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Abstract: We provide a numerical package for the computation of a d-variate near G-optimal
polynomial regression design of degree m on a finite design space X ⊂ Rd, by few iterations of a basic
multiplicative algorithm followed by Tchakaloff-like compression of the discrete measure keeping the
reached G-efficiency, via an accelerated version of the Lawson-Hanson algorithm for Non-Negative
Least Squares (NNLS) problems. This package can solve on a personal computer large-scale problems
where card(X)× dim(Pd

2m) is up to 108–109, being dim(Pd
2m) = (2m+d

d ) = (2m+d
2m ). Several numerical

tests are presented on complex shapes in d = 3 and on hypercubes in d > 3.

Keywords: multivariate polynomial regression designs; G-optimality; D-optimality; multiplicative
algorithms; G-efficiency; Caratheodory-Tchakaloff discrete measure compression; Non-Negative
Least Squares; accelerated Lawson-Hanson solver

1. Introduction

In this paper we present the numerical software package dCATCH [1] for the computation of a
d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ Rd.
In particular, it is the first software package for general-purpose Tchakaloff-like compression of
d-variate designs via Non-Negative Least Squares (NNLS), freely available on the Internet. The code is
an evolution of the codes in Reference [2] (limited to d = 2, 3), with a number of features tailored to
higher dimension and large-scale computations. The key ingredients are:

• use of d-variate Vandermonde-like matrices at X in a discrete orthogonal polynomial basis
(obtained by discrete orthonormalization of the total-degree product Chebyshev basis of the
minimal box containing X), with automatic adaptation to the actual dimension of Pd

m(X);
• few tens of iterations of the basic Titterington multiplicative algorithm until near G-optimality of

the design is reached, with a checked G-efficiency of say 95% (but with a design support still far
from sparsity);

• Tchakaloff-like compression of the resulting near G-optimal design via NNLS solution of the
underdetermined moment system, with concentration of the discrete probability measure
by sparse re-weighting to a support ⊂ X, of cardinality at most Pd

2m(X), keeping the same
G-efficiency;

• iterative solution of the large-scale NNLS problem by a new accelerated version of the classical
Lawson-Hanson active set algorithm, that we recently introduced in Reference [3] for 2d and 3d
instances and here we validate on higher dimensions.

Before giving a more detailed description of the algorithm, it is worth recalling in brief some
basic notions of optimal design theory. Such a theory has its roots and main applications within
statistics, but also strong connections with approximation theory. In statistics, a design is a probability
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measure µ supported on a (discrete or continuous) compact set Ω ⊂ Rd. The search for designs that
optimize some properties of statistical estimators (optimal designs) dates back to at least one century
ago, and the relevant literature is so wide and still actively growing and monographs and survey
papers are abundant in the literature. For readers interested in the evolution and state of the art of this
research field, we may quote, for example, two classical treatises such as in References [4,5], the recent
monograph [6] and the algorithmic survey [7], as well as References [8–10] and references therein.
On the approximation theory side we may quote, for example, References [11,12].

The present paper is organized as follows—in Section 2 we briefly recall some basic concepts from
the theory of Optimal Designs, for the reader’s convenience, with special attention to the deterministic
and approximation theoretic aspects. In Section 3 we present in detail our computational approach to
near G-optimal d-variate designs via Caratheodory-Tchakaloff compression. All the routines of the
dCATCH software package here presented, are described. In Section 4 we show several numerical
results with dimensions in the range 3–10 and a Conclusions section follows.

For the reader’s convenience we also display Tables 1 and 2, describing the acronyms used in this
paper and the content (subroutine names) of the dCATCH software package.

Table 1. List of acronyms.

LS Least Squares
NNLS Non-Negative Least Squares
LH Lawson-Hawson algorithm for NNLS
LHI Lawson-Hawson algorithm with unconstrained LS Initialization
LHDM Lawson-Hawson algorithm with Deviation Maximization acceleration

Table 2. dCATCH package content.

dCATCH d-variate CAratheodory-TCHakaloff discrete measure compression
dCHEBVAND d-variate Chebyshev-Vandermonde matrix
dORTHVAND d-variate Vandermonde-like matrix in a weighted orthogonal polynomial basis
dNORD d-variate Near G-Optimal Regression Designs
LHDM Lawson-Hawson algorithm with Deviation Maximization acceleration

2. G-Optimal Designs

Let Pd
m(Ω) denote the space of d-variate real polynomials of total degree not greater than n,

restricted to a (discrete or continuous) compact set Ω ⊂ Rd, and let µ be a design, that is, a probability
measure, with supp(µ) ⊆ Ω. In what follows we assume that supp(µ) is determining for Pd

m(Ω) [13],
that is, polynomials in Pd

m vanishing on supp(µ) vanish everywhere on Ω.
In the theory of optimal designs, a key role is played by the diagonal of the reproducing kernel

for µ in Pd
m(Ω) (also called the Christoffel polynomial of degree m for µ)

Kµ
m(x, x) =

Nm

∑
j=1

p2
j (x) , Nm = dim(Pd

m(Ω)) , (1)

where {pj} is any µ-orthonormal basis of Pd
m(Ω). Recall that Kµ

m(x, x) can be proved to be independent
of the choice of the orthonormal basis. Indeed, a relevant property is the following estimate of the
L∞-norm in terms of the L2

µ-norm of polynomials

‖p‖L∞(Ω) ≤
√

max
x∈Ω

Kµ
m(x, x) ‖p‖L2

µ(Ω) , ∀p ∈ Pd
m(Ω) . (2)

Now, by (1) and µ-orthonormality of the basis we get

∫
Ω

Kµ
m(x, x) dµ =

Nm

∑
j=1

∫
Ω

p2
j (x) dµ = Nm , (3)
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which entails that maxx∈Ω Kµ
m(x, x) ≥ Nm.

Then, a probability measure µ∗ = µ∗(Ω) is then called a G-optimal design for polynomial
regression of degree m on Ω if

min
µ

max
x∈Ω

Kµ
m(x, x) = max

x∈Ω
Kµ∗

m (x, x) = Nm . (4)

Observe that, since
∫

Ω Kµ
m(x, x) dµ = Nm for every µ, an optimal design has also the following property

Kµ∗
m (x, x) = Nm, µ∗-a.e. in Ω.

Now, the well-known Kiefer-Wolfowitz General Equivalence Theorem [14] (a cornerstone of
optimal design theory), asserts that the difficult min-max problem (4) is equivalent to the much simpler
maximization problem

max
µ

det(Gµ
m) , Gµ

m =

(∫
Ω

φi(x)φj(x) dµ

)
1≤i,j≤Nm

,

where Gµ
m is the Gram matrix (or information matrix in statistics) of µ in a fixed polynomial basis {φi}

of Pd
m(Ω). Such an optimality is called D-optimality, and ensures that an optimal measure always

exists, since the set of Gram matrices of probability measures is compact and convex; see for example,
References [5,12] for a general proof of these results, valid for continuous as well as for discrete
compact sets.

Notice that an optimal measure is neither unique nor necessarily discrete (unless Ω is discrete
itself). Nevertheless, the celebrated Tchakaloff Theorem ensures the existence of a positive quadrature
formula for integration in dµ∗ on Ω, with cardinality not exceeding N2m = dim(Pd

2m(Ω)) and which is
exact for all polynomials in Pd

2m(Ω). Such a formula is then a design itself, and it generates the same
orthogonal polynomials and hence the same Christoffel polynomial of µ∗, preserving G-optimality
(see Reference [15] for a proof of Tchakaloff Theorem with general measures).

We recall that G-optimality has two important interpretations in terms of statistical and
deterministic polynomial regression.

From a statistical viewpoint, it is the probability measure on Ω that minimizes the maximum
prediction variance by polynomial regression of degree m, cf. for example, Reference [5].

On the other hand, from an approximation theory viewpoint, if we call Lµ∗
m the corresponding

weighted least squares projection operator L∞(Ω)→ Pd
m(Ω), namely

‖ f −Lµ∗
m f ‖L2

µ∗ (Ω) = min
p∈Pd

m(Ω)
‖ f − p‖L2

µ∗ (Ω) , (5)

by (2) we can write for every f ∈ L∞(Ω)

‖Lµ∗
m f ‖L∞(Ω) ≤

√
max
x∈Ω

Kµ∗
m (x, x) ‖Lµ∗

m f ‖L2
µ∗ (Ω) =

√
Nm ‖Lµ∗

m f ‖L2
µ∗ (Ω)

≤
√

Nm ‖ f ‖L2
µ∗ (Ω) ≤

√
Nm ‖ f ‖L∞(Ω) ,

(where the second inequality comes from µ∗-orthogonality of the projection), which gives

‖Lµ∗
m ‖ = sup

f 6=0

‖Lµ∗
m f ‖L∞(Ω)

‖ f ‖L∞(Ω)
≤
√

Nm , (6)

that is a G-optimal measure minimizes (the estimate of) the weighted least squares uniform
operator norm.

We stress that in this paper we are interested in the fully discrete case of a finite design space
Ω = X, so that any design µ is identified by a set of positive weights (masses) summing up to 1 and
integrals are weighted sums.
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3. Computing near G-Optimal Compressed Designs

Since in the present context we have a finite design space Ω = X = {x1, . . . , xM} ⊂ Rd,
we may think a design µ as a vector of non-negative weights u = (u1, · · · , uM) attached to the points,
such that ‖u‖1 = 1 (the support of µ being identified by the positive weights). Then, a G-optimal
(or D-optimal) design µ∗ is represented by the corresponding non-negative vector u∗. We write
Ku

m(x, x) = Kµ
m(x, x) for the Christoffel polynomial and similarly for other objects (spaces, operators,

matrices) corresponding to a discrete design. At the same time, L∞(Ω) = `∞(X), and L2
µ(Ω) = `2

u(X)

(a weighted `2 functional space on X) with ‖ f ‖`2
u(X) =

(
∑M

i=1 ui f 2(xi)
)1/2

.
In order to compute an approximation of the desired u∗, we resort to the basic multiplicative

algorithm proposed by Titterington in the ’70s (cf. Reference [16]), namely

ui(k + 1) = ui(k)
Ku(k)

m (xi, xi)

Nm
, 1 ≤ i ≤ M , k = 0, 1, 2, . . . , (7)

with initialization u(0) = (1/M, . . . , 1/M)T . Such an algorithm is known to be convergent sublinearly
to a D-optimal (or G-optimal by the Kiefer-Wolfowitz Equivalence Theorem) design, with an increasing
sequence of Gram determinants

det(Gu(k)
m ) = det(VTdiag(u(k))V),

where V is a Vandermonde-like matrix in any fixed polynomial basis of Pd
m(X); cf., for example,

References [7,10]. Observe that u(k + 1) is indeed a vector of positive probability weights if such is
u(k). In fact, the Christoffel polynomial Ku(k)

m is positive on X, and calling µk the probability measure
on X associated with the weights u(k) we get immediately ∑i ui(k + 1) = 1

Nm
∑i ui(k)Ku(k)

m (xi, xi) =

1
Nm

∫
X Ku(k)

m (x, x) dµk = 1 by (3) in the discrete case Ω = X.
Our implementation of (7) is based on the functions

• C = dCHEBVAND(n, X)
• [U, jvec] = dORTHVAND(n, X, u, jvec)
• [pts, w] = dNORD(m, X, gtol)

The function dCHEBVAND computes the d-variate Chebyshev-Vandermonde matrix C =

(φj(xi)) ∈ RM×Nn , where {φj(x)} = {Tν1(α1x1 + β1) . . . Tνd(αdxd + βd)}, 0 ≤ νi ≤ n, ν1 + · · ·+ νd ≤ n,
is a suitably ordered total-degree product Chebyshev basis of the minimal box [a1, b1]× · · · × [ad, bd]

containing X, with αi = 2/(bi − ai), βi = −(bi + ai)/(bi − ai). Here we have resorted to the
codes in Reference [17] for the construction and enumeration of the required “monomial” degrees.
Though the initial basis is then orthogonalized, the choice of the Chebyshev basis is dictated by the
necessity of controlling the conditioning of the matrix. This would be on the contrary extremely large
with the standard monomial basis, already at moderate regression degrees, preventing a successful
orthogonalization.

Indeed, the second function dORTHVAND computes a Vandermonde-like matrix in a
u-orthogonal polynomial basis on X, where u is the probability weight array. This is accomplished
essentially by numerical rank evaluation for C = dCHEBVAND(n, X) and QR factorization

diag(
√

u)C0 = QR , U = C0 R−1 , (8)

(with Q orthogonal rectangular and R square invertible), where
√

u = (
√

u1, . . . ,
√

uM). The matrix
C0 has full rank and corresponds to a selection of the columns of C (i.e., of the original basis
polynomials) via QR with column pivoting, in such a way that these form a basis of Pd

n(X),
since rank(C) = dim(Pd

n(X)). A possible alternative, not yet implemented, is the direct use of a
rank-revealing QR factorization. The in-out parameter “jvec” allows to pass directly the column index
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vector corresponding to a polynomial basis after a previous call to dORTHVAND with the same degree
n, avoiding numerical rank computation and allowing a simple “economy size” QR factorization of
diag(

√
u)C0 = diag(

√
u)C(:, jvec).

Summarizing, U is a Vandermonde-like matrix for degree n on X in the required u-orthogonal
basis of Pd

n(X), that is
[p1(x), . . . , pNn(x)] = [φj1(x), . . . , φjNn

(x)] R−1 , (9)

where jvec = (j1, . . . , jNn) is the multi-index resulting from pivoting. Indeed by (8) we can write the
scalar product (ph, pk)`2

u(X) as

(ph, pk)`2
u(X) =

M

∑
i=1

ui ph(xi) pk(xi) = (UTdiag(u)U)hk = (QTQ)hk = δhk ,

for 1 ≤ h, k ≤ Nn, which shows orthonormality of the polynomial basis in (9).
We stress that rank(C) = dim(Pd

n(X)) could be strictly smaller than dim(Pd
n) = (n+d

d ), when
there are polynomials in Pd

n vanishing on X that do not vanish everywhere. In other words, X lies
on a lower-dimensional algebraic variety (technically one says that X is not Pd

n-determining [13]).
This certainly happens when card(X) is too small, namely card(X) < dim(Pd

n), but think for example
also to the case when d = 3 and X lies on the 2-sphere S2 (independently of its cardinality), then we
have dim(Pd

n(X)) ≤ dim(Pd
n(S2)) = (n + 1)2 < dim(P3

n) = (n + 1)(n + 2)(n + 3)/6.
Iteration (7) is implemented within the third function dNORD whose name stands for

d-dimensional Near G-Optimal Regression Designs, which calls dORTHVAND with n = m.
Near optimality is here twofold, namely it concerns both the concept of G-efficiency of the design and
the sparsity of the design support.

We recall that G-efficiency is the percentage of G-optimality reached by a (discrete) design,
measured by the ratio

Gm(u) =
Nm

maxx∈XKu
m(x, x)

,

knowing that Gm(u) ≤ 1 by (3) in the discrete case Ω = X. Notice that Gm(u) can be easily computed
after the construction of the u-orthogonal Vandermonde-like matrix U by dORTHVAND, as Gm(u) =
Nm/(maxi ‖rowi(U)‖2

2) .
In the multiplicative algorithm (7), we then stop iterating when a given threshold of G-efficiency

(the input parameter “gtol” in the call to dNORD) is reached by u(k), since Gm(u(k))→ 1 as k→ ∞,
say for example Gm(u(k)) ≥ 95% or Gm(u(k)) ≥ 99%. Since convergence is sublinear and in practice
we see that 1− Gm(u(k)) = O(1/k), for a 90% G-efficiency the number of iterations is typically in the
tens, whereas it is in the hundreds for 99% one and in the thousands for 99, 9%. When a G-efficiency
very close to 1 is needed, one could resort to more sophisticated multiplicative algorithms, see for
example, References [9,10].

In many applications however a G-efficiency of 90–95% could be sufficient (then we may speak of
near G-optimality of the design), but though in principle the multiplicative algorithm converges to an
optimal design µ∗ on X with weights u∗ and cardinality Nm ≤ card(supp(µ∗)) ≤ N2m, such a sparsity
is far from being reached after the iterations that guarantee near G-optimality, in the sense that there is
a still large percentage of non-negligible weights in the near optimal design weight vector, say

u(k) such that Gm(u(k)) ≥ gtol . (10)

Following References [18,19], we can however effectively compute a design which has the same
G-efficiency of u(k) but a support with a cardinality not exceeding N2m = dim(Pd

2m(X)), where in
many applications N2m � card(X), obtaining a remarkable compression of the near optimal design.

The theoretical foundation is a generalized version [15] of Tchakaloff Theorem [20] on positive
quadratures, which asserts that for every measure on a compact set Ω ⊂ Rd there exists an algebraic
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quadrature formula exact on Pd
n(Ω)), with positive weights, nodes in Ω and cardinality not exceeding

Nn = dim(Pd
n(Ω).

In the present discrete case, that is, where the designs are defined on Ω = X, this theorem implies
that for every design µ on X there exists a design ν, whose support is a subset of X, which is exact for
integration in dµ on Pd

n(X). In other words, the design ν has the same basis moments (indeed, for any
basis of Pd

n(Ω))

∫
X

pj(x) dµ =
M

∑
i=1

ui pj(xi) =
∫

X
pj(x) dν =

L

∑
`=1

w` pj(ξ`) , 1 ≤ j ≤ Nn ,

where L ≤ Nn ≤ M, {ui} are the weights of µ, supp(ν) = {ξ`} ⊆ X and {w`} are the positive weights
of ν. For L < M, which certainly holds if Nn < M, this represents a compression of the design µ into
the design ν, which is particularly useful when Nn � M.

In matrix terms this can be seen as the fact that the underdetermined {pj}-moment system

UT
n v = UT

n u (11)

has a non-negative solution v = (v1, . . . , vM)T whose positive components, say w` = vi` , 1 ≤ ` ≤ L ≤
Nn, determine the support points {ξ`} ⊆ X (for clarity we indicate here by Un the matrix U computed
by dORTHVAND at degree n). This fact is indeed a consequence of the celebrated Caratheodory
Theorem on conic combinations [21], asserting that a linear combination with non-negative coefficients
of M vectors in RN with M > N can be re-written as linear positive combination of at most N of
them. So, we get the discrete version of Tchakaloff Theorem by applying Caratheodory Theorem to the
columns of UT

n in the system (11), ensuring then existence of a non-negative solution v with at most
Nn nonzero components.

In order to compute such a solution to (11) we choose the strategy based on Quadratic
Programming introduced in Reference [22], namely on sparse solution of the Non-Negative Least
Squares (NNLS) problem

v = argminz∈RM , z≥0‖U
T
n z−UT

n u‖2
2

by a new accelerated version of the classical Lawson-Hanson active-set method, proposed in
Reference [3] in the framework of design optimization in d = 2, 3 and implemented by the function
LHDM (Lawson-Hanson with Deviation Maximization), that we tune in the present package for
very large-scale d-variate problems (see the next subsection for a brief description and discussion).
We observe that working with an orthogonal polynomial basis of Pd

n(X) allows to deal with the
well-conditioned matrix Un in the Lawson-Hanson algorithm.

The overall computational procedure is implemented by the function

• [pts, w, momerr] = dCATCH(n, X, u),

where dCATCH stands for d-variate CAratheodory-TCHakaloff discrete measure compression.
It works for any discrete measure on a discrete set X. Indeed, it could be used, other than for
design compression, also in the compression of d-variate quadrature formulas, to give an example.
The output parameter pts = {ξ`} ⊂ X is the array of support points of the compressed measure,
while w = {w`} = {vi` > 0} is the corresponding positive weight array (that we may call a d-variate
near G-optimal Tchakaloff design) and momerr = ‖UT

n v−UT
n u‖2 is the moment residual. This function

is called LHDM.
In the present framework we call dCATCH with n = 2m and u = u(k), cf. (10), that is, we solve

v = argminz∈RM , z≥0‖U
T
2mz−UT

2mu(k)‖2
2 . (12)
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In such a way the compressed design generates the same scalar product of u(k) in Pd
m(X), and hence

the same orthogonal polynomials and the same Christoffel function on X keeping thus invariant the
G-efficiency

Pd
2m(X) 3 Kv

m(x, x) = Ku(k)
m (x, x) ∀x ∈ X =⇒ Gm(v) = Gm(u(k)) ≥ gtol (13)

with a (much) smaller support.
From a deterministic regression viewpoint (approximation theory), let us denote by popt

m the
polynomial in Pd

m(X) of best uniform approximation for f on X, where we assume f ∈ C(D) with
X ⊂ D ⊂ Rd, D being a compact domain (or even lower-dimensional manifold), and by Em( f ; X) =

infp∈Pd
m(X) ‖ f − p‖`∞(X) = ‖ f − popt

m |`∞(X) and Em( f ; D) = infp∈Pd
m(D) ‖ f − p‖L∞(D) the best uniform

polynomial approximation errors on X and D.

Then, denoting by Lu(k)
m and Lw

m f = Lv
m f the weighted least squares polynomial approximation

of f (cf. (5)) by the near G-optimal weights u(k) and w, respectively, with the same reasoning used to
obtain (6) and by (13) we can write the operator norm estimates

‖Lu(k)
m ‖ , ‖Lw

m‖ ≤
√

Ñm ≤
√

Nm

gtol
, Ñm =

Nm

Gm(u(k))
=

Nm

Gm(v)
.

Moreover, since Lw
m p = p for any p ∈ Pd

m(X), we can write the near optimal estimate

‖ f −Lw
m f ‖`∞(X) ≤ ‖ f − popt

m ‖`∞(X) + ‖popt
m −Lw

m popt
m ‖`∞(X) + ‖Lw

m popt
m −Lw

m f ‖`∞(X)

= ‖ f − popt
m ‖`∞(X) + ‖Lw

m popt
m −Lw

m f ‖`∞(X) ≤ (1 + ‖Lw
m‖) Em( f ; X)

≤
(

1 +

√
Nm

gtol

)
Em( f ; X) ≤

(
1 +

√
Nm

gtol

)
Em( f ; D) ≈

(
1 +
√

Nm

)
Em( f ; D) .

Notice that Lw
m f is constructed by sampling f only at the compressed support {ξ`} ⊂ X. The error

depends on the regularity of f on D ⊃ X, with a rate that can be estimated whenever D admits a
multivariate Jackson-like inequality, cf. Reference [23].

Accelerating the Lawson-Hanson Algorithm by Deviation Maximization (LHDM)

Let A ∈ RN×M and b ∈ RN . The NNLS problem consists of seeking x ∈ RM that solves

x = argminz≥0‖Az− b‖2
2 . (14)

This is a convex optimization problem with linear inequality constraints that define the feasible region,
that is the positive orthant

{
x ∈ RM : xi ≥ 0

}
. The very first algorithm dedicated to problem (14) is

due to Lawson and Hanson [24] and it is still one of the most often used. It was originally derived for
solving overdetermined linear systems, with N � M. However, in the case of underdetermined linear
systems, with N � M, this method succeeds in sparse recovery.

Recall that for a given point x in the feasible region, the index set {1, . . . , M} can be partitioned
into two sets: the active set Z, containing the indices of active constraints xi = 0, and the passive set
P, containing the remaining indices of inactive constraints xi > 0. Observe that an optimal solution
x? of (14) satisfies Ax? = b and, if we denote by P? and Z? the corresponding passive and active sets
respectively, x? also solves in a least square sense the following unconstrained least squares subproblem

x?P? = argminy‖AP?y− b‖2
2 , (15)
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where AP? is the submatrix containing the columns of A with index in P?, and similarly x?P? is the
subvector made of the entries of x? whose index is in P?. The remaining entries of x?, namely those
whose index is in Z?, are null.

The Lawson-Hanson algorithm, starting from a null initial guess x = 0 (which is feasible),
incrementally builds an optimal solution by moving indices from the active set Z to the passive set P
and vice versa, while keeping the iterates within the feasible region. More precisely, at each iteration
first order information is used to detect a column of the matrix A such that the corresponding entry in
the new solution vector will be strictly positive; the index of such a column is moved from the active
set Z to the passive set P. Since there’s no guarantee that the other entries corresponding to indices in
the former passive set will stay positive, an inner loop ensures the new solution vector falls into the
feasible region, by moving from the passive set P to the active set Z all those indices corresponding to
violated constraints. At each iteration a new iterate is computed by solving a least squares problem of
type (15): this can be done, for example, by computing a QR decomposition, which is substantially
expensive. The algorithm terminates in a finite number of steps, since the possible combinations of
passive/active set are finite and the sequence of objective function values is strictly decreasing, cf.
Reference [24].

The deviation maximization (DM) technique is based on the idea of adding a whole set of indices T
to the passive set at each outer iteration of the Lawson-Hanson algorithm. This corresponds to select a
block of new columns to insert in the matrix AP, while keeping the current solution vector within the
feasible region in such a way that sparse recovery is possible when dealing with non-strictly convex
problems. In this way, the number of total iterations and the resulting computational cost decrease.
The set T is initialized to the index chosen by the standard Lawson-Hanson (LH) algorithm, and it
is then extended, within the same iteration, using a set of candidate indices C chosen is such a way
that the corresponding entries are likely positive in the new iterate. The elements of T are then chosen
carefully within C: note that if the columns corresponding to the chosen indices are linearly dependent,
the submatrix of the least squares problem (15) will be rank deficient, leading to numerical difficulties.
We add k new indices, where k is an integer parameter to tune on the problem size, in such a way
that, at the end, for every pair of indices in the set T, the corresponding column vectors form an angle
whose cosine in absolute value is below a given threshold thres. The whole procedure is implemented
in the function

• [x, resnorm, exit f lag] = LHDM(A, b, options).

The input variable options is a structure containing the user parameters for the LHDM algorithm;
for example, the aforementioned k and thres. The output parameter x is the least squares solution,
resnorm is the squared 2-norm of the residual and exit f lag is set to 0 if the LHDM algorithm has
reached the maximum number of iterations without converging and 1 otherwise.

In the literature, an accelerating technique was introduced by Van Benthem and Keenan [25],
who presented a different NNLS solution algorithm, namely “fast combinatorial NNLS”, designed for
the specific case of a large number of right-hand sides. The authors exploited a clever reorganization
of computations in order to take advantage of the combinatorial nature of the problems treated
(multivariate curve resolution) and introduced a nontrivial initialization of the algorithm by means
of unconstrained least squares solution. In the following section we are going to compare such
an approach, briefly named LHI, and the standard LH algorithm with the LHDM procedure
just summarized.

4. Numerical Examples

In this section, we perform several tests on the computation of d-variate near G-optimal Tchakaloff
designs, from low to moderate dimension d. In practice, we are able to treat, on a personal computer,
large-scale problems where card(X)× dim(Pd

2m) is up to 108–109, with dim(Pd
2m) = (2m+d

d ) = (2m+d
2m ).



Mathematics 2020, 8, 1122 9 of 15

Recall that the main memory requirement is given by the N2m × M matrix UT in the compression
process solved by the LHDM algorithm, where M = card(X) and N2m = dim(Pd

2m(X)) ≤ dim(Pd
2m).

Given the dimension d > 1 and the polynomial degree m, the routine LHDM empirically sets the
parameter k as follows k = d(2m+d

d )/(m(d− 1))e, while the threshold is thres = cos(π
2 − θ), θ ≈ 0.22.

All the tests are performed on a workstation with a 32 GB RAM and an Intel Core i7-8700 CPU @
3.20 GHz.

4.1. Complex 3d Shapes

To show the flexibility of the package dCATCH, we compute near G-optimal designs on a
“multibubble” D ⊂ R3 (i.e., the union of a finite number of non-disjoint balls), which can have a
very complex shape with a boundary surface very difficult to describe analytically. Indeed, we are able
to implement near optimal regression on quite complex solids, arising from finite union, intersection
and set difference of simpler pieces, possibly multiply-connected, where for each piece we have
available the indicator function via inequalities. Grid-points or low-discrepancy points, for example,
Halton points, of a surrounding box, could be conveniently used to discretize the solid. Similarly,
thanks to the adaptation of the method to the actual dimension of the polynomial spaces, we can treat
near optimal regression on the surfaces of such complex solids, as soon as we are able to discretize
the surface of each piece by point sets with good covering properties (for example, we could work
on the surface of a multibubble by discretizing each sphere via one of the popular spherical point
configurations, cf. Reference [26]).

We perform a test at regression degree m = 10 on the 5-bubble shown in Figure 1b. The initial
support X consists in the M = 18,915 points within 64,000 low discrepancy Halton points, falling in
the closure of the multibubble. Results are shown in Figure 1 and Table 3.

(a)

(b)
Figure 1. Multibubble test case, regression degree m = 10. (a) The evolution of the cardinality of the
passive set P along the iterations of the three LH algorithms. (b) Multibubble with 1763 compressed
Tchakaloff points, extracted from 18,915 original points.

Table 3. Results for the multibubble numerical test: compr = M/mean(cpts) is the mean compression
ratio obtained by the three methods listed; tLH/tTitt is the ratio between the execution time of LH and
that of the Titterington algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of
LH (LHI) and that of LHDM ; cpts is the number of compressed Tchakaloff points and momerr is the
final moment residual.

Test LH LHI LHDM
m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

10 18,915 11/1 40.0/1 2.7/1 1755 3.4× 10−8 3.2/1 1758 3.2× 10−8 1755 1.5× 10−8
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4.2. Hypercubes: Chebyshev Grids

In a recent paper [19], a connection has been studied between the statistical notion of G-optimal
design and the approximation theoretic notion of admissible mesh for multivariate polynomial
approximation, deeply studied in the last decade after Reference [13] (see, e.g., References [27,28] with
the references therein). In particular, it has been shown that near G-optimal designs on admissible
meshes of suitable cardinality have a G-efficiency on the whole d-cube that can be made convergent to 1.
For example, it has been proved by the notion of Dubiner distance and suitable multivariate polynomial
inequalities, that a design with G-efficiency γ on a grid X of (2km)d Chebyshev points (the zeros of
T2km(t) = cos(2km arccos(t)), t ∈ [−1, 1]), is a design for [−1, 1]d with G-efficiency γ(1− π2/(8k2)).
For example, taking k = 3 a near G-optimal Tchakaloff design with γ = 0.99 on a Chebyshev grid
of (6m)d points is near G-optimal on [−1, 1]d with G-efficiency approximately 0.99 · 0.86 ≈ 0.85,
and taking k = 4 (i.e., a Chebyshev grid of (8m)d points) the corresponding G-optimal Tchakaloff
design has G-efficiency approximately 0.99 · 0.92 ≈ 0.91 on [−1, 1]d (in any dimension d).

We perform three tests in different dimension spaces and at different regression degrees. Results
are shown in Figure 2 and Table 4, using the same notation above.

(a) d = 3, n = 6, M = 110,592. (b) d = 4, n = 3, M = 331,776.

(c) d = 5, n = 2, M = 1,048,576.

Figure 2. The evolution of the cardinality of the passive set P along the iterations of the three LH
algorithms for Chebyshev nodes’ tests.
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Table 4. Results of numerical tests on M = (2km)d Chebyshev’s nodes, with k = 4, with different
dimensions and degrees: compr = M/mean(cpts) is the mean compression ratio obtained by the
three methods listed; tLH/tTitt is the ratio between the execution time of LH and that of Titterington
algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH (LHI) and that of
LHDM; cpts is the number of compressed Tchakaloff points and momerr is the final moment residual.

Test LH LHI LHDM
d m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

3 6 110,592 250/1 0.4/1 3.1/1 450 5.0× 10−7 3.5/1 450 3.4× 10−7 450 1.4× 10−7

4 3 331,776 1607/1 0.2/1 2.0/1 207 8.9× 10−7 3.4/1 205 9.8× 10−7 207 7.9× 10−7

5 2 1,048,576 8571/1 0.1/1 1.4/1 122 6.3× 10−7 1.5/1 123 3.6× 10−7 122 3.3× 10−7

4.3. Hypercubes: Low-Discrepancy Points

The direct connection of Chebyshev grids with near G-optimal designs discussed in the previous
subsection suffers rapidly of the curse of dimensionality, so only regression at low degree in relatively
low dimension can be treated. On the other hand, in sampling theory a number of discretization
nets with good space-filling properties on hypercubes has been proposed and they allow to increase
the dimension d. We refer in particular to Latin hypercube sampling or low-discrepancy points
(Sobol, Halton and other popular sequences); see for example, Reference [29]. These families of points
give a discrete model of hypercubes that can be used in many different deterministic and statistical
applications.

Here we consider a discretization made via Halton points. We present in particular two examples,
where we take as finite design space X a set of M = 105 Halton points, in d = 4 with regression degree
m = 5, and in d = 10 with m = 2. In both examples, dim(Pd

2m) = (2m+d
d ) = (2m+d

2m ) = (14
4 ) = 1001,

so that the largest matrix involved in the construction is the 1001× 100,000 Chebyshev-Vandermonde
matrix C for degree 2m on X constructed at the beginning of the compression process (by dORTHVAND
within dCATCH to compute U2m in (12)).

Results are shown in Figure 3 and Table 5, using the same notation as above.

Remark 1. The computational complexity of dCATCH mainly depends on the QR decompositions, which clearly
limit the maximum size of the problem and mainly determine the execution time. Indeed, the computational
complexity of a QR factorization of a matrix of size nr × nc, with nc ≤ nr, is high, namely 2(n2

c nr − n3
c /3) ≈

2n2
c nr (see, e.g., Reference [30]).

Titterington algorithm performs a QR factorization of a M×Nm matrix at each iteration, with the following
overall computational complexity

CTitt ≈ 2k̄ M N2
m ,

where k̄ is the number of iterations necessary for convergence, that depends on the desired G-efficiency.
On the other hand, the computational cost of one iteration of the Lawson-Hanson algorithm, fixed the

passive set P, is given by the solution of an LS problem of type (15), which approximately is 2N2m|P|2 that
is the cost of a QR decomposition of a matrix of size N2m × |P|. However, as experimental results confirm,
the evolution of the set P along the execution of the algorithm may vary significantly depending on the experiment
settings, so that the exact overall complexity is hard to estimate. Lower and upper bounds are available, but may
lead to heavy under- and over-estimations, respectively; cf. Reference [31] for a discussion on complexity issues.
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(a) d = 10, m = 2, M = 10,000. (b) d = 10, m = 2, M = 100,000.

(c) d = 4, m = 5, M = 10,000. (d) d = 4, m = 5, M = 100,000.

Figure 3. The evolution of the cardinality of the passive set P along the iterations of the three LH
algorithms for Halton points’ tests.

Table 5. Results of numerical tests on Halton points: compr = M/mean(cpts) is the mean compression
ratio obtained by the three methods listed; tLH/tTitt is the ratio between the execution time of LH and
that of Titterington algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH
(LHI) and that of LHDM; cpts is the number of compressed Tchakaloff points and momerr is the final
moment residual.

Test LH LHI LHDM
d m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

10 2 10,000 10/1 41.0/1 1.9/1 990 1.1 × 10−8 1.9/1 988 9.8 × 10−9 990 9.4 × 10−9

10 2 100,000 103/1 6.0/1 3.1/1 968 3.6 × 10−7 2.8/1 973 2.7 × 10−7 968 4.2 × 10−7

4 5 10,000 10/1 20.2/1 2.3/1 997 9.7 × 10−9 2.4/1 993 1.3 × 10−8 997 2.1 × 10−9

4 5 100,000 103/1 2.0/1 3.8/1 969 6.6 × 10−7 3.8/1 964 6.3 × 10−7 969 5.3 × 10−7

5. Conclusions

In this paper, we have presented dCATCH [1], a numerical software package for the computation
of a d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ Rd.
The mathematical foundation is discussed connecting statistical design theoretic and approximation
theoretic aspects, with a special emphasis on deterministic regression (Weighted Least Squares).
The package takes advantage of an accelerated version of the classical NNLS Lawson-Hanson solver
developed by the authors and applied to design compression.
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As a few examples of use cases of this package we have shown the results on a complex shape
(multibubble) in three dimensions, and on hypercubes discretized with Chebyshev grids and with
Halton points, testing different combinations of dimensions and degrees which generate large-scale
problems for a personal computer.

The present package, dCATCH works for any discrete measure on a discrete set X. Indeed, it could
be used, other than for design compression, also in the compression of d-variate quadrature formulas,
even on lower-dimensional manifolds, to give an example.

We may observe that with this approach we can compute a d-variate compressed design starting
from a high-cardinality sampling set X, that discretizes a continuous compact set (see Sections 4.2
and 4.3). This design allows an m-th degree near optimal polynomial regression of a function on
the whole X, by sampling on a small design support. We stress that the compressed design is
function-independent and thus can be constructed “once and for all” in a pre-processing stage.
This approach is potentially useful, for example, for the solution of d-variate parameter estimation
problems, where we may think to model a nonlinear cost function by near optimal polynomial
regression on a discrete d-variate parameter space X; cf., for example, References [32,33] for instances
of parameter estimation problems from mechatronics applications (Digital Twins of controlled systems)
and references on the subject. Minimization of the polynomial model could then be accomplished
by popular methods developed in the growing research field of Polynomial Optimization, such as
Lasserre’s SOS (Sum of Squares) and measure-based hierarchies, and other recent methods; cf., for
example, References [34–36] with the references therein.

From a computational viewpoint, the results shown in Tables 3–5 show relevant speed-ups in the
compression stage, with respect to the standard Lawson-Hanson algorithm, in terms of the number of
iterations required and of computing time within the Matlab scripting language. In order to further
decrease the execution times and to allow us to tackle larger design problems, we would like in the
near future to enrich the package dCATCH with an efficient C implementation of its algorithms and,
possibly, a CUDA acceleration on GPUs.
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23. Pleśniak, W. Multivariate Jackson Inequality. J. Comput. Appl. Math. 2009, 233, 815–820. [CrossRef]
24. Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; SIAM: Philadelphia, PA, USA, 1995; Volume 15.
25. Van Benthem, M.H.; Keenan, M.R. Fast algorithm for the solution of large-scale non-negativity-constrained

least squares problems. J. Chemom. 2004, 18, 441–450. [CrossRef]
26. Hardin, D.; Michaels, T.; Saff, E. A Comparison of Popular Point Configurations on S2. Dolomit. Res. Notes

Approx. DRNA 2016, 9, 16–49.
27. Bloom, T.; Bos, L.; Calvi, J.; Levenberg, N. Polynomial Interpolation and Approximation in Cd. Ann. Polon.

Math. 2012, 106, 53–81. [CrossRef]
28. De Marchi, S.; Piazzon, F.; Sommariva, A.; Vianello, M. Polynomial Meshes: Computation and

Approximation. In Proceedings of the CMMSE 2015, Rota Cadiz, Spain, 6–10 July 2015; pp. 414–425.
29. Dick, J.; Pillichshammer, F. Digital Nets and Sequences-Discrepancy Theory and Quasi—Monte Carlo Integration;

Cambridge University Press: Cambridge, UK, 2010.
30. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD,

USA, 1996.
31. Slawski, M. Nonnegative Least Squares: Comparison of Algorithms. Available online: https://sites.google.

com/site/slawskimartin/code (accessed on 1 June 2020).
32. Beghi, A.; Marcuzzi, F.; Martin, P.; Tinazzi, F.; Zigliotto, M. Virtual prototyping of embedded control software

in mechatronic systems: A case study. Mechatronics 2017, 43, 99–111. [CrossRef]
33. Beghi, A.; Marcuzzi, F.; Rampazzo, M. A Virtual Laboratory for the Prototyping of Cyber-Physical Systems.

IFAC-PapersOnLine 2016, 49, 63–68. [CrossRef]
34. Lasserre, J.B. The moment-SOS hierarchy. Proc. Int. Cong. Math. 2018, 4, 3791–3814.

http://dx.doi.org/10.1214/18-AOS1683
http://dx.doi.org/10.1016/j.csda.2008.10.002
http://dx.doi.org/10.1016/j.jspi.2009.05.007
http://dx.doi.org/10.1007/s00365-009-9078-7
http://dx.doi.org/10.1016/0021-9045(90)90078-5
http://dx.doi.org/10.1016/j.jat.2007.05.005
http://dx.doi.org/10.4153/CJM-1960-030-4
http://dx.doi.org/10.1090/S0002-9939-97-03862-8
https://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html
https://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html
http://dx.doi.org/10.1007/s00180-019-00933-8
http://dx.doi.org/10.1007/BF03014795
http://dx.doi.org/10.1080/01630563.2015.1062394
http://dx.doi.org/10.1016/j.cam.2009.02.095
http://dx.doi.org/10.1002/cem.889
http://dx.doi.org/10.4064/ap106-0-5
https://sites.google.com/site/slawskimartin/code
https://sites.google.com/site/slawskimartin/code
http://dx.doi.org/10.1016/j.mechatronics.2017.03.004
http://dx.doi.org/10.1016/j.ifacol.2016.07.154


Mathematics 2020, 8, 1122 15 of 15

35. De Klerk, E.; Laurent, M. A survey of semidefinite programming approaches to the generalized problem of
moments and their error analysis. In World Women in Mathematics 2018-Association for Women in Mathematics
Series; Springer: Cham, Switzerland, 2019; Volume 20, pp. 17–56.

36. Martinez, A.; Piazzon, F.; Sommariva, A.; Vianello, M. Quadrature-based polynomial optimization. Optim.
Lett. 2020, 35, 803–819. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11590-019-01416-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	G-Optimal Designs
	Computing near G-Optimal Compressed Designs
	Numerical Examples
	Complex 3d Shapes
	Hypercubes: Chebyshev Grids
	Hypercubes: Low-Discrepancy Points

	Conclusions
	References

