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Abstract: We propose a simple yet powerful framework for modeling
integer-valued data, such as counts, scores, and rounded data. The data-
generating process is defined by Simultaneously Transforming and Round-
ing (star) a continuous-valued process, which produces a flexible family of
integer-valued distributions capable of modeling zero-inflation, bounded or
censored data, and over- or underdispersion. The transformation is mod-
eled as unknown for greater distributional flexibility, while the rounding
operation ensures a coherent integer-valued data-generating process. An
efficient MCMC algorithm is developed for posterior inference and pro-
vides a mechanism for adaptation of successful Bayesian models and al-
gorithms for continuous data to the integer-valued data setting. Using the
star framework, we design a new Bayesian Additive Regression Tree model
for integer-valued data, which demonstrates impressive predictive distribu-
tion accuracy for both synthetic data and a large healthcare utilization
dataset. For interpretable regression-based inference, we develop a star

additive model, which offers greater flexibility and scalability than existing
integer-valued models. The star additive model is applied to study the
recent decline in Amazon river dolphins.
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1. Introduction

A challenging scenario for prediction and inference occurs when the outcome
variables are integer-valued, such as counts, (test) scores, or rounded data.
Integer-valued data are common in many fields, including epidemiology (Os-
thus et al., 2018; Kowal, 2019), ecology (Dorazio et al., 2005), and insurance
(Bening and Korolev, 2012), among many others (Cameron and Trivedi, 2013).
Counts often serve as an indicator of demand, such as the demand for med-
ical services (Deb and Trivedi, 1997), emergency medical services (Matteson
et al., 2011), and call center access (Shen and Huang, 2008). Integer-valued
data are discrete data, and exhibit a variety of complex distributional features
including zero-inflation, skewness, over- or underdispersion, and in some cases
may be bounded or censored. Consequently, prediction and modeling of integer-
valued data—in the presence of predictors, over time intervals, and across spatial
locations—remains a significant challenge.

The most widely-used models for count or integer-valued data build upon
the Poisson distribution. However, the limitations of the Poisson distribution
are well-known: the distribution is not sufficiently flexible in practice and can-
not account for zero-inflation or over- and underdispersion. A common strategy
is to generalize the Poisson model by introducing additional parameters, such
as the quasi-Poisson (McCullagh and Nelder, 1989), negative-binomial (Hilbe,
2011), zero-inflated Poisson or negative-binomial (Cameron and Trivedi, 2013;
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Neelon, 2019), lognormal Poisson (Zhou et al., 2012), restricted generalized Pois-
son (Famoye, 1993), and Conway-Maxwell Poisson models (Shmueli et al., 2005;
Lord et al., 2008; Sellers and Shmueli, 2010). A fundamental limitation of these
approaches is that the additional parameters can introduce formidable chal-
lenges for estimation and computational scalability, especially in conjunction
with regression, temporal, or spatial models.

In practice, however, it is exceedingly common for the discrete nature of
the data to be ignored. Practitioners often log- or square-root-transform the ob-
served integer-valued data and subsequently apply methods designed for contin-
uous or Gaussian data. However, transformations to Gaussianity are ineffective
for small counts (Warton, 2018), while log-transformations introduce difficulties
in the presence of zeros (O’Hara and Kotze, 2010). More broadly, these ap-
proaches are not well-defined for integer-valued data: the data-generating pro-
cess for a (continuously-transformed) Gaussian model cannot produce discrete
data, which immediately amplifies model misspecification, limits interpretabil-
ity, and undermines the reliability of inference and predictive distributions.

To address these challenges, we propose a coherent modeling framework for
integer-valued data. The process is defined by simultaneously transforming and
rounding (star) a continuous-valued process. First, a continuous-valued pro-
cess is specified to model the dependence between (latent) variables. We focus
on conditionally Gaussian regression models, but the star framework applies
more broadly. Second, the latent variables are transformed for greater distribu-
tional flexibility. While the transformation may be specified in advance, such as
logarithmic or square-root, we develop both parametric and nonparametric ap-
proaches to learn the transformation from the data, which improves predictive
accuracy. Lastly, the transformed latent variables are filtered through a round-
ing operator mapping them to the (nonnegative) integers. This construction is
inspired by the popular approach of transforming count data and applying Gaus-
sian models, yet produces a mathematically consistent and well-defined integer-
valued process. Importantly, we show that star processes are not merely valid
integer-valued distributions, but also offer modeling flexibility, and can account
for zero-inflation, bounded or censored data, and over- or underdispersion.

Another major benefit of star is its computational modularity: using a sim-
ple and efficient data augmentation technique, existing computational tools for
Bayesian inference under continuous data models can be used for Bayesian in-
ference under star models. As a result, star provides a cohesive framework for
seamlessly adapting state-of-the-art continuous data models and algorithms to
the integer-valued data setting. Using the star framework, we design—among
others—a new Bayesian Additive Regression Tree (bart) model for integer-
valued data. The resulting bart-star model combines the integer-valued dis-
tributional flexibility provided by star with the predictive and computational
advantages inherent to bart. For synthetic data and a large healthcare uti-
lization dataset (Sections 4-5), the predictive performance of bart-star far
exceeds that of competing methods which do not include both transformation
and rounding in terms of out-of-sample predictive accuracy, model adequacy,
and computational scalability.
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We also apply star to study the recent decline in the tucuxi dolphin pop-
ulation, which inhabit the Amazon River. Using field survey data conducted
by da Silva et al. (2018) from 1994 to 2017, we develop a star additive model
for the number of observed tucuxi dolphins, which includes a smooth regres-
sion term for important predictor variables such as the year, day-of-year, and
water level. The star additive model is interpretable yet flexible, and demon-
strates favorable performance in model fit and computational efficiency relative
to existing integer-valued models.

The remainder of the paper is organized as follows. Section 2 introduces
the star framework, develops models for the unknown transformation, de-
scribes important properties, and discusses computational details for posterior
inference. Section 3 provides example star models, which are applied to sim-
ulated data in Section 4 and real data in Sections 5 and 6. Section 7 con-
cludes. Additional simulation results and empirical comparisons are in the Ap-
pendix. Methods are implemented in the R package rSTAR available on GitHub:
www.github.com/drkowal/rSTAR.

2. Simultaneously transforming and rounding

Consider a count-valued stochastic process y : X → N , where X may correspond
to predictors, times, or spatial locations andN = {0, . . . ,∞}. Although we focus
on the nonnegative integers, our procedure may be trivially modified for integer-
valued data and rounded data. Our goal is to introduce a flexible method for
constructing a joint probability distribution for y that simultaneously builds
upon successful approaches for continuous stochastic processes (observed on R

or R+), yet produces well-defined distribution on N .
To this end, we first introduce continuous-valued process y∗ : X → T , T ⊆ R

related to the observed count-valued data y via

y = h(y∗), (1)

where h : T → N is a rounding operator that sets y(x) = j when y∗(x) ∈ Aj

and {Aj}∞j=0 is a known partition of T . We select h to guarantee the correct
support for y: for example, the floor function Aj = [aj , aj+1) = [j, j + 1) for
j ∈ N implies y ∈ N ; see Section 2.2 for other examples. The process y∗ operates
as a continuous proxy for the observed counts y, which is more convenient for
modeling, yet has a simple mapping to the observable data in (1). Naturally,
the properties of the count-valued process y will be determined by the rounding
operator h and the distribution of the continuous-valued process y∗.

We propose to induce a distribution on y∗ by transforming y∗ and specifying
a distribution Πθ on the transformed scale:

g(y∗) = z∗, z∗ ∼ Πθ, (2)

where g : T → R is a strictly monotone function. Model (2) is inspired by the
common practice of transforming count data prior to application of continuous
(Gaussian) models. However, the star framework of (1)-(2) defines an integer-

www.github.com/drkowal/rSTAR
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valued process for y, in which the transformation g may be modeled as unknown
for greater distributional flexibility.

While star is sufficiently general to incorporate any continuous family of
stochastic process Πθ for the latent z∗, an important special case of (2) is the
conditionally Gaussian regression model:

z∗(x) = μ(x) + ε(x), ε(x)
indep∼ N(0, σ2(x)), (3)

where μ(x) is the conditional expectation of z∗(x) and the errors ε(x) are in-
dependent but possibly heteroscedastic, conditional on x ∈ X . Examples of (3)
include linear and additive models (Section 3.1) and bart (Section 3.2), with
extensions for mixed effects models, spatio-temporal models, dynamic linear
models, and factor models, among others.

star deviates from Canale and Dunson (2011) and Canale and Dunson
(2013), which pair (1) with a model directly on y∗. Our key innovation is the
coupling of the transformation (2) with the regression model (3). The trans-
formation g, which we model as unknown, endows the integer-valued process
y with greater distributional flexibility, yet leaves model (3) unchanged. This
construction allows seamless integration of Bayesian models and algorithms for
continuous data of the common form (3) into the integer-valued star frame-
work, with efficient posterior inference available via a general MCMC algorithm
(Section 2.3). As demonstrated extensively in the simulations and applications
(Sections 4-6), models that fail to include both rounding and transformation do
not match the predictive performance of star models.

The distribution of y is completely determined by the rounding operator h,
the transformation g, and the distribution Πθ. Specifically, the probability mass
associated to y(x) = j for each integer j ∈ N is

P{y(x) = j} = P {y∗(x) ∈ Aj} = P {z∗(x) ∈ g(Aj)} . (4)

The distribution of z∗ is given by Πθ, while g(Aj) is determined by the trans-
formation g and the rounding operator h. For model (3) and Aj = [aj , aj+1),
(4) simplifies to

P{y(x) = j} = Φ

(
g(aj+1)− μ(x)

σ(x)

)
− Φ

(
g(aj)− μ(x)

σ(x)

)
. (5)

The distribution in (5) is related to, yet distinct from, ordinal regression (Mc-
Cullagh, 1980; Dale, 1986; Agresti, 2013). In ordinal regression, each term g(aj)
in (5) is replaced by an unknown latent threshold, say ωj , with an ordering con-
straint ωj ≤ ωj+1 for all j. However, the latent thresholds ωj are based only on
the ranks of the observed data, and therefore ignore the information contained
in the numeric values of the observed counts. Furthermore, since each threshold
ωj is unknown, ordinal regression introduces a new parameter for each unique
data value, and therefore produces a heavily-parametrized model that is chal-
lenging to estimate. By comparison, star is substantially more parsimonious: if
g is known, no new parameters are needed, while if g is unknown, only a small
number of parameters are needed (see Section 2.1).
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star is fundamentally different from simply rounding the predictions from
a continuous data model Πθ. Post hoc rounding ignores the discrete nature of
the data in model-fitting, and consequently introduces a disconnect between the
fitted model and the model used for prediction. star clearly avoids this issue,
and maintains the benefits of using well-known models for continuous data while
producing a coherent integer-valued predictive distribution.

2.1. The transformation g

The transformation g is a crucial component of star. When g(t) = t and
z∗ is a draw from a Gaussian process, star simplifies to Canale and Dunson
(2013). However, the identity transformation is suboptimal in many cases (see
Sections 5 and 6). The popularity of log-linear models for count data, espe-
cially Poisson and negative-binomial models, suggests that regression effects
μ(x) are often multiplicative for count data, and that the log-transformation
g(t) = log(t) may be preferable for many applications. Similarly, the square-
root transformation g(t) =

√
t is the variance-stabilizing transformation of the

Poisson distribution, and therefore is a common choice in applications of Gaus-
sian methods to transformed count data. Empirically, the simulation studies
and real data analyses in Sections 4-6 demonstrate that the transformation g
provides substantial improvements in modeling flexibility and accuracy relative
to an untransformed approach.

When g is fixed and known, the only unknowns are the parameters θ in the
distribution Πθ of the latent data z∗ in (2). Relative to the analogous trans-
formed continuous-valued model, say g(y) ∼ Πθ, the number of parameters is
the same, yet star produces a coherent integer-valued process. A fixed trans-
formation g shares some characteristics with the link function of a generalized
linear model (GLM) (McCullagh and Nelder, 1989). For GLMs, the link function
maps the expectation of an exponential family distribution to R, which is mod-
eled using a linear predictor. By comparison, star maps the continuous-valued
y∗ to R and under (3) models E[g{y∗(x)}|x] = E{z∗(x)|x} = μ(x).

For general application of star, pre-specification of a transformation g is
restrictive. By allowing the data to inform g, the implied distribution for y
becomes more flexible, and the risk of model misspecification is lessened. For
GLMs, Mallick and Gelfand (1994) similarly relax the assumption of a known
link function, adopting a nonparametric approach. For star, we require that
the functions g satisfy the following properties: (i) monotonicity, which pre-
serves the ordering of the observed integers in the transformed latent space; (ii)
smoothness, which provides regularization by encouraging information-sharing
among nearby values; and (iii) shrinkage toward a pre-specified transformation,
such as log or square-root.

A natural parametric specification for g satisfying the aforementioned criteria
is the (signed) Box-Cox transformation (Box and Cox, 1964):

g(t;λ) = {sgn(t)|t|λ − 1}/λ, λ > 0 (6)
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with g(t;λ = 0) = log(t). Box-Cox functions are a popular choice for transform-
ing continuous data towards Gaussianity, which in the present setting is similar
to (2) when Πθ is Gaussian. Important special cases of (6) include the (shifted)
identity transformation g(t;λ = 1) = t − 1, the (shifted and scaled) square-
root transformation g(t;λ = 1/2) = 2

√
|t| − 2, and the log-transformation.

To learn the shape of the transformation, we place a prior on λ: we recom-
mend λ ∼ N(1/2, 1) truncated to [0, 3], which shrinks g toward the (shifted and
scaled) square-root transformation.

For additional flexibility, we also consider fully nonparametric specification
for g. Consider an I-spline basis expansion (Ramsay, 1988) for g:

g(t) = b′I(t)γ, (7)

where bI is an L-dimensional vector of I-spline basis functions and γ are the un-
known basis coefficients. Since each I-spline basis function is monotone increas-
ing, we ensure monotonicity of g by restricting the elements of γ to be positive.

We propose a prior for γ in (7) that simultaneously enforces monotonic-
ity, smoothness, and shrinkage toward a pre-specified transformation. However,
care must be taken to ensure identifiability of the star model and retain in-
terpretability of the parameters θ in Πθ. For model (3), arbitrary shifting and
scaling of g can be matched by shifting and scaling of μ and σ. The para-
metric transformation (6) preserves identifiability: g(1, λ) = 0 for all λ (shift
constraint) and the prior on λ is weakly informative (scale constraint). For
nonparametric g in (7), we resolve the identifiability issue by fixing g(0) = 0
(shift constraint), which is satisfied automatically due to the I-spline construc-
tion, and limt→∞ g(t) = 1 (scale constraint), which is enforced by constraining∑L

�=1 γ� = 1. Specifically, let

γ� = γ̃�/
L∑

k=1

γ̃k, γ̃�
indep∼ N+(μγ�

, σ2
γ), � = 1, . . . , L, (8)

whereN+ is the half-normal distribution. Clearly, γ� > 0 for each � and
∑L

�=1 γ� =
1, which guarantees monotonicity of g and preserves identifiability of model
(3). We select the prior mean μγ = (μγ1 , . . . , μγL

)′ such that g(t) is a pri-
ori centered around a parametric function of interest, such as (6) with fixed
λ = λ0, and model σ2

γ with an inverse-Gamma prior to allow the data to deter-
mine the amount of shrinkage toward the parametric function of interest. Let
tg = (0, 1, . . . , amax yi+1)

′ and let BI be the I-spline basis evaluated at tg, so
g(tg) = BIγ. We solve μ̃γ = argminμγ ||g(tg;λ0) − BIμγ ||2 subject to μ̃γ�

> 0

for � = 1, . . . , L, which is a one-time cost, and normalize μγ�
= μ̃γ�

/
∑L

k=1 μ̃γk
.

In the simulations and applications of Sections 4-6, we fix λ0 = 1/2 and model
σ−2
γ ∼ Gamma(0.001, 0.001).
We use quadratic I-splines with L = 2 + min{(# unique yi)/4, 10} knots,

implemented using the splines2 package in R (Wang and Yan, 2018). Boundary
knots are placed at zero and max{yi}, while the L − 2 interior knots selected
using the sample quantiles of {yi} excluding zero, one, and max{yi}, with an
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interior knot placed at one to improve distributional flexibility near zero. Since
Ramsay (1988) use L = 3 or L = 5 in all monotone spline examples, a small
number of knots may be adequate in many cases.

2.2. Model properties

By design, star builds upon models for continuous data, such as those in Sec-
tion 3, and adapts them for integer-valued data. Yet star is not merely a mecha-
nism for producing valid integer-valued processes: star also provides important
distributional properties for modeling integer-valued data in practice. By careful
selection of the rounding operator h and the transformation g, star provides
the capability to model zero-inflation, bounded or censored data, and over- or
underdispersion.

In applications with count data, it is common to observe an abundance of
zeros, y(x) = 0. star can be parametrized such that zero counts occur whenever
z∗(x) is negative:

Lemma 1 (Zero-inflation). For any star model with g(A0) = (−∞, 0), we
have (i) y(x) = 0 if and only if z∗(x) < 0 and (ii) P{y(x) = 0} = P{z∗(x) ≤ 0}.

Lemma 1 is valid for known or unknown transformations, and is easily satis-
fied for (6) letting A0 = (a0, a1) = (−∞, 1) for λ 	= 0 and A0 = (a0, a1) = (0, 1)
for λ = 0. For model (3), Πθ is conditionally Gaussian, which may place sub-
stantial prior mass on z∗(x) < 0 and thus y(x) = 0. Therefore, star has a
built-in and interpretable mechanism for handling zero counts, and does not
require the addition of an artificial constant to the transformation, such as
log(y+1). Furthermore, dependence among zero values is implicit in the model:
P{y(x) = 0, y(x′) = 0} = P{z∗(x) < 0, z∗(x′) < 0} depends on the joint distri-
bution of (z∗(x), z∗(x′)), which is modeled by Πθ.

Another common characteristic of count-valued data is a deterministic upper
bound K. For instance, if y counts the number of days on which an event
occurred in a given year, then y(x) ∈ {0, 1, . . . ,K} and K = 365. star can
easily incorporate this information into the distribution for y as formalized in
the next lemma.

Lemma 2 (Bounded observations). For any star model, letting g(AK) =
[g(aK),∞) implies P{y(x) ≤ K} = 1.

The boundedness constraints in Lemma 2 are compatible with any choice of
(unconstrained) continuous-valued model (2) and do not require modification of
the algorithms for estimation and inference in Section 2.3. Similar to the case
of zero values in Lemma 1, star allows for dependence among y values that
attain the upper bound: P{y(x) = K, y(x′) = K} = P{z∗(x) ≥ g(aK), z∗(x′) ≥
g(aK)}, which again is modeled by (2) or (3). When K = 1, the star model
(3) with μ(x) = x′β and σ2(x) = 1 simplifies to probit regression.

Interestingly, the construction in Lemma 2 is coherent under right-censoring,
which occurs when an observed count value of K implies that y(x) ≥ K. Right-
censoring is common in surveys, where large values are often grouped together.
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The following lemma formalizes the properties of star subject to right-censoring
of the observations.

Lemma 3 (Right-censoring). Let star(h, g,Πθ) denote model (1)-(2) with
rounding operator h, transformation g, and latent distribution Πθ. For right-
censored observations yc(x) = min{y(x),K} with y ∼ star(h, g,Πθ) and yc ∼
star(h′, g,Πθ) such that h and h′ satisfy aK = a′K and A′

K = [aK ,∞), we have
P{y(x) ≥ K} = P{z∗(x) ≥ g(aK)} = P{yc(x) = K}.

For right-censored data, the likelihood includes terms of the form P{y(x) ≥
K} for censored observations. Lemma 3 shows that the censored likelihood terms
under a star model for y are equivalent to the non-censored likelihood terms
P{yc(x) = K} under a star model for yc = min{y(x),K} with A′

K = [aK ,∞).
Remarkably, star preserves the correct right-censored likelihood for y by di-
rectly modeling the observed counts yc and setting A′

K = [aK ,∞), with no
further modifications needed for the model specification or estimation proce-
dure. By comparison, common parametric approaches for modeling count data,
such as the Poisson model and its generalizations, require careful modifications
of the likelihood and tailored algorithms for estimation and inference in the case
of right-censoring. Naturally, a similar approach is available for left-censoring.

Lastly, we show that star processes are capable of modeling over- or under-
dispersion. In Figure 1, we illustrate the relationships among the expectation
E[y], the variance Var(y), and the probability of zeros P(y = 0) for a star

process defined by z∗ ∼ N(μ, σ2) and transformation (6) with λ = 1/2. For
different values of the parameters the star process exhibits different features,
including overdispersion, underdispersion, and zero-inflation.

2.3. Posterior inference

We develop a general Markov Chain Monte Carlo (MCMC) algorithm for Bayes-
ian inference under star. The hierarchical construction of star in (1)-(2) is ac-
companied by a computationally convenient data augmentation strategy, which
we leverage to incorporate existing sampling techniques for the unknown pa-
rameters θ in (2). To emphasize the modularity of the proposed approach, we
omit model-specific details for sampling θ until Section 3.

Let D = {xi, yi}ni=1 denote the observed pairs of points xi ∈ X and integer-
valued data yi = y(xi). Consider a Bayesian specification of (2) with suitable
prior on θ and an algorithm A which draws from the posterior distribution
of θ given the (continuous) data. The sampling algorithm A is designed for
continuous data, such as (Gaussian) additive models or bart, depending on
the different choices for Πθ (see Section 3 for details). The posterior sampling
algorithm for star defines a Gibbs sampler by combining a data augmentation
step with algorithm A as follows:

1. Sample [z∗(xi) | D, θ] from Πθ truncated to z∗(xi) ∈ g(Ayi) for i = 1, . . . n;
2. Sample [θ | z∗] using algorithm A conditioning on z∗ = (z∗(x1), . . . ,

z∗(xn))
′.
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Fig 1. E[y] and Var(y) (top) and P(y = 0) (bottom) for a star process defined by z∗ ∼
N(μ, σ2) and transformation (6) with λ = 1/2 for various (μ, σ) pairings. The dashed gray
lines correspond to E[y] = Var(y) (top) and P(y = 0) = 0 (bottom). star processes may
include underdispersion (top left), overdispersion (top right), and zero-inflation (bottom).

In the case of model (3), the data augmentation step may be computed efficiently
using a standard univariate truncated normal sampler. Specifically, for Aj =
[aj , aj+1), the full conditional distribution of the latent data is [z∗(xi) | D, θ] ∼
N(μ(xi), σ

2(xi)) truncated to [g(ayi), g(ayi+1)). While the process y∗ is use-
ful for interpretability of the star model, it is not necessary for inference or
sampling.

When the transformation g is unknown, an additional sampling step is re-
quired. For the parametric Box-Cox case (6) this translates to sampling the
parameter λ from its full conditional posterior distribution, for which we use a
slice sampler (Neal, 2003). For the nonparametric model (7) with prior (8), we
sample ξγ = log(γ̃) using Metropolis-Hastings and

[
σ−2
γ | −

]
∼ Gamma{0.001+

L/2, 0.001 +
∑L

�=1(γ̃� − μγ�
)2}, and set g(t) = b′I(t)γ as defined in (7)-(8). The

sampler for ξγ uses a Gaussian random walk proposal with covariance matrix
tuned using the robust adaptive Metropolis (RAM) algorithm of Vihola (2012)
during a preliminary burn-in period. Within the RAM algorithm we set a tar-
get acceptance rate of 30% with an adaptation rate of 0.75; see Vihola (2012)
for details. We adapt the proposal covariance only during the first 50% of the
burn-in period, so the MCMC draws we save for inference are generated from a
(non-adaptive) Metropolis-within-Gibbs sampling algorithm.

To simulate from the posterior predictive distribution [ỹ(x)|D], we addition-
ally sample [z̃∗(x) | θ] from Πθ using the current draw of θ and set ỹ(x) =
h
[
g−1 {z̃∗(x)}

]
for each x. This step is extremely simple, yet provides inference

for integer-valued predictions, model-based imputation of missing data at x ∈ X ,
and useful model diagnostics. For parametric g in (6), the functions g−1(s;λ) are
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known, while for nonparametric g we approximate g−1(s) ≈ argmint |s−b′I(t)γ|,
where the minimum t is computed over a grid of values.

The proposed framework for MCMC balances modularity and flexibility: it
combines existing algorithms for continuous data models with a transformation
to provide distributional flexibility for integer-valued data. The importance of
modularity has been demonstrated recently for the negative-binomial distribu-
tion, for which Polson et al. (2013) developed a Pólya-Gamma data augmenta-
tion scheme for Gibbs sampling. This approach has allowed a variety of Gaussian
models to be extended for negative-binomial data, including linear regression
(Zhou et al., 2012), factor models (Klami, 2015), and functional time series
models (Kowal, 2019), yet faces two important limitations: first, it is restricted
to the negative-binomial distribution, and second, the resulting MCMC sampler
is often inefficient (Duan et al., 2018). As demonstrated in Section 6 and Ap-
pendix A.2, the proposed star algorithm provides excellent MCMC efficiency,
even for nonlinear versions of model (3).

3. Regression modeling with STAR

For inference and prediction of integer-valued data y observed with predictors
x, we apply the star modeling framework to develop additive (Section 3.1)
and bart (Section 3.2) regression models. Each model may be combined with a
known or unknown transformation, and posterior inference proceeds using the
general approach from Section 2.3. The additive and bart star models are
evaluated for synthetic data in Section 4 and real data in Sections 5 and 6, with
additional model comparisons and diagnostics in the Appendix.

3.1. Additive models

Suppose the p predictors are partitioned as x′ = (u′, v′) for linear predictors
u and nonlinear predictors v. The star additive model is given by (3) with
conditional mean

μ(x) = u′β +
∑
j

fj(vj), (9)

where fj : Xj → R is an unknown function of vj ∈ Xj . The unknown fj are
typically modeled as smooth nonparametric functions, and may capture nonlin-
earities in each vj . The star linear model is a special case of (9) with μ(x) = x′β.
For the conditional variance of z∗ in (3) under homoscedasticity σ2(x) = σ2, we
use the conditionally conjugate prior σ−2 ∼ Gamma(0.001, 0.001).

Within the star framework, we apply flexible and computationally efficient
parametrizations of (9) that have been well-developed for Gaussian and expo-
nential family models. The linear regression coefficients are assigned condition-
ally Gaussian priors, β ∼ N(0,Σβ), including the ridge prior Σβ = σ2

βI and
other shrinkage priors (Carvalho et al., 2010) as special cases. The nonlinear
functions in (9) are modeled smoothly using a basis expansion fj(vj) = b′j(vj)αj ,
where bj is an Lj-dimensional vector of known basis functions and αj is a vec-
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tor of unknown coefficients. We select a cubic P-spline basis with second-order
difference penalty on the coefficients, which may be reparametrized such that
αj ∼ N(0, σ2

αj
I) is the smoothing prior and B′

jBj is diagonal, where Bj =
(bj(v1,j), . . . , bj(vn,j))

′ is the basis matrix (Scheipl et al., 2012). The nonlinear
terms are constrained such that

∑n
i=1 fj(vi,j) = 0 for identifiability, which is en-

forced in the reparametrization of the basis bj . We let σ−2
αj

∼ Gamma(0.1, 0.1),
which allows the smoothness of each fj to be learned from the data.

For observed predictors x′
i = (u′

i, v
′
i), let U denote the matrix of linear predic-

tors and let fj = Bjαj . The Gibbs sampler for the star additive model iterates
the following full conditional distributions:

1. Sample [z∗(xi) | −] ∼ N(u′
iβ +

∑
j fj(vi,j), σ

2) truncated to z∗(xi) ∈
g(Ayi);

2. Sample [β | −] ∼ N
(
Q−1

β �β , Q
−1
β

)
where Qβ = σ−2U ′U + Σ−1

β and �β =

σ−2U ′(z∗ −
∑

j fj);

3. For each j, sample [αj | −] ∼ N
(
Q−1

αj
�αj , Q

−1
αj

)
where Qαj = σ−2B′

jBj +

σ−2
αj

I and �αj = σ−2B′
j(z

∗ − Uβ −
∑

k �=j fk) and set fj = Bjαj ;

4. Sample [σ−2 | −] ∼ Gamma
(
0.001+n/2, 0.001+ ||z∗ −Uβ−

∑
j fj ||2/2

)
;

5. For each j, sample [σ−2
αj

| −] ∼ Gamma
(
0.1 + Lj/2, 0.1 +

∑Lj

�=1 α
2
j/2

)
.

The MCMC sampling algorithm for the star additive model is efficient, with
empirical support provided in Section 6. The computational complexity for the
nonlinear basis coefficients {αj} is O(

∑
j Lj) due to the diagonality of B′

jBj ,
while the linear coefficients β also may be sampled efficiently (Rue, 2001; Bhat-
tacharya et al., 2016). Additional sampling steps for Σβ depend on the model
specification, but are often available in closed form.

3.2. Bayesian additive regression trees

While additive models are effective at capturing nonlinear marginal effects, they
are often inadequate for modeling interactions among predictors. Specific pair-
wise or higher order interactions may be specified in advance, but including all
possible interactions in an additive model requires a massive number of param-
eters. As a remedy, Chipman et al. (2010) proposed bart, which is a “sum-
of-trees” model within a fully Bayesian framework. Tree-based regression mod-
els, such as Chipman et al. (1998), are designed to model complex interactions
among predictors. Notably, bart utilizes many trees, where each individual tree
is constrained via the prior to be a weak learner. As a result, bart provides the
capability to capture nonlinear interactions yet features built-in mechanisms
to guard against overfitting. For continuous and binary data, the predictive
performance of bart is highly competitive with state-of-the-art statistical and
machine learning models.

For integer-valued data, bart has been relatively underutilized. Adaptations
of bart for negative-binomial data are feasible via Pólya-Gamma augmenta-
tion (Polson et al., 2013), similar to the probit implementation in Chipman
et al. (2010) for binary data. However, this approach is limited in distribu-
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tional flexibility, and the MCMC inefficiencies of Pólya-Gamma augmentation
are unlikely to be ameliorated given the complexity of the (Gaussian) bart

sampling algorithm. Recently, Murray (2017) proposed a log-linear bart model
for count-valued and categorical data using a parameter expansion valid for
certain likelihoods in log-linear models, in particular (zero-inflated) negative-
binomial and Poisson. However, extensions to more flexible count distributions
may require alternative computational strategies and appropriately modified
prior distributions.

Within the star framework, we parametrize the bart model (bart-star)
as in Chipman et al. (2010) and specifically

μ(x) =

m∑
k=1

f(x;Tk,Mk), (10)

where Tk is a binary tree comprised of interior splitting rules and terminal nodes
and Mk = {η1,k, . . . , ηbk,k} is the value at each of bk terminal nodes for tree Tk.
For a given predictor x, each tree Tk in (10) assigns a value η�,k ∈ Mk, and these
values are summed across all trees k = 1, . . . ,m. Chipman et al. (2010) propose
prior distributions that constrain each Tk to be shallow, thereby limiting the
order of interactions, and constrain each η�,k to be small, thereby limiting the
contribution of each tree. Both mechanisms guard against overfitting, and in
combination produce a sum of weak learners. The joint prior distribution is
specified as a prior for the tree, p(Tk), which follows Chipman et al. (1998),
and a prior for the terminal values given the tree, p(η�,k|Tk), which is Gaussian.
A key feature of star is that, by transforming to Gaussianity, we inherit the
same framework as the original bart, and therefore may directly incorporate
the well-studied priors and hyperparameters from Chipman et al. (2010).

More careful consideration is required for the prior distribution of σ2 in (3).
Chipman et al. (2010) emphasize that an informative prior distribution is im-
portant to balance between overly aggressive and overly conservative model fits,
and parametrize the prior for σ2 as an inverse chi-square distribution calibrated
using a data-based overestimate σ̂ of σ. However, any statistics calculated from
the data y are likely inappropriate for star, since the transformation g impacts
the scale of z∗. As a remedy, we compute σ̂ as the posterior median of σ from the
star linear model (9), where the transformation in the linear model is chosen to
match the transformation in bart-star. Given σ̂, which indeed is a data-based
overestimate of σ, we adopt the default hyperparameter suggestions of Chipman
et al. (2010).

For posterior inference under bart-star, we combine a data augmentation
step for z∗(xi) similar to Section 3.1 with a sweep from the original Chipman
et al. (2010) algorithm to draw the bart parameters in (10) using z∗ as data.
The Chipman et al. (2010) bart sampler proceeds using backfitting: draws
for the kth tree [(Tk,Mk)|z∗, {(Tk′ ,Mk′)}k �=k′ , σ] are generated using Chipman
et al. (1998) and σ2 is sampled from an inverse-Gamma distribution. Incor-
porating these sampling steps into the larger Gibbs sampler in Section 2.3 is
straightforward using the dbarts package (Dorie et al., 2018).
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4. Simulation studies

The proposed star modeling framework is evaluated using simulated data and
compared to existing methods for Poisson, negative-binomial, and Gaussian
data. Synthetic data yi for i = 1, . . . n and n = 100 are simulated from a
negative-binomial distribution parametrized by conditional mean E{yi(x)|λ∗

i } =
λ∗
i (x) and variance Var{yi(x)|λ∗

i , r
∗} = λ∗

i (x) {1 + λ∗
i (x)/r

∗} with dispersion
parameter r∗ > 0. As r∗ decreases to zero, the variance increasingly dominates
the mean while as r∗ → ∞, the distribution converges to a Poisson distribution
with parameter λ∗

i (x). We select r∗ = 1 to simulate negative-binomial data with
large overdispersion and r∗ = 1000 to simulate approximate Poisson data. We
consider linear (Section 4.1) and nonlinear (Section 4.2) parametrizations for
the log-mean log λ∗

i (x). We emphasize that in all cases, the simulated datasets
are not generated under the proposed star model: they are simulated from
negative-binomial and (approximate) Poisson distributions.

Competing models are compared using the Watanabe-Akaike/widely-applica-
ble information criteria (WAIC) (Watanabe, 2010). WAIC estimates out-of-
sample predictive accuracy using a single model fit requiring only minimal ad-
ditional computations, and is asymptotically equivalent to cross-validation. The
WAIC for a model M is defined as WAICM = −2 (lpdM − dM), where dM is
the effective number of parameters for model M and lpdM is the log-predictive
pointwise density defined by

lpdM(y) =

n∑
i=1

log

(
1

S

S∑
s=1

pM(yi | θs)
)

for θs drawn from its posterior distribution. For star models, we simply have

lpd
star

(y) =

n∑
i=1

log

(
1

S

S∑
s=1

Φ

{
gs(ayi+1)− μs(xi)

σs(xi)

}
− Φ

{
gs(ayi)− μs(xi)

σs(xi)

})
.

(11)
For the effective number of parameters, we follow the recommendation of Gel-
man et al. (2014) and use the sample variance of the pointwise log-likelihoods
across MCMC simulations: dM =

∑n
i=1 Var (log pM(yi | θs)). The pointwise log-

likelihood of star is simple and efficient to compute, and is sufficient for com-
puting WAIC as well as other information criteria.

WAIC is used in Sections 4.1 and 4.2 for synthetic data, but exact out-of-
sample metrics are provided for the real data in Section 5. Appendix A.1 also
provides root mean square errors for estimating the conditional expectation
λ∗
i (x) to evaluate point estimation accuracy.

4.1. Linear mean functions

We first consider a linear log-mean, log λ∗
i (x) = β0+

∑p
j=1 xi,jβj , where the p =

6 predictors are drawn independently from xi,j ∼ N(0, 1) and the coefficients
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are β0 = log(1.5), β1 = β2 = β3 = log(2.0), and β4 = β5 = β6 = 0. Under
this specification, the expected count at xi,j = 0 is 1.5, while each nonzero
coefficient βj for j = 1, 2, 3 increases the expected count by a factor of 2 per one
unit change in each xj .

For comparison, we consider a variety of Bayesian linear regression models.
Among star models, we use the linear model (9) with prior [βj |σβ ] ∼ N(0, σ2

β)

and [σβ ] ∼ Uniform(0, 104), and the following transformations: known trans-
formation (6) with λ = 0 (lm-star-log), λ = 1/2 (lm-star-sqrt), and λ = 1
(lm-star-id); unknown parametric transformation (6) (lm-star-bc); and un-
known nonparametric transformation (7) (lm-star-np). We also include the
same linear model, but instead with the Gaussian model (3) applied directly to
the counts y (lm) and the log-transformed counts log(y + 1) (lm-log). These
models are natural competitors to star, since they incorporate the same model
for μ(x) but omit the rounding step in (1) and therefore do not produce an
integer-valued distribution. Lastly, we include Poisson (lm-Pois) and negative-
binomial (lm-NegBin) linear regression models with a log-link, implemented
using the rstanarm package (Goodrich et al., 2018). lm-Pois and lm-NegBin
are widely used for modeling count data, and here correspond to the true data-
generating process.

In Figure 2, we plot the relative WAICs across simulated datasets, defined as
the ratio between the WAIC of the generic model over the WAIC for a baseline
method, for which we select lm-log. Relative WAIC standardizes model perfor-
mance across simulated datasets: methods with a relative WAIC less than one
demonstrate improvement relative to the baseline method. The star models,
particularly those with unknown transformations (lm-star-bc and lm-star-
np), offer substantial improvements relative to lm-log, and are highly compet-
itive with the true models lm-Pois and lm-NegBin. The star model improve-
ments relative to the Gaussian models and the identity transformation lm-star-
id definitively demonstrate the importance of both rounding and transforma-
tion.

Fig 2. Relative WAIC for negative-binomial (left) and Poisson (right) data with linear mean
functions. Preferred models have smaller values, and models with values less than one are pre-
ferred to lm-log. The star models outperform the Gaussian models and are highly competitive
with the true models lm-Pois and lm-NegBin.
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4.2. Nonlinear mean functions

To evaluate bart-star, we specify a nonlinear form for the log-mean, log λ∗
i (x)=

β0+β1f̃(x), where f̃(x) is the centered and scaled Friedman function (Friedman,
1991)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (12)

featured in the original bart simulations (Chipman et al., 2010). As in Chipman

et al. (2010), we select p = 10 and simulate xi,j
iid∼ Uniform(0, 1). We fix the

parameters β0 = log(1.5) and β1 = log(5.0), which again corresponds to low
counts with a moderate signal.

We combine the bart-star model of Section 3.2 with known transforma-
tion (6) for λ = 0 (bart-star-log), λ = 1/2 (bart-star-sqrt), and λ =
1 (bart-star-id); unknown parametric transformation (6) (bart-star-bc);
and unknown nonparametric transformation (7) (bart-star-np). For competi-
tors, we include the Gaussian bart model (bart-id) of Chipman et al. (2010)
and a Gaussian bart model on the log-transformed counts log(y + 1) (bart-
log). Lastly, we include the linear models lm-star-bc and lm-log from Sec-
tion 4.1.

The relative WAICs are plotted in Figure 3, where again we use the log-
transformed Gaussian model (bart-log) as the baseline. Both bart-star-id
and bart-id are omitted as noncompetitive, and indicates the importance of
an appropriate transformation. bart-star provides substantial improvements
relative to bart and linear Gaussian models, with especially strong performance
from the unknown transformation models (bart-star-bc and bart-star-np).
Perhaps surprisingly, the star linear model lm-star-bc outperforms bart-log
for negative-binomial data, despite the nonlinearity in (12). By comparison,
bart-star-bc consistently outperforms lm-star-bc, which suggests that the
proposed bart-star model is capable of detecting the nonlinear features in
(12).

Fig 3. Relative WAIC for negative-binomial (left) and Poisson (right) data with nonlinear
mean functions. Preferred models have smaller values, and models with values less than one
are preferred to bart-log. The identity models (bart-id, bart-star-id) are omitted since
they are noncompetitive, with relative WAICs above 1.6. The bart-star models are clearly
superior.
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5. Predicting the demand for healthcare utilization

Individualized prediction of healthcare utilization is critical both for assessing
the health risks of an individual and for monitoring the aggregate stress on the
healthcare system. By providing more accurate predictive distributions of indi-
vidual healthcare utilization, it is possible to obtain uncertainty quantification
for various measures of individual and aggregate demand, and consequently
achieve more efficient allocation of medical resources and more informed pa-
tients. To assess the predictive ability of star models for this task, we use data
from the National Medical Expenditure Survey (NMES) available in the AER

package in R (Kleiber and Zeileis, 2008). Multiple measures of healthcare uti-
lization are available, including physician office visits (visits), non-physician
office visits (nvisits), physician hospital outpatient visits (ovisits), and non-
physician hospital outpatient visits (novisits). Individualized predictors are
also provided, including health measures, socioeconomic and demographic vari-
ables, and indicators of each patient’s type of insurance. We consider a subset
of n = 4406 elderly adults (aged 66 and older) covered by Medicare, which
was previously analyzed by Deb and Trivedi (1997) and Cameron and Trivedi
(2013).

The NMES data provides a unique opportunity for insightful out-of-sample
prediction comparisons. Each measure of healthcare utilization (visits,
nvisits, ovisits, and novisits) is count-valued with distinct characteris-
tics: the probability mass functions in Figure 4 illustrate the differences in the
marginal distributions, most notably the proportion of zeros and the degree
of overdispersion. An adequate prediction of individual healthcare utilization
may require prediction of one or more of these response variables, each of which
presents unique count-valued distributional features, and which share a common
set of p = 17 individual predictor variables.

We consider out-of-sample predictive distribution accuracy for each response
variable in Figure 4. In all cases, we select ntrain = 3525 (80%) individuals
randomly for training and evaluate the predictive accuracy for the remaining
ntest = 881 test individuals, and repeat this exercise for 100 iterations. Poste-
rior predictive distributions were computed for each model in Section 4.2; for
conciseness, we report results for bart-log, bart-star-id, bart-star-log, and
bart-star-bc. The (untransformed) bart model of Chipman et al. (2010) was
noncompetitive and is omitted from the subsequent results.

To evaluate the aggregate predictive distribution accuracy, we compute the
log-predictive density score for the test data {ỹi}ntest

i=1 for each model M:

lpdM(ỹ) =
1

ntest

ntest∑
i=1

log pM(ỹi|y) ≈
1

ntest

ntest∑
i=1

log

{
1

S

S∑
s=1

pM(ỹi | θs)
}

(13)

where θs ∼ pM(θ|y) is a draw from the posterior under model M. For star with
model (3), we have pM(ỹi | θs) = Φ

[
{gs(aỹi+1)−μs(xi)}/σs(xi)

]
−Φ

[
{gs(aỹi)−

μs(xi)}/σs(xi)
]
similar to (11). The results for each response variable are in

Figure 5; larger values indicate more accurate predictive distributions. The star
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Fig 4. Probability mass functions for each measure of medical care demand. Zero-inflation
and overdispersion are present in each case to varying degrees.

model with unknown transformation (bart-star-bc) performs best in all cases,
closely followed by the starmodel with known transformation (bart-star-log).
The transformation is impactful: the untransformed star model (bart-star-
id), similar to Canale and Dunson (2013), is substantially less accurate than
both transformed star models. Furthermore, the untransformed bart-star-
id model produced infinite scores for some test points ỹi; these points were
excluded for computing (13), but imply that bart-star-id performs even worse
than indicated.

For a more targeted assessment of the predictive distributions, we compare
the precision and coverage of the 90% prediction intervals for each method.
Interval precision is measured by the mean prediction interval width (MPIW)
averaged across all {ỹi}ntest

i=1 : smaller intervals that provide at least 90% coverage
are preferable. The MPIWs with empirical coverages are displayed in Figure 6.
Note that the boxplots correspond to the MPIWs for each method across the
out-of-sample testing sets, and do not indicate whether the prediction intervals
overlap among the different methods. Across all responses, the star model with
unknown transformation (bart-star-bc) provides the most precise prediction
intervals with at least 90% coverage. For the responses with greater zero-inflation
and overdispersion (nvisits, ovisits, and novisits), bart-star-bc reduces
MPIWs by a median of 45%, 50%, and 59%, respectively, relative to bart-
star-id, which indicates a substantial gain in predictive precision offered by the
(unknown) transformation.

Lastly, we consider a specific prediction task of interest: estimating the prob-
ability that an individual will utilize the healthcare system, P(ỹi > 0|y). We
evaluate each method using logarithmic scoring on the event {ỹi > 0}, which
is a proper scoring rule for binary outcomes (Gneiting and Raftery, 2007). The
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Fig 5. Log-predictive density (LPD) score for the test data across 100 randomly selected test
sets (20% of data). Large LPD score indicates better performance. The star models that
include transformations—known ( star-log) or unknown ( star-bc)—are decisively favored.

results are in Figure 7, where larger values indicate superior predictive accuracy.
The bart-star models which include both transformation and rounding (bart-
star-log and bart-star-bc) decisively outperform the competitors, especially
the continuous-valued model (bart-log).

Based on multiple measures of predictive accuracy for each of four count-
valued measures of healthcare utilization, the results from our out-of-sample
comparison provide definitive confirmation of the predictive capabilities of star
models, and in particular bart-star models which include both transformation
and rounding.

6. Modeling the decline in Amazon river dolphins

The tucuxi dolphin (sotalia fluviatilis) is a small river dolphin that inhabits the
Amazon River. While the tucuxi dolphin population was once stable, the pro-
gression of habitat degradation, dolphin fishing, and other human interference
has to led to increased concerns of population decline. To assess the validity of
these concerns, da Silva et al. (2018) gathered data from 1994 to 2017 using mul-
tiple observers to search for tucuxi dolphins along a particular segment of the
Amazon River. In addition to the number of tucuxi dolphins observed, the data
include the water level (in meters), the number of observers present, and the
date for each of n = 312 surveys. While da Silva et al. (2018) fit a linear model
to the logarithm of dolphin counts, we propose to leverage the star modeling
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Fig 6. Mean prediction interval widths and empirical coverage for the test data across 100
test sets. Preferred methods provide the narrowest intervals while maintaining the nomi-
nal (90%) coverage. The bart-star model with unknown transformation (bart-star-bc)
is consistently competitive, followed by the bart-star model with known log transforma-
tion (bart-star-log). The methods that do not including rounding (bart-log) or include
rounding without transformation (bart-star-id; Canale and Dunson, 2013) are decisively
inferior.

framework to investigate nonlinear effects and provide greater integer-valued
distributional flexibility.

We use additive models to study the yearly evolution of tucuxi dolphin counts,
which may be nonlinear, while adjusting for seasonal, water level, and observer
effects. Specifically, for each survey we include the year (year), day-of-year
(doy), and water level (water) as nonlinear predictors and the number of ob-
servers (obs) as a linear predictor. For comparisons, we implement a variety of
Bayesian additive models: Gaussian additive models for the raw (am-id) and
log(y+1) transformed data (am-log); star models with identity (am-star-id),
unknown parametric (am-star-bc), and unknown nonparametric (am-star-np)
transformations; and Poisson (am-Pois) and negative-binomial (am-NB) addi-
tive models (using rstanarm). For each method, we jointly evaluate the model
performance and the computational efficiency: performance is measured using
WAIC, while efficiency is reported as seconds per 10000 effective samples. In
particular, we compute multivariate effective sample sizes (Vats et al., 2019)
for 10 randomly sampled points from the posterior predictive distribution using
the mcmcse package in R (Flegal et al., 2017). The results are in Table 1. Ac-
cording to WAIC, the star models with unknown transformation (am-star-bc
and am-star-np) are strongly preferred, while am-NB is the closest competitor.
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Fig 7. Logarithmic scoring for estimation of P(ỹi > 0|y) across 100 test sets. Large scores
indicate better performance. The star models are clearly superior relative to bart-log, with
transformed star models ( star-log and star-bc) offering the best performance overall.

Table 1

WAIC and seconds per 10000 effective samples for additive models (dolphins data).

am-id am-log am-star-id am-star-bc am-star-np am-Pois am-NB
WAIC 2171 1964 2000 1924 1916 2821 1931

Sec / 10000 ES 32 30 52 67 95 843 295

Multivariate effective sample sizes are computed for 10 randomly selected points from the
posterior predictive distribution. Both transformation and rounding via star are essential to
achieve competitive performance. The star MCMC performance is strong, especially relative
to the Poisson and negative-binomial models (using rstanarm).

However, the existing integer-valued additive models (am-Pois and am-NB) are
noncompetitive in computational efficiency.

Proceeding with am-star-np, which is selected by WAIC, we plot posterior
expectations and credible intervals for each fj in Figure 8. MCMC diagnostics
for fj show exceptional mixing with no lack of convergence (see Appendix A.2).
The doy plot suggests a seasonal pattern, while the water plot exhibits an
approximately quadratic effect. Most importantly, the year plot shows a near
linear decline in tuxucis dolphins from 1994-2017, which interestingly has lev-
eled off since 2013. These findings are partially consistent with the results of
da Silva et al. (2018) which, assuming only a linear model, also report a signif-
icant decrement of dolphins since 1994. Posterior predictive diagnostics are in
Appendix A.2, and indicate clear improvements in fit for am-star-np relative
to models that exclude transformation (am-star-id) or rounding (am-log).
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Fig 8. Posterior expectation and 95% pointwise credible intervals for each fj(vj) under am-
star-np for the dolphins data. The tick marks indicate the observation points for each pre-
dictor.

7. Discussion

star processes provide a mathematically elegant and empirically successful
framework to model count and integer-valued data. The approach seamlessly
adapts state-of-the-art continuous data models and algorithms to the integer-
valued data setting, and thus it offers remarkable modularity both in terms of
model specification and computation, while providing ease of implementation
and interpretability for practitioners. By incorporating known, unknown para-
metric, and unknown nonparametric transformations, star processes provide
varying degrees of distributional flexibility, and are able to account for impor-
tant distributional features such as zero-inflation, bounded or censored data, and
over- or underdispersion. Empirically, star processes demonstrate goodness-of-
fit, out-of-sample point and interval predictive accuracy, reliable inference, and
computational scalability.

In addition to the healthcare utilization and animal abundance datasets
considered here, we provide further empirical comparisons on three additional
datasets in Appendix A.3. Among star, Gaussian, Poisson, and negative-bino-
mial models, the star additive and bart-star models with unknown transfor-
mations consistently provide the best performance according to WAIC.

A variety of promising extensions exist for star. The modeling and compu-
tational modularity of star suggest that new multivariate, functional, and time
series models may be developed for integer-valued data. Furthermore, star is
capable of modeling rounded data, which is ubiquitous in practice yet rarely con-
sidered in modern statistical and machine learning methods. Lastly, the star

model (1)-(2) does not strictly require a Bayesian modeling approach, and may
be adapted for classical estimation and inference.

Appendix A: Supplemental results

A.1. Evaluating point accuracy for synthetic data

To accompany the WAIC comparisons from the main paper, we evaluate each
method for point estimation accuracy. Specifically, we are interested in estimat-
ing the conditional expectation of the observed data, λ∗

i (x). For an estimator
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ŷi(x), we compute the root mean squared error RMSE =
√∑n

i=1

{
λ∗
i (x)− ŷi(x)

}2
.

The fitted values for star are computed using the conditional expectation of y
at x ∈ X , that is

E{y(x)} =

∞∑
j=0

jP{y(x) = j} ≈
J(x)∑
j=1

jP{y(x) = j}, (14)

where P{y(x) = j} is the star probability mass function and J(x) is a finite
truncation. Since P{y(x) = j} depend on the parameters θ in Πθ, the posterior
distribution of (14) may be computed by evaluating (14) for each draw of θ in
the MCMC algorithm. Conservatively, we select J(x) to be the 99.99th quantile
of the distribution of y(x) pointwise for each x, which is easily computable as
h
[
g−1

{
z∗q (x)

}]
where z∗q (x) is the qth quantile of Πθ. The point estimate is

computed as the posterior expectation of (14).
Figures 9 and 10 depict the relative RMSEs across simulated data sets for

the linear and nonlinear simulation designs in Sections 4.1 and 4.2, respec-
tively, defined as the ratio between the RMSE of the generic model over the
RMSE for a baseline method, and specifically the lm-log method which repre-
sents the common approach of modeling (log-) transformed counts using Gaus-
sian models. Relative RMSE standardizes model performance across simulated
datasets: methods with a relative RMSE less than 1.0 demonstrate superior
point estimation relative to the baseline method. As in Section 4, we find that
star-log and star-bc are consistently competitive and outperform other meth-
ods. Interestingly, star-np is much less competitive in RMSE than in WAIC,
which suggests that the additional distributional flexibility acquired by model-
ing g nonparametrically does not necessarily imply more accurate point estima-
tion.

Fig 9. Relative RMSE under various distributions. Preferred models have smaller values,
and models with values less than 1.0 are preferred to lm-log. As expected, the lm-NegBin
performs well, since it closely matches the data-generating process. Notably, the star models
are highly competitive, and clearly superior to the Gaussian models, especially lm-star-bc
and lm-star-log.
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Fig 10. Relative RMSE under various distributions. Preferred models have smaller values,
and models with values less than 1.0 are preferred to bart-log.

A.2. Model and MCMC diagnostics for the dolphins data

Posterior predictive diagnostics for additive models fit to the tucuxis dolphins
data are in Figure 11. The additive star-np model is adequate for the data,
while the models which lack either rounding or transformation are incapable of
capturing distributional features, including the variability and the proportion
of zeros.

The MCMC convergence of the additive star-np model is assessed via tra-
ceplots in Figure 12. The traceplots indicate no lack of convergence and demon-
strate exceptional mixing: effective sample sizes for all fj(vj) exceed 2000.

A.3. Supplemental empirical examples

For further models comparisons, we apply the linear, additive, and bart mod-
els to several additional datasets, and again consider star, Gaussian, Poisson,
and negative-binomial distributions. For the additive models, each continuous
variable (i.e., variables with at least 10 unique observation points) is modeled
nonlinearly.

Ships data

The ships data, available in the MASS package in R, provides the number of
damage incidents due to waves for n = 34 cargo-carrying vessels, as well as ship
type (A-E), year of construction (1960-1964, 1965-1969, 1970-1974, or 1975-
1979), the period of construction (1960-1974 or 1975-1979), and the aggregated
months of service (ranging from 0 to 44882). We model the ship type, year
of construction, and period of construction as factors, and center and scale
the service variable. The data were analyzed in McCullagh and Nelder (1989)
using a quasi-Poisson regression model to account for observed overdispersion,
and subsequently re-analyzed in Mallick and Gelfand (1994) using a Poisson
regression model with unknown link function, which suggests that additional
distributional flexibility in the regression model may be important.
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Fig 11. Posterior predictive diagnostics for am-log (top row), am-star-id (middle row), and
am-star-np (bottom row). The mean (left), standard deviation (center), and proportion of ze-
ros (right) were computed for each posterior predictive simulated dataset (histograms) and the
observed data y (vertical lines). Only the model including both transformation and rounding
(am-star-np) is adequate by these measures for the dolphins data.

Fig 12. Traceplots for fj(vj) and σ under the additive star-np model for the dolphin data,
where the functions fj are evaluated at the 25th, 50th, and 75th sample quantiles of each
{vi,j}ni=1. The MCMC chain consisted of 5000 iterations (after discarding a burn-in of 5000
and retaining every 3rd sample). Effective sample sizes for all fj(vj) exceeded 2000.
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Roaches data

Gelman and Hill (2006) consider a study of pest management for eliminat-
ing cockroaches in city apartments. The response variable, yi, is the number
of roaches caught in traps in apartment i, with i = 1, . . . , n = 262. A pest
management treatment was applied to a subset of 158 apartments, with the
remaining 104 apartments receiving a control. Additional data are available on
the pre-treatment number of roaches, whether the apartment building is re-
stricted to elderly residents, and the number of days for which the traps were
exposed. A notable feature of the data is zero-inflation: yi = 0 for 94 (36%) of
the apartments.

Highway data

The Highway data, available in the carData package in R, consists of the 1973
accident rate per million vehicle miles on n = 39 large sections of Minnesota
highway. Important predictors include the number of access points per mile, the
speed limit, the width of the outer shoulder on the roadway (in feet), and the
number of signals per mile of roadway, among others. We consider the accident
rate per 10,000 miles, which is the smallest rate for which the observations
yi are integer-valued. A notable feature of these data are that, despite being
(scaled) accident counts, no two observations yi and yj are equal, and the counts
themselves are large, ranging from 161 to 923. Therefore, it is unclear a priori
whether an integer-valued model is necessary or advantageous.

Results

The WAICs for the supplementary datasets are reported in Table 2. The star

models consistently perform well across all datasets, and in particular star-bc
and star-np. Notably, star provides the best linear, additive, and bart models
for all datasets with the exception of the Highway data, for which all bart
models perform similarly. Interestingly, additive star models are preferred for
both the ships data and the Highway data, while bart-star is slightly preferred
to the additive star model for the roaches data.

Table 2

WAIC for the ships, roaches, and Highway datasets.

Model Gauss-id Gauss-log star-log star-sqrt star-id star-bc star-np Pois NB

ships

lm 292 204 204 195 220 196 194 239 203
am 240 188 193 173 182 175 171 – –

bart 242 204 200 182 191 196 187 – –

roaches

lm 2722 1886 1791 1772 1952 1756 1759 12565 1793
am 2711 1838 1740 1732 1928 1710 1729 – –

bart 2700 1833 1736 1732 1927 1708 1719 – –

Highway

lm 495 481 481 484 496 486 479 1587 496
am 487 465 465 473 484 478 460 – –

bart 466 463 465 465 469 476 464 – –

The best method (lowest WAIC) for each model class is in bold, and the best overall model
for each outcome is underlined. The star models dominate, with the additive and bart

models typically outperforming the linear models.
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