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Abstract 

This dissertation presents nonlinear control schemes to improve the productivity and 

lifespan of doubly fed induction generator (DFIG)-based and permanent magnet generator (PMG)-

based variable speed wind turbines. To improve the productivity, a nonlinear adaptive control 

scheme is developed to maximize power capture. This controller consists of three feedback loops. 

The first loop controls electrical torque of the generator in order to cancel the nonlinear term of 

the turbine equation of motion using the feedback linearization concept. The nonlinearity 

cancelation requires a real-time estimation of aerodynamic torque. This is achieved through a 

second loop which estimates the ratio of the wind turbine power capture versus the available wind 

power. A third loop utilizes this estimate to identify the shaft speed at which the wind turbine 

operates at a greater power output. Contrary to existing techniques in literature, this innovative 

technique does not require any prior knowledge of the optimum tip speed ratio. The presented 

technique does not need a dither or perturbation signal to track the optimum shaft speed at the 

maximum power capture. These features make this technique superior to existing methods.  

Furthermore, the lifespan of variable speed wind turbines is improved by reducing stress 

on the wind turbine drivetrain. This is achieved via developing a novel vibration mitigation 

technique using sliding-mode control theory. The technique measures only generator speed as the 

input signal and then passes it through a high-pass filter in order to extract the speed variations. 

The filtered signal and its integral are then passed through identical band-pass filters centered at 

the dominant natural frequency of the drivetrain. These two signals formulate a sliding surface and 

consequently a control law to damp the drivetrain torsional stress oscillations caused by electrical 

and mechanical disturbances. This technique provides a robust mitigation approach compared with 

existing techniques. These control schemes are verified through holistic models of DFIG- and 

PMG-based wind turbines. Except for wind turbine aerodynamics, for which an existing simulator 

is used, the developed models of all components including DFIG, PMG, converters, multi-mass 

drivetrain, and power line are presented in this dissertation.   
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The first loop controls electrical torque of the generator in order to cancel the nonlinear term of 

the turbine equation of motion using the feedback linearization concept. The nonlinearity 

cancelation requires a real-time estimation of aerodynamic torque. This is achieved through a 
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power. A third loop utilizes this estimate to identify the shaft speed at which the wind turbine 

operates at a greater power output. Contrary to existing techniques in literature, this innovative 

technique does not require any prior knowledge of the optimum tip speed ratio. The presented 

technique does not need a dither or perturbation signal to track the optimum shaft speed at the 

maximum power capture. These features make this technique superior to existing methods.  

Furthermore, the lifespan of variable speed wind turbines is improved by reducing stress 

on the wind turbine drivetrain. This is achieved via developing a novel vibration mitigation 

technique using sliding-mode control theory. The technique measures only generator speed as the 

input signal and then passes it through a high-pass filter in order to extract the speed variations. 

The filtered signal and its integral are then passed through identical band-pass filters centered at 

the dominant natural frequency of the drivetrain. These two signals formulate a sliding surface and 

consequently a control law to damp the drivetrain torsional stress oscillations caused by electrical 

and mechanical disturbances. This technique provides a robust mitigation approach compared with 

existing techniques. These control schemes are verified through holistic models of DFIG- and 

PMG-based wind turbines. Except for wind turbine aerodynamics, for which an existing simulator 

is used, the developed models of all components including DFIG, PMG, converters, multi-mass 

drivetrain, and power line are presented in this dissertation. 
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 Chapter 1 − Introduction 

This chapter begins with a brief background on the need for clean energy sources for 

electricity generation and a description of the growth of installed wind energy capacity in the past 

decade. Problem statements are expressed regarding two technical challenges of variable speed 

wind turbines, including extremum power seeking and mitigation of torsional vibrations. An 

overview of prior investigations of these two challenges is studied in order to provide a baseline 

for contributions presented in this dissertation. In this chapter, the objectives, main contributions, 

and published papers by the author on these subjects are also highlighted. This chapter concludes 

with the organization of the dissertation. 

 

Electricity generation worldwide reached 23,536 TWh in 2014 demonstrating 34% growth 

in usage during the past decade [1]. In particular, the United States, with 0.7% growth was the 

second largest electricity producer in 2014 generating 4,093 TWh, with energy resources of coal 

(38.8%), natural gas (27.4%), nuclear (19.5%), renewable energy sources (13.2%), and other 

(1.2%), as shown in Figure 1.1. This means that 67% of electricity generation in the United States 

Coal

Natual Gas

Nuclear

Renewables

other

Figure 1.1 Energy sources of electricity generation in the United States in 2014 [1]. 
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is produced from combustion of fossil fuels. Unfortunately, the carbon intensity of coal and natural 

gas thermal combustions are as high as 1029 kg/MWh, and 515kg/MWh, respectively [2] meaning 

that, for 1MWh electricity generation from power plants fueled by coal and natural gas, 1029 and 

515 kg CO2 are produced, respectively. A simple calculation, (i.e., {(0.388 × 1029) + (0.274 ×

515)}10−6 × (4093)1018 ) tells us that 9073 × 1018 kg CO2 pollution was emitted in 2014 alone 

for the 67% of electricity generation in the United States.  

During the last decade, increased attention has been paid to employing renewable energy 

sources to solve environmental problems worldwide. Today, wind turbines are one of the most 

important renewable power sources for electricity generation. Installed capacity of wind turbines 

has grown from 48 GW in 2004 to 370 GW in 2014, as shown in Figure 1.2. The United States 

has the second largest share of installed capacity of wind turbines, with over 65 GW compared to 

the top three countries in the wind energy in 2014 (i.e., China, the United States, and Germany,  

share approximately 60% of the global wind energy generation market) [3], [4].   

In addition to the growth in installed capacity, the size of wind turbines has grown over the 

last three decades because larger wind turbines have better power capturing and lower energy cost. 

Wind turbines currently in the power range of 4.5- 8 MW are being developed by most turbine 

0

100

200
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198
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Figure 1.2 Wind energy capacity in GW in the past decade [3]. 
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manufacturers and it is expected that larger wind turbines as high powered as 10MW will appear 

in 2018 for economic advantages [5].  

Wind turbines indeed have some adverse environmental impacts, including noise and 

degradation of wildlife habitats. For example, spinning turbine blades with diameters as high as 

120 m are a threat to flying wildlife such as birds and bats. However, in comparison to traditional 

energy generation resources, the wind provides a net environmental benefit to the world. In 2014, 

4% of electricity generation in the United States was from wind energy, that is 

{(0.04 × 1029)}10−6 × (4093)1018 = 169 × 1012 kg less CO2 was emitted compared to if the 

same amount of electricity would have been generated by coal thermal combustion power plants.   

Presently, the wind energy market is demanding design optimization of high performance 

wind turbines for capital and maintenance cost reductions. Therefore, further active control 

schemes are required to reduce mechanical stress and to increase the lifespan of wind turbines. 

Application of advanced nonlinear adaptive control schemes can help capture more wind power, 

and thus improving efficiency of the overall system [6]. 

 

Desired growth in wind energy provides motivation to conduct many investigations to 

improve productivity and reliability of these systems. A fundamental challenge of improving 

productivity of wind turbines is development of a robust control scheme for extremum power 

seeking in the presence of wind speed variations. A technical challenge for improving reliability 

and productivity is stress reduction in mechanical components through the mitigation of torsional 

vibrations caused by interaction between the wind turbine drivetrain and the rest of the system. 

These two concerns are elaborated in the following subsections. 
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 Extremum Power Seeking 

Power captured by wind turbines fluctuates due to the inherent variable nature of wind 

speed. As wind speed varies, maximum power, 𝑃𝑇 𝑀𝐴𝑋, that can be captured from a wind turbine 

occurs at various shaft speeds, as shown in Figure 1.3. Maximum power seeking is performed in 

the variable speed operational region, where the blade pitch angle is held constant and the 

electromagnetic torque and consequently rotor speed is controlled to track maximum wind power 

as wind speed varies. In the conventional technique, electrical torque is set to be proportional to 

the square of the rotor speed. However, the controller gain must be adaptively adjusted in real-

time to obtain optimum results. Another set of techniques is known as the perturb-and-observe and 

hill-climbing techniques. However, the techniques may fail to seek maximum power in case of 

rapid wind speed changes. One challenge is to develop an adaptive technique with a higher 

dynamic performance than existing techniques in order to track the trajectory of maximum power 

points even in the event of sudden wind speed change.  
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Figure 1.3 Captured power curves versus the rotor speed for various wind speeds. 
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 Torsional Vibration Mitigation 

Torsional vibrations in the wind turbine drivetrain reduce the gearbox and shaft lifespans 

and increase wind turbine maintenance costs. Rapid changes in voltage magnitude (e.g., voltage 

sag, and transient phenomena such as a switching event in the power grid) can result in power 

oscillation and torsional vibrations in the drivetrain of wind turbines. The source of torsional 

vibrations can also originate from wind turbine aerodynamics (e.g., tower shadow and wind speed 

turbulence). In contrast to extremum power seeking, few investigations on internal gearbox 

torsional vibrations are reported in the literature. One technical challenge is to enhance the 

knowledge of torsional vibrations in order to increase the lifespan of wind turbines by reducing 

torsional vibrations caused by mechanical and electrical events. Figure 1.4 shows that failures of 

rotational components and the generator contribute the longest downtimes resulting in significant 

maintenance costs [7].  

21%
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Figure 1.4 Failure and downtime percentages of wind turbine systems [7]. 
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This section is divided into literature reviews of extremum power-seeking techniques and 

mitigation methods for torsional vibrations in wind turbines. This review is presented as an 

introduction to the contribution of this dissertation elaborated in Chapters 4 and 5. 

 Extremum Power Seeking Techniques 

The literature describes many maximum power-capturing methods but all can be 

categorized into two main groups, as shown in Figure 1.5. Model-based methods require prior 

knowledge of turbine parameters in order to calculate the operating point. Non model-based 

methods rely on an iterative search of the optimum operating point using reference speed 

increments. In this subsection, some extremum power-seeking techniques for wind turbines are 

briefly reviewed. In the conventional control law, described by Leithead et al. in [8], and Johnson 

et al. in [9] and [10], desired electric torque is set to be proportional to the square of the rotor speed 

(i.e., 𝑘𝑜𝑝𝑡𝜔𝑅
2). The square-law can best be understood from wind turbine power curves for different 

wind speeds, as discussed in Chapters 2 and 4. In wind turbines, trajectory of the maximum power 

falls in a 𝑘𝑜𝑝𝑡𝜔𝑅
3  curve as wind speed varies (Figure 1.3), meaning that the drivetrain torque must 

move on a 𝑘𝑜𝑝𝑡𝜔𝑅
2  curve. However, for a wide range of wind speed variation, the challenge is to 

adaptively find the optimal controller gain, 𝑘𝑜𝑝𝑡 [11]. Moreover, the maximum power trajectory 

Maximum Power Capturing Methods   

Model-Based 

(Knowledge of Turbine Parameters) 

Example: Optimal Tip Speed Ratio 

Non Model-Based  

(Perturbation and Observation) 

Example: Adding a Dither Signal to 

Command Signal  

Figure 1.5 Extremum power seeking methods 
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moves with changes in environmental parameters (e.g., air-density) [12]. Thus, a lookup table 

methods, artificial intelligence algorithms, or adaptive control schemes may be implemented in 

conjunction with the square-law to find the real-time optimum value of the controller gain. The 

perturb-and-observe method, presented by Hawkins et al. in [13], uses the sign of the gradient of  

turbine captured-power with respect to rotor speed due to a perturbation added to the control signal. 

However, this technique can be sensitive to noise and perturbation size, particularly close to the 

power curve peak. Similarly, Ghaffari et al. [14] presented a maximum seeking algorithm using a 

sinusoidal dither signal added to the reference (command) rotor speed to estimate the gradient of 

the output power with respect to rotor speed. The dither signal frequency must be low and its 

amplitude should be sufficiently small compared to the rotor speed [14]. In these techniques, one 

major problem that can lead to failure of the seeking process is lack of distinction between power 

differences resulting from wind changes and those resulting from a power change due to adding a 

perturbation [11]. Fuzzy logic and neural network algorithms have also been used to reduce 

uncertainties faced by extremum power seeking in wind turbines [15], [16], [17], [18]. Two of 

those methods are briefly reviewed in this section. Simoes et al. [16] applied a fuzzy logic 

controller superimposed onto the hill-climbing concept. In this technique, the fuzzy controller 

updates the value of rotor speed change, ∆𝜔𝑅, in each hill-climbing step to track maximum output 

power. Although the technique is a non model-based method and insensitive to noisy signals, a 

rule-base table and membership functions are required as prior knowledge.  Hui Li et al. [17] 

presented a technique based on the optimum tip-speed ratio as a known feature for a wind turbine. 

Therefore, wind speed is estimated using a neural network algorithm. In this scheme, input signals 

are the measured power and rotor speed, and the output is the desired rotor speed.  Another neural 

network scheme is used to compensate for potential drift of the wind turbine power coefficient due 
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to environmental variations. This is performed by utilizing a pseudo-power curve. Adaptive 

control schemes have also been used to improve maximum power capture methods [19] [20] [21] 

[22] [23]. Two of those methods are briefly reviewed in this section. Iyasere et al. [21] presented 

a nonlinear control (electrical) torque that simultaneously minimizes errors between measured and 

desired values of blade pitch angle and rotor speed while the maximum power capture coefficient 

is considered as a known parameter for a wind turbine. Desired values of rotor speed and blade 

pitch angle are also updated in real-time, when the first and second derivatives of the desired 

variables are bounded. In this technique wind speed is assumed to be constant or slowly varying 

with time. Beltran, et al. [22] presented a hybrid technique in which a second order sliding mode 

controller is combined with the conventional square-law torque control. In this technique, 

mechanical (or aerodynamic) torque is estimated using a second order sliding mode observer, and 

an error is defined as the difference between the estimated torque and optimum torque values. 

Then, a second order sliding mode controller is designed to calculate desired electrical torque such 

that the error approaches zero in a finite time. In this technique, the optimum value of the square-

law gain is considered as a known parameter for a wind turbine.  

 Torsional Vibration Mitigation Techniques 

Recent investigations have shown that torsional vibrations in wind turbines can be 

mitigated by controlling generator torque through generator-side converter [7], [24], [25] and 

flexible ac transmission system (FACTS)-devices [26], [27], [28]. FACTS devices can mitigate 

power oscillations in the power grid as well as resultant torsional vibrations. However, FACTS 

devices cannot mitigate torsional vibrations caused by wind turbine aerodynamics. However, 

torsional vibrations caused by mechanical or electrical events can effectively be mitigated by 

adding a virtual inertia, damping, or stiffness component to generator torque as a compensation 
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torque as shown in Figure 1.6. In the following section, some of these methods are briefly 

reviewed.   

Active damping of torsional vibrations caused by the tower shadow effect or resonance 

that occurs when the blades pass in front of the tower was addressed in [7] in which, the dominant 

resonant mode is damped by adding virtual inertia in the compensating torque. In [24], another 

generator torque control strategy was presented for decreasing mechanical stress caused by electric 

torque disturbances. The generator-side converter can create compensation torque components at 

dominant drivetrain natural frequencies that are superimposed on the normal torque in order to 

suppress mechanical vibrations. This methodology has been implemented in various approaches. 

For example, in [7], the virtual inertia controller (VIC) method was used to damp torsional 

vibrations caused by the tower shadow effect. In the VIC method, the first derivative of the 

generator speed is used as the input signal to create deceleration torque, which is added to the 

reference torque only at the dominant drivetrain natural frequency. The generator speed has also 

been used to create virtual damping torque at drivetrain natural frequencies in order to mitigate 

torsional vibrations caused by a step change in the generator torque [24], [25]. FACTS devices can 

also be employed to mitigate the sub-synchronous resonance (SSR) phenomenon [28]. For 

Figure 1.6 Mitigation approaches for torsional vibrations in wind turbines. 
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example, a gate-controlled series capacitor (GCSC), which contains a pair of switches in parallel 

with a capacitor and enables control of transmission line effective reactance and power flow, was 

used for SSR damping in [26].  

 

Objectives of this dissertation are: 

 To improve the productivity of wind turbines by developing novel nonlinear control 

schemes for extremum power seeking, and torsional vibration mitigation. 

 To improve the reliability and lifespan of wind turbines using nonlinear control scheme 

for torsional vibration mitigation. 

 

The scope of this dissertation is horizontal axis variable speed wind turbines. Figure 1.7 

shows the types of wind turbines that fall into this category. The main focus of this dissertation is 

on the second operational region of wind turbines where the pitch angle is held constant and shaft 

speed is controlled to capture maximum available wind power.  The three main contributions of 

this dissertation are highlighted in the following paragraphs. 

In this dissertation, holistic models of doubly fed induction generator DFIG- and permanent 

magnet generator PMG-based wind turbines, including state-space representations of generators, 

converters, controllers, power lines, and multi-mass drivetrains/gearboxes are developed in the 

Matlab/Simulink environment (based on existing knowledge [7], [29]) connected to the FAST 

(Fatigue, Aerodynamics, Structures, and Turbulence) simulator [30], [31]. This work is noticeable 

because most investigators who have studied wind turbines have mainly focused on mechanical or 

electrical aspects, while the presented model provides a comprehensive electro-mechanical 
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system. FAST is an open access code written by the National Renewable Energy Laboratory 

(NREL) in the Fortran programming language that emulates the aerodynamics of horizontal axis 

wind turbines including interactions of wind with turbine tower, blades, and nacelle that can be 

used in the Matlab/Simulink environment as an S-function block [32].  Models developed in this 

dissertation can be easily connected to the FAST simulator with capabilities of emulating various 

mechanical and electrical disturbances, and examining internal oscillations and interactions 

between subsystems.  

For the second contribution of this dissertation, a novel nonlinear adaptive maximum 

power-seeking technique is developed for variable speed (DFIG)-based and (PMG)-based wind 

turbines [33], [34]. The presented technique is a novel version of the conventional method (i.e. the 

electrical torque is proportional to the square of the rotor speed), in which the proportional-

coefficient is adaptively adjusted in real-time through three control laws. The first control law 

calculates the desired electrical torque using feedback linearization, assuming that the power 

Vertical Axis 

Wind Turbine 

Two Blades 

Wind Energy 

Conversion Systems 

Horizontal Axis 

Wind Turbine 

Variable Speed  Fixed Speed 

Doubly Fed 

Induction Generator 
Squirrel Cage  

Induction Generator 
Permanent Magnet 

Synchronous Generator 

Three Blades 

Figure 1.7. Scopes of the research 

 



12 

 

capture coefficient and the desired rotor speed are instantaneously identified. The second control 

law estimates real-time values of the power capture coefficient from a Lyapunov-based analysis, 

and the third control law provides the desired rotor speed. These control laws cause the turbine to 

adaptively adjust the rotor speed towards a desired speed in which the operating point moves in 

the direction of increasing the power capture coefficient. The proposed maximum power seeking 

method differs distinctly from the perturb-and-observe scheme by eliminating the need to add a 

dither or perturbation signal and robustly tracking the trajectory of maximum power points even 

in the event of a sudden wind speed change that would cause the perturb-and-observe technique to 

fail. Findings of this power capture work were validated using models developed for a 5 MW wind 

turbine model. The significance of the presented technique as compared to the aforementioned 

methods is that neither a perturbation signal, a lookup table, nor a power measurement is required. 

Also, the maximum power capture coefficient and the optimum tip-speed ratio are not assumed as 

known parameters. The presented technique demonstrates appropriate dynamic performance in the 

presence of wind turbulence and sudden speed changes, while some existing techniques are 

validated only for slowly varying wind speed. 

The third contribution of this dissertation is a novel method to increase the lifespan of wind 

turbines by reducing torsional vibrations caused by mechanical or electrical events. The presented 

method uses only rotor speed as the feedback signal to create compensation torque, which is 

superimposed on the extremum power-seeking torque. This method is examined in a five-mass 

drivetrain of a (DFIG)-based and a (PMG)-based wind turbines. The simulated model includes 

aerodynamics of a 750kW wind turbine, as well as dynamics of the generator, gearbox, and back-

to-back power converters. The presented control scheme is investigated for various scenarios to 

damp the drivetrain torsional vibrations including; a voltage dip occurring on the power grid, 



13 

 

switching of a series capacitor in the power line, and a wind speed variation [35], [36], [37]. The 

effectiveness of the new control method is investigated through simulations. Simulation results 

demonstrated that mechanical disturbances have similar impacts on the drivetrain torsional 

vibrations in DFIG-based and PMG-based wind turbines. However, electrical disturbances have 

more impacts on drivetrains in DFIG-based wind turbines than in PMG-based wind turbines.  

 

Parts of the results presented in this dissertation can be found in the following articles.  

1. Fariba Fateh, Warren N. White, and Don Gruenbacher, “A Maximum Power Seeking 

Technique for Grid-Connected DFIG-Based Wind Turbines,” the IEEE Journal of 

Emerging and Selected Topics in Power Electronics, vol. 3, no.4  pp. 957 – 966, Oct. 2015. 

2. Warren N. White, Fariba Fateh, and Don Gruenbacher, “Impact of Sliding Mode 

Bandwidth and Disturbance Estimation on Damping of Wind Turbine Torsional 

Vibration,” (Invited paper) in the Processing of the American  Control Conference, Boston, 

MA, July 2016. 

3. Fariba Fateh, Warren N. White, and Don Gruenbacher, “Torsional Vibrations in the 

Drivetrain of DFIG- and PMG-based Wind Turbines — Comparison and Mitigation” 

(Invited paper) in the Processing of the ASME Dynamic Systems and Control Conference, 

Columbus, Ohio, Oct. 2015. 

4. Fariba Fateh, Warren N. White, and Don Gruenbacher, “Mitigation of Torsional Vibrations 

in the Drivetrain of DFIG-based Grid-Connected Wind Turbine,” in the Processing of the 

IEEE Energy Convers Congress & Exposition, Montreal, Quebec, Sep. 2015. 

5. Warren N. White, Fariba Fateh, and Don Gruenbacher, “Torsional Resonance Active 

Damping in Grid Tied Wind Turbines with Gearbox, DFIG, and Power Converters,” in the 

Processing of the American Control Conference, Chicago, Illinois, July 2015. 

6. Fariba Fateh, Warren N. White, and Don Gruenbacher, “A Nonlinear Control Scheme for 

Extremum Power Seeking in Wind Turbine Energy Conversion Systems,” in the 

Processing of the American Control Conference, Portland, Oregon, June 2014. 
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In addition to this chapter, this dissertation is organized as follows  

Chapter 2 begins with a description of topologies of wind turbine systems followed by, 

main formulations of the aerodynamics of wind turbines and the tool used in this dissertation to 

study all nonlinearities of wind turbine aerodynamics. A method to include a multi-mass drivetrain 

into the wind turbine system is also presented in details. At the end of the chapter, natural 

frequencies of a five-mass drivetrain are formulated to be used for analytical analysis and design 

of the torsional vibration mitigation technique described in Chapter 5.  

All mathematical formulations of electrical parts of DFIG-based and PMG-based wind 

turbine systems are derived in Chapter 3.  These formulations are used to develop block diagram 

representations of a doubly fed induction generator, permanent magnet synchronous generator, 

generator-side and grid-side converters, output filter of grid-side converter, power line between 

the grid and wind turbine system, and series capacitor compensation. In addition, the overall 

system is built in the Matlab/Simulink environment using the developed electrical and mechanical 

block diagrams and FAST simulator, and verified on overall dynamic behaviors of DFIG-based 

and PMG-based wind turbine systems. 

In Chapter 4, background on two main maximum power seeking techniques is first 

presented followed by nonlinear Lyapunov and feedback linearization techniques as a background 

for deriving control laws later in the chapter. The proposed extremum-seeking technique  

developed based on nonlinear feedback linearization and Lyapunov function theories is presented 

and analyzed for DFIG-based and PMG-based wind turbines. The developed control scheme is 

verified on 5MW DFIG-based and PMG-based wind turbine systems. Also, a sensitivity analysis 
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of control parameters on maximum power seeking is presented. Finally, the proposed technique is 

compared to a conventional technique. 

A novel vibration mitigation technique based on the nonlinear sliding mode theory is 

presented in Chapter 5. Prior to developing this technique, a background on the sliding mode 

theory is provided, and natural frequencies of the 750kW five-mass drivetrain are calculated. The 

developed method of torsional vibrations was tested on 750kW DFIG-based and PMG-based wind 

turbines, and results are compared to the results from virtual inertia technique.  

A summary of key research outcomes and contributions along with suggestions for future 

work are presented for extremum power seeking and the mitigation of torsional vibration topics in 

variable speed wind turbines in Chapter 6.  
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  Chapter 2 − Wind Turbine Classification and Aerodynamics 

Various wind turbine classifications are expressed in Section 2.1 of this chapter. In Section 

2.2, operating regions and aerodynamics of wind turbines are presented to explain the nonlinear 

behavior of wind turbines as wind speed varies. A brief explanation on the wind turbine 

aerodynamic simulator used in this work, FAST, is given in Section 2.3. The drivetrain is modeled 

for mechanical resonance (vibration) studies in Section 2.4.  

 

Wind turbine systems can be classified based on type of generator, rotor axis, control 

scheme, and ecological location. In Figure 2.1, two type of rotor axes, around which the turbine 

blades rotate, are shown. Most wind turbines are classified as horizontal axis, some  wind turbines 

have blades that spin around a vertical axis [38]. Furthermore, the number of blades can differ in 

wind turbines, but most current wind turbines have three blades. The major components of wind 

turbines are blades, a rotor hub, drivetrain (bearing and gears), a generator, power converters and 

control systems. Wind turbine systems can be classified in terms of their connections to a local 

load (i.e. stand-alone applications, a utility power grid, i.e. grid-connected). In stand-alone 

applications, a wind turbine feeds one or several electric loads such as water pumping, 

communication stations, and light towers, that are isolated from the utility grid. In these 

applications, power captured by the wind turbine should be equal to the demand power (load). In 

grid-connected applications, a number of wind 

turbines typically form a wind farm and ideally 

run at the maximum power-seeking mode of 

operation. Most of wind turbine systems are 

designed as variable speed turbines to produce 
Figure 2.1 Horizontal (right) and vertical (left) 

axis wind turbine structures [56]. 
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more energy than fixed speed ones by using power electronic converters. Wind turbines can also 

be classified in terms of location as on-shore and off-shore turbines. 

There are some limitations for the onshore application.  Offshore wind turbines typically 

face higher wind speeds and, therefore, the amount of mechanical stress is higher. Due to limited 

accessibility and transportation difficulties, high water erosion, and high wind speeds, capital and 

maintenance costs for offshore wind turbines are also higher than onshore wind turbines.  

The fixed speed, squirrel-cage induction generator operates at a speed slightly higher than 

the synchronous speed, 𝑛𝑠𝑦𝑛 =
120

𝑝
𝑓𝑔𝑟𝑖𝑑 (rpm), where 𝑝 is the number of poles and 𝑓𝑔𝑟𝑖𝑑 is the 

frequency of the power grid. Therefore, a high number of poles and/or a gearbox is required since 

the blades shaft speed is very low (e.g. as low as 7 − 12 rpm for a 5MW wind turbine). Also, 

induction generators cannot produce any reactive power but they need reactive power to build the 

necessary internal magnetic field for the energy conversion process. Thus, reactive power 

compensation is implemented by capacitor banks at the generator terminals [39], as shown in 

Figure 2.2. 
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Figure 2.2 Fixed speed wind turbine topology 
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A majority of wind turbines are variable speed in which, the developed torque of the 

generator is controlled by the generator-side converter, while the grid-side converter keeps the 

DC-bus voltage balanced by transferring input power to the grid.  Variable speed wind turbines 

use either a (DFIG) or (PMG). In the DFIG-based wind turbine, approximately 30% of generated 

power transfers through the rotor circuit and a back-to-back converter and the rest of the generated 

power is directly injected into the grid through stator windings [40], [41], [42]. Therefore, a multi-

stage gearbox is needed to provide the match between rotor speed and frequency of the voltage at 

the stator terminal for a chosen number of poles .  In PMG-based wind turbine, 100% of generated 

power transfers through the stator terminal and a back-to-back converter [43]. In this case, a multi-

stage gearbox is not essential when a high number of poles may be required.  

Blades 
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Generator Transformer 

Gen-Side 
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Figure 2.4 Variable speed PMG-based wind turbine topology 
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Figure 2.3 Variable speed DFIG-based wind turbine topology 
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There are different notations to specify various operational regions of wind turbines. 

Herein, operational regions are defined as Regions 1, 2, 2.5, 3, and 4, as shown in Figure 2.5. In 

Region 2, wind turbines start to produce power when the wind speed is above 𝑣𝑚𝑖𝑛, and the 

generated power can go up to the rated power of the overall wind turbine system, 𝑃𝑇 𝑟𝑎𝑡𝑒𝑑. In this 

region, the wind turbine operates at a variable speed mode to capture maximum available power 

from the wind. In Region 3, the wind speed is above 𝑣𝑃𝑇 𝑟𝑎𝑡𝑒𝑑, at which the captured power is at 

its rated or nominal value, and the maximum wind speed, 𝑣𝑚𝑎𝑥. In this region, wind turbines 

operate at the rated power and the rated rotor speed by controlling the blades pitch angle. In Region 

2.5, wind turbines operate around the rated rotor speed but below the rated power.  

Power captured is performed only in Region 2, due to the inherent variable nature of the 

wind speed and therefore irregular available wind power. Again, in Region 1, the wind speed is 

below a minimum level for turbine operation and thus no power can be captured. In Region 2, 

rotor speed can be controlled to capture maximum power as the wind speed varies, with the blade 

pitch angle typically held constant at the optimal value providing maximum aerodynamic torque. 

In Region 3, the wind speed is above a maximum rated speed where no extremum power seeking 
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Figure 2.5 Different operational regions of wind turbine 
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is required so the goal is to use blade pitch control to control the generator speed at its rated value 

by reducing extra aerodynamic power. Control in Region 2 is a complicated because of nonlinear 

dynamics and immeasurable terms such as rotor aerodynamic torque and the power capture 

coefficient. Figure 2.5 shows the power captured by a turbine versus wind speed relationship for 

three wind speeds.  The relationship between mechanical input power and wind speed normal to 

the turbine blades can be written in terms of available wind power, 𝑃𝑎𝑣𝑎𝑖𝑙 , as  

                                                                       𝑃𝑎𝑣𝑎𝑖𝑙 =
1

2
 𝜌 𝐴 𝑣3                                                           (2.2.1) 

where 𝜌 is the air density (1.225 kg/m3), 𝐴 is the rotor swept area, and 𝑣 is the wind speed. The 

power captured by the turbine, 𝑃𝑇, is a fraction of the available power expressed as 

                                                               𝑃𝑇 = 𝑃𝑎𝑣𝑎𝑖𝑙 . 𝐶𝑝(𝜆, 𝛽)                                                              (2.2.2) 

where 𝐶𝑝(𝜆, 𝛽) is the power capture coefficient,  is the blade pitch angle in rad, and  is the 

dimensionless tip speed ratio given by  

                                                                          𝜆 =
𝜔𝑅𝑅

𝑣
                                                                        (2.2.3) 

where 𝜔𝑅 is the rotor speed in rad/sec, and 𝑅 is the blade radius in meters. According to the Betz 

law [44], the power coefficient of a wind turbine is limited to 
16

27
≅ 0.593. Let 𝑇𝑎𝑒𝑟𝑜 denote 

aerodynamic torque delivered to the turbine rotor, then captured power is 

                                                                       𝑃𝑇 = 𝑇𝑎𝑒𝑟𝑜𝜔𝑅 .                                                                 (2.2.4) 

Combining (2.2.1), (2.2.2), and (2.2.4) and then solving for 𝑇𝑎𝑒𝑟𝑜 (or mechanical torque, 𝑇𝑚) yields 

                                                            𝑇𝑎𝑒𝑟𝑜 = 𝑓(𝑣, 𝜔𝑅)𝐶𝑝(𝜆, 𝛽)                                                        (2.2.5) 
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where 𝑓 = (1/2𝜔𝑅)𝜌𝐴𝑣
3  for 𝜔𝑅 > 0. Using the tip speed ratio of (2.2.3), 𝑇𝑎𝑒𝑟𝑜 is proportional 

to the square of the rotor speed. In addition to wind turbine aerodynamic equations, the equation 

of motion for a coupled wind turbine and generator, referred to the rotor shaft, is  

                                                            𝐽
𝑑𝜔𝑅

𝑑𝑡
= 𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑒                                                             (2.2.6) 

where 𝐽 is the equivalent lumped mass moment of inertia of the blades, rotor shaft, and drivetrain, 

and 𝑇𝑒 is the electrical torque provided by the generator.  
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Figure 2.6 Block diagram of interfacing of FAST and electrical parts and controllers in the 

Matlab/Simulink 
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The mechanical subsystem is modeled using the FAST (Fatigue, Aerodynamics, 

Structures, and Turbulence) simulator, which has been developed by the National Renewal Energy 

Laboratory (NREL). This wind turbine (mechanical parts) has been used as the analysis tool to 

examine the validity of numerous control schemes applied to wind turbines in the literature [45], 

[30], [31].  

The FAST simulator includes the aerodynamics and mechanical aspects of a wind turbine. 

FAST reads mechanical and aerodynamic system parameters from input files and creates 

mechanical output files to exchange with the Simulink model. In this work, the key inputs to FAST 

are the wind speed profile and electrical torque, and the main outputs are mechanical 

(aerodynamic) torque, 𝑇𝑎𝑒𝑟𝑜, and low-speed rotor speed, 𝜔𝑅. In this dissertation, electrical parts 

and controllers, implemented by Simulink blocks, are coupled to the inputs and outputs of the 

FAST simulator, as shown in Figure 2.7.  

 FAST Simulator Capabilities 

The FAST simulator enables analysis of nonlinear aerodynamics of tower, two-mass 

drivetrain, two- or three-blade, horizontal-axis rotor, and off-shore and on-shore (on-land) wind 

turbines. FAST, which is written in the Fortran programming language, can be used in a Simulink 

model as an S-Function block. Many parameters of a wind turbines are accessible and can be set 

prior to running the FAST simulator. Although a Thevenin’s equivalent induction generator model 

exists in the FAST simulator, it is not as sophisticated as the model developed in this dissertation. 
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 FAST Simulator Models in this Dissertation 

Two different FAST models are used in this dissertation: a 5 MW and a 750 kW wind 

turbine model. The 5 MW model is used for the extremum power seeking study and the 750 kW 

model is used for the vibration mitigation study in this work justification. The following 

paragraphs provide, a short summary of the FAST models for each system. 

The 5 MW system in this dissertation is built around the NREL 5 MW FAST model. In the 

turbine model the distance from the rotor apex to the blade tip is 63 m, the distance from the rotor 

apex to the blade root is 1.5 m, the height of tower above ground level is 87.6 m, the vertical 

distance from the top of the tower to the rotor shaft is 1.96 m, the rotor inertia is 38.759227 kg-

m2. Details of the model can be found in [31]. The turbine has a nominal shaft speed of 12.1 RPM 

at 11.4 m/s wind speed identifying the upper boundary of Region 2 for the 5 MW wind turbine.   

The 750 kW system in this dissertation is built around the NREL 750 kW FAST model . 

In the turbine model the distance from the rotor apex to the blade tip is 24.1 m, the distance from 

the rotor apex to the blade root is 0.6 m, the height of the tower above ground level is 53.6 m, the 

vertical distance from the top of the tower to the rotor shaft is 1.2 m, the rotor inertia is 998138 

kg-m2, etc. Details on the model can be found in [46]. The turbine has a nominal shaft speed of 24 

RPM at 11.4 m/s wind speed identifying the upper boundary of Region 2 for the 750 MW wind 

turbine. 

 

The drivetrain dynamic includes the rotor, the gearbox and the generator. For most studies, 

the wind turbine drivetrain has been modeled as a two-mass system coupled through a gearbox, 

thereby justifying neglect of the effects of the gearbox moment of inertia, damping, and stiffness 

[30], [47]. However, in a study of torsional vibration (resonance), a detailed model of a gearbox 
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must be considered [24], [30], [46] . A simple model for a rotational system is shown in Figure 

2.8. As shown, the imposed torque, 𝑇, is balanced at any instant by the summation of torques 

generated by disk inertia, damping, and stiffness of the shaft as 

                                                        𝑇 =  𝐽
𝑑2∆𝜃

𝑑𝑡2
+ 𝐷

𝑑∆𝜃

𝑑𝑡
+ 𝐾∆𝜃                                                     (2.4.1) 

where ∆𝜃 is the angular displacement due to the imposed torque.  

A five-mass model of the drivetrain is considered in this work, as shown in Figure 2.9. 

Thus, the equations of motion for the wind turbine coupled to the generator can be represented by 

a five-mass-spring-damper model with a three-mass gearbox and four torsional springs. In total, 

this five-degree-of-freedom model has five natural frequencies. A five-mass drivetrain can be 

described by the following differential equations [30], [24]: 
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Figure 2.8 Torsional dynamic in a rotating system 
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                               𝐽𝑅
𝑑𝜔𝑅

𝑑𝑡
= 𝑇𝑎𝑒𝑟𝑜 − 𝐾1(𝜃𝑅 − 𝜃1) − 𝐷1 (𝜔𝑅 − 𝜔1)                                            (2.4.2) 

                𝐽1
𝑑𝜔1

𝑑𝑡
= 𝐾1(𝜃𝑅 − 𝜃1) + 𝐷1 (𝜔𝑅 − 𝜔1) − 𝐾2(𝜃1 − 𝜃2) − 𝐷2 (𝜔1 − 𝜔2)               (2.4.3) 

                𝐽2
𝑑𝜔2

𝑑𝑡
= 𝐾2(𝜃1 − 𝜃2) + 𝐷2 (𝜔1 − 𝜔2) − 𝐾3(𝜃2 − 𝜃3) − 𝐷3 (𝜔2 − 𝜔3)                (2.4.4) 

                𝐽3
𝑑𝜔3

𝑑𝑡
= 𝐾3(𝜃2 − 𝜃3) + 𝐷3 (𝜔2 − 𝜔3) − 𝐾4(𝜃3 − 𝜃𝐺) − 𝐷4 (𝜔3 − 𝜔𝐺)               (2.4.5) 

                             𝐽𝐺
𝑑𝜔𝐺

𝑑𝑡
= 𝐾4(𝜃3 − 𝜃𝐺) + 𝐷4 (𝜔3 − 𝜔𝐺) − 𝑇𝑒                                                   (2.4.6) 

where 𝐽 represents the lumped moments of inertia for each mass, 𝐾 represents the stiffness value 

of each shaft, and 𝐷 represents the viscous damping coefficient. Since 𝜃 and 𝜔 are considered  

state variables, the order of a five-mass drivetrain (gearbox) system is described by 10 first-order 

differential equations. Herein, (2.4.2) through (2.4.6) only represent five of these equations, while 

the other five are given by simple differential equations:  
𝑑𝜃𝑅

𝑑𝑡
= 𝜔𝑅,   

𝑑𝜃1

𝑑𝑡
= 𝜔1,  

𝑑𝜃2

𝑑𝑡
= 𝜔2, 

𝑑𝜃3

𝑑𝑡
=

𝜔3, and 
𝑑𝜃𝐺

𝑑𝑡
= 𝜔𝐺 .These equations can be formed in a 10 × 10 matrix format as  

1

𝐽𝑘
 Σ Σ 

− 

− 

𝐷𝑘+1 

+ 

𝑑𝜔𝑘

𝑑𝑡
 𝜔𝑘 1

𝑠
 

1

𝑠
 

𝜃𝑘 
+ 

+ 

𝐾𝑘+1 

𝐷𝑘 

𝐾𝑘 

∆𝜃𝑘,𝑘+1 ∆𝜃𝑘−1,  𝑘 

∆𝜔𝑘,  𝑘+1 ∆𝜔𝑘−1,  𝑘 

Figure 2.10 Gearbox stage model of a multi-mass drivetrain in a block diagram format 
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𝑑

𝑑𝑡
[

[𝜃]5×1

[𝐽]5×1  [𝜔]5×1
] = [

[0]5×5 [𝐼]5×5

[𝐾]5×5 [𝐷]5×5
] [

[𝜃]5×1

[𝜔]5×1
] + [

[0]5×1

[𝑇]5×1
]                         (2.4.7) 

which can be rewritten as 

          
𝑑

𝑑𝑡
[
[𝜃]5×1

 [𝜔]5×1
] = [

[0]5×5 [𝐼]5×5

[𝐽]5×5
−1 [𝐾]5×5 [𝐽]5×5

−1 [𝐷]5×5
] [

[𝜃]5×1

[𝜔]5×1
] + [

[0]5×1

[𝐽]5×5
−1 [𝑇]5×1

]                  (2.4.8) 

where, [𝜃] = [𝜃𝑅 𝜃1 𝜃2 𝜃3 𝜃𝐺]
𝑇, [𝜔] = [𝜔𝑅 𝜔1 𝜔2 𝜔3 𝜔𝐺]𝑇,  [𝑇] =

[𝑇𝑒𝑎𝑟𝑜 0 0 0 𝑇𝑒]
𝑇, and stiffness and damping metrics (i.e., [𝐾] and [𝐷]) are given as 

              [𝐾] =

[
 
 
 
 
−𝐾1                 𝐾1                      0                 

𝐾1        −(𝐾1+𝐾2)                𝐾2              
0                   𝐾2          −(𝐾2 + 𝐾3)      

      0                 0
      0                  0
      𝐾3                0

  0                    0                       𝐾3

0                    0                       0
              

−(𝐾3 + 𝐾4)       𝐾4

         𝐾4            −𝐾4]
 
 
 
 

          (2.4.9)  

 

              [𝐷] =

[
 
 
 
 
−𝐷1                 𝐷1                      0                 

𝐷1        −(𝐷1+𝐷2)                𝐷2              
0                   𝐷2          −(𝐷2 + 𝐷3)      

      0                 0
      0                  0
      𝐷3                0

  0                    0                       𝐷3

0                    0                       0
              

−(𝐷3 + 𝐷4)       𝐷4

         𝐷4            −𝐷4]
 
 
 
 

         (2.4.10) 

Σ 

+ 

+ 

𝐷4 

− 

𝑑𝜔𝐺

𝑑𝑡
 

𝜔𝐺  1

𝑠
 

1

𝑠
 

𝜃𝐺 

𝐾4 

∆𝜃𝑘,  𝑘+1 

∆𝜔𝑘,  𝑘+1 

𝑇𝑒 1

𝐽𝐺
 

Figure 2.11 Generator dynamics as a part of the multi-mass drivetrain 
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Also, [𝐽]5×5
−1  is given as 

                                            [𝐽]−1 =

[
 
 
 
 
 
 𝐽𝑅

−1 0 0

0  𝐽1
−1 0

0 0  𝐽2
−1

0    0
0    0
0    0

0     0    0
0    0   0

 𝐽3
−1 0

0  𝐽𝐺
−1]

 
 
 
 
 

                                           (2.4.11) 

One gearbox stage of a multi-mass drivetrain is shown in Figure 2.10 in a block diagram format 

Figure 2.11 shows generator dynamics as a part of the drivetrain. 

 Multi-Mass Drivetrain Natural Frequencies 

Eigenvalues of the drivetrain can be calculated by solving the following equation 

                                         𝑑𝑒𝑡 [
𝜆[𝐼]5×5 −[𝐼]5×5

−[𝐽]5×5
−1 [𝐾]5×5 𝜆[𝐼]5×5 − [𝐽]5×5

−1 [𝐷]5×5
] = 0                          (2.4.12) 

Remark: If A, B, M, and N are 𝑛 × 𝑛 matrices and N is invertible, then the determinate of the 

blocking matrix [
𝐴 𝐵
𝑀 𝑁

] is calculated as   

                                                     𝑑𝑒𝑡 [
𝐴 𝐵
𝑀 𝑁

] = det (𝐴𝑁 − 𝐵𝑁−1𝑀𝑁)                                      (2.4.13) 

Using this remark, for the worst case scenario when the damping coefficient matrix is neglected, 

(i.e. [𝐷]5×5 = [0]5×5), natural frequencies of the five-mass drivetrain are given by 

                            det(𝜆2  [𝐼]5×5 − [𝐼]5×5 𝜆
−1 [𝐼]5×5  [𝐽]5×5

−1 [𝐾]5×5  𝜆[𝐼]5×5) = 0                   (2.4.14) 

which can be simplified as 

                                                  det(𝜆2  [𝐼]5×5 − [𝐽]5×5
−1  [𝐾]5×5  ) = 0                                          (2.4.15) 

The natural frequencies are calculated as 

                                                          𝑓 =
1

2𝜋
 √𝑒𝑖𝑔([𝐽]5×5

−1  [𝐾]5×5).                                                (2.4.16) 

This equation can be used to generate compensation torque components at the natural frequencies 

of the drivetrain in order to develop an active torsional vibration (resonance) mitigation method, 

as discussed in Chapter 5. 
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 Integration of Multi-Mass Model into the FAST Model  

Development of the FAST simulator was based only on a two-mass model of the drivetrain 

[32]. Therefore, a multi-mass model of the drivetrain (gearbox) should be separately developed 

and coupled to the FAST simulator, as shown in Figure 2.12. As observed from a comparison of 

Equations (2.2.6) and (2.4.2), dynamics of the rotor low-speed shaft is modeled by the FAST code, 

where generator torque, 𝑇𝑒, is an input signal to the FAST simulator, as shown in Figure 2.8.  

Accordingly, the last two terms in Equation (2.4.2) can be defined as 𝑇𝑒_𝑅𝑒𝑎𝑐𝑡 as the input signal 

to the FAST simulator, while Equations (2.4.3) through (2.4.6) must be constructed in the 

Matlab/Simulink environment, as shown in Figure 2.12. These equations are also demonstrated in 

block diagram formats shown in Figures 2.10 and 2.11.  

𝜔𝑅 

Wind Turbine  

FAST Simulator 

𝑇𝑒_𝑅𝑒𝑎𝑐𝑡 

𝑣𝑤𝑖𝑛𝑑  

𝛽 

𝑇𝑎𝑒𝑟𝑜 

𝜔𝑅 

Generator, Converters, 

and Electrical Circuits 

𝑉𝑔𝑟𝑖𝑑 

⋯ 

Parameters 

Control Schemes 

𝑇𝑒
∗ 

Multi-Mass Drivetrain 

Model 

𝑇𝑒 

(𝒊) 

(𝒊𝒊𝒊) 

(𝒊𝒗) 

(𝒊𝒊) 

Figure 2.12  Block diagram of interfacing of different subsystems and controllers in the 

Matlab/Simulink,  (i) is developed by others and adapted in this work, (ii) & (iii) developed based on 

existing knowledge, (iv) original contribution of this dissertation explained in Chapters 4 and 5. 
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 Chapter 3 – Modeling of Electrical Devices in Wind Turbines 

In this chapter, all electrical parts of DFIG-based and PMG-based wind turbines are 

developed in the synchronously rotating 𝑑𝑞0-reference frame. Developed state-space 

representations of the electric parts form the electric circuit blocks shown earlier in Figures 2.11 

and 2.12 of Chapter 2. These state-space models are able to be easily linked to the FAST wind 

turbine simulator/code, enabling complicated studies to be performed on various control strategies 

in variable speed DFIG-based and PMG-based wind turbines in the presence of electrical and 

mechanical disturbances. In this chapter, full-order models of grid-connected DFIG and PMG are 

presented. The models of back-to-back converters and their controllers are developed in the 𝑑𝑞0-

reference frame. A compensated power line model is developed in order to study a series capacitor 

switching in the feeder line between the grid and a wind turbine system.  

 

Energy conversion in wind energy systems is achieved using two main devices. The first 

device is the extraction device, which harvests mechanical power of the wind stream that turns the 

wind turbine rotor, as explained in Chapter 2. The other device is the generator that transforms 

rotational mechanical energy to electrical energy [48]. As described in Chapter 2, fixed speed wind 

turbines are typically operated with a squirrel cage induction generator that requires a multi-stage 

gearbox. However, most high-power (above 500kW) wind turbines have adopted variable speed 

operation because of extremum power seeking, active control capabilities in response to grid 

power quality requirements. For these variable speed applications, both (DFIGs) and (PMGs) are 

commonly used with a multi-stage gearbox and power electronic converters. PMG-based wind 

turbines are becoming increasingly popular because they eliminate the need for a gearbox resulting 
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in a lower number of required maintenances [46]. (PMG) and (DFIG) topologies are described in 

the following subsections. 

 

DFIG currently is the most common type of generator in wind turbine systems. A DFIG 

consists of two sets of windings on the stator and rotor. Both stator and rotor have three windings 

that correspond to three phases: phase-𝑎, phase-𝑏, and phase-𝑐. The stator has 𝑝 number of poles. 

Stator phases are directly connected to the power grid, whereas the rotor phases (terminals) are 

connected to the power grid through two back-to-back converters, as shown in Figure 3.1. The 

back-to-back converter handles only the rotor power rating, which is approximately 30% of the 

nominal generator power. Therefore, less power loss occurs in the converter of a DFIG compared 

to that in a PMG where the converter handles the entire captured power [43].  

 Normal 𝒂𝒃𝒄- and dq0-Reference Frames 

A three-phase power apparatus or system is generally modeled in a normal 𝑎𝑏𝑐-reference 

frame, single-line representation, or 𝑑𝑞0 (direct-quadrature-zero)-reference frame. For control 

purposes, control engineers commonly use 𝑑𝑞0-reference frame models of generators, converters, 

Figure 3.2  

Rotor-Side 

Converter 

Grid-Side 

Converter 

𝑖𝑟  & 𝑃𝑟  𝑖𝑖 & 𝑃𝑖  

𝑖𝑠 & 𝑃𝑠 𝑖𝑔 & 𝑃𝑔 𝑃𝑇   

𝑣𝑐  

𝐿𝑓    𝑅𝑓 

𝐿𝑔    𝑅𝑔 

DFIG 

GRID 

Gearbox 

Transformer 
𝜔𝑅  𝜔𝑟  

Figure 3.1 Schematic of a DFIG based wind turbine system 
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filters, and power lines. A 𝑑𝑞0 model is obtained using a mathematical transformation that rotates 

in a constant speed in a reference frame that simplifies analysis of three-phase circuits or systems. 

The 𝑑𝑞0 formulation presented in this dissertation is identical to the one first proposed by Robert 

H. Park in 1927, and similar formulations also called 𝑑𝑞0- transformation exist in the literature. 

The main advantage of using 𝑑𝑞𝑜 transformation is that the three AC quantities are reduced to two 

DC quantities in balanced three-phase systems. Furthermore, in the analysis of three-phase electric 

machines, this transformation eliminates the effect of time varying inductances. In Figure 3.2,  

magnetic axes of a three-phase induction machine (generator), are demonstrated in conjunction 

with corresponding 𝑞 and 𝑑 axes. The 𝑑𝑞0 (or Park’s) transformation matrix, 𝑇, used in this 

dissertation to convert 𝑎𝑏𝑐 quantities to 𝑑𝑞0 reference-frame quantities are given as 

𝑎𝑠 

𝑎𝑟  

𝑏𝑠 

𝑏𝑟 

𝑐𝑠 
𝑐𝑟 

𝑞 − 𝑎𝑥𝑖𝑠 

𝑑 − 𝑎𝑥𝑖𝑠 

𝜃𝑟 

𝜃𝑠 

Figure 3.2 Stator and rotor magnetic axes of a three-phase induction machine 

https://en.wikipedia.org/wiki/Transform_(mathematics)
https://en.wikipedia.org/wiki/Three-phase_electric_power
https://en.wikipedia.org/wiki/Robert_H._Park
https://en.wikipedia.org/wiki/Robert_H._Park
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Direct_current
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                          [

𝑥𝑞

𝑥𝑑

𝑥0

] =
2

3

[
 
 
 
 
 cos(𝜃𝑠) cos (𝜃𝑠 −

2𝜋

3
) cos (𝜃𝑠 +

2𝜋

3
)

sin(𝜃𝑠) sin (𝜃𝑠 −
2𝜋

3
) sin (𝜃𝑠 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 
 

[

𝑥𝑎

𝑥𝑏

𝑥𝑐

]                               (3.2.1) 

where 𝑥 can be 𝑣, 𝑖, or 𝜆.  𝜃𝑠 is the angle between stator phase-𝑎 and 𝑞-axis.  Also, the 2/3 is an 

arbitrary coefficient, as for example √2/3 is also used by many investigators. The transformation 

from 𝑑𝑞0 to 𝑎𝑏𝑐 is obtained from  

                                  [

𝑥𝑎

𝑥𝑏

𝑥𝑐

] =

[
 
 
 
 

cos(𝜃𝑠) sin(𝜃𝑠) 1

cos (𝜃𝑠 −
2𝜋

3
) sin (𝜃𝑠 −

2𝜋

3
) 1

cos (𝜃𝑠 +
2𝜋

3
) sin (𝜃𝑠 +

2𝜋

3
) 1]

 
 
 
 

[

𝑥𝑞

𝑥𝑑

𝑥0

].                                     (3.2.2) 

Here after, 𝑇𝜃𝑠, is called the 𝑎𝑏𝑐 to 𝑑𝑞𝑜 and 𝑇𝜃𝑠
−1 is called 𝑑𝑞0 to 𝑎𝑏𝑐 transformation matrices. 

 DFIG Model in 𝒂𝒃𝒄-Reference Frame.  

Modeling of DFIG begins by applying the Kirchhoff ’s Voltage Law (KVL) for stator 

windings to get 

                                             [

𝑣𝑎𝑠
𝑣𝑏𝑠

𝑣𝑐𝑠
] = − [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] [
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

] +
𝑑

𝑑𝑡
[

𝜆𝑎𝑠

λ𝑏𝑠

𝜆𝑐𝑠

]                                         (3.2.3) 

where 𝑅𝑠 is the resistance value of stator windings in each phase, and the stator linkage flux, 𝜆𝑠 or 

𝜆𝑎𝑏𝑐
𝑠 , includes both the stator and rotor effects (i.e., 𝜆𝑎𝑏𝑐

𝑠 = 𝜆𝑎𝑏𝑐
𝑠𝑠 + 𝜆𝑎𝑏𝑐

𝑠𝑟 ). Similarly, rotor winding 

equations are written as 

                                                [

𝑣𝑎𝑟
𝑣𝑏𝑟

𝑣𝑐𝑟
] = [

𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

] [
𝑖𝑎𝑟
𝑖𝑏𝑟
𝑖𝑐𝑟

] +
𝑑

𝑑𝑡
[

𝜆𝑎𝑟

λ𝑏𝑟

𝜆𝑐𝑟

]                                         (3.2.4) 

where 𝑅𝑟 is the resistance value of stator windings in each phase, and the rotor linkage flux 

includes the rotor and stator effects (i.e., 𝜆𝑎𝑏𝑐
𝑟 = 𝜆𝑎𝑏𝑐

𝑟𝑟 + 𝜆𝑎𝑏𝑐
𝑟𝑠 ). Also, the rotor quantities are 
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referred to the stator side (i.e., 𝑣𝑎𝑟 = (𝑛𝑠 𝑛𝑟⁄ )𝑣𝑎𝑟(𝑎𝑐𝑡𝑢𝑎𝑙), 𝑅𝑟 = (𝑛𝑠 𝑛𝑟⁄ )2𝑅𝑟(𝑎𝑐𝑡𝑢𝑎𝑙), 𝑖𝑎𝑟 =

(𝑛𝑟 𝑛𝑠⁄ )𝑖𝑎𝑟(𝑎𝑐𝑡𝑢𝑎𝑙), 𝜆𝑎𝑟 = (𝑛𝑠 𝑛𝑟⁄ )𝜆𝑎𝑟(𝑎𝑐𝑡𝑢𝑎𝑙)), where 𝑛𝑠 and 𝑛𝑟 are the number of turns per phase 

in the stator and rotor windings, respectively. This simplifies the rotor and stator equations, as 𝐿𝑚 

can represent the stator magnetizing inductance, the stator-rotor mutual inductance, and the rotor 

magnetizing inductance all referred to the stator side. More details on electromagnetic circuits of 

electric machines are presented in [29].  

As mentioned, the stator linkage flux is given as a summation of the stator and rotor 

magnetic fluxes (i.e., 𝜆𝑎𝑏𝑐
𝑠 = 𝜆𝑎𝑏𝑐

𝑠𝑠 + 𝜆𝑎𝑏𝑐
𝑠𝑟 ). This can be written in a matrix format as  

[

𝜆𝑎𝑠

λ𝑏𝑠

𝜆𝑐𝑠

] = −

[
 
 
 
 
 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚]

 
 
 
 
 

[
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

]

+

[
 
 
 
 
 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 −
2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 +
2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) ]

 
 
 
 
 

[
𝑖𝑎𝑟
𝑖𝑏𝑟
𝑖𝑐𝑟

]          (3.2.5) 

Similarly, the rotor flux linkages are obtained from  

[

𝜆𝑎𝑟

λ𝑏𝑟

𝜆𝑐𝑟

] =

[
 
 
 
 
 𝐿𝑙𝑟 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑟 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑟 + 𝐿𝑚]

 
 
 
 
 

[
𝑖𝑎𝑟
𝑖𝑏𝑟
𝑖𝑐𝑟

]

−

[
 
 
 
 
 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 +
2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 −
2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) ]

 
 
 
 
 

[
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

]          (3.2.6) 
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If the stator and rotor variables are transformed into a rotating reference frame, the stator-rotor 

mutual inductances become independent of the electrical rotor position, 𝜃𝑟, and rotor speed, 𝜔𝑟. 

However,  𝜃𝑟 and 𝜔𝑟 are related to the generator mechanical angle and speed at the high-speed 

shaft side of wind turbines described in Chapter 2 as  

                                                                                 𝜃𝐺 =
2

𝑝
𝜃𝑟                                                                (3.2.7) 

                                                                                𝜔𝐺 =
2

𝑝
𝜔𝑟                                                               (3.2.8) 

where 𝑝 is the number of poles.  

 DFIG Model in 𝒅𝒒𝟎-Reference Frame  

Appling the 𝑑𝑞0 transformation matrix, 𝑇𝜃𝑠
, for voltage equations of the stator windings 

given in (3.2.3), yields 

                          [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = −𝑇𝜃𝑠
[

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] + 𝑇𝜃𝑠
 
𝑑

𝑑𝑡
{𝑇𝜃𝑠

−1 [

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

]}                         (3.2.9) 

where 𝑇𝜃𝑠
 and 𝑇𝜃𝑠

−1 matrices were given in (3.2.1) and (3.2.2). This equation can be rewritten as  

         [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = −𝑇𝜃𝑠
[

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] + 𝑇𝜃𝑠
 
𝑑𝑇𝜃𝑠

−1

𝑑𝑡
[

𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

] + 𝑇𝜃𝑠
 𝑇𝜃𝑠

−1 𝑑

𝑑𝑡
[

𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

].              (3.2.9) 

Also, 
𝑑

𝑑𝑡
𝑇𝜃𝑠

−1 can be obtained from 

                         
𝑑

𝑑𝑡
𝑇𝜃𝑠

−1 = (𝜔𝑠)

[
 
 
 
 

− sin(𝜃𝑠) cos(𝜃𝑠) 0

−sin (𝜃𝑠 −
2𝜋

3
) cos (𝜃𝑠 −

2𝜋

3
) 0

−sin (𝜃𝑠 +
2𝜋

3
) cos (𝜃𝑠 +

2𝜋

3
) 0]

 
 
 
 

                                     (3.2.10) 

where 𝜔𝑠 =
𝑑𝜃𝑠

𝑑𝑡
.  Substituting (3.2.10) into (3.2.9) gives 
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[

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = − [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] +
𝑑

𝑑𝑡
[

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] + 
2

3

[
 
 
 
 
 𝑐𝑜𝑠(𝜃𝑠) 𝑐𝑜𝑠 (𝜃𝑠 −

2𝜋

3
) 𝑐𝑜𝑠 (𝜃𝑠 +

2𝜋

3
)

𝑠𝑖𝑛(𝜃𝑠) 𝑠𝑖𝑛 (𝜃𝑠 −
2𝜋

3
) 𝑠𝑖𝑛 (𝜃𝑠 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 
 

     

                                   ×   (𝜔𝑠)

[
 
 
 
 

− sin(𝜃𝑠) cos(𝜃𝑠) 0

−sin (𝜃𝑠 −
2𝜋

3
) cos (𝜃𝑠 −

2𝜋

3
) 0

− sin (𝜃𝑠 +
2𝜋

3
) cos (𝜃𝑠 +

2𝜋

3
) 0]

 
 
 
 

.                                     (3.2.11) 

Using trigonometric identities, (3.2.11) can be further simplified as 

                   [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = − [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] +
𝑑

𝑑𝑡
[

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] + [−
0 𝜔𝑠 0
𝜔𝑠 0 0
0 0 0

].                              (3.2.12) 

The same calculation steps can be performed for the rotor winding equations, that is  

          [

𝑣𝑞𝑟
𝑣𝑑𝑟

𝑣0𝑟

] = −𝑇(𝜃𝑠−𝜃𝑟) [
𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

] 𝑇(𝜃𝑠−𝜃𝑟)
−1 [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

] + 𝑇(𝜃𝑠−𝜃𝑟)  
𝑑

𝑑𝑡
{𝑇(𝜃𝑠−𝜃𝑟)

−1 [

𝜆𝑞𝑟

λ𝑑𝑟

𝜆0𝑟

]}       (3.2.13) 

where in 𝑑𝑞0 transformation for the rotor quantities, the 𝜃𝑠 in (3.2.1) and (3.2.2) must be replaced 

by (𝜃𝑠 − 𝜃𝑟). This yields 

   [

𝑣𝑞𝑟
𝑣𝑑𝑟

𝑣0𝑟

] = [
𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

] [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

] +
𝑑

𝑑𝑡
[

𝜆𝑞𝑟

λ𝑑𝑟

𝜆0𝑟

] + [
0 (𝜔𝑠 − 𝜔𝑟) 0

−(𝜔𝑠 − 𝜔𝑟) 0 0
0 0 0

] [

𝜆𝑞𝑟

λ𝑑𝑟

𝜆0𝑟

].         (3.2.14) 

Stator and rotor flux linkage equations given in (3.2.5) and (3.2.6) can also be converted into the 

𝑑𝑞0 reference frame. Beginning with the stator windings, the stator linkage flux is given by 𝜆𝑎𝑏𝑐
𝑠 =

−𝐿𝑠𝑠𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑠𝑟𝑖𝑎𝑏𝑐

𝑟  . This equation is converted to the 𝑑𝑞0 reference frame by replacing the 𝑎𝑏𝑐-

reference frame current and flux quantities by their equivalents in the dq0 reference  

                                           𝑇𝜃𝑠

−1 𝜆𝑑𝑞0
𝑠 = −𝐿𝑠𝑠 𝑇𝜃𝑠

−1 𝑖𝑑𝑞0
𝑠 + 𝐿𝑠𝑟 𝑇𝜃𝑠−𝜃𝑟

−1  𝑖𝑞𝑑0
𝑟                                     (3.2.15) 

which can be simplified as  
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                                         𝜆𝑑𝑞0
𝑠 = −𝑇𝜃𝑠

 𝐿𝑠𝑠 𝑇𝜃𝑠

−1 𝑖𝑑𝑞0
𝑠 + 𝑇𝜃𝑠

 𝐿𝑠𝑟 𝑇𝜃𝑠−𝜃𝑟

−1  𝑖𝑞𝑑0
𝑟                                   (3.2.16) 

This can be expanded as    

[

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

]

= −𝑇𝜃𝑠

[
 
 
 
 
 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚]

 
 
 
 
 

𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

]

+ 𝑇𝜃𝑠

[
 
 
 
 
 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 −
2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 +
2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) ]

 
 
 
 
 

 𝑇(𝜃𝑠−𝜃𝑟)
−1 [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

].               (3.2.17) 

This can further simplified as 

                           [

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] = − [

𝐿𝑙𝑠 + 𝐿𝑀 0 0
0 𝐿𝑙𝑠 + 𝐿𝑀 0
0 0 𝐿𝑙𝑠

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] + [
𝐿𝑀 0 0
0 𝐿𝑀 0
0 0 0

] [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

]           (3.2.18) 

where, 𝐿𝑀 =
3

2
𝐿𝑚 . Similarly, rotor flux linkage equations can also be converted to the 𝑑𝑞0 

reference frame 



37 

 

[

𝜆𝑞𝑟

λ𝑑𝑟

𝜆0𝑟

]

= 𝑇(𝜃𝑠−𝜃𝑟)

[
 
 
 
 
 𝐿𝑙𝑟 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑟 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑟 + 𝐿𝑚]

 
 
 
 
 

𝑇(𝜃𝑠−𝜃𝑟)
−1 [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

]

− 𝑇(𝜃𝑠−𝜃𝑟)

[
 
 
 
 
 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 −
2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) 𝐿𝑚 cos (𝜃𝑟 +

2𝜋

3
)

𝐿𝑚 cos (𝜃𝑟 +
2𝜋

3
) 𝐿𝑚 cos (𝜃𝑟 −

2𝜋

3
) 𝐿𝑚 cos(𝜃𝑟) ]

 
 
 
 
 

 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

].            (3.2.19) 

This can further simplified as 

                  [

𝜆𝑞𝑟

λ𝑑𝑟

𝜆0𝑟

] = [

𝐿𝑙𝑟 + 𝐿𝑀 0 0
0 𝐿𝑙𝑟 + 𝐿𝑀 0
0 0 𝐿𝑙𝑟

] [

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖0𝑟

] − [
𝐿𝑀 0 0
0 𝐿𝑀 0
0 0 0

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

].                       (3.2.20) 

 Block Diagram Representation of DFIG Model  

In this subsection, the block diagram representation of DFIG is presented using equations 

developed in the previous subsection. For balanced systems, including case studies of this 

dissertation, only the stator and rotor 𝑑- and 𝑞- axes equations are needed. Therefore, the electrical 

part of a DFIG model can be represented by four differential equations and four algebraic 

equations, as given in the following. Differential equations for the stator windings can be written 

as 

                                                       𝑣𝑞𝑠 = −𝑅𝑠𝑖𝑞𝑠 +
𝑑𝜆𝑞𝑠

𝑑𝑡
+ 𝜔𝑠𝜆𝑑𝑠                                                  (3.2.21) 

                                                       𝑣𝑑𝑠 = −𝑅𝑠𝑖𝑑𝑠 +
𝑑𝜆𝑑𝑠

𝑑𝑡
− 𝜔𝑠𝜆𝑞𝑠                                                  (3.2.22) 
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where 𝑅𝑠 is the stator winding resistance per phase and 𝜔𝑠 is the angular speed of the 𝑑𝑞0-

reference frame. Similarly, differential equations for the rotor windings can be written as 

                                             𝑣𝑞𝑟 = 𝑅𝑟𝑖𝑞𝑟 +
𝑑𝜆𝑞𝑟

𝑑𝑡
+ (𝜔𝑠 − 𝜔𝑟)𝜆𝑑𝑟                                                (3.2.23) 

                                             𝑣𝑑𝑟 = 𝑅𝑟𝑖𝑑𝑟 +
𝑑𝜆𝑑𝑟

𝑑𝑡
− (𝜔𝑠 − 𝜔𝑟)𝜆𝑞𝑟 .                                               (3.2.24) 

Stator flux linkage equations can also be converted to the 𝑑𝑞0 reference frame as 

                                                               𝜆𝑞𝑠 = −𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑀𝑖𝑞𝑟                                                         (3.2.25) 

                                                              𝜆𝑑𝑠 = −𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑀𝑖𝑑𝑟                                                         (3.2.26) 

 

where 𝐿𝑀 is the mutual-inductance and 𝐿𝑠 is the stator self-inductance.  Similarly, rotor flux 

linkage equations can also be expressed as 

                                                                 𝜆𝑞𝑟 = 𝐿𝑟𝑖𝑞𝑟 − 𝐿𝑀𝑖𝑞𝑠                                                          (3.2.27) 

                                                                𝜆𝑑𝑟 = 𝐿𝑟𝑖𝑑𝑟 − 𝐿𝑀𝑖𝑑𝑠                                                          (3.2.28) 

𝑅𝑠

𝐿𝑠

 𝐿𝑀 
𝑖𝑑𝑟  

Σ 
1

𝑠
 

𝜆𝑑𝑠 
Σ 

𝑣𝑑𝑠 

+ 

+ 

+ 
− 𝑑𝜆𝑑𝑠

𝑑𝑡
 

𝑅𝑠

𝐿𝑠

 𝐿𝑀 

𝑖𝑞𝑟  

Σ 
1

𝑠
 

𝜆𝑞𝑠 
Σ 

Σ 𝜔𝑠 
𝑣𝑞𝑠 + − 

+ 
+ 

+ 
− 𝑑𝜆𝑞𝑠

𝑑𝑡
 

Σ 𝜔𝑠 
+ + 

Figure 3.3 Stator flux, 𝜆𝑞𝑠 and 𝜆𝑑𝑠, (state variables) calculations from the input signals, 𝑣𝑞𝑠 , 𝑖𝑞𝑟 , 𝑣𝑑𝑠 and 

𝑖𝑑𝑟 
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where 𝐿𝑟 is the rotor self-inductance. Stator voltages 𝑣𝑞𝑠  and 𝑣𝑑𝑠 are determined by the grid, and 

the rotor currents 𝑖𝑞𝑟  and 𝑖𝑑𝑟 are controlled by the rotor side converter, accordingly thereby 

obtaining 𝜆𝑞𝑠 and 𝜆𝑑𝑠. Figures 3.3 and 3.4 illustrate the model of the electrical part of a DFIG in a 

block diagram, where 𝐿𝑠 is equal to 𝐿𝑙𝑠 + 𝐿𝑀. Other quantities can be calculated using algebraic 

equations (e.g. 𝑖𝑞𝑠, 𝑖𝑑𝑠, from (3.2.23) and (3.2.24)) neglecting 𝑑𝜆𝑞𝑟/𝑑𝑡  and 𝑑𝜆𝑑𝑟/𝑑𝑡 terms. The 

electrical torque, 𝑇𝑒, formulation is developed in the following subsection.  

 Electrical Torque of DFIG in 𝒅𝒒𝟎-Reference Frame  

In the previous subsection, the DFIG was treated as RL circuits that are magnetically 

coupled, and its electromechanical feature was ignored. In the following, the power transferred 

property of a DFIG is taken into account, beginning with stator and rotor power equations. 

Generated power at the stator terminals of a DFIG can be expressed as  

                                                          𝑃𝑠 = 𝑣𝑎𝑠𝑖𝑎𝑠 + 𝑣𝑏𝑠𝑖𝑏𝑠 + 𝑣𝑐𝑠𝑖𝑐𝑠.                                                (3.2.29) 

This equation can be rewritten in a vector format as  

                                                                  𝑃𝑠 = 𝑣𝑎𝑏𝑐𝑠
𝑇𝑖𝑎𝑏𝑐𝑠                                                                (3.2.30) 

This can also be converted into the 𝑑𝑞0 reference frame as  

                                    𝑃𝑠 = (𝑇𝜃𝑠

−1𝑣𝑑𝑞0)
𝑇
(𝑇𝜃𝑠

−1𝑖𝑑𝑞0) = 𝑣𝑑𝑞0
𝑇(𝑇𝜃𝑠

−1𝑇𝑇𝜃𝑠

−1)𝑖𝑑𝑞0.                            (3.2.31) 

𝜆𝑞𝑟 
𝐿𝑀
2

𝐿𝑠

− 𝐿𝑟 
𝑖𝑞𝑟  

Σ 
− 

+ 

𝐿𝑀

𝐿𝑠

 
𝜆𝑞𝑠 

𝜆𝑑𝑟 𝐿𝑀
2

𝐿𝑠

− 𝐿𝑟 
𝑖𝑑𝑟 

Σ 
− 

+ 

𝜆𝑑𝑠 𝐿𝑀

𝐿𝑠

 

Figure 3.4 Rotor flux, 𝜆𝑞𝑟 and 𝜆𝑑𝑟, (state variables) calculations from the input signals, 𝑖𝑞𝑟 and 𝑖𝑑𝑟 

as well as stator flux 𝜆𝑞𝑠 and 𝜆𝑑𝑠 
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where the term in parenthesis (i.e.  𝑇𝜃𝑠

−1𝑇𝑇𝜃𝑠

−1) is given as  

                                                          𝑇𝜃𝑠

−1𝑇𝑇𝜃𝑠

−1 =
3

2
[
1 0 0
0 1 0
0 0 2

]                                                        (3.2.32) 

Again, for a balanced system, the 0-quantities can be neglected, and therefore (3.2.31) can be 

simply written as 

                                                            𝑃𝑠 =
3

2
(𝑣𝑞𝑠𝑖𝑞𝑠 + 𝑣𝑑𝑠𝑖𝑑𝑠).                                                       (3.2.33) 

Similarly, the rotor power, 𝑃𝑟, at the rotor terminal can be obtained from the following equation.  

                                                           𝑃𝑟 =
3

2
(𝑣𝑞𝑟𝑖𝑞𝑟 + 𝑣𝑑𝑟𝑖𝑑𝑟).                                                       (3.2.34) 

This means that the total power generated by the stator and rotor circuits is given by 

                                 𝑃𝑒 = 𝑃𝑠 + 𝑃𝑟 =
3

2
(𝑣𝑞𝑠𝑖𝑞𝑠 + 𝑣𝑑𝑠𝑖𝑑𝑠) +

3

2
(𝑣𝑞𝑟𝑖𝑞𝑟 + 𝑣𝑑𝑟𝑖𝑑𝑟).                     (3.2.35) 

Substituting 𝑣𝑞𝑠, 𝑣𝑑𝑠, 𝑣𝑞𝑟, and 𝑣𝑑𝑟 from the voltage equations in (3.2.21) through (3.2.24) into 

(3.2.35), assuming an arbitrary rotating speed,𝜔, for the 𝑑𝑞0 reference frame, yields 

                           𝑃𝑒 = 𝑃𝑠 + 𝑃𝑟

=
3

2
((

𝑑𝜆𝑞𝑠

𝑑𝑡
− 𝑅𝑠𝑖𝑞𝑠 + 𝜔𝜆𝑑𝑠)𝑖𝑞𝑠 + (

𝑑𝜆𝑑𝑠

𝑑𝑡
− 𝑅𝑠𝑖𝑑𝑠 − 𝜔𝜆𝑞𝑠)𝑖𝑑𝑠)               

+
3

2
((

𝑑𝜆𝑞𝑟

𝑑𝑡
+ 𝑅𝑟𝑖𝑞𝑟 + (𝜔 − 𝜔𝑟)𝜆𝑑𝑟) 𝑖𝑞𝑟

+ (
𝑑𝜆𝑑𝑟

𝑑𝑡
+ 𝑅𝑟𝑖𝑑𝑟 − (𝜔 − 𝜔𝑟)𝜆𝑞𝑟) 𝑖𝑑𝑟).                                                            (3.2.36) 

This equation can be rearranged and then written as 
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𝑃𝑒 =
3

2
(−𝑅𝑠𝑖𝑞𝑠

2 − 𝑅𝑠𝑖𝑑𝑠
2 + 𝑅𝑟𝑖𝑞𝑟

2 + 𝑅𝑟𝑖𝑑𝑟
2 ) +

3

2
(
𝑑𝜆𝑞𝑠

𝑑𝑡
𝑖𝑞𝑠 +

𝑑𝜆𝑑𝑠

𝑑𝑡
 𝑖𝑑𝑠 +

𝑑𝜆𝑞𝑟

𝑑𝑡
𝑖𝑞𝑟 +

𝑑𝜆𝑑𝑟

𝑑𝑡
𝑖𝑑𝑟)

+
3

2
(𝜔𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜔𝜆𝑞𝑠𝑖𝑑𝑠 + (𝜔 − 𝜔𝑟)𝜆𝑑𝑟𝑖𝑞𝑟 − (𝜔 − 𝜔𝑟)𝜆𝑞𝑟𝑖𝑑𝑟)                 (3.2.37) 

As shown in (3.2.37), electrical power can be divided into three terms. The first term represents 

power dissipations in the stator and rotor windings. The second term relates to the time rate of 

change of magnetic energy stored in inductances of the stator and rotor windings. The third term 

contributes to the power conversion from mechanical to electrical.  Therefore, electromechanical 

power is given by 

               𝑃𝑒𝑚 =
3

2
(𝜔𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜔𝜆𝑞𝑠𝑖𝑑𝑠 + (𝜔 − 𝜔𝑟)𝜆𝑑𝑟𝑖𝑞𝑟 − (𝜔 − 𝜔𝑟)𝜆𝑞𝑟𝑖𝑑𝑟)               (3.2.38) 

This equation is valid for an arbitrary reference frame with an angular speed, 𝜔, so it must also be 

valid for any speed including the rotor speed 𝜔 = 𝜔𝑟 meaning that [29] 

                                                        𝑃𝑒𝑚 =
3

2
𝜔𝑟(𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜆𝑞𝑠𝑖𝑑𝑠)                                                   (3.2.39) 

Accordingly, the developed electrical torque, 𝑇𝑒, is calculated by  

                                                                     𝑇𝑒 =
𝑃𝑒𝑚
𝜔𝐺

.                                                                         (3.2.40) 

Using (3.2.39), and  (3.2.8), then 

                                                              𝑇𝑒 =
3

2

𝑝

2
(𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜆𝑞𝑠𝑖𝑑𝑠)                                                  (3.2.41) 

where 𝑇𝑒 is not a function of 𝜔, and therefore (as expected) the torque expression is valid for any 

reference frame, regardless of the angular speed.  
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In a (PMG), the necessary magnetic field is provided by a permanent magnet mounted on 

the generator’s rotor.  The PMG belongs to the synchronous generator category, however, no 

windings, external DC power supply, or rings are needed on the rotor therefore they require less 

maintenances. PMGs have received attention from the wind turbine industry because they do not 

require a multi-stage gearbox, further reducing wind turbine maintenance costs.  

Similar to DFIG topology, the stator windings for PMGs correspond to three phases: phase-

𝑎, phase-𝑏, and phase-𝑐. However, no windings exist in the rotor, and stator terminals are indirectly 

connected to the power grid through a back-to-back converter, as shown in Figure. 3.5.  

 PMG Model in the 𝒂𝒃𝒄-Reference Frame 

As the stator windings are electrically structured similar to the one in a DFIG, the stator 

voltage equations are similarly written as  

                                       [

𝑣𝑎𝑠
𝑣𝑏𝑠

𝑣𝑐𝑠
] = − [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] [
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

] +
𝑑

𝑑𝑡
[

𝜆𝑎𝑠

λ𝑏𝑠

𝜆𝑐𝑠

]                                             (3.3.1) 

Gearbox 

Generator-Side 

Converter 

Grid-Side 

Converter 

𝑖𝑠 & 𝑃𝑠 𝑖𝑔 & 𝑃𝑔 
𝑃𝑚  

𝑣𝑐  𝐿𝑓    𝑅𝑓 

𝐿𝑔 

PMG 

GRID 

Transformer 
𝑅𝑔 

Damping 

Circuit 

DC-bus 

Protection 

Figure 3.5 Schematic of a PMG based wind turbine system 
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where the stator linkage flux includes the stator and rotor effects (i.e., 𝜆𝑎𝑏𝑐
𝑠 = 𝜆𝑎𝑏𝑐

𝑠𝑠 + 𝜆𝑎𝑏𝑐
𝑠𝑟 ). The 

only difference is that the term 𝜆𝑎𝑏𝑐
𝑠𝑟  is produced by the permanent magnets. Therefore the flux 

linkage equations can be written as  

          [

𝜆𝑎𝑠

λ𝑏𝑠

𝜆𝑐𝑠

] = −

[
 
 
 
 
 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚]

 
 
 
 
 

[
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

] −

[
 
 
 
 

Λ𝑚 cos(𝜃𝑟)

Λ𝑚 cos (𝜃𝑟 −
2𝜋

3
)

Λ𝑚 cos (𝜃𝑟 +
2𝜋

3
)]
 
 
 
 

                    (3.3.2) 

where Λ𝑚 is the magnetic linkage flux produced by the rotor permanent magnets. No equation is 

needed for the generator rotor circuit. 

 PMG Model in the 𝒅𝒒𝟎-Reference Frame 

Using the  𝑑𝑞0 transformation matrix, 𝑇𝜃𝑠
, and its inverse, 𝑇𝜃𝑠

−1, the stator circuit equations 

can be rewritten as  

𝑎𝑠 

𝑏𝑠 

𝑐𝑠 

𝑞 − 𝑎𝑥𝑖𝑠 

𝑑 − 𝑎𝑥𝑖𝑠 

𝜃𝑠 

𝜋

2
− 𝜃𝑠 

𝑁 

𝑆 

Figure 3.6 Stator and rotor magnetic axes of a three-phase permanent magnet machine 
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                  [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = −𝑇𝜃𝑠
[

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] + 𝑇𝜃𝑠
 
𝑑

𝑑𝑡
{𝑇𝜃𝑠

−1 [

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

]}                                 (3.3.3) 

In synchronous machines (herein generators), the rotor and the synchronous speeds are identical. 

Hence, the 𝑑-axis can aligned with the magnetic axis of the rotor (i.e., 𝜃𝑟 =
𝜋

2
− 𝜃𝑠) as shown in 

Figure 3.6. Therefore, 𝜃𝑟 in (3.3.2) can be replaced by  
𝜋

2
− 𝜃𝑠, and (3.3.3) is then simplified as 

                       [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = − [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] +
𝑑

𝑑𝑡
[

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] + [−
0 𝜔𝑠 0
𝜔𝑠 0 0
0 0 0

] [

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

].                  (3.3.4) 

Stator flux linkage equations can also be converted to the 𝑑𝑞0 reference frame: 

[

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] = −𝑇𝜃𝑠

[
 
 
 
 
 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚 −

1

2
𝐿𝑚

−
1

2
𝐿𝑚 −

1

2
𝐿𝑚 𝐿𝑙𝑠 + 𝐿𝑚]

 
 
 
 
 

𝑇𝜃𝑠

−1 [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] 

                                                    −𝑇𝜃𝑠

[
 
 
 
 
 Λ𝑚 cos (

𝜋

2
− 𝜃𝑠)

Λ𝑚 cos (
𝜋

2
− 𝜃𝑠 −

2𝜋

3
)

Λ𝑚 cos (
𝜋

2
− 𝜃𝑠 +

2𝜋

3
)]
 
 
 
 
 

.                                                           (3.3.5)  

After mathematical manipulations, (3.3.5) can be simplified as 

                                     [

𝜆𝑞𝑠

λ𝑑𝑠

𝜆0𝑠

] = − [

𝐿𝑙𝑠 + 𝐿𝑀 0 0
0 𝐿𝑙𝑠 + 𝐿𝑀 0
0 0 𝐿𝑙𝑠

] [

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

] − [
0
Λ𝑚

0
]                            (3.3.6) 

where, 𝐿𝑀 =
3

2
𝐿𝑚 .  
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 Block Diagram Representation of PMG Model 

In this subsection, the block diagram representation of PMG is presented using the 

developed equations from the previous subsection. For a balanced PMG, only the two 𝑑-axis and 

𝑞- axis equations are needed, and 0- quantities can be ignored. Therefore, the electrical part of a 

PMG model can be represented by two algebraic and two differential equations, as seen in  

                                                      𝜆𝑞𝑠 = −(𝐿𝑙𝑠 + 𝐿𝑀)𝑖𝑞𝑠                                                                 (3.3.7) 

                                                  𝜆𝑑𝑠 = −(𝐿𝑙𝑠 + 𝐿𝑀)𝑖𝑑𝑠 − Λ𝑚                                                         (3.3.8) 

                                                    
𝑑𝜆𝑞𝑠

𝑑𝑡
= 𝑣𝑞𝑠 + 𝑅𝑠𝑖𝑞𝑠 − 𝜔𝑠𝜆𝑑𝑠                                                          (3.3.9) 

                                                    
𝑑𝜆𝑑𝑠

𝑑𝑡
= 𝑣𝑑𝑠 + 𝑅𝑠𝑖𝑑𝑠 + 𝜔𝑠𝜆𝑞𝑠.                                                       (3.3.10) 

These equations can be combined into two state-space equations as  

                                                        
𝑑𝜆𝑞𝑠

𝑑𝑡
= 𝑣𝑞𝑠 −

𝑅𝑠

𝐿𝑠
𝜆𝑞𝑠 − 𝜔𝑠𝜆𝑑𝑠                                                   (3.3.11) 

𝑅𝑠

𝐿𝑠

 
Λ𝑚 

Σ 
1

𝑠
 

𝜆𝑑𝑠 
Σ 

𝑣𝑑𝑠 

+ 

+ 

+ 
− 

𝑑𝜆𝑑𝑠

𝑑𝑡
 

𝑅𝑠

𝐿𝑠

 
1

𝑠
 

𝜆𝑞𝑠 
Σ 

Σ 𝜔𝑠 
𝑣𝑞𝑠 + − 

+ 
− 

𝑑𝜆𝑞𝑠

𝑑𝑡
 

Σ 𝜔𝑠 
+ + 

Figure 3.7 Stator flux, 𝜆𝑞𝑠 and 𝜆𝑑𝑠, (state variables) calculations from input signals, 𝑣𝑞𝑠 , 𝑣𝑑𝑠 and Λ𝑚 
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𝑑𝜆𝑑𝑠

𝑑𝑡
= 𝑣𝑑𝑠 +

𝑅𝑠

𝐿𝑠
Λ𝑚 −

𝑅𝑠

𝐿𝑠
𝜆𝑑𝑠 + 𝜔𝑠𝜆𝑞𝑠                                           (3.3.12) 

where 𝐿𝑠 is equal to 𝐿𝑙𝑠 + 𝐿𝑀. Figure 3.7 shows a model of the electrical portion of a PMG in a 

block diagram format. Furthermore, the electrical torque, 𝑇𝑒, formula in (3.2.20) is also valid for 

a PMG; the torque formula is written only in terms of the stator quantities.   

 

Solid-state-based converters have much faster dynamics than the windmill and generator, 

therefore, in order to study the slow dynamic phenomena, generator- and grid-side converters can 

be modeled by their controllers and first-order transfer functions as shown in Figures 3.8 and 3.9.  

Using KVL for the low-pass filter at the AC side of the grid-side converter shows 

                              [

𝑣𝑎𝑠
𝑣𝑏𝑠

𝑣𝑐𝑠
] = [

𝑅𝑓 0 0

0 𝑅𝑓 0

0 0 𝑅𝑓

] [
𝑖𝑎𝑖
𝑖𝑏𝑖
𝑖𝑐𝑖

] + [

𝐿𝑓 0 0

0 𝐿𝑓 0

0 0 𝐿𝑓

]
𝑑

𝑑𝑡
[
𝑖𝑎𝑖
𝑖𝑏𝑖
𝑖𝑐𝑖

] + [

𝑣𝑎𝑖

𝑣𝑏𝑖

𝑣𝑐𝑖

].                   (3.4.1) 

This can be converted to the 𝑑𝑞0-reference-frame as 

    𝑇𝜃𝑠

−1  [

𝑣𝑎𝑠
𝑣𝑏𝑠

𝑣𝑐𝑠
] = [

𝑅𝑓 0 0

0 𝑅𝑓 0

0 0 𝑅𝑓

] 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

] + [

𝐿𝑓 0 0

0 𝐿𝑓 0

0 0 𝐿𝑓

]
𝑑

𝑑𝑡
{𝑇𝜃𝑠

−1 [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

]} + 𝑇𝜃𝑠

−1 [

𝑣𝑞𝑖

𝑣𝑑𝑖

𝑣0𝑖

].        (3.4.2) 

Multiplication of both sides by 𝑇𝜃𝑠
 yields 

 [

𝑣𝑎𝑠
𝑣𝑏𝑠

𝑣𝑐𝑠
] = 𝑇𝜃𝑠

[

𝑅𝑓 0 0

0 𝑅𝑓 0

0 0 𝑅𝑓

] 𝑇𝜃𝑠

−1 [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

] + 𝑇𝜃𝑠
[

𝐿𝑓 0 0

0 𝐿𝑓 0

0 0 𝐿𝑓

]
𝑑

𝑑𝑡
{𝑇𝜃𝑠

−1 [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

]} + 𝑇𝜃𝑠
𝑇𝜃𝑠

−1 [

𝑣𝑞𝑖

𝑣𝑑𝑖

𝑣0𝑖

] . (3.4.3) 

which simplified as 

                                      [

𝑣𝑞𝑠
𝑣𝑑𝑠

𝑣0𝑠

] = [

𝑅𝑓 0 0

0 𝑅𝑓 0

0 0 𝑅𝑓

] [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

] + [

𝐿𝑓 0 0

0 𝐿𝑓 0

0 0 𝐿𝑓

]
𝑑

𝑑𝑡
[

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

]                                          
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                                                                     + [

0 𝜔𝑠𝐿𝑓 0

−𝜔𝑠𝐿𝑓 0 0

0 0 0

] [

𝑖𝑞𝑖
𝑖𝑑𝑖
𝑖0𝑖

]   + [

𝑣𝑞𝑖

𝑣𝑑𝑖

𝑣0𝑖

].                         (3.4.4) 

The grid-side converter is connected to the grid through an RL circuit that is a simplified 

representation of the low-pass filter and step-up transformer shown in Figure. 3.1. Again by 

neglecting 0-quantities, voltage at the inverter (grid-side converter) terminals, 𝑣𝑞𝑖 and 𝑣𝑑𝑖, are 

obtained from 

                                            𝑣𝑞𝑖 = 𝑣𝑞𝑠 − 𝑅𝑓𝑖𝑞𝑖 − 𝐿𝑓
𝑑𝑖𝑞𝑖

𝑑𝑡
− 𝜔𝑠𝐿𝑓𝑖𝑑𝑖                                              (3.4.5) 

                                            𝑣𝑑𝑖 = 𝑣𝑑𝑠 − 𝑅𝑓𝑖𝑑𝑖 − 𝐿𝑓
𝑑𝑖𝑑𝑖
𝑑𝑡

+ 𝜔𝑠𝐿𝑓𝑖𝑞𝑖                                             (3.4.6) 

In the grid-side converter, DC-bus voltage and power must be measured. The power can be 

calculated as  

                                                               𝑃𝑖 =
3

2
(𝑣𝑞𝑖𝑖𝑞𝑖 + 𝑣𝑑𝑖𝑖𝑑𝑖)                                                      (3.4.7) 

where 𝑣𝑞𝑖  and 𝑣𝑑𝑖 are the quadrature and direct inverter voltages, respectively. Herein,  𝑖𝑑𝑖 is set 

to zero; therefore, the grid-side converter with the low-pass filter model is shown in Figure 3.8.  

The the Laplace transform of the q-axis inverter voltage is given by 𝑉𝑞𝑖 = 𝑉𝑞𝑠 − (𝐿𝑠𝑠 + 𝑅𝑠)𝐼𝑞𝑖, 

which includes the derivative of the current, 𝑖𝑞𝑖.  A differentiation operator may cause numerical 

  

 
∑ PI 

𝐿𝑓𝑠 + 𝑅𝑓

𝜏𝐺𝑆𝐶𝑠 + 1
 

+ 
− 

𝑉𝑑𝑐
∗  

 

𝑉𝑑𝑐 

𝑣𝑞𝑖 

𝑃𝑖
∗ 

 

𝑃𝑖  

PI ∑ 

− 
+ 

𝑖𝑞𝑖
∗  

  

  

1

𝐿𝑓𝑠 + 𝑅𝑓

 

𝑖𝑞𝑖 
∑ 

− 
+ 

𝑣𝑞𝑠 

3

2
 

× 

Figure 3.8 Grid-side converter model with a simplified low-pass filter, 𝑖𝑑𝑖 is set to zero and 𝑖𝑞𝑖 is 

controlled based on the desired DC-bus voltage, 𝑉𝑑𝑐
∗    
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issues in a simulation; therefore, a time derivation, 
𝑑

𝑑𝑡
, with Laplace transform of 𝑠, is modeled as 

𝑠

𝜏𝑠+1
 , where 𝜏 should be relatively small [49], [50]. In this work, the converter reduced-order model 

is combined with the filter model as 𝑉𝑞𝑖 = 𝑉𝑞𝑠 −
𝐿𝑠𝑠+𝑅𝑠

𝜏𝐺𝑆𝐶𝑠+1
𝑖𝑞𝑖
∗  , where 𝑖𝑞𝑖

∗  is the desired value of 𝑞-

axis current at the inverter (grid-side) terminal.  Similarly, for the rotor-side converter, 𝑖𝑑𝑟 is set to 

zero, and 𝑖𝑞𝑟 is controlled based on the desired electrical torque, 𝑇𝑒
∗, as shown in Figure 3.9.  

The q-axis and d-axis stator voltages, 𝑣𝑞𝑠 and 𝑣𝑑𝑠, are then given by  

                         𝑣𝑞𝑠 = 𝑣𝑞𝑔 + 𝑅𝑔(𝑖𝑞𝑠 − 𝑖𝑞𝑖) + 𝐿𝑔

𝑑(𝑖𝑞𝑠 − 𝑖𝑞𝑖)

𝑑𝑡
+ 𝜔𝑠𝐿𝑔(𝑖𝑑𝑠 − 𝑖𝑑𝑖)                       (3.4.8) 

                         𝑣𝑑𝑠 = 𝑣𝑑𝑔 + 𝑅𝑔(𝑖𝑑𝑠 − 𝑖𝑑𝑖) + 𝐿𝑔

𝑑(𝑖𝑑𝑠 − 𝑖𝑑𝑖)

𝑑𝑡
− 𝜔𝑠𝐿𝑔(𝑖𝑞𝑠 − 𝑖𝑞𝑖)                       (3.4.9) 

where 𝑅𝑔 is the feeder line resistance and 𝐿𝑔 is the feeder line inductance. Also, 𝑣𝑞𝑔 and 𝑣𝑑𝑔 are 

the grid-side voltages that are calculated by 

  

  
∑ PI 

1

𝜏𝐺𝑒𝑆𝐶𝑠 + 1
 

+ 

− 

𝑇𝑒
∗ 

𝑇𝑒 

𝑖𝑞𝑟  𝑖𝑞𝑟
∗  

Figure 3.9 Rotor-side converter, 𝑖𝑑𝑟 is set to zero and 𝑖𝑞𝑟 is controlled based on the desired generator 

torque,  𝑇𝑒
∗  

𝑖𝑟  & 𝑃𝑟  

Generator-Side 

Converter 

𝑣𝑐  

Grid-Side 

Converter 

𝑖𝑖 & 𝑃𝑖  

𝐿𝑓      𝑅𝑓 
𝑖𝑖
𝑑𝑐

 & 𝑃𝑖 𝑖𝑟
𝑑𝑐 & 𝑃𝑟 

𝐶
𝑑𝑣𝑐

𝑑𝑡
 

Figure 3.10  DC-bus voltage dynamics behavior in terms of powers in both sides of the back-to-back 

converter   
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                                  [

𝑣𝑞𝑔
𝑣𝑑𝑔

𝑣0𝑔

] = 𝑇𝜃𝑠
[

𝑣𝑎𝑔
𝑣𝑏𝑔

𝑣𝑐𝑔
] = 𝑇𝜃𝑠

 

[
 
 
 
 

𝑉𝑚 cos(𝜔𝑠𝑡)

𝑉𝑚 cos (𝜔𝑠𝑡 −
2𝜋

3
)

𝑉𝑚 cos (𝜔𝑠𝑡 +
2𝜋

3
)]
 
 
 
 

= [
𝑉𝑚
0
0
].                          (3.4.10) 

The DC-bus voltage stays at its nominal value by controlling the flow of power from the 

grid to the rotor.  Neglecting the converters’ switching losses and using KCL, the DC-bus voltage 

can be formulated as 

                                                                 𝐶
𝑑𝑣𝑑𝑐

𝑑𝑡
= 𝑖𝑖

𝑑𝑐 − 𝑖𝑟
𝑑𝑐                                                             (3.4.11) 

where, 𝐶 is the DC-bus capacitor. Multiplying both sides by the DC-bus voltage, 𝑣𝑑𝑐 , yields 

                                                                 𝐶𝑣𝑑𝑐

𝑑𝑣𝑑𝑐

𝑑𝑡
= 𝑃𝑖 − 𝑃𝑟                                                          (3.4.12) 

where, 𝑃𝑟 = 
3

2
(𝑣𝑞𝑟𝑖𝑞𝑟 + 𝑣𝑑𝑟𝑖𝑑𝑟) is the rotor/generator side power and 𝑃𝑖 is the grid-side converter 

power, as shown in Figure 3.10. Because 2𝑣𝑑𝑐
𝑑𝑣𝑑𝑐

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑣𝑑𝑐)

2, then (3.4.10) can be written as 

                                                               
𝑑

𝑑𝑡
(𝑣𝑑𝑐)

2 =
2

𝐶
(𝑃𝑖 − 𝑃𝑟).                                                     (3.4.13) 

This nonlinear differential equation represents DC-bus dynamics.  Although the desired electrical 

torque identifies the desired value of 𝑖𝑞𝑟 in the generator-side converter, for the grid-side converter, 

  

 
PI 

𝐿𝑓𝑔𝑠 + 𝑅𝑓𝑔

𝜏𝐺𝑆𝐶𝑠 + 1
 

𝑣𝑞𝑖 

𝑃𝑖
∗ 

 

𝑃𝑖  

PI ∑ 

− 
+ 

𝑖𝑞𝑖
∗  

  

  

1

𝐿𝑓𝑔𝑠 + 𝑅𝑓𝑔

 

𝑖𝑞𝑖 
∑ 

− 
+ 

𝑣𝑞𝑔 

3

2
 

× 

∑ 
+ 

− 

𝑉𝑑𝑐
∗  

 

𝑉𝑑𝑐 

−1 

Figure 3.11 Grid side converter model with a simplified low-pass filter of PMG, where 𝑖𝑑𝑖 is set to 

zero and 𝑖𝑞𝑖 is controlled based on the desired DC-bus voltage, 𝑉𝑑𝑐
∗  
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the desired value of the DC-bus voltage identifies the desired value of active power and 

subsequently commands the desired value of 𝑖𝑞𝑖, as shown in Figures 3.10 and 3.11.   

In the PMG block diagram in Figure 3.10, the power flow direction through the back-to-

back converter is opposite to the one in the DFIG-based block diagram. Therefore, as the grid-side 

converter current/power increases, the DC-bus voltage decreases. This reverse proportionality is 

shown in the block diagram in Figure 3.11 by a negative gain inserted in series with the first PI 

controller from the left side.  Also, the DC-bus voltage and the filter equations for the PMG system 

should be written as  

                                                               
𝑑

𝑑𝑡
(𝑣𝑑𝑐)

2 =
2

𝐶
(𝑃𝑟 − 𝑃𝑖)                                                      (3.4.14) 

                          𝑣𝑞𝑖 = 𝑣𝑞𝑔 + (𝑅𝑓 + 𝑅𝑔)𝑖𝑞𝑖 + (𝐿𝑓 + 𝐿𝑔)
𝑑𝑖𝑞𝑖

𝑑𝑡
+ 𝜔𝑠(𝐿𝑓 + 𝐿𝑔)𝑖𝑑𝑖                     (3.4.15) 

                          𝑣𝑑𝑖 = 𝑣𝑑𝑔 + (𝑅𝑓 + 𝑅𝑔)𝑖𝑑𝑖 + (𝐿𝑓 + 𝐿𝑔)
𝑑𝑖𝑑𝑖
𝑑𝑡

− 𝜔𝑠(𝐿𝑓 + 𝐿𝑔)𝑖𝑞𝑖                     (3.4.16) 

which includes the feeder line resistance, 𝑅𝑔, and inductance, 𝐿𝑔, effects. In Figure 3.11, 𝐿𝑓𝑔 stands 

for 𝐿𝑓 + 𝐿𝑔, and 𝑅𝑓𝑔 = 𝑅𝑓 + 𝑅𝑔. 

 

Wind farms are typically connected to the grid through a long transmission line. However, 

use of a long transmission line to transfer wind farm power to the grid reduces power transmission 

capacity because of the large inductance of long transmission lines. One economical solution to 

improve power transmission capacity is the use of a series capacitor to reduce effective inductance 

of the line, thereby increasing overall system stability.  
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Figure 3.12 illustrates a series compensation capacitor in the power transmission line in a 

DFIG-based system. In order to model the effect of a series capacitor, 𝑖 − 𝑣 relation for series 

capacitors is  

                                                    [

𝑖𝑎𝑔
𝑖𝑏𝑔
𝑖𝑐𝑔

] = [
C 0 0
0 C 0
0 0 𝐶

]
𝑑

𝑑𝑡
[

𝑣𝑎𝑠 − 𝑣𝑎𝑚
𝑣𝑏𝑠 − 𝑣𝑏𝑚

𝑣𝑐𝑠 − 𝑣𝑐𝑚
]                                              (3.5.1) 

where 𝑖𝑔,  𝑣𝑠, and 𝑣𝑚 are shown in Figure 3.12 Using Park’s transformation, (3.5.1) can be written 

as 

                                           𝑇𝜃𝑠

−1 [

𝑖𝑞𝑔
𝑖𝑑𝑔
𝑖0𝑔

] = [
𝐶 0 0
0 𝐶 0
0 0 𝐶

] 
𝑑

𝑑𝑡
{𝑇𝜃𝑠

−1 [

∆𝑣𝑞
∆𝑣𝑑

∆𝑣0

]}                                           (3.5.2) 

where ∆𝑣𝑞 and ∆𝑣𝑑 represent voltage drops across the series capacitor in the transmission line. 

            [

𝑖𝑞𝑔
𝑖𝑑𝑔
𝑖0𝑔

] = 𝑇𝜃 [
𝐶 0 0
0 𝐶 0
0 0 𝐶

] 𝑇𝜃
−1 {

𝑑

𝑑𝑡
[

𝑣𝑞
𝑣𝑑

𝑣0

]} + 𝑇𝜃 [
𝐶 0 0
0 𝐶 0
0 0 𝐶

] {
𝑑

𝑑𝑡
𝑇𝜃

−1} [

∆𝑣𝑞
∆𝑣𝑑

∆𝑣0

]                    (3.5.3) 

which can further be simplified as  

                            [

𝑖𝑞𝑔
𝑖𝑑𝑔
𝑖𝑜𝑔

] = [
C 0 0
0 C 0
0 0 𝐶

]
𝑑

𝑑𝑡
[

∆𝑣𝑞
∆𝑣𝑑

∆𝑣0

] + [
0 𝜔𝑠𝐶 0

−𝜔𝑠𝐶 0 0
0 0 0

] [

∆𝑣𝑞
∆𝑣𝑑

∆𝑣0

].                             (3.5.4) 

Again, for balanced three-phase systems, only 𝑞-axis and 𝑑- axis quantities are considered and the 

grid currents become  

      

𝑣𝑚 𝑣𝑔 

𝑖𝑠 

𝑖𝑖 

𝑣𝑠 

𝑖𝑔 

𝐶𝑔 𝑅𝑔 𝐿𝑔 

Figure 3.12 Transmission line model with a series compensation capacitor 
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                                                         𝑖𝑞𝑔 = 𝐶
𝑑∆𝑣𝑞

𝑑𝑡
+ 𝜔𝑠𝐶∆𝑣𝑑                                                             (3.5.5) 

                                                         𝑖𝑑𝑔 = 𝐶
𝑑∆𝑣𝑑

𝑑𝑡
− 𝜔𝑠𝐶∆𝑣𝑞 .                                                           (3.5.6) 

In order to solve for the voltage drops, these equations must be converted to the 𝑠-domain using 

the Laplace transform, which yields 

                                                    [
∆𝑣𝑞
∆𝑣𝑑

] = [
𝐶𝑠 𝜔𝑠𝐶

−𝜔𝑠𝐶 𝐶𝑠
]
−1

[
𝑖𝑞𝑔
𝑖𝑑𝑔

].                                                   (3.5.7) 

Therefore, the voltage drops are obtained from  

                                        [
∆𝑣𝑞
∆𝑣𝑑

] =
1

𝐶2𝑆2 + 𝜔𝑠
2𝐶2

[
𝐶𝑠 −𝜔𝑠𝐶
𝜔𝑠𝐶 𝐶𝑠

] [
𝑖𝑞𝑔
𝑖𝑑𝑔

] .                                         (3.5.8) 

which can be rewritten as  

                                              ∆𝑣𝑞 =

𝑠
𝐶

𝑠2 + 𝜔𝑠
2
𝑖𝑞𝑔 −

𝜔𝑠

𝐶
𝑠2 + 𝜔𝑠

2
𝑖𝑑𝑔                                                   (3.5.9) 

                                              ∆𝑣𝑑 =

𝑠
𝐶

𝑠2 + 𝜔𝑠
2
𝑖𝑑𝑔 +

𝜔𝑠

𝐶
𝑠2 + 𝜔𝑠

2
𝑖𝑞𝑔.                                                  (3.5.10) 

These equations can be combined with the transmission line equations as shown in Figure 3.13 for 

only the q-axis.  

𝑅𝑔 + 𝑠𝐿𝑔 𝜔𝑠𝐿𝑔 

𝑠

𝑠2 + 𝜔𝑠
2
 

1/𝐶𝑔 

−𝜔𝑠

𝑠2 + 𝜔𝑠
2
 

Σ 

Σ Σ Σ 

𝑖𝑞𝑔 

𝑣𝑞𝑔 𝑣𝑞𝑠 

𝑖𝑑𝑔 

𝑖𝑞𝑔 𝑖𝑑𝑔 

Figure 3.13 Series capacitor implementation into the transmission line model (neglecting parallel 

capacitors) for the q-axis; the d-axis model can be similarly implemented 
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Various simulation results throughout Chapters 4 and 5 demonstrate the effectiveness of 

the developed models to enabling analysis dynamic phenomena in DFIG-based and PMG-based 

wind turbine systems. For example, a voltage dip disturbance in the grid can excite eigenvalues of 

the wind turbine drivetrain. This well-known phenomenon is observed using the developed 

models, where the frequency of oscillations matches the expected natural frequency of the 

drivetrain, as discussed in Chapter 5.  

As the FAST aerodynamic model has been verified by NREL, herein only the power 

balancing in sub-synchronous and super-synchronous modes of operation in the 5MW DFIG-based 

system is examined. In the results presented in Figure 3.14, the 5MW DFIG-based wind turbine 

model was run at a constant electrical torque of 1.4 kNm when the wind speeds were 7 m/s and 10 

m/s.  In this test, the 1.4 kNm was chosen such that the system operates at its maximum power 

seeking (𝐶𝑝 = 0.48) for the wind speed of 7 m/s. The measured data points are shown at 𝑡 = 800 

sec and 𝑡 = 1400 sec in Figure 3.14. The first observation is that the stator power remains constant 

as the wind speed varies.  In a synchronously rotating reference frame fixed on the grid frequency, 

𝑣𝑑𝑠 ≅ 𝑣𝑑𝑔 = 0 and 𝑣𝑞𝑠 ≅ 𝑣𝑞𝑔 = 𝑉𝑚, as given in Equation (3.4.10). Therefore, the stator power is 

obtained rom 𝑃𝑠 =
3

2
𝑉𝑚(𝑖𝑞𝑠),  and thus it stays constant for a given electrical torque. However, the 

net generated power given by 𝑃𝑎𝑒𝑟𝑜 ≅ 𝑃𝑔 = 𝑃𝑠 − 𝑃𝑖 (based on the defined directions in Figure 3.1), 

varies as the wind speed changes. This can be examined using the data provided in Figure 3.14. It 

is known that both rotor and stator generate power under super-synchronous mode of operation 

and only the stator circuit generate power under sub-synchronous mode [41]. This fact is examined 

as follows  
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At 𝑡 = 800 sec when the wind speed is 10 m/s, the generated power is 𝑃𝑔 = 𝑃𝑠 − 𝑃𝑖 =

1.805 + 0.8979 = 2.7 MW that means both stator and rotor inject power into the grid. Also, the 

generator speed is 𝑛𝐺𝑒𝑛 = 𝑁𝑔𝑒𝑎𝑟 (
60

2𝜋
)𝜔𝑅 = 97 (

60

2𝜋
)1.944 = 1800 rpm, while the synchronous 

speed for a 6-pole generator is 1200 rpm, therefore as expected the generator operates at super-

synchronous mode in this case.  

At 𝑡 = 1400 sec when the wind speed is 7 m/s, the generated power is 𝑃𝑔 = 𝑃𝑠 − 𝑃𝑖 =

1.805 − 0.5567 = 1.247 MW that means only stator generates power. Also, the generator speed 

 

  

  

Figure 3.14 Test results of the 5MW DFIG-based wind turbine for a contestant electrical torque 
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is 𝑛𝐺𝑒𝑛 = 𝑁𝑔𝑒𝑎𝑟 (
60

2𝜋
)𝜔𝑅 = 97 (

60

2𝜋
) 0.9053 = 838 rpm, which is less than the synchronous speed 

and therefore, as expected, the generator operates at sub-synchronous mode. 
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 Chapter 4 − Nonlinear Control Scheme for Extremum Power Seeking  

This chapter begins with a background of extremum power-seeking techniques, with 

emphasis on the perturb-and-observe method and the conventional 𝑘𝜔2 technique. Also, a 

background on nonlinear control schemes, Lyapunov, and feedback linearization methods are 

explained through a second-order example. Then these concepts are applied to develop a nonlinear 

adaptive extremum power-seeking method. At the end of this chapter, the developed extremum 

power seeking method is verified through simulation results and compared to the conventional 

technique.  

 

Many maximum power-seeking or extremum power-seeking methods have been presented 

in literature, but two classical methods are presented in the following. In particular, the second 

method described below is used as benchmark of the developed method presented in this 

dissertation.   

 Perturb-and-Observe Method of Extremum Power Seeking 

Maximum power capturing can be achieved by continuous change of the control variable 

and observation of the resulting change in power. These algorithms are known as perturb-and-

observe or hill climbing, as well as torque and/or speed control based on pre-known system 

parameters such as the 𝑘𝜔2 technique. Because these methods do not require information about 

system parameters, they are independent, simple and flexible. In this method the power and rotor 

speed increment are sampled and the sign of each is calculated. Based on the sign, a new 

incremental or decrement of the reference value is calculated. Choosing an appropriate step size is 

the most important task in this method because it is a compromise between response time and 



57 

 

steady state oscillation. A drawback of this method is the deficiency of difference between power 

that results from wind speed changes or perturbation change in the system that can cause failure 

of the maximum seeking.  

One algorithm is based on an injected dither signal [14]. This algorithm can best be 

explained using a typical power curve, 𝑃𝑇 versus 𝜔𝑅 of a turbine at a constant wind speed as shown 

in Figure 4.1. By adding a dither signal equal to 𝑎 𝑠𝑖𝑛(𝜔𝑑𝑖𝑡𝑡) to the reference speed, where 𝑎 is a 

constant, the wind turbine control scheme estimates the gradient of the output power. The dither 

frequency is very slow with respect to dynamics of the overall wind turbine and its amplitude is 

sufficiently small compared to the rotor speed. The dither signal creates an alternating signal with 

the same frequency (i.e., 𝑃𝑇 = 𝑝𝐷𝐶 + 𝑎 𝑘 𝑠𝑖𝑛 (𝜔𝑑𝑖𝑡 𝑡)), where 𝑘 is an estimate of the slope of 𝑃𝑇 

with respect to 𝜔𝑅. In order to estimate the gradient of the output power, a high-pass filter is used 

to remove the DC component of the signal. Then the resulting signal is multiplied by 
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Figure 4.1 Maximum seeking approach via adding a dither signal to the reference signal. 
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(2/𝑎) sin (𝜔𝑑𝑖𝑡𝑡), (i.e., (2/𝑎  sin (𝜔𝑑𝑖𝑡 𝑡))(𝑎𝑘sin (𝜔𝑑𝑖𝑡 𝑡)), which can be simplified as 𝑘 −

𝑘𝑐𝑜𝑠(2𝜔𝑑𝑖𝑡 𝑡). A low-pass filter is used to remove the AC component of the product in order to 

obtain the gradient estimation of 𝑃𝑇. Depending on the sign of estimated gradient, (i.e. sign of 𝑘  ) 

the output of the integrator is either added to (or subtracted from) the reference speed, 𝜔𝑅
∗ , and 

therefore, the desired speed increases or decreases to capture greater power.  

 Conventional Method of Extremum Power Seeking 

In the conventional method, the electrical torque is set to be proportional to the generator 

(or rotor) speed. The main idea is derived from the aerodynamics of wind turbines. As discussed 

in Chapter 2, aerodynamic torque is formulated as 

                                                         𝑇𝑎𝑒𝑟𝑜 = 
𝐶𝑝(𝜆, 𝛽)

2𝜔𝑅
𝜌𝜋𝑅2𝑣3.                                                         (4.1.1) 

If the optimal rotor tip speed ratio, 𝜆𝑜𝑝𝑡, is assumed a constant value where 𝐶𝑝(𝜆, 𝛽) = 𝐶𝑝
𝑜𝑝𝑡

, then 

(4.1.1) can be written as 

                                                         𝑇𝑎𝑒𝑟𝑜 = 
𝐶𝑝

𝑜𝑝𝑡

2𝜔𝑅
𝜌𝜋𝑅2 (

𝑅𝜔𝑅

𝜆𝑜𝑝𝑡
)
3

                                                     (4.1.2) 

which can be simplified as  

                                                             𝑇𝑎𝑒𝑟𝑜 = 
𝜌𝜋𝑅5𝐶𝑝

𝑜𝑝𝑡

2𝜆𝑜𝑝𝑡2
𝜔𝑅

2 .                                                        (4.1.3) 

Hence, 𝑇𝑎𝑒𝑟𝑜 and 𝑇𝑒 are essentially equal and opposite for steady wind conditions and the electrical 

torque can be written 

                                                                      𝑇𝑒 = 𝑘𝑜𝑝𝑡 𝜔𝑅
2.                                                                 (4.1.4) 
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Although this technique provides an easy control law for capturing extremum power in wind 

turbines, 𝑘𝑜𝑝𝑡 may change in time due to aging of the wind turbine [51]. In order to overcome this 

drawback, an adaptive nonlinear control method is developed in the work for this dissertation. 

 

Prior to the main discussion on formulations of the proposed method for extremum power 

seeking, general information about nonlinear techniques of feedback linearization and Lyapunov 

methods are presented in the following subsections. 

 Lyapunov Function Applications in Control Systems  

 In general, control theory has two branches: linear and nonlinear control schemes. 

However, majority of real-world problems are nonlinear systems. In order to design a control 

scheme, the system dynamic behavior first should be modeled by an 𝑛𝑡ℎorder differential equation, 

or by 𝑛 first-order differential equations. If these equations are linear or can be linearized around 

an operating point (Jacobian linearization), then linear control theories, such as pole-placement 

technique, can be applied. Let us define an 𝑛𝑡ℎ −order system as  

                                                                     𝑥̇ = 𝑓𝑘(𝑥, 𝑢, 𝑡)                𝑘 = 1,… , 𝑛                              (4.2.5) 

where 𝑓𝑘  𝜖𝑅
𝑛 is a nonlinear function, 𝑥 = [𝑥1 ⋯ 𝑥𝑛]𝑇 is the state vector of the system, and 

𝑢 = [𝑢1 … 𝑢𝑚]𝑇 is the input/reference vector. This type of systems can be controlled using 

linear control theory (e.g., PID controllers) for simple nonlinear systems, such as in power 

controllers. However, the controller may not provide optimal performance for all operating 

conditions. The Lyapunov method is used for stability analysis of nonlinear dynamic systems and 

extraction of control laws that maintain system stability over the range of operating conditions. 

The second approach is to use the feedback linearization to cancel known nonlinear terms using 
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feedback loops, that are superimposed with pole placement loops to secure the stability of the 

overall system. The major issue with this technique is that the nonlinear terms are not always 

known. The third well-known method is based on sliding mode theory in which the nonlinearity 

terms are not known. The latter is explained in Chapter 5, but, the Lyapunov and feedback 

linearization techniques are briefly explained in the following paragraphs.   

The Lyapunov method is based on a fundamental physical concept that if energy of a 

system monotonically decreases after a finite excitation or disturbance, the system will eventually 

settle down to an equilibrium condition. The Lyapunov method is used to analyze the stability of 

a nonlinear system, and it can be applied to extract control laws for nonlinear systems. Two 

methodologies exist for control design (1) hypothesizing a control law and then finding a 

Lyapunov function to validate the choice, and (2) hypothesizing a Lyapnov function and finding a 

control law to make it a real Lyapunov function [52]. Prior to presenting the Lyapunov theorem 

for local and global stabilities, two definitions are given here [52].  

Definition 1:  A scalar continuous function 𝑉(𝑥) is said to be locally positive definite if 𝑉(0) = 0 

and is in a state space neighborhood around the origin, 𝑉(𝑥) > 0 for 𝑥 ≠ 0. If the same holds over 

the entire state space, then 𝑉(𝑥) is said to be globally positive definite. 

Definition 2:  A scalar continuous function 𝑉(𝑥) is said to be locally positive semi-definite if 

𝑉(0) = 0 and is in a state-space region around the origin, 𝑉(𝑥) ≥ 0 for 𝑥 ≠ 0. If the same holds 

over the entire state space, then 𝑉(𝑥) is said to be globally positive semi-definite. 

if −𝑉(𝑥) is positive definite or semi-definite, then 𝑉(𝑥) is negative definite or semi-definite, 

respectively. 

Lyapunov Local Stability Theorem:  If a scalar function 𝑉(𝑥) with continuous first partial 

derivatives exists in a state space region around the origin such that  
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 𝑉(𝑥)  is positive definite 

 𝑉̇(𝑥) is negative semi-definite 

then the equilibrium point is stable.   

For ease of explaining the control theories used in this section, consider a second-order 

dynamic system of 

                                                            [
𝑥̇1

𝑥̇2
] = [

𝑓1(𝑥1, 𝑥2, 𝑢1, 𝑢2)
𝑓2(𝑥1, 𝑥2, 𝑢1, 𝑢2)

]                                                       (4.2.6) 

For local stability, the system can be linearized for an operating point ([𝑥10 𝑥20]𝑇 and 𝑢0 =

[𝑢10 𝑢20]𝑇 ) as 

                                       [
𝑥̇1

𝑥̇2
] =

[
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2]

 
 
 

|
𝑥0
𝑢0

[
𝑥1

𝑥2
] +

[
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2]

 
 
 

|
𝑥0
𝑢0

[
𝑢1

𝑢2
].                                (4.2.7) 

A nonlinear system can be represented by a linear approximation when its dynamic behavior on 

the operating point is not critical for the far away points. However, this linear approximation 

cannot always be applied to any system, particularly if 𝑓𝑘 is an unknown function. Consider the 

following nonlinear second-order system  

                                                           [
𝑥̇1

𝑥̇2
] = [

𝑥1 + 5𝑥2

𝑥1
4 cos (𝑥2) + 𝑢

]                                                         (4.2.8) 
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Figure 4.2 State variables and state trajectory of an unstable situation 
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and linearize it around the (0,0) operating point. The linearized system is given by 

                                                           [
𝑥̇1

𝑥̇2
] = [

1 5
0 0

] [
𝑥1

𝑥2
] + [

0
𝑢
]                                                         (4.2.9) 

where its eigenvalues are 0 and 1, representing an unstable system at this operating point. 

Assuming that the input signal is set to be zero and the state variables move to (−1, 0), as shown 

in Figure 4.2, then 𝑥1 goes to infinity while 𝑥2 settles down to a constant value.  

A linear pole placement controller could be designed based on the (Jacobian) linearized 

system in (4.2.9). The new eigenvalues could be moved to −1 ∓ 𝑗 by choosing the following input 

signal. 

                                                                       𝑢 = −𝑥1 − 3𝑥2.                                                            (4.2.10) 

This should make the system stable for small disturbances around the origin. In order to show the 

problem of using the linear control theory in nonlinear systems, two tests with two initial 

conditions (i.e. (1,0) and (−1,0)) were performed, and the results are shown in Figure 4.3. Results 
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show that, although distances of these initial points to the origin are identical, one remain stable 

while the other is unstable.  

As mentioned, the Lyapunov method can be used to design a controller. First, a positive 

definite function should be defined such as (𝑥) =
1

2
(𝑥1 + 𝑥2)

2, 𝑉(0) = 0, and 𝑉(𝑥) > 0 for 𝑥 ≠

0. Then, 

                                                         𝑉̇(𝑥) = (𝑥1 + 𝑥2)(𝑥̇1 + 𝑥̇2)                                                     (4.2.11) 

Substituting for 𝑥̇1 and 𝑥̇2 from (4.2.8) yields 

                                        𝑉̇(𝑥) = (𝑥1 + 𝑥2)(𝑥1 + 5𝑥2 + 𝑥1
4 cos(𝑥2) + 𝑢)                                  (4.2.12) 

The system becomes asymptotically stable if 𝑉̇(𝑥) < 0 for any 𝑥 ≠ 0. This can be achieved by 

choosing the input signal as  

                                                    𝑢 = −𝑥1
4 cos(𝑥2) − 2𝑥1 − 6𝑥2                                        (4.2.13) 

which makes 𝑉̇(𝑥) =
−1

2
(𝑥1 + 𝑥2)

2 < 0 for any 𝑥 ≠ 0. The outcome of the designed nonlinear 

control law in (4.2.13) is shown in Figure 4.4. 
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Figure 4.4 Results of the nonlinear control law in (4.2.13) derived from the Lyapunov method. 
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 Feedback Linearization Technique  

A nonlinear controller often offer advantages such as more accuracy, reduced control 

energy, and faster speed, which explain why the nonlinear control design procedure is more 

appropriate and challenging. As demonstrated by a comparison of  results shown in Figures 4.3 

and 4.4. If the nonlinear term (function) is known or can be estimated, the feedback linearization 

method can be effectively implemented as a nonlinear controller, but the feedback linearization 

method must be defined [52]. The nonlinear second-order system in (4.2.8) can be used for this 

definition. The first step is to determinant a nonlinear function of state variables in order to cancel 

the nonlinear term. That is 
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Figure 4.5 Results of the nonlinear control law in (4.2.17) derived from the feedback linearization 

method 

(a) 

(c) 

(b) 



65 

 

                                                                𝑢 = 𝑔(𝑥1, 𝑥2, 𝑢
∗)                                                                 (4.2.14) 

Substituting 𝑢 from (4.2.14) into (4.2.8) yields 

                                                 [
𝑥̇1

𝑥̇2
] = [

𝑥1 + 5𝑥2

𝑥1
4 cos (𝑥2) + 𝑔(𝑥1, 𝑥2, 𝑢

∗)
]                                            (4.2.15) 

As demonstrated if 𝑔(𝑥1, 𝑥2, 𝑢
∗) = −𝑥1

4 cos (𝑥2) + 𝑢∗, then (4.2.15) is converted to a linear system 

                                                                  [
𝑥̇1

𝑥̇2
] = [

𝑥1 + 5𝑥2

𝑢∗ ]                                                            (4.2.16) 

which represents a linear dynamic system, and 𝑢∗ = −𝑘1𝑥1 − 𝑘2𝑥2 can be used to move the 

eigenvalues of this converted/virtual linear system. The control law contains two portions: (1) 

nonlinear term cancellation or feedback linearization inner loop, and (2) pole placement outer loop, 

as given below: 

                                                       𝑢 = −𝑥1
4 cos(𝑥2) − 𝑘1𝑥1 − 𝑘2𝑥2                                             (4.2.17) 

Figure 4.5 shows simulation results of the case study that implemented a control scheme based on 

the developed feedback linearization method, in which 𝑘1 and 𝑘2 for the first two cases are selected 

to be 1 and 3, respectively, whereas these coefficients are 1 and 2 for the third case, shown in the 

third row. 

 

In the proposed technique, three control loops/laws are implemented to (i) determine the 

desired electrical/generator torque, 𝑇𝑒
∗, in the DFIG, as shown in Figure 4.6, (ii) estimate the wind 

turbine power capture coefficient, 𝐶̂𝑃, and (iii) calculate the desired rotor speed, 𝜔𝑅
∗ , at which the 

wind turbine captures the maximum available wind power, as shown in Figure 4.7. These control 

laws are described in the following subsections.  
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 Feedback Linearization for Torque Control  

As explained in the previous section, feedback linearization implements a feedback loop 

in order to transform the nonlinear system into an equivalent linear system by changing the control 

input signal. As discussed in Chapter 2, aerodynamic or mechanical torque is the nonlinear term 

of the equation of motion in wind turbines. If the aerodynamic torque can be estimated then the 

nonlinearity of the equation of motion can be approximately cancelled using the control law 

                                                          𝑇𝑒
∗ = 𝐶̂𝑝𝑓(𝑣, 𝜔𝑅) − 𝑢(𝑡)                                                            (4.3.1) 

where 𝐶̂𝑝 is the estimated value of the power capture coefficient and 𝑓(𝑣, 𝜔𝑅) = (𝜌𝐴𝑣3/2𝜔𝑅) ∝

𝜔𝑅
2  as defined in Chapter 2. The strategy is to make 𝑇𝑒 follows the desired value, 𝑇𝑒

∗, resulting in 

a linear input-output dynamic behavior for the equation of motion (i.e., 𝐽𝜔̇𝑅 + 𝐶𝐷𝜔𝑅 = 𝑢(𝑡)). 

Therefore, the key is to estimate the power coefficient, as explained in the next subsection. 
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Figure 4.6 Schematic of a DFIG based wind turbine system. 
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 Lyapunov Approach for Power Capture Coefficient Estimation 

Estimation of the power capture coefficient, 𝐶𝑝, is used herein for maximizing power 

capturing. From the equation 

                                                            𝐶𝑝 =
𝑃𝑇

 𝑃𝑎𝑣𝑎𝑖𝑙
= 

𝑃𝑇

(1/2)𝜌𝐴𝑣3
                                                    (4.3.2) 

where parameters are defined in Chapter 2, the 𝐶𝑝 value can be calculated using rotor power or 

torque measurements; however, the torque measurement requires an additional sensor. Therefore, 

the common approach is to estimate the torque indirectly via the generator power measurement. 

In this work, the estimation of 𝐶𝑝 is achieved using a Lyapunov-based method. The candidate 

Lyapunov function, 𝑉, is chosen as 
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Figure 4.7 Block diagram of the proposed control scheme for extremum power seeking in DFIG-based 

wind turbines, including (i) the desired electrical torque calculator, (ii) wind turbine power capture 

coefficient, 𝐶̂𝑝, estimator, and (iii) a desired rotor speed, 𝜔𝑅
∗ , calculator 



68 

 

                                                                  𝑉 =
1

2
𝐽𝜔̃𝑅

2 +
1

2
𝛾𝐶̃𝑝

2                                                               (4.3.3) 

where 𝛾 is a constant to be determined,  𝜔̃𝑅 = 𝜔𝑅
∗ − 𝜔𝑅̇, and 𝐶̃𝑝 = 𝐶𝑝

∗ − 𝐶̂𝑝 ≥ 0, in which 𝐶𝑝
∗ is is 

the maximum value of 𝐶𝑝. Computing the time derivative of (4.3.3) yields 

                                                                   𝑉̇ = 𝐽𝜔̃𝑅𝜔̇̃𝑅 + 𝛾𝐶̃𝑝𝐶̃𝑝
̇ .                                                        (4.3.4) 

Applying 𝜔̇̃𝑅 = 𝜔̇𝑅
∗ − 𝜔̇𝑅 and 𝐶̇̃𝑃 = 𝐶𝑝

∗̇ − 𝐶̂𝑝
̇  yields  

                                                  𝑉̇ = 𝐽𝜔̃𝑅(𝜔̇𝑅
∗ − 𝜔̇𝑅) + 𝛾𝐶̃𝑝 (𝐶𝑝

∗̇ − 𝐶̂𝑝
̇  ) .                                         (4.3.5) 

Neglecting the viscous damping torque, 𝐶𝐷𝜔𝑅, of the overall system, and then substituting 𝜔̇𝑅 

from the equation of motion yields 

                                    𝑉̇ = 𝐽𝜔̃𝑅 (𝜔̇𝑅
∗ −

1

𝐽
(𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑒)) − 𝛾𝐶̃𝑝 − (𝐶𝑝

∗̇ − 𝐶̂𝑝
̇  )                              (4.3.6) 

which can be simplified as 

                                      𝑉̇ = 𝐽𝜔̃𝑅𝜔̇𝑅
∗ − 𝜔̃𝑅(𝐶𝑝𝑓 − 𝐶̂𝑝𝑓 + 𝑢) − 𝛾𝐶̃𝑝(𝐶𝑝

∗̇ − 𝐶̂𝑝
̇  )                            (4.3.7) 

𝐶𝑝
∗ is chosen to be Betz constant; therefore, (4.3.7) can be rewritten as 

                                            𝑉̇ = 𝐽𝜔̃𝑅𝜔̇𝑅
∗ − 𝜔̃𝑅(𝐶𝑝𝑓 − 𝐶̂𝑝𝑓 + 𝑢) + 𝛾𝐶̃𝑝𝐶̂𝑝

̇                                   (4.3.8) 

Substituting for 𝐶̃𝑝 into (4.3.8), yields 

                                𝑉̇ = 𝐽𝜔̃𝑅𝜔̇𝑅
∗ − 𝜔̃𝑅(𝐶𝑝𝑓 − 𝐶̂𝑝𝑓 + 𝑢) − 𝛾𝐶̂𝑝

̇ (𝐶𝑝
∗ − 𝐶̂𝑝)                                  (4.3.9) 

This last result can be rewritten as 

                           𝑉̇ = 𝐶̂𝑝 (𝜔̃𝑅𝑓 + 𝛾𝐶̇̂𝑝) − 𝜔̃𝑅𝑢 + 𝐽𝜔̃𝑅𝜔̇𝑅
∗ − 𝐶𝑝𝑓𝜔̃𝑅 − 𝛾𝐶𝑝

∗𝐶̂𝑝
̇                           (4.3.10) 

The strategy is to make 𝑉̇ a non-positive quantity. The first term in (4.3.10) is chosen to be zero, 

that is, 

                                                                𝐶̂𝑝 (𝜔̃𝑅𝑓 + 𝛾𝐶̇̂𝑝) = 0.                                                         (4.3.11) 
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Therefore, the derivative of the Lyapunov function, i.e. (4.3.10), is simplified as 

                                           𝑉̇ = −𝜔̃𝑅𝑢 + 𝐽𝜔̃𝑅𝜔̇𝑅
∗ − 𝐶𝑝𝑓𝜔̃𝑅 − 𝛾𝐶𝑝

∗𝐶̂𝑝
̇ .                                          (4.3.12) 

Herein, 𝐶̂𝑝 in (4.3.11) is not always equal to zero; therefore, the term in the parenthesis must be 

zero, resulting in the following differential equation 

                                                                 𝐶̇̂𝑝 = −
1

𝛾
𝜔̃𝑅𝑓(𝑣, 𝜔𝑅),                                                       (4.3.13) 

the solution of which provides the estimated power  capture coefficient (Figure 4.8). In order to 

keep the second term on the right in (4.3.10) a non-positive value, the control input can be chosen 

as 𝑢(𝑡) = 𝑘𝑝𝜔̃𝑅. Therefore, the main control law in (4.3.1) can be rewritten as 

                                        𝑇𝑒
∗ = −

1

𝛾
𝑓(𝑣, 𝜔𝑅)∫ 𝜔̃𝑅𝑓(𝑣, 𝜔𝑅)𝑑𝑡 − 𝑘𝑝𝜔̃𝑅 .                                      (4.3.14) 

The torque control scheme including the feedback linearization loop and the power capture 

coefficient estimation is shown in Figure 4.9.  The result in (4.3.14) can be written as an adaptive 

PI controller: 

                                                  𝑇𝑒
∗ = −𝑘𝐼1(𝑡)∫ 𝜔̃𝑅𝑘𝐼2(𝑡)𝑑𝑡 − 𝑘𝑝𝜔̃𝑅                                         (4.3.15) 

where 𝑘𝐼1(𝑡) and 𝑘𝐼2(𝑡) are time-varying parameters. 

Figure 4.8 Estimation of wind turbine power coefficient, 𝐶̂𝑝, value in the control scheme 

𝜔𝑅
∗  

𝑓(𝑣, 𝜔𝑅) =
1

2𝜔𝑅

𝜌𝐴𝑣3 
  

𝑣 
𝐶̂𝑝 

∑ 

𝜔𝑅 × 

𝜔̃𝑅 
−1/𝛾 

1

𝑠
 

𝜕𝐶̂𝑝

𝜕𝑡
 

+ 
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 Extremum Power Seeking Strategy 

The maximum-seeking law can also be extracted from the Lyapunov function. Substitution 

of 𝑢(𝑡) = 𝑘𝑝𝜔̃𝑅 and 𝐶̇̂𝑝  from (4.3.13) in (4.3.12) to obtain 

                                            𝑉̇ = −𝑘𝑝𝜔̃𝑅
2 + 𝐽𝜔̃𝑅𝜔̇𝑅

∗ + (𝐶𝑝
∗ − 𝐶𝑝) 𝜔̃𝑅𝑓.                                         (4.3.16) 

In the following, 𝜔̇𝑅
∗  is identified to ensure that (4.3.16) is always a non-positive value.  In order 

to hold 𝑉̇ ≤ 0 in (4.3.16), one can choose 𝜔̇𝑅
∗  ∝ (−𝜔̃𝑅) and select  𝑘𝑝 adequately large that the 

first term holds a sufficiently large negative value with respect to the third term in (4.3.16), as 

shown in the results demonstrated in Section 4.6. Because 𝐶̇̂𝑝 ∝ (−𝜔̃𝑅), and by choosing  𝜔̇𝑅
∗  ∝

(−𝜔̃𝑅), the desired rotor speed can be formulated as 

                                                                        𝜔̇𝑅
∗ = 𝑘𝐶̇̂𝑝                                                                      (4.3.17) 

This is consistent with the fact that the maximum value of 𝐶𝑝 = 𝑃𝑇/𝑃𝑎𝑣𝑎𝑖𝑙 and captured power, 

𝑃𝑇, for a constant wind speed occurs at the same point at which 𝜕𝑃𝑇/𝜕𝜔𝑅 = 0, as shown in Chapter 

2. In the hill-climbing and perturb-and-observe techniques, maximum power is sought according 

to the sign of  𝜕𝑃𝑇/𝜕𝜔𝑅 such that if the wind turbine operating point is on the left side of the 

maximum point of the power curve, the desired rotor speed must be increased; if it is on the right 

side of the maximum point, then the rotor speed must be decreased. The forgoing discussion is 

𝑘𝑝 
+ 
− 

𝜔𝑅
∗  

∑ 

𝜔𝑅 
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Figure 4.9 Feedback linearization technique for rotor speed control in wind turbine systems 
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valid for a constant or a slowly varying wind speed case. However, if the wind speed suddenly 

changes, two scenarios are possible:  

wind speed increases thus, 𝜔̇𝑅 > 0 and 𝑃̇𝑇 > 0, or  

wind speed decreases  thus, 𝜔̇𝑅 < 0 and 𝑃̇𝑇 < 0.  

Using the chain rule, the conclusion can be made that for both scenarios (𝜕𝑃𝑇/𝜕𝜔𝑅) > 0 

meaning that the hill-climbing and perturb-and-observe techniques can fail in the case of a sudden 

wind speed change [11]. The same argument is true if the sign of 𝜕𝐶𝑝/𝜕𝜔𝑅 is used. Although 𝐶𝑝 

is not available, 𝐶̂𝑃 and its derivative are available from the control scheme shown in Figure 4.8. 

However, in order to prevent a mistake in extremum power seeking due to a sudden wind speed 

change, and according to (4.3.15), the proposed formula for 𝜔̇𝑅
∗  is given as 

                                                                 𝜔̇𝑅
∗ = 𝑘𝑒

𝜕𝐶̂𝑃/𝜕𝑡

|𝜕𝜔𝑅/𝜕𝑡|
                                                            (4.3.18) 

× 
𝑘𝑒
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Figure 4.10 Desired rotor speed, 𝜔𝑅
∗  , in the control scheme 
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where the denominator adaptively controls the rate of change in the desired rotor speed such that 

the gain in (4.3.18) is inversely updated based on rotor acceleration. In practice, a zero-crossing 

elimination for the |𝜕𝜔𝑅/𝜕𝑡| calculation is needed to prevent any potential numerical problem, as 

shown in Figure 4.10. In this figure, the first transfer function is designed to obtain the time 

derivative of the angular speed 𝜔𝑅. Accordingly, 𝜏1 and 𝜏2 are chosen such that slow dynamics of 

the mechanical system can be observed, while measurement noise and spikes due to numerical 

calculation are effectively filtered. The values of 𝑘𝑒 and 𝜏2 play important roles in the extremum 

power seeking control scheme, when the wind speed suddenly increases or decreases.  

The proposed technique captures maximum power without the dither/perturbation signal 

and it does not fail in the case of a sudden change in wind speed. The three control loops of the 

proposed extremum seeking are demonstrated in Figure 4.11. The wind speed profile must be 

sufficiently rich, as defined in [53], in order to achieve optimum results. Also, the experience 

gained in tuning the control system demonstrated that the constant 𝑘𝑒 in (4.3.16) and the constant 

𝛾 in (4.3.12) have the greatest influence in achieving the power capture peak by either slowing or 

hastening attainment of the proper value of 𝜔𝑅
∗  for a given wind speed. The constant 𝛾 can be 

chosen as a value below the wind turbine inertia. 
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Figure 4.11 Detailed control loops of the proposed extremum power seeking block 
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In this section, sensitivity of the proposed control scheme for extremum power seeking is 

studied in terms of variations of two main control parameters for various wind speeds. For this 

study, the two main control parameters in (4.3.13) (i.e., 𝑘𝑝 and 𝛾) were changed within their 

acceptable limits and the power capture coefficient, 𝐶𝑝, was measured for the 5MW wind turbine. 

For variations of 𝛾 and 𝑘𝑝, the outcomes of this study are shown in Figure 4.12 (a) and (b), 

respectively. In Figure 4.12 (a), 𝐶𝑝 varies between 0.4829 and 0.4059 for a wide range of 𝛾 and 

three wind speeds (𝑣 = 7, 8, and 9 m/s) in Region 2. Also, in Figure 4.12 (b), 𝐶𝑝 varies between 

0.4840 and 0.4563 for the wind speed and various 𝑘𝑝 values. As shown, the control scheme is 

more sensitive to 𝛾  than 𝑘𝑝. Also, 𝐶𝑝 remains above the acceptable value of 0.477, and values of 

𝜕𝐶𝑝/𝜕𝛾 and 𝜕𝐶𝑝/𝜕𝑘𝑝 are insignificant for 106 ≤ 𝛾 ≤ 107 and  105 ≤ 𝑘𝑝 ≤ 106, respectively. In 
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Figure 4.12 The control scheme sensitivity to control parameters for three different wind speed values, 

plot of (a) 𝐶𝑝 versus  𝛾 for 𝑘𝑝 = 106, and (b) 𝐶𝑝versus  𝑘𝑝 for 𝛾 = 106. 
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addition to results shown in the previous section for various wind speed profiles, these plots 

confirm that extremum power seeking can successfully be achieved over relatively wide ranges of 

the control parameters, but optimum results occur at  𝛾 ≅ 2 × 106 and 𝑘𝑝 = 0.1 × 106.  

 

A technical challenge for any extremum power seeking scheme for wind turbines is to 

provide seamless transitions between Regions 2 and 3. For this study, extremum power seeking is 

only performed in Region 2 and the blade pitch control is activated to maintain rotor speed and 

power at their rated values in Region 3. The control strategy in Region 3 is to regulate generator 

torque at its maximum value (i.e., 𝑃𝑟𝑎𝑡𝑒𝑑/𝜔𝑅 𝑚𝑎𝑥) at the low-speed shaft. Consequently, as wind 

speed increases in Region 3, the accelerating torque (i.e., 𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑒 ) increases, and thus, the rotor 

speed increases. However, an increase in blade pitch angle can reduce 𝑇𝑎𝑒𝑟𝑜 . Therefore, rotor 

speed can be controlled at its rated value (i.e., 𝜔𝑅 𝑚𝑎𝑥) and the output power remains at its rated 

value. Moreover, for a seamless transition between regions in the proposed control scheme,  𝑓 in 

(4.3.11) can be herein defined as 

𝑓 =

{
  
 

  
 

1

2

𝜌𝐴𝑣3

𝜔𝑅 𝑚𝑖𝑛
, 0 ≤ 𝜔𝑅 < 𝜔𝑅 𝑚𝑖𝑛              𝑅𝑒𝑔𝑖𝑜𝑛 1

1

2

𝜌𝐴𝑣3

𝜔𝑅
, 𝜔𝑅 𝑚𝑖𝑛 ≤ 𝜔𝑅 < 𝜔𝑅 𝑚𝑎𝑥   𝑅𝑒𝑔𝑖𝑜𝑛 2

𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑅 𝑚𝑎𝑥𝐶𝑝 𝑚𝑎𝑥
, 𝜔𝑅 ≥ 𝜔𝑅 𝑚𝑎𝑥                     𝑅𝑒𝑔𝑖𝑜𝑛 3

                                                 (4.5.1) 

where 𝜔𝑅 𝑚𝑖𝑛 and 𝜔𝑅 𝑚𝑎𝑥 are the rated minimum and maximum rotor speed values, respectively. 

Also, a region called Region 2.5 can be implemented into the proposed scheme to further smooth 

the transition between Regions 2 and 3. The calculated 𝑓 should be passed through a first-order 

low-pass filter to avoid any sudden change in (4.5.1) caused by wind speed variations or transitions 
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between regions. In the proposed controller, a compensator torque command signal is fed to the 

generator to suppress rotor speed overshoot during the transition from Region 2 to 3.  

 

In order to investigate performance of the proposed control scheme, the system shown in 

Figure 4.11 has been modeled in the MATLAB/Simulink environment. The model consists of the 

NREL 5 MW reference turbine simulator connected to a DFIG through a gearbox with a 1:97 gear 

ratio, as well as power converters and a transmission line. Electrical parameters are given in Table 

4.1. The control system was also developed in the Matlab/Simulink environment, and control 

parameters are given in Table 4.2.  

Two wind speed profiles, sudden wind speed step changes and wind turbulence in the 

Region 2 of the 5MW wind turbine were used to investigate the validity of the proposed technique 

and results are presented in this section. In the tests, control parameters, 𝛾 and 𝑘𝑝, were set to be 

equal to 2 × 106 and 0.1 × 106, respectively, and 𝑘𝑒 was defined as a function of the wind speed 

in Region 2. However, a much larger value for 𝑘𝑒, such as 𝑘𝑒 = 1, was used in Region 1(i.e., when 

𝑣 < 5 m/sec or 𝜔𝑅 < 7.2 rad/sec) for the 5MW wind turbine. In the first case study, wind speed 

is set to contain two step changes. The first step change is from 8 m/sec to 7 m/sec at 𝑡 = 800 sec,  

the second step change is from 7 m/sec to 9 m/sec at 𝑡 = 1400 sec. Figures. 4.13(a)-(d) show the 

wind speed, desired and actual rotor speed, aerodynamic and desired electrical torque, and the 

actual and estimated power capture coefficient, respectively.  Figure 4.13(b) shows that the actual 

rotor speed closely follows the desired rotor speed that is calculated from the extremum seeking 

control scheme given in (4.3.15). The speed regulation is such that it is difficult to discern any 

difference between the desired rotor speed and the actual rotor speed. Figure 4.13(c) shows that 

the aerodynamic torque also follows the control torque obtained from (4.3.13). As shown in Figure 
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4.13 (d), the actual power capture coefficient (calculated from the FAST wind turbine simulator 

output data) and the estimated 𝐶̂𝑃 reside near the maximum value of 0.48 for the 5MW wind 

turbine. The desired rotor speed is adjusted in response to wind speed step changes in order to 

retain the maximum power capture coefficient. Figure 4.14 (a)-(d) show the aerodynamic and grid 

power, DC bus voltage, Lyapunov function, and time derivative of the the Lyapunov function, 

respectively. Figure 4.14 (a) shows that the aerodynamic power follows the power obtained from 

the grid. Figure 4.14 (b) shows that although no protection exists in the system, the DC bus voltage 

remained nearly constant due to control from the grid-side converter. Figures 4.14 (c) and (d) show 

the stability of the system since the Lyapunov function is a positive definite and its derivative is 

negative semi-definite.  

In the second case, the system response to real wind turbulence occurring between 𝑡 = 700 

sec and 𝑡 = 1650 sec was investigated.  For 0 < 𝑡 < 700 and 𝑡 > 1650, the average wind speed 

value was set to 9 m/sec.  Figure 4.15 (a) illustrates the wind speed profile, and Figure 4.15 (b) 

shows the desired rotor speed and its actual value.  As shown, rotor speed follows the desired 

speed. The desired rotor speed, 𝜔𝑅
∗ , in Figures 4.13 and 4.15 is controlled to track maximum 

available power, and the actual rotor speed closely follows it during wind speed turbulence. Figure 

4.15 (c) shows the aerodynamic torque and the control law torque given by (4.3.13) for this case 

study. As shown, the generator torque follows the aerodynamic torque. According to results shown 

in Figures 4.13 and 4.15, the calculated desired speed is adjusted automatically to keep 𝐶̂𝑃 at its 

maximum value, or 0.48 p.u. Thus, the desired rotor speed changes and tracks the desired value. 

In addition, the controller works in various wind speed conditions, thereby maintaining the 

estimated power capture coefficient at its maximum value even in the event of sudden step changes 

and turbulence in the wind speed. The estimated power capture coefficients in Figures 4.14 (d) and 
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4.15 (d) show that, regardless of wind speed profiles, the estimated power coefficient attempts to 

stay near the extremum value. 

Figures 4.16 (a)- (d), show aerodynamic and grid power, DC bus voltage, Lyapunov function, and 

the derivative of the Lyapunov function, respectively.  Figure 4.16 (a) shows that the aerodynamic 

power follows the power obtained from grid. Again, Figure 4.16 (b) shows that although no 

protection existed in the system, the DC bus voltage remained nearly constant due to control by 

the grid-side converter. Figures. 4.16 (c) and (d) show stability of the system since the Lyapunov 

function is a positive definite and its derivative is negative semi-definite. 

Parameter Value Unit  

Generator No. of Poles, 𝑝 6 --  

Generator Stator Rated Voltage 3.75 kV  

Stator Resistance, 𝑅𝑠 30.7 mΩ  

Rotor Resistance, 𝑅𝑟 40.3 mΩ  

Stator Leakage Inductance, 𝐿𝑙𝑠   0.49 mH  

Rotor Leakage Inductance, 𝐿𝑙𝑟 0.59 mH  

Magnetizing Inductance, 𝐿𝑀 44.5 mH  

DC-bus Rated Voltage 4.00 kV  

DC-bus Capacitor, 𝐶 8000 µF  

Converter Filter Resistance, 𝑅𝑓   10 mΩ  

Converter Filter Inductance, 𝐿𝑓   0.5 mH  

Transformer Ratio 1:10 --  

Transmission Line Resistance, 𝑅𝑔  10 mΩ  

Transmission Line Inductance, 𝐿𝑔  100 mH  

Table 4.1 DFIG-based wind turbine electrical part parameters 
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Figure 4.13 System response to wind speed changes: (a) wind speed in m/sec (b) actual, 𝜔𝑅, and 

desired, 𝜔𝑅
∗ , rotor speed in rad/sec, (c) aerodynamic torque and control torque in kNm, and (d) 

actual and estimated power coefficient— 𝐶̂𝑝  reaching its extremum value 
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Figure 4.14 System response to wind speed changes (a) aerodynamic and grid power 𝑃𝑎𝑒𝑟𝑜, 𝑃𝑔 (b) 

DC- bus voltage 𝑣𝐷𝐶, (c) Lyapunov function, 𝑉, and (d) derivative of Lyapunov function, 𝑉̇ 
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Figure 4.15 System response to wind speed turbulence occurring between 𝑡 =700 and 1650 

sec, (a) wind speed profile in m/sec, (b) actual and desired rotor speed in rad/sec, (c) 

Aerodynamic torque and control torque in kNm, and (d) actual and estimated power coefficient, 

𝐶̂𝑝, holds its extremum value 
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Figure 4.16 System response to wind speed turbulence occurring between 𝑡 =700 and 1650 sec, 

(a) aerodynamic and grid power, (b) DC bus voltage, (c) Lyapunov function, (d) derivative of 

Lyapunov function  
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A comparison between the desired (control) torque equation in the conventional method 

(i.e., 𝑇𝑒
∗ = 𝑘𝑜𝑝𝑡𝜔

2) and in the proposed method, (4.1.1), substituting 𝑣 = 𝜔𝑅𝑅/𝜆𝑜𝑝𝑡 highlighted 

the similarity between the two methods. Despite the disadvantages of the conventional method 

mentioned in the literature, e.g., in [8] , [9], and [10], the ease of implementation is the key 

advantage. However, dynamic behaviors of the two methods are different as three control 

parameters, 𝑘𝑒 ,  𝛾 and 𝑘𝑝, exist in the proposed method. This can provide the flexibility to obtain 

maximum 𝐶𝑝, while the rotor speed variation is less than that of 𝑘𝜔𝑅
2  at the event of a sudden 

change in wind speed.  The small variation in rotor speed results in less mechanical stresses on 

drivetrain parts such as the gearbox, shaft, and blades, consequently extending the life of the wind 

turbine. In order to demonstrate this difference, results obtained from both methods are compared 

in Figure 4.17, in which  𝑘𝑜𝑝𝑡 is set to 1.8 × 106 for the case study of the 5MW DFIG-based wind 

turbine in order to obtain 𝐶𝑝 = 0.48. Power capture, rotor speed, and mechanical torque are shown 

in Figure. 4.17. The only difference between the simulated systems was the controller or command 

Parameter Value Unit  

Coefficient (𝑘𝑝) 105  – 106 --  

Coefficient (𝛾) 106  – 107 --  

Time Constant (𝜏1) 0.1 sec  

Time Constant (𝜏2) 4 sec  

Time Constant (𝜏3) 2 sec  

Coefficient  (𝑘𝑒) 0.002 − 0.02 --  

 

Table 4.2 Control parameters for the extremum power seeking technique 
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torque signal, 𝑇𝑒
∗. In the figure, wind speed demonstrates a step change at 𝑡 =  499 𝑠𝑒𝑐 from 7 to 

8 𝑚/𝑠 and then back to 7 at 𝑡 = 699 𝑠𝑒𝑐. The rise-time response of power in the proposed 

technique is approximately 3 sec whereas in the conventional method, the rise-time is 

approximately 12 sec, as shown in Figure. 4.17. A comparison between these figures demonstrates 

that the dynamic response of the proposed controller is faster than the conventional, 𝑘𝜔2, 

controller, but the rotor speed variation due to a step change in wind speed is small for the proposed 

controller.  
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Figure 4.17 System responses (solid-lines indicate he results of the proposed method and dashed-lines 

indicate results of the conventional method) to two step changes in wind speed profile (7 - 8 m/sec at 

t=499sec, and 8 -7 m/sec at t=699 sec) (a) Rotor speed in rad/sec (b) mechanical (aerodynamic) torque 

in kNm, and (c) power injected to the power grid in MW 
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 Chapter 5 – Mitigation of Torsional Vibrations in Wind Turbines 

A nonlinear control scheme for the mitigation of torsional vibrations in the drivetrain of 

wind turbines is presented in this chapter. The mitigation is achieved by superimposing a 

compensation torque at specific natural frequencies of the drivetrain to the maximum power 

seeking torque through the generator and generator-side converter. The developed technique 

uniquely applies the nonlinear sliding mode control theory to mitigate torsional vibrations in wind 

turbines. The chapter begins with the background of vibration mitigation techniques, then 

eigenvalues of a 750kW wind turbine are identified using the discussion presented in Chapter 2.  

The sliding mode theory for controlling the stability of nonlinear systems is studied using the same 

example presented in Chapter 4. The sliding mode theory is then applied for mitigation of torsional 

vibrations in wind turbines. At the end of the chapter, the developed scheme is verified in DFIG-

based and PMG-based wind turbine systems with mechanical and electrical disturbances.  

 

One major technical challenge associated with wind turbines is the mitigation of torsional 

vibrations caused by interaction between the wind turbine drivetrain and the power grid due to 

electrical or mechanical events, as shown in Figure 5.1. 

Torsional Vibration  

Electrical Events (e.g., voltage 

sag, short-circuit faults, etc.) 

Mechanical Events (e.g., tower 

shadow, wind turbulence, etc.)    

Figure 5.1 Main causes of torsional vibrations in wind turbines 
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Torsional vibrations in the wind turbine drivetrain reduce the gearbox lifespan and increase wind 

turbine maintenance cost [54]. The use of a series capacitor in transmission lines can lead to 

potential sub-synchronous resonance between the wind turbine drivetrain and the transmission 

line. Rapid changes in voltage magnitude, such as voltage sag, and transient phenomena, such as 

switching in the power grid, can result in power oscillation and consequential torsional vibrations 

in the drivetrain of wind turbines. The source of torsional vibrations can also originate from wind 

turbine aerodynamics, such as tower shadow and wind speed turbulence. Recent investigations 

have shown that torsional vibrations in wind turbines can be effectively mitigated by controlling 

the generator torque using a generator-side converter [30], [24].  

The generator torque compensation method can efficiently mitigate torsional vibrations 

caused by mechanical and electrical events. FACTS devices can mitigate power oscillations in the 

power grid and resultant torsional vibrations, but they may not effectively mitigate torsional 

vibrations caused by wind turbine aerodynamics. A compensation torque can be added to the 

electrical torque using the generator-side converter. Various methods are available to implement 

compensation torque. For example, virtual inertia controller (VIC) has been used to damp the 

torsional vibration. In the VIC method, the first derivative of the generator speed is used as the 

input signal to create a deceleration torque, −∆𝐽𝜔̇𝑅 , which is added to the reference torque only at 

the dominant drivetrain natural frequency. The generator-side converter can create compensation 

torque components at dominant drivetrain natural frequencies that are superimposed on the normal 

torque to suppress the mechanical vibration. This methodology has been implemented in various 

approaches [7]. In virtual damping, generator speed has been used to create a virtual damping 

torque at drivetrain natural frequencies in order to mitigate torsional vibration caused by a step 

change in the generator torque [24].  
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Another vibration mitigation technique is virtual stiffness or active damping of torsional 

vibrations caused by tower shadow effect. Resonance occurs when the blades pass in front of the 

tower. In vibration absorption, a band-pass filter is required around the rotor frequencies. Using 

the generator speed, the controller regulates the generator torque to damp the dominant modes of 

vibration based on feedback control. This method is addressed in [35], [36]. FACTS devices can 

diminish resonance in the electrical side. For example, a gate controlled series capacitor (GCSC), 

that contains a pair of switches in parallel with the capacitor to enable control of the transmission 

line effective reactance and power flow, has been used for (SSR) damping [26]. 

In this chapter, a new nonlinear control scheme based on the sliding mode control theory 

is proposed to damp drivetrain torsional vibrations. In contrast to existing techniques, the control 

scheme applies two state variables, rotor speed and position, in order to adjust the rotor current 

through the rotor-side converter. The proposed technique is verified using a comprehensive model 

of 750kW DFIG-based and PMG-based wind turbines that includes a full order model of the 

generator, converters, multi-mass drivetrain, and transmission line with series compensator, all of 

which are integrated into the FAST aerodynamics wind turbine simulation model, as discussed in 

Chapters 2 and 3.   

 

The drivetrain dynamics include the rotor, the gearbox, and the generator. In the study of 

torsional vibrations, a detailed model of gearbox must be studied. As mentioned, a five-mass 

drivetrain of a 750 kW wind turbine is used in this work. In general, the five-degree-of-freedom 

model has five natural frequencies that can be described by the following differential equations 
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                               𝐽𝑅
𝑑𝜔𝑅

𝑑𝑡
= 𝑇𝑎𝑒𝑟𝑜 − 𝐾1(𝜃𝑅 − 𝜃1) − 𝐷1 (𝜔𝑅 − 𝜔1)                                            (5.2.1) 

      𝐽𝑖
𝑑𝜔𝑖

𝑑𝑡
= 𝐾𝑖(𝜃𝑖−1 − 𝜃𝑖) + 𝐷𝑖  (𝜔𝑖−1 − 𝜔𝑖) − 𝐾𝑖+1(𝜃𝑖 − 𝜃𝑖+1) − 𝐷𝑖+1 (𝜔𝑖 − 𝜔𝑖+1)       (5.2.2) 

                              𝐽𝐺
𝑑𝜔𝐺

𝑑𝑡
= 𝐾4(𝜃3 − 𝜃𝐺) + 𝐷4 (𝜔3 − 𝜔𝐺) − 𝑇𝑒                                                  (5.2.3) 

where, 𝐽𝑖  {𝑖 = 1, 2, 3} represents the lumped moments of inertia for each mass, 𝐾𝑖 represents the 

stiffness value of each shaft stage, and 𝐷𝑖 {𝑖 = 1, 2, 3} represents the viscous damping coefficient. 

In Equations (5.2.1) through (5.2.3),  𝜃0 = 𝜃𝑅 , 𝜔0 = 𝜔𝑅, 𝜃4 = 𝜃𝐺 , and 𝜔4 = 𝜔𝐺 , as shown in 

Figure 5.2. For the case study of the 750kW wind turbine, drivetrain inertias and stiffness 

coefficients referred to the low-speed shaft are given in Tables 5.1, 5.2, and 5.3.  

Using (2.4.16), i.e.,  𝑓 =
1

2𝜋
√𝑒𝑖𝑔(𝐽−1𝐾) and the data provided in Tables 5.1 through 5.3, 

the drivetrain natural frequencies are calculated and shown in Table 5.4. 

 

 

Rotor-Side 

Converter 

Grid-Side 

Converter 

𝑖𝑟 & 𝑃𝑟 𝑖𝑖 & 𝑃𝑖 

𝑖𝑠 & 𝑃𝑠 𝑖𝑔 & 𝑃𝑔 
𝑃𝑚  

𝑣𝑐  
𝐿𝑓    𝑅𝑓 

𝐿𝑔 

DFIG 

GRID 

Gearbox 

Transformer 
𝑅𝑔 𝐶𝑔 

𝐽1 & 𝜃1 

𝐽𝑅 & 𝜃𝑅 

𝐽2 & 𝜃2 

𝐽3 & 𝜃3 

𝐽𝐺 & 𝜃𝐺  𝑣𝑠  𝑣𝑔  

Figure 5.2 Schematic of a DFIG based wind turbine system including five mass drivetrain 

𝑁1  𝑁2  𝑁3 

4.714  3.565  4.0 

 

Table 5.1 Five-mass drivetrain gear ratios 



88 

 

 

 

 

 𝐾1 𝐾2 𝐾3 𝐾4 

Actual value 3.69×107 2.45×107 2.70×108 2.08×106 

Referred to LSS 3.69×107 5.44×108 7.62×1010 9.39×109 

 

Table 5.2  Five-mass drivetrain stiffness coefficient 

 𝐽𝑅 𝐽1 𝐽2 𝐽3 

Referred to LSS 998138.4 139.4 817.8 1327.4 

 

Table 5.3 Five-mass drivetrain moment of inertias 

𝑓𝑛1 𝑓𝑛2 𝑓𝑛3 𝑓𝑛4 𝑓𝑛5 

0 2.95 291.9 371.5 1974.2 

 

Table 5.4 Five-mass drivetrain natural frequencies 
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Figure 5.3 Drivetrain internal speeds, ∆𝜔𝑅1 and ∆𝜔3𝐺, of the five-mass drivetrain 
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The dominant natural frequency is 2.95 Hz, when the higher frequencies are inherently suppressed 

in the low-speed shaft side of the drivetrain, as shown in Figure 5.3. Drivetrain speed differences, 

∆𝜔𝑅1 = 𝜔𝑅 − 𝜔1, and ∆𝜔3𝐺 = 𝜔3 − 𝜔𝐺 of the 750kW wind turbine after a voltage dip on the 

grid (i.e., 𝑣𝑔) are shown in Figure 5.3. It can be seen that, ∆𝜔𝑅1 oscillates mainly at a single 

frequency of 2.95 Hz with the period of 0.339 sec, and ∆𝜔3𝐺 waveform has 2.95 Hz oscillation 

and higher frequencies including the 291 Hz with the period of 0.0034 sec, as shown in Figure 5.4. 

These two frequencies are the natural frequencies of the drivetrain that are excited after a voltage 

dip disturbance.  
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Figure 5.4 Time expansion (zoom) of ∆𝜔3𝐺 around 220.3 seconds from Figure 5.3 

Trajectory 

(𝑥10, 𝑥20) 

(0,0) 

𝑠(𝑡) = 0 

𝑥1 

𝑥2 

Chattering 

Sliding Mode Surface 

Figure 5.5 Graphical demonstration of the sliding model control theory 



90 

 

 

The sliding mode theory provides a robust control approach for controlling nonlinear 

systems in which the nonlinear term is unknown or uncertainties exist in the system parameters. 

In this theory, a surface is built in terms of the state-space variables of a dynamic system, 𝑠(𝑡), 

which is also called a switching surface (manifold). If the system state trajectory is “above” the 

surface (i.e., 𝑠(𝑡) > 0), a feedback path (or control signal) has one gain value and a different gain 

if the trajectory locates “below” the surface (i.e., 𝑠(𝑡) < 0). Therefore, the switching control law 

is designed to drive the trajectory of state variables on the surface towards an equilibrium point. 

Although the sliding mode controller tolerates parameter uncertainties, an unknown nonlinear term 

must be bounded by a finite value within the system’s operating region. Also, a sliding mode 

requires fast gain switching; therefore, an oscillatory trajectory may occur as the state variables 

approach the equilibrium point, called chattering, as shown in Figure 5.5.  
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Figure 5.6 State variables and state trajectories after applying two sliding mode surfaces 
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The second-order dynamic model used in Chapter 4 can be considered to demonstrate the 

effectiveness of the sliding mode control. If the sliding mode surface is assumed to be 𝑠 = 𝛾𝑥1 +

𝑥2, 𝛾 > 0, then the objective is to force the trajectory of state variables to slide on the line of 

𝑠(𝑡) = 0 , or  𝛾𝑥1 + 𝑥2 = 0 , towards the equilibrium point (0,0). This can be achieved using a 

switching control law such as 𝑢 = 𝛾𝑥1 + 𝜌𝑠𝑔𝑛(𝑠). Simulation results for two sliding mode 

surfaces (e.g., 𝑠1 = 0.7𝑥1 + 𝑥2 and 𝑠2 = 0.3𝑥1 + 𝑥2) are shown in Figure 5.6 (a) and (b), 

respectively. 

 

The proposed mitigation technique can be formulated based on the equation of motion for 

the dominant sub-synchronous eigenvalue as 

                                           
𝑑

𝑑𝑡
[
𝜃̃𝐺

𝜔̃𝐺
] = [

0 1
0 0

] [
𝜃̃𝐺

𝜔̃𝐺
] +

1

𝐽
[

0
(𝑇̃𝑎𝑒𝑟𝑜 − 𝑇̃𝑒)

]                                         (5.4.1) 

where the (𝑇̃𝑎𝑒𝑟𝑜 − 𝑇̃𝑒)/𝐽 term can be rewritten as a summation of a compensation torque, 𝑢 , and 

an unknown disturbance function, 𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡), representing an electrical and/or mechanical 

disturbance signal at the corresponding dominant sub-synchronous eigenvalue (i.e., the 2.95 Hz of 

the five-mass drivetrain of the 750kW wind turbine). Therefore, Equation (5.4.1) can be written as 

                                        
𝑑

𝑑𝑡
[
𝜃̃𝐺

𝜔̃𝐺
] = [

0 1
0 0

] [
𝜃̃𝐺

𝜔̃𝐺
] + [

0
𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡) + 𝑢]                                      (5.4.2) 

The problem is to design a feedback control law that damps rotor speed oscillation, 𝜔̃𝐺, caused by 

an unknown disturbance. For the system described in (5.4.2) with no unknown disturbances, a 

feedback control law would be sufficient to damp the shaft speed oscillations. Using the concept 

of sliding mode control theory, shaft speed oscillations at the dominant natural frequency of the 
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drivetrain can be damped even in the presence of a nonlinear time-varying disturbance. The sliding 

mode variable or surface, 𝜎, is added to the state variables of the system as  

                                                                       𝜎 = 𝜔̃𝐺 + 𝛾𝜃̃𝐺                                                                  (5.4.3) 

and its time derivative can be written as  

                                                          𝜎̇ = 𝑢 + 𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡) + 𝛾𝜔̃𝐺 .                                                  (5.4.4) 

If a Lyapunov function is chosen as 

                                                           𝑉 =
1

2
 𝜎2 +

1

2
 𝑘𝛾2𝜃̃𝐺

2 ≥ 0,                                                       (5.4.5) 

then, the input signal, 𝑢, must be found such that oscillations of the 𝜔̃𝐺 and 𝜃̃𝐺  asymptotically 

approach zero (i.e., 𝜎 = 0), meaning that the time derivative of the Lyapunov function must be a 

non-positive value. Therefore, the control signal 𝑢, is computed to satisfy the above condition and 

drive the variable 𝜎 to zero in finite time. The time derivative of the Lyapunov function is  

                                                                      𝑉̇ = 𝜎𝜎̇ + 𝑘𝛾2𝜃̃𝐺 𝜃̇̃𝐺 .                                                        (5.4.6) 

Using (5.4.4), 𝑉̇ can be rewritten as  

                                      𝑉̇ = 𝜎(𝑢 + 𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡) + 𝛾𝜔̃𝐺  ) + 𝑘𝛾2𝜃̃𝐺𝜔̃𝐺 .                                      (5.4.7) 
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Figure 5.7 Proposed sliding-mode control schematic to mitigate torsional vibrations 
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Assuming 𝑢 = −𝛾𝑘𝜔̃𝐺 − 𝛾𝜔̃𝐺 + 𝑣 and substituting it into (5.4.7) results in 

                       𝑉̇ = −𝛾𝑘𝜔̃𝐺
2 + 𝜎𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡) + 𝜎𝑣 ≤ −𝛾𝑘𝜔̃𝐺

2 + |𝜎|𝐿 + 𝜎𝑣 .                           (5.4.8) 

where 𝐿 > 0 is the maximum probable value of 𝑓𝐷(𝜃̃𝐺 , 𝜔̃𝐺 , 𝑡). Equation (5.4.8) can be rewritten 

as 

                                                      𝑉̇ ≤ −𝛾𝑘𝜔̃𝐺
2 + |𝜎| (𝐿 +

𝜎

|𝜎|
𝑣).                                                   (5.4.9) 

In order to enforce 𝑉̇ ≤ 0,  𝑣 must be selected as  −𝜌𝑘𝑠𝑔𝑛(𝜎), where 𝜌𝑘 > 𝐿 and 𝑠𝑔𝑛(𝜎) is the 

signum function. Therefore, a compensation torque, which is added to the desired torque, is 

defined as 

                                         𝑇𝑒𝐶𝑜𝑚𝑝 = −𝑢 = (𝑘 + 1)𝛾𝜔̃𝐺 + 𝑘𝜌𝑠𝑔𝑛(𝜎).                                         (5.4.10) 

In order to achieve a smooth response with less chattering in the control signal, 𝑇𝑒𝐶𝑜𝑚𝑝,  the 𝑠𝑔𝑛 

function can be replaced by 𝜎 (|𝜎| + 𝜀)⁄  for a small value of 𝜀 > 0. In order to extract the dominant 

frequency component of the generator-side rotor angular speed and position (i.e., 𝜔̃𝐺 and 𝜃̃𝐺), 

band-pass and high-pass filters are used, as shown in Figure 5.7.  Also, a dead zone function is 

utilized to make the 𝜌𝑠𝑔𝑛(𝜎) component of the compensation torque active only for  |𝜎| > 𝜀. For 

the high-pass filter shown in Figure 5.7, the following fourth-order Bessel filter  

                         𝐻𝐻𝑃(𝑠) =
(
𝑠
𝜔𝑐

)
4

(
𝑠
𝜔𝑐

)
4

+ 10 (
𝑠
𝜔𝑐

)
3

+ 45 (
𝑠
𝜔𝑐

)
2

+ 105 (
𝑠
𝜔𝑐

) + 105
                    (5.4.11)  

is used where 𝜔𝑐 is the cut-off frequency of the high-pass filter. For the low-pass filters, a second-

order filter with a center frequency of 2.95 Hz and narrow bandwidth of 1.475 Hz is used as given 

by 
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                                                           𝐻𝐿𝑃(𝑠) =

𝑠
𝜔0𝑄

(
𝑠
𝜔0

)
2

+ (
𝑠

𝜔0𝑄
) + 1

                                           (5.4.12) 

where the center frequency is 𝜔0 = 2𝜋(2.95) = 18.35 rad/sec, and 𝑄 = 2 as the bandwidth is 

calculated by ∆𝑓 = 𝑓0/𝑄. The frequency responses of these filters are demonstrated in Figure 5.8. 

The cut-off frequency of the high-pass filter was set to 0.1 𝐻𝑧 to cancel out only the DC component 

of the generator speed. 

 

In order to investigate the performance of the presented control scheme, the system shown 

in Figure 5.7 has been entirely modeled in the MATLAB/Simulink environment. The model 

consists of the NREL 750 kW turbine simulator connected to a DFIG or PMG generator through 

a five-mass drivetrain/gearbox with gear ratios given earlier in Section 5.2. Parameters of the 

simulated DFIG and PMG generators are given in Table 5.5 and 5.6, respectively. Notice that, the 
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Figure 5.8 The frequency responses of the 4th order Bessel high-pass (left) and 2nd order band-pass (right) 

filters 
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generator parameters are transferred into the stator side.  Also, the simulated systems contain many 

subsystems as their formulations were presented in Chapters 2 and 3.  

 

The drivetrain response to mechanical and electrical distortions is different in DFIG-based 

and PMG-based wind turbines. However, multi-mass drivetrain with multi stage gearbox is 

typically in DFIG-based wind turbines, and most of PMG-based systems are direct-drive. 

Parameter Value Unit  

Generator No. of Poles, 𝑝 8 ----  

Generator Stator Rated Voltage 690 V  

Stator Resistance, 𝑅𝑠 0.426 mΩ  

Stator Inductance, 𝐿𝑠   0.654 mH  

Flux, Λ𝑀 825 mWb  

 

Table 5.6 Parameters of the simulated 750kW PMG 

Parameter Value Unit  

Generator No. of Poles, 𝑝 4 ----  

Generator Stator Rated Voltage 690 V  

Stator Resistance, 𝑅𝑠 10.2 mΩ  

Rotor Resistance, 𝑅𝑟 10.2 mΩ  

Stator Leakage Inductance, 𝐿𝑙𝑠   0.1 mH  

Rotor Leakage Inductance, 𝐿𝑙𝑟 0.1 mH  

Magnetizing Inductance, 𝐿𝑀 4.31 mH  

 

Table 5.5 Parameters of the simulated 750kW DFIG 
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Therefore, the focus of this section is on the test simulated results obtained from the case study 

750 kW wind turbine.  Four different events are studied in this section. The first two events are (i) 

a 50% voltage dip at 𝑡 =180 sec for three cycles, and (ii) a wind speed swing between 5 and 11 

m/s started at 𝑡 =200 sec for 0.4 sec. These events have been modeled for the DFIG-based system 

and the corresponding aerodynamic torque profiles are shown in Figure 5.9. The same have done 

in the PMG-based system and the results are shown in Figure 5.10. The control parameters were 

held the same in these tests, i.e. 𝑇𝑐𝑜𝑚𝑝 = 15000 𝜔̃𝐺 + 45𝑠𝑔𝑛(𝜎), where 𝜎 = 2𝜃̃𝐺 + 𝜔̃𝐺 and the 

input signals, 𝜃̃𝐺 and  𝜔̃𝐺, are referred to the low-speed-shaft.  

A comparison between the aerodynamic torque profiles reveals that the electrical 

disturbance has almost no impact on the aerodynamic torque of the PMG-based wind turbine, but 

an identical disturbance in the DFIG-based wind turbine can excite the 2.95Hz natural frequency 

of the 750kW drivetrain. The second observation is that the controller can damp aerodynamic 

Figure 5.9 Aerodynamic torques, 𝑇𝑎𝑒𝑟𝑜, of the DFIG- based wind turbine after two events: (i) voltage 

dip at 𝑡 =180 sec and (ii) wind speed change at 𝑡 =200 sec, with (black) and without (gray) 

compensation 
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oscillations more effectively in the DFIG-based system. This might be due to the fact that DFIG 

contributes more to the overall system’s damping.  

In Figure 5.11, the voltage oscillations in black and gray colors represent the DC-bus 

voltages of the system for the events shown in Figure 5.9 with and without superimposing 

compensation torques, respectively. Therefore, the third observation is that active vibration 

mitigation transfers the stress from mechanical side into the electrical side. Therefore, as the 

amplitude of the compensation torque increases, the amplitude of the DC-bus overvoltage 

increases. It should be noticed that all back to back converters have an overvoltage protection 

system while a designer may implement slightly larger DC-bus capacitor to improve the regulation 

of the DC-bus voltage.   
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Figure 5.10 Aerodynamic torques, 𝑇𝑎𝑒𝑟𝑜, of the PMG- based wind turbine after two events (i) 

voltage dip at 𝑡 =180 sec, and (ii) wind speed change at 𝑡 =200 sec, shown in Figure 5.9, with 

(black) and without (gray) compensation 
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Figure 5.11 The DC-bus voltage oscillations after the events shown in Figure 5.9, with (black) and 

without (gray) compensation 
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In this section, the effectiveness of the proposed technique is examined. In Figures 5.12 

through 5.15 the simulation results for the first two events (i.e. (i) 50% voltage dip, and (ii) wind 

speed variation) are demonstrated. The compensation torque, 𝑇𝑐𝑜𝑚𝑝, and its components, 𝑇𝑐1 =

𝑘 𝜌 𝑠𝑔𝑛(𝜎) and 𝑇𝑐2 = 𝑘 𝛾 𝜔̃𝐺 (where 𝑘 = 7500, 𝛾 = 2, and 𝜌 = 6 × 10−3), for the two  

aforementioned events are demonstrated in Figure 5.12. In these tests, the 𝑠𝑔𝑛 function was 

replaced by 
𝜎

|𝜎|+𝜀
 (where 𝜀 = 0.15 × 10−3) cascaded by a dead-zone function to eliminate the 

chattering phenomenon described in Section 5.3. As in Figure 5.12, 𝑇𝑐1 has rectangular bang-bang 

pulses with smooth edges, in which, the level of smoothness is a function of the 𝜀 value. Also, 𝑇𝑐1 

becomes zero for the input 𝜎 magnitudes less than a predetermined value set in the dead-zone 

block in Figure 5.7. The left and right columns in Figures 5.13 through 5.15 demonstrate control 

responses to the disturbances shown in Figure 5.9. 
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Figure 5.12 Compensation torque, 𝑇𝐶𝑜𝑚𝑝, and its components (DFIG-based wind turbine) after the 

two events shown in Figure 5.9 
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Figure 5.13 Torsional angular speeds, ∆𝜔𝑅1 = 𝜔𝑅 − 𝜔1, ∆𝜔12 = 𝜔1 − 𝜔2, ∆𝜔23 = 𝜔2 − 𝜔3, and 

∆𝜔3𝐺 = 𝜔3 − 𝜔𝐺, in rad/sec for the DFIG-based wind turbine after the two events shown in Figure 

5.9, with (black) and without (gray) compensation 
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Figure 5.14 Torsional angles, ∆𝜃𝑅1 = 𝜃𝑅 − 𝜃1, ∆𝜃12 = 𝜃1 − 𝜃2, ∆𝜃23 = 𝜃2 − 𝜃3, and ∆𝜃3𝐺 =
𝜃3 − 𝜃𝐺, in degrees for the DFIG-based wind turbine for the two events shown in Figure 5.9, with 

(black) and without (gray) compensation 
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Figure 5.13 shows the torsional speeds of the drivetrain gear stages, (i.e. ∆𝜔𝑅1 = 𝜔𝑅 − 𝜔1, 

∆𝜔12 = 𝜔1 − 𝜔2, ∆𝜔23 = 𝜔2 − 𝜔3, and ∆𝜔3𝐺 = 𝜔3 − 𝜔𝐺) for the DFIG system with (black) and 

without (gray) compensation torque. As demonstrated, these torsional speeds are effectively 

damped within approximately 1 second.Figure 5.14 shows torsional angles of the drivetrain gear 

stages (i.e., ∆𝜃𝑅1 = 𝜃𝑅 − 𝜃1, ∆𝜃12 = 𝜃1 − 𝜃2, ∆𝜃23 = 𝜃2 − 𝜃3, and ∆𝜃3𝐺 = 𝜃3 − 𝜃𝐺), for the 

DFIG-based wind turbine for the two events. The gray and black waveforms illustrate results 

obtained from the DFIG-based system with and without compensation, respectively. As shown, 

the control scheme effectively damps torsional vibrations. Figure 5.15 shows the injected power 

to the grid, 𝑃𝑔, in kW side by side with the DC-bus voltage,     𝑉𝑑𝑐, and the generator angular speed, 

𝑛𝐺𝑒𝑛 = (60/2𝜋)𝜔𝐺, in rpm after the two disturbances shown in Figure 5.9. As shown, the injected 

power to the grid asymptotically converge to its initial value approximately 1 second after the 

disturbances. These simulation results demonstrate the validity and effectiveness of the proposed 

control scheme.  
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Figure 5.15 Grid power, DC-bus voltage and generator speed of the DFIG-based wind turbine after the 

two events shown in Figure 5.9, with (black) and without (gray) compensation 
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Figure 5.16 Aerodynamic torques, 𝑇𝑎𝑒𝑟𝑜, of the DFIG- based wind turbine after two events (i) series 

capacitor switch causes a voltage swell at 𝑡 =220 sec, and (ii) wind speed change at 𝑡 =240 sec with 

(black) and without (gray) compensation 

220 221 222 223 224
-100

0

100

Time (sec)

T
c
1

 (
N

m
)

240 241 242 243 244
-100

0

100

Time (sec)

T
c
1

 (
N

m
)

220 221 222 223 224

-100

0

100

Time (sec)

T
c
2

 (
N

m
)

240 241 242 243 244

-100

0

100

Time (sec)

T
c
2

 (
N

m
)

220 221 222 223 224
-200

0

200

Time (sec)

T
c
o

m
p

 (
N

m
)

240 241 242 243 244
-200

0

200

Time (sec)

T
c
o

m
p

 (
N

m
)

Figure 5.17 Compensation torque, 𝑇𝐶𝑜𝑚𝑝, and its components in the DFIG-based wind turbine 

after two events shown in Figure 5.16 
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Figure 5.19 Torsional angles, ∆𝜃𝑅1 = 𝜃𝑅 − 𝜃1, ∆𝜃12 = 𝜃1 − 𝜃2, ∆𝜃23 = 𝜃2 − 𝜃3, and ∆𝜃3𝐺 =
𝜃3 − 𝜃𝐺, in degrees for the DFIG-based wind turbine after the two events shown in Figure 5.16 

with (black) and without (gray) compensation 
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Figure 5.18 Torsional angular speeds, ∆𝜔𝑅1 = 𝜔𝑅 − 𝜔1, ∆𝜔12 = 𝜔1 − 𝜔2, ∆𝜔23 = 𝜔2 − 𝜔3, 

and ∆𝜔3𝐺 = 𝜔3 − 𝜔𝐺, in rad/sec for the DFIG-based wind turbine after the two events shown in 

Figure 5.16 
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In order to further examine the effectiveness of this technique, simulation results for the 

two new events are demonstrated in Figures 5.17 through 5.20. Compensation torque formulation 

and coefficients were kept the same for all cases presented in this chapter. The new events 

included: (𝑖) switching the 50% series compensation for three cycles between 220 and 220.05 sec 

and (𝑖𝑖) a sudden wind speed change for 30 cycles (i.e., 30/60 = 0.5 sec), between 240 and 240.5 

sec.  As shown in Figures 5.17 through 5.20, use of the proposed technique effectively damped 

torsional vibrations at the dominant frequency, 𝑓 = 2.95𝐻𝑧, caused by the case study events.  

220 221 222 223 224
0

200

400

Time (sec)

P
g

 (
k

W
)

240 241 242 243 244
0

200

400

Time (sec)

P
g

 (
k

W
)

220 221 222 223 224
600

800

1000

1200

Time (sec)

V
d

c
 (

V
)

240 241 242 243 244
600

800

1000

1200

Time (sec)

V
d

c
 (

V
)

220 221 222 223 224

1480

1500

1520

Time (sec)

n
G

e
n

 (
rp

m
)

240 241 242 243 244

1480

1500

1520

Time (sec)

n
G

e
n

 (
rp

m
)

Figure 5.20 Grid power, DC-bus voltage and generator speed of the DFIG-based wind turbine after 

the two events shown in Figure 5.16 
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Figure 5.21 Virtual inertia method for damping torsional vibration in wind turbines. 
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Again, the controller held the same in these tests, i.e. 𝑇𝑐𝑜𝑚𝑝 = 15000 𝜔̃𝐺 +

45𝑠𝑔𝑛(𝜎), where 𝜎 = 2𝜃̃𝐺 + 𝜔̃𝐺 and 𝜃̃𝐺  and  𝜔̃𝐺, are referred to the low-speed-shaft.   

 

Figure 5.22 The stator voltage, 𝑉𝑞𝑠, compensation torque, 𝑇𝑐𝑜𝑚𝑝 , aerodynamic torques, 𝑇𝑎𝑒𝑟𝑜, 

injected power to the grid, 𝑃𝑔, DC-bus voltage, 𝑉𝑑𝑐, and the generator speed, 𝑛𝐺𝑒𝑛 of the 750 kW 

DFIG- based wind turbine using the proposed (black) vs virtual inertia (gray) methods 
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This section presents a comparison study between the proposed technique and a recently reported 

approach [24], called virtual inertia technique. Performance of the proposed vibration mitigation 

technique is compared with the virtual inertia method is investigated through simulation results 

Figure 5.23 Torsional angles in degrees and angular velocities in rad/sec of the 750 kW 

DFIG- based wind turbine using the proposed (black) versus virtual inertia (gray) damping 

method  

180 181 182 183 184 185 186

0
0.2
0.4

D
te

ta
R

1

180 181 182 183 184 185 186
0

0.02

0.04

D
te

ta
1

2

180 181 182 183 184 185 186
0
1
2

x 10
-4

D
te

ta
2

3

180 181 182 183 184 185 186
0

1

2

x 10
-3

D
te

ta
3

G

Time (sec)

180 181 182 183 184 185 186
-0.1

0

0.1

D
w

R
1

180 181 182 183 184 185 186

-5
0
5

x 10
-3

D
w

1
2

180 181 182 183 184 185 186
-5

0

5
x 10

-5

D
w

2
3

180 181 182 183 184 185 186
-5

0

5
x 10

-4

D
w

3
G

Time (sec)



106 

 

obtained from the 750kW DFIG-based wind turbine system. The virtual inertia damping method, 

𝑇𝑒𝐶𝑜𝑚𝑝 = ∆𝐽
𝑑𝜔̃𝐺

𝑑𝑡
, is demonstrated in Figure 5.21. 

Both vibration mitigation methods were implemented in the 750 kW DFIG-based system 

case study. For comparison and to distinguish the differences, a relatively large disturbance, (i.e, 

90% voltage dip at the grid-side) was simulated. In Figures 5.22 and 5.23, the results obtained 

from the proposed and virtual inertia methods are shown in black and gray colors, respectively. 

Although the compensation torque, 𝑇𝑒𝑐𝑜𝑚𝑝 in these tests are almost the same over the first 

few cycles, the virtual inertia method clearly needs more time to damp the oscillations.   

These simulation results have demonstrated that the torsional vibrations in the drivetrain 

can be mitigated effectively using the proposed technique, and in comparison with the virtual 

inertia damping method, has superior performance.   
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 Chapter 6 − Conclusion and Future Work 

This chapter summarizes the three main contributions to the modeling and control of 

variable speed DFIG-based and PMG-based wind turbine systems, as presented in this dissertation. 

Several suggestions for future research paths on the subjects of this dissertation are also provided. 

 

First, a comprehensive model of electrical subsystems, including back-to-back converters, 

DFIG and PMG generators, and power lines, as well as multi-mass drivetrain were developed to 

be easily connected to the FAST simulator. Although main algebraic and differential equations of 

these subsystems exist in the literature, in this work, the developed models are made to be easily 

coupled to the FAST simulator in the Matlab/Simulink environment. These models allow 

investigation of the effects of various control schemes with internal and external disturbance events 

in wind turbines. The developed models in the Matlab/Simulink environment also provided 

relatively fast (short simulation time) tools for researchers.   

Second, an adaptive nonlinear control scheme for DFIG-based wind turbines was 

developed using a Lyapunov-based analysis and feedback linearization. The control scheme was 

built from three control laws including (i) determining the desired generator torque, (ii) estimating 

the wind turbine power capture coefficient, and, (iii) calculating the desired rotor speed at which 

the wind turbine captures maximum available wind power. The control scheme adaptively 

estimated the wind power capture coefficient using real-time wind and rotor speed values. This 

control system was developed in the Matlab/Simulink environment, and the overall system was 

simulated using the NREL 5MW FAST reference turbine connected to a developed DFIG, back-

to-back converters, and a transmission line between the DFIG and the power grid. The two main 

control schemes (i.e., power capture coefficient estimation with rotor speed regulation and desired 
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rotor speed calculation based on maximizing the estimated power capture coefficient), showed 

robust dynamic behaviors. The role of the controller is to adaptively reach the maximum power 

capture coefficient as wind speed changes. The significance of the presented technique compared 

to existing methods is that a perturbation signal was not required. Also, neither the maximum 

power capture coefficient, nor the optimum tip-speed ratio was assumed as a known parameter. 

Moreover, the presented technique demonstrated a robust dynamic performance in the presence of 

wind turbulence and sudden speed changes. Numerical results demonstrated the validity and 

robustness of the developed control scheme. 

Third, the dissertation presented a novel technique based on the sliding mode theory was 

developed and presented in order to mitigate torsional vibrations in wind turbines using a rotor-

side converter. Simulation results demonstrated that torsional vibrations in the drivetrain can be 

effectively mitigated using the proposed technique. Effectiveness of the proposed control scheme 

was demonstrated through simulation results of three case studies that evaluated impacts of  

voltage sag, a wind speed variation, and a series capacitor switching in the power line on the five-

mass drivetrain of a 750 kW wind turbine. Furthermore, this technique was compared with the 

virtual inertia compensation method with voltage dip disturbance. The comparison has 

demonstrated that the performance of the proposed technique is superior to the recently reported 

virtual inertia compensation approach for damping torsional vibration. 

 

In addition to contributions accomplished in this effort, some potential studies are 

suggested as recommended future work. Potential future work based on results of this dissertation 

is described in the following paragraphs. 
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Maximum power capturing in variable speed wind turbines is commonly performed in 

Region 2, as described in Chapter 2. In Region 3, as wind speed increases, the accelerating torque 

and rotor speed increases. Therefore, the control strategy in Region 3 regulates power capture at 

the generator nominal power.  During transition between Region 2 and 3, a compensation torque 

command fed to generator to suppress rotor speed overshoot. Several methods have been reported 

in the literature, but an optimal nonlinear control scheme that can provide a seamless transition 

between Region 2 and 3 with minimum stress on the drivetrain is a challenging task as a 

recommended future work. 

The proposed control strategy shows great torsional vibration reduction on the drivetrain 

of wind turbines as discussed in Chapter 5. The proposed method, as well as other techniques 

reported in the literature, damps dominant natural frequency of the drivetrain. In these techniques, 

dominant natural frequency is assumed a known time-invariant design parameter. Also, it is 

desirable that the control scheme damp all vibration modes over time. Therefore, active dominant 

modes identification will be significantly helpful because drivetrain stiffness and other parameters 

change over time.  
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