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Abstract. We define here a notion of internal copy and of weak internal
copy of a category. We will then determine some families of categories
having an internal copy or a weak internal copy. We will consider cate-
gories of definable classes of first-order theories and we will see that the
notion of internal copy is related to the notion of numerical existence
property.
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1. Introduction

A category C can host internal algebraic structures such as monoids, groups,
rings, etc. Among these internal algebraic structures there are categories, too.
An internal category is defined as an internal graph having a composition
arrow and an identity arrow making some diagrams (representing associativity
of composition and properties of identities) commute (see e.g. [3]).

An internal category cannot directly be compared with the category in
which it lives. However, it can be “externalized” by means of global elements.
It is hence natural to compare this externalization with C.

In this paper we deal with the question whether there exist categories C
having an internal copy, that is an internal category in C of which the external-
ization is isomorphic to C itself. We will show that one can produce examples
of a weakening of this notion by considering some categories of definable classes
of first-order theories. A metaproperty called numerical existence property will
play a crucial role in this case. Finally, we will produce an example of a cate-
gory with an internal copy in the strong sense.
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Notational conventions In this paper we adopt the following convention: when-
ever we say that C is a finitely complete category, we mean that C is endowed
with a distinct terminal object 1 and with an explicit choice of pullbacks
(Pb(f,9), W(f,’g, w{’g) for every pair of arrows f and g having the same codomain.
In this case, if ky and k; are arrows in C such that f o ky = g o k1, then we
denote by (ko, k1) ¢, the only arrow from 9y (ko) = 0o (k1) to Pb(f, g) such that
ﬂf’g o(ko,ki)pg="F fori=0,1.1f!4: A—1and !p: B —1 are the unique
arrows from A and B, respectively, to the terminal object 1, then we denote
with A x B the object Pb(!4,!5), with w?’B the arrow ﬂ;A’!B for i = 0,1 and
with (f,g)a.p the arrow (f, g)1,1,. As usual, we define Ay as (ida,ida)a
and tw4 as (71'14 A 7r64 ’A> A,A- We will omit the subscripts and superscripts when
they will be clear from the context.

2. Internal Copies and Extensions of a Category

Definition 2.1. An internal category T in a finitely complete category C is a
6-uple (g, I'1, do, 61, 1D, 0) where I'g, 'y are objects of C and dg, 01 : I'y — To,
ID:Tg — Ty and O: Pb(d1,d9) — TI'y are arrows of C such that

1. §; 0ID =idp, for i =0, 1;

2. y;o0=46;0om fori=0,1;

3. Do (IDody,idr,) =Oo (idp,,ID o d1) = idp,;

4. Oo (mp,dom) =00 (0o my,m) o {{my, T 0 m1), T © 7).

Definition 2.2. If T" is an internal category of a finitely complete category C,
then its externalization is the category Extc(T") defined as follows:
1. Obj(Extc(T)) := Hom¢(1,T);
Arr(Extc(T)) := Home(1,T);
0i(f) == ;0 f for i = 0,1 for morphisms f from 1 to I'y;
id4 := ID o A for morphisms A from 1 to [g;
gof :=0o(f,g) for morphisms f, g from 1 to 'y such that 9, (f) = do(g)-

Ol

Definition 2.3. Let C be a finitely complete category. An internal copy of C
is a pair (I',I) consisting of an internal category I' and an isomorphism I :
EXtc(F) — C.

Let us first consider some trivial cases. Let C be a finitely complete cate-
gory having an internal copy with Arr(C) finite; then C is the trivial category.
Indeed, if Arr(C) is finite, then from |[Homc(1,T'1)| = |Arr(C)|, it follows that
Homc(1,T'1) = Arr(C). Since idp, € Arr(C), we conclude that 1 =T'; and thus
C has only one object and this object is terminal. Hence C is the trivial cate-
gory. Moreover, no non-trivial preorder has an internal copy: if C is a preorder
with an internal copy T, then, since Hom¢(1,T'1) has at most one element, C
has at most one arrow. But, having an internal category, C has at least one
arrow. Thus C is the trivial category.

Obviously, also every locally small category which is not small (e.g. Set,
Grp...) cannot have an internal copy.
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We can weaken the notion of internal copy by relativazing it to a doctrine
over C. If p : C°? — InfSL is a (primary) doctrine, that is a contravariant
functor from C to the category of inf-semilattices, we can consider the internal
categories in the base category Qp, of its elementary quotient completion (see
[5]). The objects of this category are pairs (I, p) where I is an object of C and
p € p(I x I) is a p-equivalence relation on it, that is

L p(Ar)(p) =T in p(I);
2. p(twr)(p) = p in p(I x I);
3. p({m1,m2))(p) A p(m2,73))(p) < P((m1,73))(p) in p(L x I x I).
An arrow from (I, p) to (J,n) is an equivalence class [f] of arrows f : I — J of
C such that p < p(f x f)(n) with respect to the equivalence relation for which
f and g are equivalent if and only if p < p(f X g)(n).
If C is finitely complete, then Qp has all finite products. In particular, a
terminal object in Qp is given by the pair (1, T).
Thus for every (I, p) in Qp,
Home((l, T)a (Ia P)) = Homc(la I)/ ~p
where f ~, g if and only if T < p({f, 9))(p)-

Among the doctrines over C there is in particular the subobject doctrine.
We can hence give the following definition:

Definition 2.4. Let C be a finitely complete category with a primary doctrine p
over it such that Qp, is finitely complete. A p-internal copy of C is a pair (I',I)
consisting of an internal category I' of Qp and an isomorphism I : Extg, (I') —
C. A weak internal copy of a finitely complete category C is a Subg-internal
copy of C.!

If the doctrine p is elementary (see [5]), then one can define a functor V
from C to Qp sending each object I to (I,3a,(T)) (where Ja, is left adjoint to
p(Ar)) and sending an arrow f to [f]. If p has comprehensive weak equalizers,
then V is full and faithful. In this case, as a consequence, if C has an internal
copy, then it has also a p-internal copy. If C is regular, the subobject functor is
an elementary doctrine having comprehensive weak equalizers (see [5]); hence
every internal copy of C is also a weak internal copy.

From the very definition of p-internal copies, it follows that no non-
trivial finite category or preorder has a p-internal copy; moreover, obviously,
no locally small non-small category has a p-internal copy.

3. Categories of Definable Classes

Let T be a first-order (intuitionistic or classical) theory with equality?. Let
x,y,z be fixed distinct variables of the language of T. The category of its
definable classes DC[T] is defined as follows:

1Tt is implicit in the definition that if C has a weak internal copy, then Subc must be a
primary doctrine such that Qgup,. is finitely complete.

2When we will refer to first-order theories we will always tacitly assume them to be intu-
itionistic or classical, and primitively recursively axiomatizable.
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1. Its objects are formal expressions {z| ¢} where ¢ is a formula of T having
at most x as free variable; such objects are called definable classes and
we write te {z| ¢} as a shorthand for o[t/x].3
We will identify objects {x| ¢} and {x| ¢} for which ¢ Fr ¢ and ¥ 1 ¢;
3. An arrow from {z| ¢} to {z| ¢} in DC[T] is a formula F having at most
x and y as free variables, such that
(a) Frronily/al;
(b) FAF/ylFry =2
(c) o1 Iy F;
4. We will identify arrows F and G from {z|¢} to {z|¢} in DC[T] such
that F' 1 G and G bt F;
5. The composition of F' : {z|¢} — {z|¢} and G : {z|v} — {z|p} is
defined as 32(F[z/y] A Glz/x]) : {z| ¢} — {z| p};
6. The identity arrow for {z| ¢} is the arrow ¢ A x = y.

o

The following proposition shows some sufficient conditions which guaran-
tee the category of definable classes of a first-order theory with equality to be
finitely complete. The proof is omitted since it consists simply of a verification.

Proposition 3.1. Let T be a first-order theory with equality.

1. If 7 is a formula with at most x as free variable such that T = 3z 7, then
{z| 7} is a terminal object in DC[T]. In particular, if the language of T
has a constant k, then DC[T] has a terminal object.

2. If w is a formula with at most x, y and z as free variables such that

(a) mATY [y, [l bry =y Na=2

(b) T ATz /x] by =2

(¢) THIz7
then, for every pair of definable classes {x| ¢} and {x|}, the following
is a product diagram in DC[T]:

{a] o} <7 {z] 3y3=(n A ply/a] Ale/a])} — {z| ¢}

where
(a) m =27 3a(r A ply/a] A lz/2])
(b) m> =47 Ja(nz/y,y/2] A plz /] A vl/a])
3. Every pair of parallel arrows F,G : {z|¢} — {z|¢} in DC[T] has an
equalizer JY(FANG) ANz =y : {z|Fy(F ANG)} — {z]| p}.

As a consequence of the proposition above, the categories of definable
classes of Peano arithmetics PA and of Heyting arithmetics HA are finitely
complete. The same holds for the categories of definable classes of set theories
like ZFC, ZF, IZF and CZF.

In DC[PA] and in DC[HA] a terminal object is given by {z| 2 = 0}, while
in set theories the definable class {z| -3y(y € z)} is terminal.

3As usual, when we will write o[t/z] we will assume to first change the bounded instances
in the formula ¢ of variables in ¢, using fresh variables.
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For binary products, in HA and in PA one can take 7 to be (a formula
representing) = = 2Y(2z + 1); in set theories, one can take 7 to be

Vu(u e x = (Mo(veu— (v=yVuv=2)VV(vE€u—v=y)))

Definition 3.2. We will call a first-order theory with equality T having formulas
7 and 7 satisfying the properties in items 1. and 2. of proposition 3.1 a cartesian
first-order theory with equality. Whenever T is a cartesian first-order theory
with equality, we assume that the structure of finitely complete category of
DC[7] is the one determined by the constructions in proposition 3.1.%

4. First-Order Theories with Natural Numbers

Definition 4.1. Let C be a cartesian category. A parametric natural numbers
object is a triple (N, z,s) where N is an object, and z: 1 — N and s : N — N
are arrows, such that for every pair of objects P,Q and every pair of arrows
f:P— Q@ and g: Q — @ there exists a unique arrow h : P x N — @ making
the following diagram commute:

Pty N lexs poy
h h
b\ |
Q——Q

Remark 4.2. In a cartesian category with a parametric natural numbers ob-
ject, every primitive recursive function between natural numbers can be rep-
resented. Indeed, as a consequence of the definition, for every f : N¥* — N and
g : NF¥2 — N there exists a unique arrow rec[f, g] : N**1 — N making the
following diagram commute.

(idyk,zo! k) idyk Xs

Nk Nk+1 Nk+1
\ lrec[f,g] \L(ideJrlJeC[ﬁg])
Ne—— Nk+2
g9

Definition 4.3. A first-order theory with equality T has natural numbers if
its category of definable classes DC(7) is cartesian and has a parameterized
natural numbers object ({z|Nat(z)}, Z, S) for which S is a mono, and Z and S
are disjoint.® In this case, for every natural (meta)number n and every formula
 we define the formula p[n/x] as follows:

L @[0/a] =1 Fy3u(Z A oly/z])
2. ¢ln+ 1/x] =% 3y(S[n/x] A ¢ly/x])

4Pullbacks can be defined from binary products and equalizers in a canonical way, as shown
e.g. in [2]
5Two monos in a category are disjoint if their pullback is initial.
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Set theories ZFC, ZF,IZF and CZF have natural numbers: if we consider the
terminal object {z|-3z(z € z)}, we take

1. Nat(z) =%/ Jw(Trans(w) Az € wA
Vyly € w — (—3z(z € y) V Iz(z € w A Succ(z,y))))

where
(a) Trans(w) =%/ VyVz(y € 2 Az € w — y € w)
(b) Succ(z,y) =% Vu(u € y < (u =2V u € 2))
2. Z=tf Fz(zcx) Nz =1
3. S =%/ Nat(x) A Succ(z, y).
The theories of arithmetics PA and HA have natural numbers: Nat(z) =%/
r=x,Z=" 2 =yAx=0and S =% y = succ(x).

5. Numerical Existence Properties

Definition 5.1. A first-order theory with equality T having natural numbers
has the numerical existence property (nEP) if, for every formula ¢ having at
most x as free variable such that T F 3z (Nat(z) A ¢), there exists a natural
(meta)number n such that T F ¢[n/x].

Numerical existence property nEP essentially means that if a natural number
satisfying a property is proven to exist in T, then a natural (meta)number can
be proven to satisfy that property in T.

Peano arithmetic PA, Zermelo—Fraenkel set theory ZF and, in general,
classical first-order theories with equality of numbers or sets (if consistent)
do not have the numerical existence property. Indeed one can consider an
independent sentence I (which exists by Godel’s first incompleteness theorem):
clearly T + Jz((z = OA—I)V(x = 1AT)) as a consequence of the law of excluded
middle; however there cannot be a numeral n such that T+ (n = 0A—I)V (n =
1 A1), since in that case n would be 0 or 1 and we could hence prove —I or
in T.

Heyting arithmetic HA has the numerical existence property: this was
proven by means of realizability by Kleene (see [4]). CZF and IZF also have the
numerical existence property, as it was proven by Rathjen in [6] and Beeson
in [1], respectively.

6. Internalizing Definable Classes

Every cartesian first-order theory with equality T having natural numbers en-
joys a primitive recursive Godelian internal encoding of its syntax by means of
natural numbers. We fix such an encoding. We also use, with abuse of notation,
symbols for primitive recursive functions between natural numbers (including
a primitive recursive bijective encoding of natural numbers p with primitive
recursive projections p; and pz), since they can be adequately represented in
T. In particular,

1. Every variable ¢ in the syntax of T is encoded by a numeral §;
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We use the notation = for the encodings of connectives, quantifiers and
equality as primitive recursive functions;

We use sub(z,y,z) to denote the code of the formula encoded by z in
which the variable encoded by z is substituted by the variable encoded
by y;

There is a predicate form(z) expressing the fact that x is the code of a
formula of T;

. There is a predicate free(y, z) expressing the fact that y is the code of a

variable which is free in the formula encoded by z;

There is a predicate pf(u, x,y) expressing the fact that u is the code of a
proof in T of the formula encoded by y from the assumption encoded by z;
There is a predicate notocc(z,y) expressing the fact that the variable
encoded by x does not occur in the formula encoded by y.

We write der(x,y) as an abbreviation for Ju(pf(u,z,y)).

One can hence define some formulas which will be helpful in the following
sections:

1.

w N

6.

7.
8.
9.
10.

We define the formula dc(z) as
form(x) A Vy(free(y, z) — y = x) A notoccur(y, z) A notoccur(z, )

which expresses the fact that = is the code of a formula of T having at
most x as free variable. Here and in what follows we will use the formula
notoccur to avoid problems with substitutions.

We define AT'o[T] := {z|dc(x)}, which is an object of DC[T].

We define the formula x =¢ y as dc(x) A dc(y) A der(z, y) A der(y, x).

We define the formula fr(x) as follows

form(z) AVz(free(z,2) — z =2 Vz=y)A
notoccur(z, z) A der(zAsub(z, z,y), y=z)

expressing the fact that x is the code of a definable functional relation.
In order to encode the collection of arrows of DC[T], we need to take
track of their codomains (which cannot be reconstructed otherwise). We
hence consider the collection

AT [T] == {z| 3y3z(z = p(y, 2) A fr(y) Adc(z) Ader(y,sub(z,y,2)))}

The formula x =; y, defined as follows, expresses the equivalence relation
of elements x e AT'1[T]:
ze Al [T] Aye AT [T] A pi(z) =0 p1(y) A pa2(z) =0 p2(y)

We define a domain relation 8o(z,y) as £ AD1[T] Ay = Jy(p1(z));
We define a codomain relation &, (z,y) as ze AT1[T] Ay = pa(z);
We define an identity relation 1D(z,y) as xe ATo[T] Ay = A (22y);
We define a composition relation O(x, y) as follows: ;
p1(x)e AT [T] A pa(z) e AT [T]
A3z3u(d1 (p1(x), 2) Ao (p2(z), u)Az =q u)

~

1
Ap1(y) = 3z(sub(p1(p1(x)), z, ) Asub(p1 (p2()), 2, 2)) A pa(y) = pa(p2(z))
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7. An Example of Category with a Weak Internal Copy

Exploiting the fact that in a category of definable classes DC[T] of a first-order
theory with equality, every mono I — {z| ¢} is isomorphic to one of the form
Y Ax=y:{z[} — {z|¢}, one can prove the following proposition.

Proposition 7.1. Let T be a first-order theory with equality. The doctrine of
subobjects of DC[T] is naturally isomorphic to the first-order hyperdoctrine
LTt on DC[T] defined as follows:

1. For every object {z| ¢} of DC[T], LTt ({z|¢}) contains all the formulas
¥ of T having at most x as free variable such that ¢ b1 ¢; these formulas
are identified when they are provable to be equivalent in T and they are
ordered by Fv1;

2. For every arrow F : {z| o} — {z| ¢} of DC[T] and every p in LTt ({z| ¢¥}),
LT+ (F)(p) ="/ 3y(F A ply/a)).

Proof. Each subobject [J : {z| ¥} — {z|¢}] of {x]| ¢} is sent to Ty J[y/x, x/y]
in LTr({z|¢}), while, conversely, each p in LTr({z|®}) is sent to the sub-
object determined by the mono p A x =y : {z|p} — {z|¢}. These functions
are well-defined and determine a natural isomorphism between Subpct and
LTr.

Corollary 7.2. Let T be a cartesian first-order theory with equality. The cate-
gory QSUbDC[T] is isomorphic to the category DC,[T] of which the objects are
pairs ({z|p}, R) in which {z|p} is an object of DC4[T] and R is a formula
of T having at most x,y as free variables which is a definable equivalence
relation® on the class {x|p} (we identify objects of which the equivalence re-
lations can be proven to be equivalent in T); and of which an arrow from
({z|¢}, R) to ({z|v},S) is an equivalence class of arrows F from {z|p} to
{z|y} in DC[T] such that F' N F[x'[z,y' /y] A Rz’ /y] b1 Sly/z,y' /y] with re-
spect to the equivalence relation for which two such arrows are equivalent if

and only if F'AG[2'[x,y'[y] A R[2' [y] b1 Sly/x,y' /y].

Proof. From proposition 7.1, it follows that QSubmm is isomorphic to Qrr,.
Moreover, since T is cartesian, one can define an isomorphism from Qpr, to
DC,[T] by sending each of its objects ({z| ¢}, p) to

(zl @}, 3z(nlz/2,2/y,y/ 2] A plz/2]))

and each arrow F to itself. O

The category DC,[T] is finitely complete and from the very definition of
the abbreviations in the previous section, the following proposition holds.

6We mean here that R -1 ¢ A ¢[y/z] and R is provable in T to be reflexive, symmetric and
transitive.



Vol. 14 (2020) Numerical Existence Property and Categories 391

Proposition 7.3. Let T be a cartesian first-order theory with equality and nat-
ural numbers. The sestuple

((AFO[T]vx =0 y)’ (Arl[T]’x =1 y)v [60($,y)], [51($ay)]7 [ID('I) y)]v [D(ZE, y)])

is an internal category in DC4[T] which we will denote with AL[T], provided
that we take as pullback of [61(x,y)] and [do(x,y)] the definable class defined by
the formula consisting of the first two lines in item 10. in the previous section
together with the equivalence relation induced by =, on first and on second
components, with the projections determined by p1 and ps.

Theorem 7.4. Every category of definable classes of a cartesian first-order the-
ory T with equality and natural numbers having the numerical existence prop-
erty has a weak internal copy.

Proof. We can assume T to be consistent, since otherwise the thesis trivially
holds.

As a consequence of the corollary above, it is sufficient to prove that
Extpe, (1) (AL'[T]) is isomorphic to DC[T]. If we denote with & the natural
(meta)number encoding the formula ¢ in the Gédelian encoding we considered,
we obtain a functor J from DC[T] to Extpc,[](AL[T]) by sending

1. Each object {z|p} to [T Ay = @] € HomDCq[T](l, (ATy[T], 2 =¢ v))
2. Each arrow F from {z|p} to {z|¢} to

[T Ny = p(Eyﬁ) € Hompc, 1)(1, (AT [T],x =1 9)

Conversely, we define a functor from Extpc, 1)(AL'[T]) to DC[T] as follows.

L. If [F] € Hompg, [1)(1, (ATo[T],=0)), then T = 3ly3zF and F 1 Nat(y).
Thus, by nEP there exists a natural (meta)number n such that T F
JzF[n/y]. Decoding n one can construct a formula ¢, such that @, is
n. The definable class {z|y,} is the object to which [F] is sent. This
application is well-defined, since if F' and G represent the same arrow from
1 to (AT'4[T],=¢) in DC,[T], and n and m are natural (meta)numbers
such that T+ 3zF[n/y] and T F JzG[m/y], then T F Ju pf(u,n,m) and
T F Ju pf(u, m,n); hence using nEP we can find natural (meta)numbers
k and h such that T F pf(k,n,m) and T F pf(h, m,n). Decoding k and h
we obtain actual proofs of ¢, F1 ¢, and of v, F1 ©,.

2. We use an analogous procedure to define the functor on arrows, exploiting
nEP.

These two functors determine an isomorphism of categories. O

8. The Classical Case

In case of cartesian classical first-order theories with equality and natural
numbers one can define some quotients in DC[T] using the minimum principle
which holds for natural numbers:
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Proposition 8.1. If T is a classical first-order theory with equality and natural
numbers, then the full subcategory DCN™[T] of DC[T] of which the objects are
those of the form {x| ¢} with ¢ F1 Nat(z) is equivalent to the full subcategory
]D)(Cflvat [T] of DC,[T] of which the objects are those of the form ({z|¢}, R) with
1 Nat(z).

Proof. One just have to exploit the fact that in T the minimum principle for
natural numbers holds. We define a functor Q : ID)(CJqV “[T] — DC[T] as follows:

1. Every object ({z| ¢}, R) in DC(]IV“[T] is sent to”

Q({z] ¢}, R) := {z| p(x) NVy(R — 2 <y)}
2. Every arrow [F]: ({z| ¢}, R) — ({z|v},S) is sent to the arrow

reQ({z| o}, R) Nye Qx| ¥}, 9) AVY (Fly'/yl — Sly/=,y'/y]).
Conversely, we can define a functor Q' : DCV*[T] — DC,[T] as follows:
every object {z] ¢} in DCY*[T] is sent to ({z] ¢}, Az = y) and every arrow

F is sent to [F].
This pair of functors gives rise to an equivalence of categories. O

In this case a functor J can still be defined from DC[T] to Extpc, 1) (AL'[T])
exactly as it is done in the first part of the proof of theorem 7.4.

Moreover, since AT'[T] is defined using only formulas regarding natural
numbers, it can be seen as an internal category in ID(CéV “[T].%8 By proposition

8.1, the category DC(]]V “[T] is equivalent to the full subcategory DCN*[T] of
DCIT]. Thus AT'[T] can be turned into an internal category of DC[T] of which
the externalization is isomorphic to Extpc, 1)(AL'[T]).

This would make this internal category a possible candidate to be an
internal copy of DC[T]. However, if T is consistent, the lack of the numerical
existence property is an obstacle to prove that J is an isomorphism. Indeed,
we cannot turn a global element of AI'g, which gives us a “definable” code for
a formula, in a natural (meta)number from which we can construct an actual
formula of T. Faithfulness of J and its injectivity on objects are also obstacled
by the lack of the numerical existence property: T could in principle prove the
existence of (a code of) a proof of equivalence between two (codes of) formulas
© and v, also in cases in which we cannot (meta)prove there is an actual proof
for such an equivalence.

9. An Example of Category with an Internal Copy

Theorem 9.1. Let T be a cartesian first-order theory with equality having nat-
ural numbers and having the numerical existence property. Then DC,[T] has
an internal copy.

7z < y denotes the order relation between natural numbers which can be defined in T.
SID)(CéV‘“ [T] is a finitely complete category and its embedding in DC4[T] preserves finite limits,
the same holds for DCN®¢[T] with respect to DC[T].
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Proof. One can modify AI'[T] and obtain an internal category AI'Y[T]| by
adding the encoding of equivalence relations in the formulas defining the class
of (codes for) objects and the conditions about their preservations in the class
of (codes for) arrows (together with a track of both domain and codomain),
and by adequately modifying the internal equivalence relations on them. Nu-

merical existence property will allow to establish the isomorphism between
DC,[T] and Ext(AT'?[T]) O
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