortical neurons [33].

Tuberin is a 198-kDa protein that interacts with hamartin
through its N-terminus [31, 34]. Tuberin also has a region of

homology with the Rap 1 GTPase–activating protein (Rap1GAP)
[30, 35]. Finally, tuberin contains multiple potential phosphory-
lation sites for different kinases such as protein kinase B (Akt/
PKB) [30, 35–40]. The many and varied domains in hamartin
and tuberin reflect the important role for the two proteins in the
transduction of signals from cell membrane-associated recep-
tors. Tuberin is involved in the cell cycle and in cell growth and
proliferation [41]. Hamartin is thought to have a role in the
reorganisation of the actin cytoskeleton by inducing an increase
in the levels of Rho-GTP and by binding activated ERM proteins
[42]. Thus, absence of hamartin causes loss of focal adhesions
and detachment from substrate.

Many studies demonstrated that hamartin and tuberin are
closely associated in vivo [43–46]. A major role of the hamartin–
tuberin complex is the inhibition of a kinase known as the
mammalian target of rapamycin (mTOR), a central regulator of
cell growth [47]. mTOR realises its effects through two main
mechanisms. First, it stimulates the phosphorylation and
activation of S6K, leading to ribosomal assembly. Secondly,
mTOR enhances phosphorylation of 4E-BP1, a protein that
binds and activates the eukaryotic translation initiation factor
eIF4E, permitting protein synthesis to begin [48]. Hamartin–
tuberin complex maintains mTOR in a deactivated state
through tuberin’s ability to stimulate GTP hydrolysis by Ras
homologue expressed in brain (Rheb) [49–52]. Indeed, muta-
tions in both hamartin and tuberin have been shown to
enhance Rheb activity [53, 54].

Several kinases can inactivate the hamartin–tuberin complex,
thus increasing mTOR activity and cell growth. Among these
is Akt/PKB, a cytosolic kinase recruited to the membrane
upon ligation of membrane receptor tyrosine kinases, such as
the insulin receptor. Akt/PKB phosphorylates tuberin, there-
by promoting dissociation of the hamartin–tuberin complex
(fig. 3) [55, 56]. However, tuberin can also be phosphorylated
by extracellular signal-regulated kinase 2 (ERK2) and mitogen-
activated protein kinase (MAPK)-activated protein kinase 2,
resulting in inactivation of hamartin–tuberin complex [57, 58].

FIGURE 1. Surgical lung biopsy showing several thin-walled rounded cysts of

varying dimensions. The LAM cells form small plaques in the wall of the cysts

(arrows) (haematoxylin–eosin, 206). Figure courtesy of A. Cavazza.

FIGURE 2. Surgical lung biopsy showing LAM cells. Note the spindle-to-

epithelioid morphology, the large amount of eosinophilic cytoplasm and the bland

nuclei (haematoxylin–eosin, 2006). Figure courtesy of A. Cavazza.
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In contrast, under conditions of energy deprivation, an AMP-
activated protein kinase (AMP kinase) phosphorylates tuberin
on a site that leads to increased activity of the hamartin–
tuberin complex and consequent inactivation of mTOR [59].

Although its role remains uncertain, oestrogen may be involved
in pathogenesis of LAM by interaction with signalling events in
LAM cells. Tuberin has been found to interact directly with the
intracellular oestrogen receptor alpha (ERa) through a C-terminal
domain, resulting in growth inhibition due to a reduction in
oestrogen-induced activation of a platelet-derived growth factor
receptor b and extracellular signal-regulated kinase 1/2 (ERK1/2)
signalling pathway [60]. Moreover, there are different nonge-
nomic oestrogen-activated signalling pathways dependent on
ERa, which may be involved in the pathogenesis of LAM. Among
these, the phosphoinositide 3-kinase (PI3K)–Akt signalling cas-
cade [61] and a pathway leading to tuberin degradation induced
by dephosphorylation have been recognised [62]. Recently, the
binding between calmodulin and tuberin has been hypothesised
to have a role in tuberin’s effects on oestrogens-mediated signal-
ling [63, 64], and oestrogens have been shown to enhance survival
of LAM-like cells and metastasis to the lung [65].

Altered metabolism of extracellular matrix can be involved
in pathogenesis of LAM contributing to cell migration and
dissemination in a manner similar to protease-mediated invasion
of malignant tumours [66]. Spindle-shaped LAM cells express
membrane type 1 matrix metalloproteinase (MT1 MMP) and
matrix metalloproteinase 2 (MMP-2), which is activated by MT1
MMP [67, 68]. These proteinases degrade extracellular matrix
proteins thus facilitating cell migration. The observation that
cleavage of insulin-like growth factor (IGF)-binding proteins by
MMP-1 can promote human airway smooth muscle growth [69]
suggested the hypothesis that MMPs may also enhance LAM cell
growth via inactivation of IGF-binding proteins [14]. Recently,
strong expression of cathepsin-K, a protease produced normally
by human osteoclasts, has been demonstrated in spindle- and
epithelioid-shaped cells of LAM [70]. Cathepsin-K is a papain-
like cysteine protease [71], with high matrix (collagen, elastin)-
degrading activity which may significantly contribute, together
with metalloproteinases to the progressive structural damage
and remodelling of pulmonary parenchyma [72]. Moreover, the
finding of cathepsin-K immunoexpression in the spindle- and
epithelioid smooth muscle and adipocyte-like cells in renal
AMLs confirms the phenotypic identity of these morphologically
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FIGURE 3. Schematic representation of the signalling transduction pathways involving the tuberous sclerosis proteins, hamartin and tuberin. The main pathway involved

in lymphangioleiomyomatosis pathogenesis is mediated by Akt, whose activation inhibits hamartin–tuberin complex, leading to mammalian target of rapamycin (mTOR)

activation and thus to cell growth and proliferation. Arrows indicate activating or facilitating influences; flat-headed lines indicate inhibitory influences. ERK2: extracellular

signal-regulated kinase 2; MK2: mitogen-activated protein kinase (MAPK)-activated protein kinase 2; Rheb: Ras homologue expressed in brain; ERa: oestrogen receptor a;

PDGFRb: platelet-derived growth factor receptor b; CaM: calmodulin; ERM: ezrin-radixin-moesin.
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heterogeneous cells and their relationship with the cellular
elements composing the pulmonary LAM.

Origins of LAM lesions
LAM cells proliferate along lymphatics where they are divided
into fascicles or bundles by channels lined by lymphatic
endothelial cells. LAM cells have been hypothesised to
be involved in lymphangiogenesis by producing vascular
endothelial growth factor (VEGF)-C [73]. The recruitment of
lymphatic channels by LAM cells may account for their ability
to metastasise to distant sites and facilitate further invasion of
lung tissue [74]. Obstruction and damage of lymphatics may be
the mechanism involved in development of chyloptysis and
chylothorax. Besides, proliferation of LAM cells along lym-
phatic channels puts them in proximity to both airways and
blood vessels. Obstruction of blood vessels causes focal areas
of haemorrhage while the cystic changes in the pulmonary
parenchyma might be the result of the constrictive effect of
bundles of LAM cells on airways, leading to airflow obstruc-
tion and air trapping [75, 76]. The degradation of the sup-
porting architecture of the pulmonary interstitium due to
MMPs and cathepsin-K produced by LAM cells is considered
an alternative or coexisting mechanism for cyst development
(fig. 4) [68–70]. Cathepsin-K overproduction and/or the dis-
regulation of mTOR pathway in osteoclasts may be an
alternative mechanism for bone loss that has been observed
in patients with LAM [70], although oestrogen deficiency has

been hypothesised to be a possible cause for the abnormal bone
mineral density in these patients [77].

CLINICAL MANIFESTATIONS
Pneumothorax, progressive dyspnoea and chylous pleural
effusions are the main clinical manifestations of LAM [1–4, 78].
Dyspnoea is the most common symptom (over 70% of patients)
and the result of airflow obstruction and cystic destruction of
the lung parenchyma. Over 50% of patients have a history
of pneumothorax in their clinical course. Pneumothorax is
often the first manifestation and recurrences are common [4].
Chylous pleural effusions are less common, but tend to recur
after simple aspiration [4, 79]. Other respiratory symptoms are
cough, chyloptysis and haemoptysis (table 1). As described
above, haemoptysis and chyloptysis may be the result of LAM
cell obstruction of pulmonary blood vessels and lympha-
tics, respectively. Extrapulmonary manifestations of LAM are
AMLs, which occur mostly in the kidneys, chylous ascites,
abdominal lymphadenopathy and large cystic lymphatic masses
termed lymphangioleiomyomas [80, 81]. AMLs are benign
tumours that occur in ,80% of patients with TSC-LAM and in
,40% of those with S-LAM [5]. These tumours may vary in size
from 1 mm to more than 20 cm in diameter, leading to complete
disruption of the normal kidney architecture [79, 82–84]. AMLs
are asymptomatic in most cases, however multiple and large
masses are more likely to cause haemorrhage and symptoms
such as haematuria and flank pain [80, 85].
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FIGURE 4. Possible mechanisms of lung cysts formation in lymphangioleiomyomatosis (LAM). VEGF: vascular endothelial growth factor; MMP: matrix

metalloproteinase. Adapted from [76] with permission from the publisher.
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Enlarged retroperitoneal, retrocrural or occasionally pelvic
lymph nodes, are detected by computed tomography (CT)
scanning in about 30% of patients, but are usually asymptomatic
[84]. Lymphangioleiomyomas are large cystic tumours primarily
occuring in the abdomen, retroperitoneum and pelvis and can
been found in up to 10% of patients [4]. Associated symptoms
are nausea, abdominal distension, peripheral oedema and
urinary symptoms [86]. Chylous ascites due to lymphatic ob-
struction and associated with chylous thoracic collections is
present in 10% of patients with more advanced disease [4, 84].
It has been described that meningiomas have an increased
prevalence in LAM than in general population, although their
relationship with LAM, TSC or therapy with progesterone is
unclear. As progesterone has a mitogenic effect on meningiomas,
and progesterone receptors are found in these tumours, it has
been hypothesised that hormonal therapy with progesterone
could have a role in formation or progression of meningiomas
[87]. Finally, signs consistent with TSC, such as facial angio-
fibromas, periungual fibromas, nail ridging and the shagreen

patch, are seen in patients with TSC-LAM. As these manifesta-
tions may be overlooked in patients with mild disease, a full
evaluation may be necessary to confirm the diagnosis when
there is a clinical suspicion of TSC [88], comprehensive of brain
(usually with magnetic resonance imaging (MRI)) and heart
imaging and genetic evaluation.

RADIOLOGICAL FINDINGS
The chest radiograph often appears normal in early disease,
although it may show pleural effusions or pneumothorax. In
more advanced disease a reticulonodular pattern and cysts or
bullae are the most common findings. (figs 5 and 6) The
characteristic abnormality on lung CT scans in patients with
LAM is the presence of well circumscribed, round and thin-
walled cysts that are scattered in a bilateral roughly symmetric
pattern, without any lobar predominance [89–91]. These cysts
range in size from barely perceptible to several centimetres and
in number from a few scattered cysts to near complete
replacement of the lung parenchyma (fig. 7).

Angiomyolipoma can usually be identified by CT because of
the presence of fat, which gives lesions a characteristic CT
appearance. MRI may be adequate for the diagnosis when
iodinated contrast is contraindicated (fig. 8) [92]. Diagnostic
difficulty may arise in the small number of angiomyolipomas
showing little evidence of fat; in these cases, tissue biopsy may be
necessary to differentiate angiomyolipomas from renal cell
carcinoma. Other extrapulmonary findings include lymphangio-
leiomyomas and ascites [84, 85]. Lymphangioleiomyomas are
usually localised in the mediastinum, retroperitoneum, and
pelvis along the axial lymphatics and can appear larger in the
evening due to accumulation of chyle in the cystic structures [86].

TABLE 1 Symptoms and clinical manifestations in
lymphangioleiomyomatosis

Patients %

Dyspnoea 87

Cough 51

Chest pain 34

Haemoptysis 22

Pneumothorax 65

Chylous effusion 28

Data are taken from [1–5, 77].

FIGURE 5. Chest radiograph in lymphangioleiomyomatosis showing bilateral

reticular changes.

FIGURE 6. Chest radiograph in lymphangioleiomyomatosis showing bilateral

pleural effusion and interstitial changes. Thoracentesis confirmed the presence of

chylous pleural effusion.
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DIAGNOSTIC CRITERIA AND DIFFERENTIAL DIAGNOSIS
Recently, guidelines for the diagnosis, assessment and treatment
of LAM have been published by the European Respiratory
Society LAM task force [93]. The guidelines highlight diagnostic
criteria and management including current available treatment
of the disease and its complications.

Diagnostic criteria
On the basis of pathologic and clinical findings, extrapulmon-
ary manifestations and CT scans the diagnosis of LAM can be
define as definite, probable or possible [93]. According to these
criteria, a characteristic lung CT in a female renders lung
biopsy not necessary for a definite diagnosis if any of the
following extrapulmonary manifestations is present: AML,
thoracic or abdominal chylous effusion, lymphangioleio-
myoma or biopsy-proven lymph node involved by LAM,
and definite or probable TSC. High-resolution CT (HRCT) is
the recommended imaging technique for LAM. The diagnosis
of LAM is probable when a characteristic lung CT is found in a
patient with compatible clinical history or when compatible CT
features are present in a patient with angiomyolipoma or
chylous effusion. Characteristic HRCT findings are multiple
(more than 10) thin-walled round well-defined air-filled cysts
with no other significant pulmonary involvement with the

exception of possible features of multifocal micronodular
pneumocyte hyperplasia (a hamartomatous process of the
lung that exhibits multiple small nodules) in patients with
TSC. When only few (more than two and fewer than 10) typical
cysts are present, HRCT features are compatible with pul-
monary LAM. Characteristic or compatible HRCT alone with
no other suggestive clinical feature makes the diagnosis of
LAM possible, but is not sufficient for a definite diagnosis.

Differential diagnosis
When all criteria for definite LAM are not satisfied, a certain
diagnosis of the disease requires exclusion of the alterna-
tive causes of cystic lung disease. The primary differential
diagnosis includes pulmonary Langerhans cell histiocytosis
(LCH) and emphysema. The smoking history and the mor-
phology of the cysts can be helpful in differentiating these
disorders from LAM [94–96]. LCH is characterised by
irregularly shaped thicker walled cysts, which involve pre-
dominantly the middle and upper lobes, and are often
associated to nodular lesions. Typical lung parenchyma
changes of emphysema are devoid of distinct walls. Less
common diseases that should also be considered in differential
diagnosis include Sjögren syndrome, lymphocytic interstitial

a)

b)

FIGURE 7. High-resolution computed tomography scans of the chest in a

patient with histological diagnosis of lymphangioleiomyomatosis. Round shaped,

thin-walled cysts are distributed diffusely throughout the lungs (a) without sparing of

lung bases (b).

a)

b)

FIGURE 8. Abdominal magnetic resonance imaging of a patient with tuberous

sclerosis complex lymphangioleiomyomatosis and multiple small renal angiomyo-

lipomas (arrows) in T1-weighted images (a) and fat suppression signal sequences

(b). Left nephrectomy was performed for a large angiomyolipoma.
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pneumonitis, hypersensitivity pneumonitis, amyloidosis, light
chain-deposition disease, low-grade leiomyosarcomas, meta-
static endometrial stromal cell sarcoma [97–101], and Birt–
Hogg–Dubé (BHD) syndrome, a rare tumour suppressor syn-
drome that is associated with spontaneous pneumothorax, skin
manifestations, pulmonary cysts, and various types of renal
tumours [102].

It has been reported that LAM cells express VEGF-D, a
lymphangiogenic growth factor. Serum VEGF-D levels have
been shown to be higher in patients with LAM than in healthy
volunteers and patients with other cystic lung diseases [103].
Therefore, a serum VEGF-D level of .800 pg?mL-1 in a female
with typical lung cystic changes on HRCT scan has been
proven to be diagnostically specific for S-LAM and identifies
LAM in females with TSC [104]. Finally, its levels have been
correlated to more severe disease [105]. Thus, serum VEGF-D
may be a useful biomarker for differential diagnosis and
prognostic evaluation of LAM.

Finally, LAM can be confused with lymphangiomatosis, a rare
disease that is associated with abdominal and thoracic lym-
phatic smooth muscle infiltration, lymphadenopathy and lym-
phangiomas and can involve the lung. But as opposed to LAM,
it affects both males and females and does not generate lung
cysts [106].

TREATMENT

Pulmonary and abdominal complications
Conservative treatment could be the initial approach to
pneumothorax. But if the air leak persists or if the pneu-
mothorax recurs, surgical pleurodesis should be performed; as
an alternative chemical pleurodesis may be performed in
individual casesin [107]. Chylothorax is often difficult to treat
and pleurodesis is frequently necessary, a low-fat diet and
therapeutic thoracentesis may be the initial approach [79, 108].
Thoracic duct ligation has also been performed safely in LAM.
Octreotide is a long-acting somatostatin analogue that slows the
production of chyle through reduction in splanchnic blood flow.
Although case reports and series have shown that octreotide is
probably effective for the treatment of chylous complications
in other diseases [109, 110], it can cause gallstones and the
experience is too limited to recommend it in LAM patients.

Asymptomatic small renal AML (,4 cm) should not be
treated; yearly follow-up should be performed by ultrasound,
or CT or MRI when ultrasound measurements are unreliable
due to technical factors. Larger asymptomatic AML at an
increased risk for bleeding should be followed twice yearly to
evaluate growth [93]. Symptomatic AMLs should be treated as
conservatively as possible to preserve renal function. Both
embolisations and nephron sparing surgery have been per-
formed safely [79, 111]. Although no trials have compared the
two strategies, embolisation may be preferred in patients with
active bleeding, while nephron sparing surgery may be used
when a malignant lesion is suspected [93].

A proven therapeutic intervention is not currently available for
lymphangioleiomyomas.

Treatment with bronchodilators is recommended for 20% of
patients who have a significant positive response to bronchodila-
tors [112, 113]; there is no evidence that corticosteroids are helpful.

Oxygen, where appropriate, pulmonary rehabilitation and pro-
phylactic vaccinations are other important measures.

Hormonal therapy
At present no effective treatment for LAM is available. Since LAM
affects predominantly pre-menopausal females and can worsen
during pregnancy, and after the administration of oestrogens
[114, 115], various hormonal strategies have been used in the
treatment of the disease. Effects of bilateral oophorectomy are
controversial, and there is no objective evidence of improve-
ment with anti-oestrogen therapy [78, 116]. There have been
reports of improvement with Gonadotrophin-releasing hor-
mone (GnRH) analogues but other studies were inconclusive
and no placebo-controlled clinical trials on GnRH analogues are
available [117–121].

The use of progesterone became the standard of care after
a series of case reports and clinical studies [122, 123]. A
retrospective study found a nonsignificant reduction in the rate
of decline in forced expiratory volume in 1 s (FEV1) and a
significant reduction in the rate of decline in carbon monoxide
diffusing capacity of the lung (DL,CO) in patients treated with
progesterone compared with untreated patients [124]. Another
retrospective study of 275 patients with LAM showed that the
overall yearly rates of decline of FEV1 and DL,CO for patients
who received oral or intramuscular progesterone were not
significantly different from patients who were not treated with
progesterone [125]. There have been no controlled trials of
progesterone in patients with LAM.

In conclusion, hormone treatment should be discouraged
except in individual cases with rapid progression of the
disease in which progesterone may be trialled.

Future therapeutic issues
Recent progress in our understanding of the molecular
pathogenesis of LAM and muscle cell biology provides a
foundation for the development of new therapeutic strategies.
Inhibitors of mTOR and inhibitors of MMPs and angiogenesis
are the most promising areas of research.

Inhibitors of mTOR

Sirolimus is an antifungal macrolide antibiotic currently in use
for the prevention of allograft rejection after solid organ
transplantation. Because of its inhibitory effect of mTOR-
mediated proliferation and growth of LAM cells in vitro, it has
been studied as a possible treatment for LAM.

The Cincinnati Angiomyolipoma Sirolimus Trial was a pilot
study involving 25 patients with AMLs, including 18 with
LAM. After 1 yr receiving sirolimus, AML volume decreased
by almost 50%, and airflow measurements of FEV1 and forced
vital capacity increased by 5 to 10% [126]. The improvements
in AML and FEV1 were reduced after therapy cessation but not
back to baseline values. Interim analysis of a similar trial in
seven patients with TSC and six patients with S-LAM showed
analogous results regarding AML volume [127]. In both
studies there were adverse events such as frequent aphthous
ulcers, diarrhoea and upper respiratory infections. FEV1

response is the primary outcome of the Multicenter Inter-
national LAM Efficacy of Sirolimus (MILES) Trial, a larger,
randomised controlled trial which opened in 2006.
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mTOR inhibitors can regulate major functional activities of
osteoclasts, including the production of cathepsin-K whose
expression has been recently found to be strongly present in
LAM cells [70], as mentioned above. Thus, it is possible to
speculate that mTOR inhibitors may exert part of their action
also by limiting the destructive remodelling of lung structure.

An open-label, nonrandomised, within-subject dose escalation
safety, tolerability and efficacy study of everolimus (a second
generation mTOR inhibitor) in females with sporadic or TSC-
LAM is ongoing.

Inhibitors of MMPs and angiogenesis
Doxycyline, an inhibitor of MMPs [128], may be an efficacious
treatment of pulmonary capillary haemangiomatosis [129], a
disorder in which angiogenesis is related to MMP activity.
Recently, MOSES et al. [130] reported a case of a patient with
advanced pulmonary LAM whose FEV1 and levels of oxygen
saturation at rest and on exercise significantly improved in
association with reduction of urinary MMPs after treatment with
doxycycline. Further studies are required to confirm this
interesting observation, and a clinical trial is now ongoing in UK.

Another possible target for future treatment of LAM is lym-
phangiogenesis. Recent data on mice suggest that the crucial
angiogenic factor VEGF may be important in the progression of
LAM lesions [131]. Moreover, results in a series of surgical and
autopsy cases of LAM showed that VEGF-C is overexpressed in
LAM lesions where it is associated with the excessive growth of
lymphatics [74]. VEGF-D was elevated in the serum of patients
with LAM and may be a biomarker for the disease [102].
Antibody inhibitors of VEGF pathways have been developed and
some are in clinical trials for different solid tumours [132–134].

Other potential targets in LAM include the farnesylated
protein Rheb and growth factor receptor tyrosine kinases
located upstream of the deregulated hamartin–tuberin–mTOR
pathway. Imanitib, an effective tyrosine kinase inhibitor, and
farnesyltransferase inhibitors targeting Rheb may be objects
for further studies [53, 135, 136]. Statins, which inhibit 3-
hydroxy-3-methylglutaryl-coenzymeA (HMGCoA), have been
found to inhibit the growth of TSC2-/- cells in vitro, although, to
date, no therapeutic effect has been found with statins in in
vivo studies of TSC disease. Furthermore a retrospective review
of 335 patients with LAM showed a significantly greater yearly
rate of decline of DL,CO % predicted in LAM patients on statins
in comparison with their matched controls [137].

As for other rare diseases, research into LAM has been strongly
limited by a relative inability to capture sufficiently large
patient populations. The recently established international
LAM registry is a component of a set of web-based resources,
including a patient self-report data portal, aimed at accelerat-
ing research in rare diseases in a rigorous fashion and is
an example of how such a collaboration between clinicians,
researchers, advocacy groups and patients can create an
essential community resource infrastructure, and thus accel-
erate rare disease research [138].
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