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Abstract

A cyber-physical system (CPS) typically consists of networked computational elements

that control physical processes. As an integral part of CPS, the widespread deployment of

communicable sensors makes the task of monitoring and control quite challenging especially

from the viewpoint of scalability and complexity. This research investigates two unique

aspects of overcoming such barriers, making a CPS more robust against data explosion and

network vulnerabilities. First, the correlated characteristics of high-resolution sensor data

are exploited to signicantly reduce the fused data volume. Specifically, spatial, temporal

and spatiotemporal compressed sensing approaches are applied to sample the measurements

in compressed form. Such aggregation can directly be used in centralized static state es-

timation even for a nonlinear system. This approach results in a remarkable reduction in

communication overhead as well as memory/storage requirement. Secondly, an agent based

architecture is proposed, where the communicable sensors (identified as agents) also per-

form local information processing. Based on the local and underdetermined observation

space, each agent can monitor only a specific subset of global CPS states, necessitating

neighborhood information exchange. In this framework, we propose an agent based static

state estimation encompassing local consensus and least square solution. Necessary bounds

for the consensus weights are obtained through the maximum eigenvalue based convergence

analysis and are verified for a radial power distribution network. The agent based formu-

lation is also applied for a linear dynamical system and the consensus approach is found

to exhibit better and more robust performance compared to a diffusion filter. The agent

based Kalman consensus filter (AKCF) is further investigated, when the agents can choose

between measurements and/or consensus, allowing the economic allocation of sensing and

communication tasks as well as the temporary omission of faulty agents. The filter stability



is guaranteed by deriving necessary consensus bounds through Lyapunov stability analysis.

The states dynamically estimated from AKCF can be used for state-feedback control in

a model predictive fashion. The effect of lossy communication is investigated and critical

bounds on the link failure rate and the degree of consensus that ensure stability of the agent

based control are derived and verified via simulations.
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Chapter 1

Introduction

1.1 What is CPS?

Cyber-Physical System (CPS) is a term used to describe “a ubiquitous and smart integration

of sensing devices, computing processors and communication networks that reliably interacts

with the physical world (with the probable involvement of humans in the loop) in real

time”(Fig.1.1(a))[5]. Although this term was first introduced by Helen Gill in 2006 [6], the

main concept dates back to post World War II era. In 1948, the famous mathematician

Norbert Wiener coined the word “cybernatics” from the Greek “κυβερνητης” (meaning

helmsman, governor, pilot, or rudder) to describe the integration of closed loop feedback

control and communication [7]. CPS can be perceived as a set of embedded systems that

closely interact with each other and beside information processing and control, are able

to perform computational tasks with the knowledge of underlying physical dynamics. A

successful implementation of CPS depends upon the synchrony at which various sequential

tasks (e.g., data collection, processing, prediction and control) can be performed throughout

a reliable network of diverse physical entities [8, 9]. CPS spans multiple applications such

as (1) smart energy management with active end user participation in energy trade [10],

(2) real-time traffic-aware autonomous transportation enabled with vehicular networks [11],

1
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Figure 1.1: (a)A depiction of Cyber-Physical System. (b) Major CPS Challenges [1, 2, 3,
4].

(3) ubiquitous healthcare enhancing societal well being [12], (4) exploration and disaster

management in hazardous or inaccessible environments, and (5) climate and pest-smart

agriculture allowing efficient cultivation in available arable lands [13, 14]. A broader and

more structured view of CPS, its impacts and applications is presented in [4]. The inherent

heterogeneous characteristics and complexity of CPS demands an adaptive, reconfigurable

and near realistic modeling. Unlike an embedded system, the model should incorporate

physical dynamics along with communication reliability and information processing so that

it can imitate the temporal evolution of CPS states and predict responses to any unusual

circumstances [15]. In the next section, we shed light on some of the major CPS challenges

which are especially important from sensing, computation and control perspectives.

2



1.2 Challenges in CPS

A successful, reliable and green implementation of a cyber-physical system presents at least

seven major challenges as depicted in Fig.1.1(b). Specifically, the issue of “Scalability and

Complexity” intersects with every other major challenge from the perspective of (a) sensing,

(b) communication and (c) computation. We briefly discuss the mentioned challenges from

these perspectives.

• Sensing Big Data: Technological advances are making wireless communicable sensors

cheaper and more powerful. As a result, a large-scale physical system can now be

observed in real time through massive deployment of such sensors [16]. These sensors

open the door to the “cyber” aspect of an intelligent self-healing dynamical system.

However, such universal usage of high resolution sensors can generate a significant

volume of raw data. Consequently, with increasing numbers of communicable sensors,

the effective throughput of underlying network can be drastically impacted if neces-

sary remedies are not taken [17]. To give an idea about this “big data” problem, we

highlight an ongoing smart grid project in Austin, Texas [18]. Here, with the de-

ployment of communicable smart energy meters with 15 second resolution, about 2.7

billion units of raw data were collected in the year of 2011 [19]. Such an exponential

growth in raw measurements demands an efficient and robust information aggregation

scheme along with economic storage for successful monitoring and optimization.

• Computation Time and Concurrency : In many CPS, spatially distributed sensors col-

lect raw data in a periodic manner and convey them to a fusion center mostly through

a wireless communication network [20]. Based upon a mathematical model of the

system, the fusion center uses these measurements to obtain estimates of underlying

system states and derive necessary control decisions. The control signals are then

fed back to the respective actuators that ensure expected behavior of the CPS. Be-

sides algorithmic complexity, speed and architecture of the estimation and control

3



unit (ECU), the overall computation and processing time is also dependent upon the

volume of raw data involved. This is critical since the physical process may evolve at

a rate much faster than the rate at which ECU can make control decisions. Thus, the

concurrency in cyber-space information processing and real-world physical dynamics

is a vital issue for desired behavior of the integrated cyber-physical system [6].

• Robustness to Communication Network Impairments : The communication network is

an integral part of a CPS. For sensing, estimation and control purposes, a large-scale

CPS requires a robust network that can handle the large volume of information with

least amount of delay as well as packet drops. However, faulty reception of packetized

data specially from distant sensor(s) is quite possible resulting in incorrect estimation

and control actions leading to unstable operation of the physical system [20]. Further-

more, centralized schemes for information processing require more power for wireless

transmission resulting in rapid decay of sensor’s battery life. Thus, avoiding long dis-

tance communication will not only make the CPS more robust but will also conserve

individual sensor’s power consumption. Hence, an efficient information aggregation

scheme as well as distributed estimation and control strategies can pave the way to a

greener and more robust cyber-physical system.

Based on these three perspectives, we seek to address a few fundamental research questions

in this dissertation. These questions and the previous attempts to address them are discussed

in the following sections.

1.3 Research Questions

Question 1. For large scale cyber-physical systems with wide-spread deployment of com-

municable sensors, how can we minimally aggregate measurements at a fusion center while

ensuring a low communication burden and preserving adequate system information?

4



Question 2. Can this minimal information be effectively utilized for centralized estimation

of the physical system states?

Question 3. Is it possible for sensors (with communication and computation capabilities)

to estimate only a partial set of system states instead of estimating the entire system at

a fusion center? If such distributed estimation is feasible, how should the sensors interact

with each other so that centralized processing can be avoided? What information should they

share? What would be the performance of such estimation strategies?

Question 4. How does the degree of inter-sensor information exchange impact estimation

stability? What is the impact of a lossy communication network on such distributed estima-

tion methods?

Question 5. What if sensors are given the freedom to use measured data and/or information

from other sensors to derive local system awareness? How does such autonomous sensor

choices affect the state estimation stability?

Question 6. Can these distributed estimator design scenarios be applied to distributed con-

trol decision making?

1.4 Related Work

This dissertation attempts to address the research questions listed above in the context of

one of the most complex and challenging CPS - the electric power system [21]. However, the

methods, algorithms and theoretical results/insights developed in this work can be applied

to any CPS with minor application specific modifications.

The current electric grid will presumably evolve as a smart and intelligent network, a

futuristic model of energy cloud and information web for interested clients. The conven-

tional electric power system is established over a hierarchical structure with generation and

distribution network at the top and bottom level, respectively. A smart implementation can
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be achieved with advanced metering infrastructure (AMI), which includes communicable

meters and actuators throughout the grid to collect data and act on it (e.g., use it for state

estimation and / or control). It will also enable end-user participation in system monitoring,

operation and control through two-way communication with electrically coupled neighbors

and exchanging relevant encrypted information [22]. Additionally, the future grid will expe-

rience a significant penetration of cost effective and renewable energy sources especially at

the end-user premises [23]. Also, with advances in technology the usage of electric vehicles

is expected to increase in near future. Beside high volume data management, these com-

ponents will make the electric power generation and usage more stochastic in nature that

demands for more sophisticated and distributed implementation of power system estimation

and control. From a smart grid perspective, the following subsections summarize the prior

work related to the research questions of interest.

1.4.1 Question 1: Correlated Information Aggregation

As mentioned earlier, the high penetration of renewable energy sources and rapid growth in

electric vehicle usage will make the power system sensing, estimation and control task more

challenging. One key characteristic such distributed generation (DG) is the spatial corre-

lation resulting from the geographical proximity of the renewable energy sources [24, 25].

Furthermore, a distribution network consists of loads characterized in several categories

such as residential, commercial etc. Typically, the load demands of similar class of cus-

tomers (e.g., residential, commercial) is expected to be highly correlated. It should be

noted that the inherent correlations of a signal corresponds to low variability or some de-

gree of smoothness across it, resulting in compressible coefficients especially in the wavelet

domain [26, 27]. Hence, it is expected that, with high level of correlation, the signal will be

more compressible, allowing approximation with fewer number of wavelet coefficients [28].

On the other hand, the sampling frequency of monitoring devices (e.g., smart meter installed

at the customer premises) is expected to rise from the necessity of real-time monitoring and
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robust control of the future electric grid. In this scenario, we can exploit the correlated

nature of distributed generation and load to efficiently aggregate power information using

concepts from Compressed Sensing. A successful implementation of this technique is de-

pendent upon the degree of sparsity of the information being collected. In Chapter 3, we

discuss in detail about the application of compressed sensing in efficient aggregation of real

and reactive power measurements both in space and time. Recently, authors in [29, 30] re-

port application of compressed sensing in simultaneous reading of all smart meters in order

to securely transmit the sensed data and to ensure identical delay in wireless transmission

of all smart meter readings. The measurement compression is obtained using pseudoran-

dom spreading sequence. In [29], compressed measurements are obtained in the presence

of bounded noise whereas, the measurement noise is assumed to be normally distributed

in [30]. In [31], an automated compressed meter reading scheme is proposed for a wireless

home area network, where the smart meters are equipped with Zigbee standard communi-

cation devices. In all these works it is assumed that, the meters convey information only

about the significant changes of the respective power levels. In this way sparsity is preserved

to apply compressed sensing. However, in a practical scenario, the meters may send exact

measurement information at regular time intervals. Therefore, the underlying correlation

among the measurements both in space and time needs to be utilized in order to obtain

approximate sparsity and hence the compressed sensing technique. In smart meter data

collection perspective, this is still an open problem. Furthermore, the impact of correlated

real and reactive power measurements over the voltage states needs to be investigated in

order to assess the competence of compressed measurements in state estimation.

1.4.2 Question 2: State Estimation from Compressive Measure-

ments

In an electric power grid, the state of the system is usually defined as system node voltage

phasors or branch currents [32, 33]. These states form a system of nonlinear equations with
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the typically available measurements of real and reactive power. These measurements may

not be readily available from every customer. As a result, pseudo-measurements are synthe-

sized using historical data and real-time measurements, so that an overdetermined system

of equations can be formed [34, 35]. Such a system of nonlinear equations is then solved

using weighted least square (WLS) method and its variants [33]. As discussed in Section

4.1, the application of compressed sensing causes a linear mapping to underdetermined sys-

tem whereas, traditional cases are the direct mathematical models of corresponding physical

system. A typical example is a set of parametrized nonlinear equations, arising from an at-

tempt to solve a determined system in RM by continuation methods [36]. Another example

is the method of finding an interior point of the polytope {z ≥ 0,A ∈ RM×N : Az = b},

by using the non-linear transformation (zi = exi , i = 1, · · · , N) [37]. As a third example,

we quote a recent article about the in-silico manipulation of biological signaling pathways,

which is modeled as an underdetermined system of nonlinear equations [38]. In prior lit-

erature, Newton-Raphson method is reported to be the most suitable to solve these kinds

of underdetermined nonlinear equations [37], which can give only the least square solution

using pseudo-inverse of underlying Jacobian matrix. Furthermore, the compressed mea-

surements obtained in [29, 30, 31] need to be exploited to estimate the states of a power

system.

1.4.3 Question 3: Distributed Static Estimation

The word decentralized and distributed are used interchangeably in literature to describe the

state estimation procedure by a set of communicable sensors distributed over the physical

system. In this architecture, each sensor node observes only a distinct portion of underlying

physical system and makes a local estimate of overall system states by exchanging informa-

tion with neighboring nodes. It offers benefits relative to centralized and hierarchical data

fusion architecture in terms of (1) real-time implementation, (2) configuration flexibility,

and (3) communication bottlenecks [39]. In this regard, a brief survey of static state esti-

8



mators is given in [40], which also reports the weighted least square (WLS) method as the

most popular one in this respect. The WLS method is used in various literature for global

state estimation from decentralized observation model, specially for interconnected electric

power transmission systems. The decentralization is generally obtained by decomposing an

interconnected transmission system into a certain number of nonoverlapping subarea on a

geographical basis [41]. In each of the subsystem, respective local estimates are obtained

using Gauss-Newton iteration. The local estimates are then centrally coordinated to ob-

tain overall system states subject to the boundary constraints of the interconnected system.

A comprehensive survey of such multiarea scheme of state estimation is given in [42]. A

hierarchical multilevel structure of state estimation based on factorized WLS method is

described in [43]. Here, the authors define the distribution substations as the lowest level

of the multilevel structure. In [44], authors use decentralized measurement model with the

assumption that the global state may not be observable in some of the subareas. In each

subarea, the global states are synchronously updated using the combined approach of global

consensus and innovation. It should be noted that, the convergence to global consensus is

not reported in [44], when local jacobian matrix violates the condition of full column rank

in each of the subarea. Unlike [41], partial overlapping of local state vectors is considered

in [45] and [46]. It is assumed that any subarea may have some state elements, which are

shared with its neighbors. The sharing is due to the specific placement of measurement

devices over the tielines of an interconnected system. In this scenario, the multi-area state

estimation (MASE) is designed as a distributed optimization problem in each Gauss-Newton

iteration [45]. As discussed in Section 5.1.1, this optimization problem represents a partially

global consensus problem, that can be solved using alternating direction method of multi-

pliers (ADMM) (See chapter 7 of [47] for details). In [46], authors implement R-SDP with

the help of ADMM to solve the problem of MASE. However, two important assumptions

are made in the works of [45] and [46]: (1) in each subarea, there exists at least one state

element, unshared with any of its neighbors, and (2) if a state element is shared, it is only
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between two neighboring subareas. As will be discussed in Chapter 5, these assumptions are

restrictive and do not hold for the power distribution grid considered in the current research.

In a nutshell, the prior efforts are based on either over-determined or fully determined mea-

surement models. As a consequence, efficient factorization schemes [48] can be applied in

WLS method as well as in partially global consensus problem. Furthermore, a scenario with

more than two subareas sharing the same state element as well as the case when all local

state elements are shared among neighbors is still an open challenge in distributed state

estimation.

1.4.4 Questions 4 and 5: Distributed Dynamic Estimation

The current electric power grid can be tracked via a distributed network of communicable

sensors typically over a large geographical region [49, 50]. The underlying communication

and computational burden is considerably high with a centralized or hierarchical imple-

mentation of a dynamic state estimator, e.g., Kalman filter [39]. This issue is resolved

through distributed implementation of Kalman filters that also offers benefits in terms of

real-time implementation and configuration flexibility. Although, the fundamental concept

is unchanged, the distributed Kalman filter has evolved through numerous versions. Among

those, Kalman consensus filter (KCF) [51] and diffusion Kalman filter (DKF) [52] are worth

mentioning. In both setups, the sensors collect detailed information about the measurements

(i.e., sensed data and noisy observation space model) from neighbors. The fused information

is then applied to the classical Kalman filtering algorithm. Thus, an intermediate estimate

of the whole dynamics and the corresponding update in estimation error covariance matrix

is obtained at each sensor. At the last stage, the sensors exchange information about the

intermediate estimates with their neighbors. A correction is made to each sensor’s estimate

by either applying consensus (i.e., KCF), or through a weighted combination of the received

neighborhood information (i.e., DKF). Finding the desired degree of consensus or the op-

timal weights for diffusion are the major issues in the design of such distributed Kalman
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filters. For the Kalman consensus filter, the objective is to design a scalar consensus gain

parameter. In this regard, an optimization problem is solved in [53] in order to find the de-

sired consensus gain that ensures the convergence of the over all estimation error covariance

to a known steady-state matrix. However, it is also mentioned that such steady-state matrix

is hard to obtain in practical perspective and an approximate expression for the consensus

parameter is derived. On the other hand, in [54] a Lyapunov stability analysis is carried

out over the estimation error dynamics to find a range of real numbers within which the

desired consensus parameter should be chosen. When it comes to implementing weighted

diffusion of neighborhood estimates, the Laplacian [52], the Metropolis [55] and the nearest

neighbor or uniform weighting rules [56] are the popular choices in designing the diffusion

weights. The robustness of Kalman consensus filter is also investigated under the effect of

lossy sensor network in [53] by incorporating a Bernoulli random variable in the consensus

step. The effect is only illustrated through simulations necessitating a theoretical analysis

that involves the consensus gain parameter and network reliability. The usage of mutually

independent Bernoulli distributions is also reported in [57] to model the random presence

of nonlinear dynamics as well as the quantization effect in the sensor communication. The

filter designed is of diffusion characteristics and the corresponding weights are derived based

on the average H∞ performance. On the other hand, relative variance and adaptive combi-

nation rule is proposed in [56] for stationary diffusive estimation of single parameter under

noisy communication link. As a matter of fact, most of the advanced distributed Kalman

filters are based on these two major approaches, although they bear widely varying appli-

cation specific characteristics. We would like to refer [58] as a resource that summarizes the

extensive research carried out in this arena. As mentioned in Section 1.2, the massive de-

ployment of communicable sensors makes it quite challenging to regularly store and update

the global state vector of a CPS-like large-scale system through a fully connected network.

Consequently, the number of communication links, computational memory and hardware

requirements increase with the increase in active sensor nodes. Thus, it may be impractical

11



to track the high dimensional state vector in its entirety at each communicable sensor. This

constraint is overcome specifically for sparse large-scale linear systems [59, 60]. In this case,

the corresponding transition of states can be reflected on (approximately) banded matrix

to spatially decompose the overall dynamics among sensors even when local measurement

space projects onto global states. This idea is further extended for system specific reduced

order particle filtering [61] and distributed observer design for large-scale system partitioned

into disjoint areas [62]. The key fact is, the observation space of each sensor is modified

solely based on the characteristics of state dynamics.

On the contrary, in a practical physical system, overlaid with communication network,

the observation space of a sensor may be coupled to a limited set of specific state elements.

Some state elements may even be coupled to two or more sensors’ observation space. Under

these circumstances, each sensor may be relieved to track only the pertinent state elements.

Feasibility of such a scenario is still unknown and demands extensive investigation.

1.4.5 Question 6: Distributed and Decentralized Model Predic-

tive Control

Model predictive control (MPC) of a system relies on the future prediction of state trajec-

tories so that the set of desired control inputs can fulfill system specific objectives under the

given constraints. This is advantageous than finite horizon approximated linear quadratic

regulator as it offers more stability in satisfying the control objective. However, as pointed

out in [63, 64], the computational complexity of MPC is a major issue that makes its ap-

plication in large-scale systems questionable in terms of efficiency, robustness as well as

reliability. Such scalability issue can be overcome by delegating the control responsibility

among a set of controllers spatially distributed across the cyber-physical system (CPS). In

this regard, two basic approaches are typically used: (1) decentralized approach, where the

set of controllers independently decides specific and non-overlapped control inputs with-

out the requirement of communication, and (2) the distributed approach, where a more
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reliable control decision is achieved through an iterative information exchange among the

controllers over a communication network [65]. The characteristics of a large-scale system

usually plays a major role in defining each controller’s observation and control space in a

distributed control scheme. In [66], a sparse and large scale system is decomposed into mul-

tiple subsystems. The subsystems are mapped using binary matrices exclusively designed

for specific dynamics irrespective of observation space. In absence of any negotiation, each

entry of the control input set is chosen from individual subsystem. The decomposed local

subsystem is also reported to include the effect of neighborhood control decisions. In [64],

the neighboring control inputs appear as disturbance to the local controller of a radial net-

work of water delivery canal system. Alternately, a weighted combination of neighborhood

controls is considered in [67]. Here, a communication intensive repetitive procedure of con-

trol coordination is proposed. However, the typical effect of communication networks (delay,

loss of packets etc.) are not considered. A successive loss of limited number of packets are

considered in [63] to analyze the effect of lossy network over the closed loop stability of the

global dynamical process. Consensus in control using linear quadratic Gaussian regulator is

investigated in [68] and the stability criteria is derived via conditioning the spectral radius.

In recent years, distributed control is becoming popular in multi-agent operation of

cyber-physical systems. Electric power transmission and distribution system can be con-

sidered a good candidate example. In this context, a graph theoretic approach is reported

in [50] to maintain power balance at the prevalence of renewable energy sources. Authors

in [69] use multi-objective genetic algorithm to minimize phase current unbalance in distri-

bution network. More recently, the optimal power flow problem is distributed in [70] using

the Lagrangian relaxation. A lower-upper-bound switching algorithm is designed to bal-

ance the power flow between the utility and microgrid enabled communities. In a broader

perspective, the problem of optimal operation of electric power system can be addressed as

synchronous optimization in a multi-objective environment. As a result, decision conflict

is not uncommon in an agent based framework of such systems. In this regard, coalitional
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Figure 1.2: (a) Holonic Multi-Agent System (HMAS), (b) Depiction of Power Distribution
Network as an HMAS

game theory is used in [71] to combine different objective functions to ensure common con-

trol decisions. A recent review of the usage of consensus strategy in distributed multi-agent

optimization problem shows the focus of existing research in individual agent’s convergence

to the average of the initial states [72]. Optimal convergence for general linear and nonlin-

ear systems, however is still an open problem. Also, the distributed control framework still

needs to be generalized based on deeper insights on system behavior as well as the limited

observation spaces of the controllers [73].
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1.5 Contributions of This Dissertation

In this dissertation, a holonic multi-agent framework is proposed, which enables distributed

estimation and control of a CPS. A multi-agent system consists of virtual, intelligent and

proactive agents, which are individually aware of the surrounding environment and able to

interact with each other over a communication network. Through a collaborative approach,

the multi-agent system enables the underlying physical system to be artificially intelligent to

make decisions in various situations in order to reach a universal objective [74]. Some prior

research in agent based modeling involves coordinated control of unmanned air vehicles

[75]; reliable management of intelligent water distribution network [76], efficient energy

management in commercial buildings [77], and intelligent traffic control systems [78]. When

the agents are segmented in multiple layers and hierarchically organized, they form a holonic

multi-agent system (HMAS). Such an architecture can reduce communication as well as

computational burden and ensure synchronous tracking and control of underlying CPS.

Fig.1.2(a) shows the basic HMAS model. A typical power distribution network is shown in

three layers in Fig.1.2(b), namely the “tree” layer, “radial” layer and “home” layer. In this

research, the spatially distributed sensors are defined as agents. Each of them can (1) collect

measurements which relates to a subset of global states, (2) can make intermediate estimate

of the local states and (3) can communicate with neighboring agents where the neighbors are

defined according to the sharing of state elements. In this regard, the major contributions

of this research is presented below, which forms the foundation of this dissertation,

• Questions 1 and 2: Correlated information aggregation and centralized state estima-

tion.

– Study and quantify the correlation structure induced on the voltages by the

correlated generation from DGs. Results demonstrate that, the voltage phasors

exhibit very strong correlation similar to that of distributed generation.

– Demonstrate the feasibility of spatial, temporal and spatiotemporal compressed
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sensing strategies on the reconstruction of power measurements. For the IEEE 34

node distribution test feeder, it is observed that, the correlated generation from

DGs allow upto 50% reduction in all types of measurements while recovering the

original data with 90% accuracy.

– Quantify the accuracy in estimating voltage states from compressed power read-

ings. It is shown that, the voltage phasors of the grid can be estimated almost

accurately by randomly measuring only half of the available apparent power in-

formation.

– Develop two (direct and indirect) methods of state estimation using compressed

power measurements. The underlying computational complexities for the two

methods are also discussed. It is shown that both the indirect and direct state

estimation approach give similar performance with same complexity order and

can estimate voltage states almost accurately by randomly projecting only half

of the available power information.

These contributions are discussed in detail in Chapters 3 and 4 and also appear in the

following articles:

[79]: S M Shafiul Alam, Bala Natarajan and Anil Pahwa, “Impact of Correlated Dis-

tributed Generation on Information Aggregation in Smart Grid”, In Proceedings of 5th

Annual Green Technologies Conference (IEEE GreenTech), April 3-5, 2013, Denver,

Colorado, USA.

[80]: S M Shafiul Alam, Bala Natarajan, and Anil Pahwa, “Distribution Grid State

Estimation from Compressed Measurements”, IEEE Transactions on Smart Grid, vol.

5, no. 4, pp. 1631-1642, 2014.

• Question 3: Agent based static state estimation.
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– The states of a physical system are estimated in a distributed fashion using agent

based nonlinear measurement model. We develop a distributed local consensus

based approach, especially when there is overlap of state elements among neigh-

boring agents.

– The convergence rate of distributed consensus is analyzed. Based on this analysis,

a general criteria is formulated in order to make system specific selection of

coefficient values in the proposed method.

We discuss these contributions in Chapter 5 and they also appear in the following

articles:

[81]: S M Shafiul Alam, Bala Natarajan, Anil Pahwa, and Sergio Curto, “Agent based

State Estimation in Smart Distribution Grid”, IEEE Latin America Transactions, vol.

13, no. 2, pp. 496-502, 2015 .

[82]: Anil Pahwa, Scott A. DeLoach, Bala Natarajan, Sanjoy Das, Ahmad R. Malekpour,

S M Shafiul Alam, and Denise M. Case,“Goal-Based Holonic Multi-Agent System for

Operation of Power Distribution System”, IEEE Transactions on Smart Grid (Special

Issue on Cyber-Physical Systems and Security for Smart Grid), vol. 6, no. 5, pp.

2510-2518, 2015.

• Performance and robustness of consensus and diffusion approach in agent based dy-

namic state estimation.

– In contrast to the traditional decomposition of global system dynamics (which is

independent of measurement model), we introduce the use of binary projection

matrices that reflect the local underdetermined observation space of individual

agents. The agents can sense, compute as well as communicate with the agent

neighbors (defined according to the sharing of state elements rather than the

relative placement of physical devices).
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– Develop agent based Kalman consensus filter (AKCF) and agent based diffusion

Kalman filter (ADKF) where the observation space of each agent is (generally)

underdetermined.

– Investigate the effect of communication over the performance of agent based

tracking of the dynamical system.

These contributions are discussed in detail in Chapter 6 and in the following article:

[83]: S M Shafiul Alam, Bala Natarajan, and Anil Pahwa, “Distributed Agent Based

Dynamic State Estimation over a Lossy Network”, In Proceedings of 5th Int. Workshop

on Networks of Cooperating Objects for Smart Cities (UBICITEC), April 14-17,2014,

Berlin, Germany.

• Question 4: Design of stable and optimally weighted agent based Kalman consensus

filter (AKCF).

– Perform Lyapunov stability analysis from the AKCF estimation error dynamics.

– Find the expression of optimal consensus weight in the form of εA, where ε is a

positive scalar value and A is a system specific and timely updated matrix.

– Find an upper bound of ε that ensures filter stability.

– Incorporate random link failure among neighboring agents and find the theoretical

bound on link failure rate till which guarantees estimation stability.

Chapter 7 discusses these contributions in detail and also appear in the following ar-

ticle:

[84]: S M Shafiul Alam, Bala Natarajan, and Anil Pahwa, “Agent based Optimally

Weighted Kalman Consensus Filter over a Lossy Network”, In Proceedings of 2015
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IEEE Conference on Global Communications (IEEE GLOBECOM), (accepted), De-

cember 6-10,2015, San Diego, CA, USA.

• Question 5: Development of a generalized optimally weighted and stable AKCF.

– Introduce a new flexible policy for agents. Specifically, each agent is given the

flexibility of random measurement and/or consensus. That is, agents can use ei-

ther the local measurements or neighborhood information or both for estimating

the states. This is a unique aspect of this research and completely different from

the concept of intermittent measurements, which usually occurs due to faulty

communication link among sensing and computing devices. This agent-level flex-

ibility also allows the modeling of scenarios, when (1) the costs involved in sensing

vs communication are significantly different; (2) there is partial/temporary mal-

function of sensors that prevents its ability to take measurements but not impair

its communication interface (and vice versa).

– Define three cases of agent behavior based on the usage of measurement and

consensus in state estimation. In the first case, each agent uses both the mea-

surement and consensus in state estimation. In case 2, each agent is allowed to

use either measurement or consensus. Finally, in the third case, each agent’s

decision of measurement usage is independent from that of participation in con-

sensus. For each case, the filter stability is analyzed based on the mean behavior

of Lyapunov energy function.

– Derive bounds on the consensus level (in terms of eigenvalue ratios) that will

guarantee convergence of the estimation process. For each case of agent behavior,

three different scenario are considered while expressing these bounds. These

scenario are characterized based on the relative eigenvalue distribution of the

underlying symmetric positive definite matrices.

These contributions are discussed in detail in Chapter 8 and under review in the fol-
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lowing article:

[85]: S M Shafiul Alam, Bala Natarajan, and Anil Pahwa, “On the Stability of Agent

based Kalman Filters with Measurement and/or Consensus”, IEEE Transactions on

Control of Network Systems(under review), 2015.

• Question 6: Agent based distributed model predictive control.

– Propose a unique way of obtaining agent based small-scale model of global system

dynamics. This down conversion depends upon agent specific observation space.

– Perform Lyapunov function based stability analysis of the closed loop system

resulting from agent based model predictive state feedback control.

– Determine a reasonable control consensus weight in the form of νA, where ν is a

positive scalar value and A is system specific and timely updated matrix.

– Derive an upper bound of ν that ensures closed loop stability of global system.

– Incorporate independent and identically distributed random link failure among

neighboring agents and find theoretical bound on the link failure rate within

which the global system will be stable.

We discuss these contributions in Chapter 9 and under review in the following article:

[86]: S M Shafiul Alam and Bala Natarajan, “Stability of Agent based Distributed Model

Predictive Control over a Lossy Network”, IEEE Transactions on Signal and Information

Processing over Networks (In Press), 2015.
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1.6 Organization of This Dissertation

Chapter 2 provides the background on compressed sensing, static and dynamic estimation

and control. Chapter 3 describes the application of spatial, temporal and spatiotemporal

compressed sensing to aggregate correlated measurement information. Chapter 4 describes

two methods of centralized estimation of states that nonlinearly relate to compressed mea-

surements. In Chapter 5, an agent based static state estimation method is proposed along

with the necessary condition of stability. The agent based approach is extended to dynami-

cal process in Chapter 6 and the comparative performance of associated Kalman consensus

and Diffusion Kalman filter both under perfect and lossy communication network is pre-

sented. Lyapunov energy based stability analysis is carried out in Chapter 7 that ensures

a stable and optimally weighted deterministic AKCF under the effect of communication

network. In Chapter 8, a flexible policy is introduced into AKCF formulation so that the

agents have the freedom to collect local measurements and/or participate in consensus. The

associated bounds on the degree of consensus is also derived from Lyapunov stability anal-

ysis of estimation error dynamics. Chapter 9 describes an agent based model predictive

control scheme and analyze the closed loop state stability . Concluding remarks and future

research directions are discussed in Chapter 10.
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Chapter 2

Background

In this chapter, we discuss the concept of compressed sensing and describe the fundamentals

of static and dynamic state estimation and control.

2.1 Compressed Sensing

The term Compressed Sensing refers to the direct acquisition of data in a compressed form,

rather than first sampling at high rate and then compressing the sampled data (Fig.2.1). It

allows exact or approximate reconstruction of a signal from a very small number of random

projections of the signal itself, provided the signal under consideration is (approximately)

sparse [87].

Fundamentally, it is possible with high probability to reconstruct data from compara-

tively very small number of random measurements of original dataset, provided that the

original data is sparse itself or has approximate sparsity in a linear transformation basis.

We briefly state the basic concept in the following theorem, the proof of which can be found

in the seminal work by Candes and Tao [88]:

Theorem 2.1. Let w ∈ RN be the original signal, compressible on a linear transformation
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Figure 2.1: Compressed Sensing

basis Ψ such that,

w = Ψa

where, a has at most K � N significant coefficients i.e., w is K-sparse in sparsifying basis

Ψ. Compressed measurements are achieved by taking M � N random projections of w,

h = Φw; h ∈ RM , Φ ∈ RM×N . (2.1)

where, the entries of Φ are i.i.d. Gaussian random variable with mean 0 and variance 1/M .

The original signal w can be recovered by solving the following `1 minimization problem,

a∗ = argmin
z
‖ z ‖1 subject to h = ΦΨz

w∗ = Ψa∗ (2.2)

The result of the optimization problem in (2.2) provides an exact reconstruction with over-
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whelming probability if there exists a δ ∈ (0, 1) such that,

(1− δ)||z||22 ≤ ||ΦΨz||22 ≤ (1 + δ)||z||22,

holds for all K-sparse signal z. This is called the Restricted Isometry Property (RIP) of

order K. Correspondingly, the measurement dimension is bounded in following order [87],

M = O
(

1

δ2
K log

(
N

K

))
⇒

(
M

N

)
= O

(
1

δ2
K

N
log

(
N

K

))
⇒ CMR = O

(
1

δ2
SR log

(
1

SR

))
(2.3)

where, CMR is compressed measurement ratio and SR is sparsity ratio.

The inherent correlations of a signal corresponds to low variability or some degree of

smoothness across it, resulting in compressible coefficients in wavelet domain [27]. Hence, it

is expected that, with high level of correlation, the signal will be more compressible, allowing

approximation with fewer number of wavelet coefficients [28]. This will, in turn reduce the

required number of random measurements.

Fig.2.2 illustrates the compressed sensing of a periodic signal. The original signal consists

of 128 samples and exhibits sparsity in frequency domain, since only 4 out of 128 Fourier

coefficients are nonzero. In this example, only 28 samples are aggregated through compressed

sensing. As evident, the original signal can be successfully recovered from such aggregation

due to the inherent sparse characteristics of the periodic signal.

The one-dimensional concept of compressed sensing can be extended to compressed

imaging or 2D compressed sensing [89]:

Corollary 2.1. Let W ∈ RNspace×Ntime be the spatiotemporal data over Nspace nodes and

24



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

Normalized Angular Frequency (/2)

M
a
g

n
it

u
d

e

Signal is Sparse in Fourier Domain, K = 4

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (sec.)

A
m

p
li

tu
d

e

 

 

Original

Recovered

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (sec.)

A
m

p
li

tu
d

e
Original Signal, N = 128

5 10 15 20 25
-4

-3

-2

-1

0

1

2

3

4

5

6

Compressed Measurement, M = 28

Sample Index

A
m

p
li

tu
d

e

Recovery Through 
the Sparsest Solution

Figure 2.2: An Example of 1D Compressed Sensing

for Ntime number of observations. W is sparse in sparsifying basis ΨNspace and ΨNtime
such

that,

W = ΨNspaceAΨ>Ntime

The spatiotemporal compressed sensing of W is,

H = ΦspaceWΦ>time,

Φspace ∈ Rmspace×Nspace , Φtime ∈ Rmtime×Ntime

mspace � Nspace and mtime � Ntime

N = Nspace ×Ntime and M = mspace ×mtime (2.4)
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where, the entries of Φspace and Φtime are i.i.d. Gaussian random variables with zero mean

and respective variance of 1/mspace
2 and 1/mtime

2. The spatiotemporal data is recovered by

solving the following `1 minimization problem,

a∗ = argmin
z
‖ z ‖1

subject to vec(H) = (Φspace ⊗Φtime)
(
ΨNspace ⊗ΨNtime

)
z

vec(W∗) = ΨNspace ⊗ΨNtime
a∗ (2.5)

In this Corollary, vec(W) represents the row-ordered vectorization of W and ⊗ rep-

resents the Kronecker product operator. We illustrate the compressed imaging in Fig.2.3,

where a 64× 64 image is compressively sampled to have a 50× 50 image.

The concept of compressed sensing described in this section will be used in Chapters 3

and 4 in order to address the research questions 1 and 2, respectively.

2.2 State Estimation and Control

For any physical system, the term state summarizes the complete status of the underlying

process at any given time [90]. Usually, not all of the system states can be directly ob-

tained from the finite set observations made at any instant. As a consequence, the best

possible values of these unobservable states are estimated from the available set of measure-

ments/observations [91]. Primarily, the state estimation procedure can be divided into two

major categories: (1) static, and (2) dynamic state estimation. Static estimation of states

is possible as long as the rate of updating measurement sets is higher than the underlying

system dynamics. In this scenario, the system remains in steady-state over the time horizon
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Figure 2.3: An Example of 2D Compressed Sensing

of state estimation. Dynamic estimation, on the other hand, takes into account the contin-

uous evolution of the physical process so that the states can be recursively estimated from

the periodically updated measurements. In the next two subsections, we briefly go over the

system models and basic estimation procedures for the static and dynamic cases.

2.2.1 Static State Estimation

We assume a physical system that can be described by a state vector x having L elements. In

the most general sense, the measurements / observations may follow a nonlinear relationship
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with x,

y = h(x) + w (2.6)

where, y ∈ RM is the vector of measurements and w is a vector of independent and identi-

cally distributed (i.i.d.) Gaussian noise with zero mean and covariance Cw. w models the

additive noise associated with the measurement procedure. The state elements are nonlin-

early mapped to the measurement set by the vector of differentiable functions, h : RL → RM .

Equation (2.6) thus represents the combined observation space of data collecting sensors.

Usually, M � L that makes equation (2.6) an over-determined system of nonlinear equa-

tions and weighted least square (WLS) is the most popular method of estimating x from

such system [40]. WLS finds the values of unknown state elements that minimize the squared

residual error, weighted by noise variances. Mathematically, the optimum solution is,

x̂ = argmin
z

[y − h(z)]>C−1w [y − h(z)] (2.7)

Due to nonlinear mapping, equation (2.7) represents a nonconvex problem. As a result,

iterative Gauss-Newton algorithm is usually employed to obtain the solution of the problems

of this kind. For this algorithm, the nonlinear measurement model of equation (2.6) is

approximated upto 1st order of the corresponding Taylor series expansion. If the properties

of state elements are unknown, the best linear unbiased estimate (BLUE) [92] is obtained

based on this approximated linear model. Thus, at (k + 1)th iteration, the state elements

are updated as follows,

x(k+1) = x(k) + [H(k)>C−1w H(k)]−1H(k)>C−1w [y − h(x(k))] (2.8)

where, H(k) is the Jacobian matrix such that, [H(k)]m,l = ∂hm(x)
∂xl

∣∣∣
x=x(k)

. The associated

covariance of the BLUE estimate is C
(k)
x = [H(k)>C−1w H(k)]−1.

On the other hand, if the state elements are known to be random with mean µx and
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covariance Σx, the (k + 1)th iteration implements the linear minimum mean squared error

(LMMSE) criterion through a Wiener-Hopf filter [93],

x(k+1) = x(k) + ΣxH(k)>[H(k)ΣxH(k)> + Cw]−1[y − h(x(k))] (2.9)

The associated covariance of the LMMSE estimate is C
(k)
x = Σx−ΣxH(k)>[H(k)ΣxH(k)>+

Cw]−1H(k)Σx.

For over-determined systems, H(k) is full-column rank, which ensures observability. In-

tuitively, the rate of change of the objective function in equation (2.7) decreases as the

estimate approaches the global minima of the objective function according to the recursion

given in equations (2.8) and (2.9).

It is worthwhile to note that, for h(·) being a quadratic form in equation (2.6), the outer

product of state vector (i.e., xx>) constitutes a linear relationship with observation. Due

to this linear mapping, relaxed semidefinite programming (R-SDP) can be used for state

estimation [94].

The fundamental concept of static state estimation discussed in this section will be used

in Chapter 5 to address the research question 3.

2.2.2 Dynamic State Estimation and Control

The operating condition of a physical process-specifically the system stability manifests

itself through the temporal evolution of state trajectories. And a typical representation of

this continuous-time state-space behavior is a set of 1st order lumped-parameter differential

equations [90],

ẋ = f(x,u, t) (2.10)

The corresponding observation space for the physical process can be defined as,

y(t) = h(x,u, t) (2.11)
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Usually, the functions f and h are nonlinear and hence the 1st order Taylor series approxi-

mation leads to a linear continuous-time dynamical system,

ẋ = F(t)x(t) + G(t)u(t) (2.12)

y(t) = H(t)x(t) + D(t)u(t) (2.13)

Here, the state vector, x ∈ Rn, control or input vector, u ∈ Rp and the measurement or

output vector, y ∈ Rm. Accordingly, the dimensions of the matrices F(t), G(t), H(t) and

D(t) are n×n, n×p, m×n and m×p, respectively. A linear discrete-time dynamical system

is derived from this model since in practical scenario, the sensors collect discrete samples of

data as well as discrete control signals are sent to the actuators in regular time interval. Let

us assume the sampling interval between the discrete time instances tk and tk+1 be T , which

is small enough to approximate the matrices of equations (2.12) and (2.13) as piecewise

constants. In other words, F(t) = F(tk); tk ≤ t ≤ tk+1 and G(t) = G(tk); tk ≤ t ≤ tk+1.

Thus, we obtain the following linear discrete-time dynamical system,

xk+1 = Fkxk + Gkuk (2.14)

Where, Fk = eF(tk)T and Gk =
∫ tk+1

tk
eF(tk)(tk+1−τ)dτG(tk). The discrete-time observation

model is given by,

yk = Hkxk + Dkuk (2.15)

In this dissertation, the linear discrete-time dynamical system will be used in formulating

the agent based estimation and control of cyber-physical system. Now, the system states

may be characterized as random. On the other hand, there may exist the effect of model

prediction uncertainty and noisy measurements as well. In this setup, the most popular

method in dynamic state estimation is to minimize the mean squared error in estimation.

The minimum mean squared error (MMSE) criterion for dynamical system results in the
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famous Kalman filter [95]. In the basic approach, the sensors communicate with a single

fusion center either directly or hierarchically to send updated measurement information in

timely manner. Based on the knowledge of previous state values and system dynamics,

the fusion center makes the MMSE prediction of the states. Necessary corrections are

made to the predicted states based on sensor measurements. The prediction uncertainty

and noisy measurements are modeled through the incorporation of additive white Gaussian

noise (AWGN) in equations (2.14) and (2.15). Therefore, the linear system dynamics in

discrete-time is given by,

xk+1 = Fkxk + Gkuk + Bkwk; k = 0, 1, 2, ... (2.16)

Here, the initial values of the state vector elements at k = 0 follow Gaussian distribution with

mean µ and covariance Σ. This characterizes the random behavior of states. We assume

that the eigenvalues of Fk lie within a unit circle. The process noise wk ∼ N (0,Qk). The

optimal control inputs for such stochastic process are obtained through the solution of a

finite moving horizon linear quadratic optimization problem. The associated cost function

at any time instance k is,

J(Uk) = E

k+kf−1∑
τ=k

(x>τ Xxτ + u>τ Uuτ ) + x>k+kfXxk+kf

 (2.17)

Here, Uk = {uk, · · · ,uk+kf−1}. X � 0, U � 0 and kf defines the length of moving horizon.

Hence, the desired set of control inputs between k and k + kf − 1 are,

{u∗k, · · · ,u∗k+kf−1} = arg min J(Uk)

subject to

xk+1 = Fkxk + Gkuk + Bkwk
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With the help of dynamic programming, one can obtain the control inputs in state feedback

form. A model-predictive control (MPC) is achieved when only the first entry u∗k at the time

instance k is applied. The global states at (k + 1) is obtained from the model (2.16) and

the finite time horizon is shifted one time step forward. The linear quadratic optimization

is then repeated. The stochastic control can be achieved through state feedback in terms

of estimated states multiplied by a feedback control gain matrix. The control matrix is the

solution of the linear quadratic optimization problem, which can be calculated through the

following steps of dynamic programming:

• Define time horizon

τ = k + kf : −1 : k + 1 (2.18)

• Initialization

Υτ = X (2.19)

• State feedback control gain

Cτ−1 = −
(
U+ G>τ ΥτGτ

)−1
G>τ ΥτFτ (2.20)

• Update

Υτ−1 = F>τ Υτ (Fτ + GτCτ−1) +X (2.21)

The dynamic state estimation is then carried out based on some set measurements collected

at the fusion center. Now, the fusion center observation model is,

yk = Hkxk + vk (2.22)
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Here, the measurement noise vk ∼ N (0,Rk) and is independent of process noise. The state

vector estimated at discrete time instant k is defined as,

x̂k|j = E [xk|y0,y1, ...,yj] (2.23)

The corresponding error covariance matrix is,

Mk|j = E
[
(xk − x̂k|j)(xk − x̂k|j)

>] (2.24)

Based on these definitions, we present the basic steps of a standard Kalman filter:

• Initialization:

x̂0|0 = µ,M0|0 = Σ (2.25)

• Prediction:

x̂k|k−1 = Fk−1x̂k−1|k−1 + Gk−1uk−1 (2.26)

• Predict error covariance:

Mk|k−1 = Fk−1Mk−1|k−1F
>
k−1 + Bk−1Qk−1B

>
k−1 (2.27)

• Kalman Gain:

Kk = Mk|k−1H
>
k

(
HkMk|k−1H

>
k + Rk

)−1
(2.28)

• Correction:

x̂k|k = x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)
(2.29)

• Correct Error Covariance:

Mk|k = Mk|k−1 −KtHkMk|k−1 (2.30)
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• State feedback control:

uk = Ckx̂k|k (2.31)

Based on these basic Kalman filtering steps, we will develop the agent-based Kalman

filters in Chapter 6 and derive the necessary conditions for stable estimation procedure in

Chapters 7 and 8. Similarly, the basic state feedback control procedures discussed in this

chapter will be used in Chapter 9 to design the agent based model predictive control.
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Chapter 3

Impact of Correlated Distributed

Generation on Information

Aggregation in Smart Grid

Real-time control of a smart distribution grid with renewable energy based generators re-

quires accurate state estimates, that are typically based on measurements aggregated from

smart meters. However, the amount of data/measurements increases with the scale of the

physical grid, posing a significant stress on both the communication infrastructure as well

as data processing control centers. In this chapter, the effect of geographical footprint of

distributed generation (DG) on the voltage states of a smart distribution system is inves-

tigated. We demonstrate that the strong coupling in the physical power system results in

estimated voltage phasors exhibiting a correlation structure that allows for compression of

measurements. Specifically, by exploiting principles of 1D and 2D compressed sensing, we

illustrate the effectiveness of voltage estimation with significantly low number of random

spatial, temporal as well as spatiotemporal power measurements. Results demonstrate the

importance of accounting for correlation in information aggregation in smart grids.
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3.1 Introduction

The electric power distribution network we know today is expected to transform to a “smart”

network in the near future, enabling it to deliver affordable electric power with improved

reliability, greater security and more efficiency [22]. A smart distribution grid is envisioned

to contain distributed generations (e.g., solar, wind) along with advanced metering infras-

tructure (AMI), which will deploy communicable meters and actuators throughout the dis-

tribution grid to collect data and act on it (e.g., use it for state estimation and / or control).

Consequently, an unusual increase of raw measurements is expected with increase in levels

of DG penetration [19]. On the other hand, the sampling interval of commercially available

smart meters can vary in the range of a few seconds to the order of minutes. Devices are

currently being used to record solar generation with a temporal resolution of 1 second [96]

and 15 seconds [18]. Reliable wireless communication of the resultant high volume of end-

user information through advanced meters and actuators is an important issue in designing

a real-time dynamic smart grid. It should be noted that, even under optimal circumstances,

the effective throughput of underlying network is drastically reduced with the increase in

sensors communicating at the same time [17]. As a consequence, the inherent grid structure

should be efficiently utilized to reduce the number of active sensors/measurements while

maintaining desired reliability and efficiency throughout the power system.

With the anticipated increase in distributed generators (DGs), measurements related

to the power generated by the DGs are important for real time estimation and control of

smart grid. DGs may be installed at the end-user premises of a power distribution grid [23].

The geographical proximity of these renewable energy sources causes the power generated

from DGs to be correlated [24, 25]. This correlation structure induces sparsity in appro-

priate transformation basis [26, 27]. This in turn enables compressibility of spatial power

measurements i.e., we can reduce the amount of aggregated power information at a time

using concepts from Compressed Sensing introduced in Chapter 2. Temporal compressed

sensing can be used at a node for efficient compression of current and stored load /gener-
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ation data. The compressed information can then be sent to the utility/customer to study

load/generation profile for that particular node. This also motivates the use of 2-dimensional

spatiotemporal compressed sensing that enables information aggregation across both space

and time. Recently, compressed sensing has been applied in simultaneous reading of all

smart meters in order to securely transmit the sensed data and to ensure identical delay

in wireless transmission of all smart meter readings [29, 30]. The compressed reading is

obtained using pseudorandom spreading sequence. It is assumed that, the meters convey

information only about the significant changes of the respective power levels. In [29], com-

pressed measurements are obtained in presence of bounded noise whereas, the measurement

noise is assumed to be normally distributed in [30]. In [31], an automated compressed meter

reading scheme is proposed for a wireless home area network, where the smart meters are

equipped with Zigbee standard communication devices. However, usage of such measure-

ments for estimating states of corresponding power system is not reported in [29, 30, 31].

In this chapter, the correlation of voltage phasors is analyzed in the presence of cor-

related generation from DGs. Unlike prior works, correlation of distributed generation is

considered in time as well as in space [79]. Approximate sparsity is obtained by transform-

ing the correlated data into wavelet domain. Then, 1D (space, time) and 2D (space and

time) compressed sensing is applied to aggregate the power readings from the distribution

nodes. Finally, the voltage phasors are estimated from the power readings using power flow

equations.

3.2 General System Model

We consider an N node single phase radial power distribution system as shown in Fig.3.1.

The “grid” is designated as node 0 and all other nodes are denoted as 1, 2, ...., N . The

electrical characteristics of all nodes may not be the same. Some nodes may act as a load

only, whereas some others may contain photovoltaic (PV) panels or wind generators serving
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Figure 3.1: Single Phase Distribution Network with Renewable Energy Source.

as renewable energy sources. It is also possible for a node to have both loads and renewable

energy sources. The electrical coupling among these nodes are based on Kirchhoff’s current

and voltage laws. The inter-node series impedances and shunt admittances determine the

coupling strength.

According to Kirchhoff’s current law, the ith node injection current is given by,

Ii =

[
− 1
Zeqi

1
Zeqi

+ 1
Zeqi+1

− 1
Zeqi+1

]
Vi−1

Vi

Vi+1

 (3.1)

where, 1
Zeqi

is the single-phase equivalent admittance between node i − 1 and node i [97].

Vi is the ith node voltage. Using (3.1), the voltage-current relation for the whole network

can be written in matrix-vector form,

I(N+1)×1 = Y(N+1)×(N+1)V(N+1)×1 (3.2)

A similar formulation for a three-phase system with each phase represented separately can

be done to enhance applications of the concept presented in this paper.

The magnitudes and angles of voltage phasors at different nodes of the distribution net-
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work constitute the state of the overall system. The estimation of these states plays an

important role in voltage regulation and control of reactive power flows. However, mea-

suring voltage phasors from every node of a distribution grid is not economically feasible.

At present, energy usage of every end-user of conventional distribution grid is recorded

for billing purposes only. With the evolution of the smart grid, these energy meters are

expected to be upgraded so that the utility companies can monitor the usage of energy

at regular intervals for improved estimation and controllability of the distribution system.

Thus, the measurements of generation and load at every node may be readily available in

smart distribution system.

Accurate estimation of voltage states is dependent upon the measurement of generation

and load at different nodes of the smart distribution network. As shown in Fig.3.1, SGi and

SLi representing the respective apparent power generation and load at ith node, satisfy the

following power flow equations:

Pi = real(SGi − SLi) = |Vi|
N∑
k=0

|Vk| (Gik cos θik +Bik sin θik);

Qi = imag(SGi − SLi) = |Vi|
N∑
k=0

|Vk| (Gik sin θik −Bik cos θik) (3.3)

where,

[Y]ik = Yik = Gik + jBik;

Vi = |Vi| ejθi

and

θik = θi − θk.

In the above equation, Pi and Qi represent the ith node injected real and reactive power,

respectively. We assume that |V |0 and θ0 are known and define rest of the voltage phasors

39



as a composite vector:

x =

[
θ1 · · · θN |V |1 · · · |V |N

]T

For the entire system, the injected powers are related to x according to (3.3). This can be

represented in the vector form:

y =

[
P1 · · · PN Q1 · · · QN

]T
= F (x) (3.4)

Thus, voltage phasors i.e., x can be estimated from the available measurements y using

Newton-Raphson iterative algorithm given a fully determined system [98]. An initial guess

of all unknown voltage phasors is required in Newton-Raphson algorithm. Throughout this

paper, flat start is used, in which the unknown voltage angles are set to zero and unknown

voltage magnitudes are set to 1.0p.u. In the subsequent sections, this algorithm will be

used to investigate the effect of spatial correlation of power generated on voltage phasor

estimation.

3.3 Correlation Analysis in Distribution Grid

Since power and voltage phasors are nonlinearly related (3.3), it is important to analyze

the inherent correlation among the distribution voltage phasors for a given set of spatially

correlated power. As an illustrative example, we consider an exponential model for spatial

correlation. That is, the correlation between the generated powers at two DGs spaced d

miles apart corresponds to an exponentially decaying function of d, parameterized with θ1

and θ2 [99]:

r(dij) = exp

{
−
(
dij
θ1

)θ2}
; θ1 > 0, θ2 ∈ (0, 2] (3.5)
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where, r(dij) is the coefficient of correlation and dij is the Euclidean distance between the ith

and jth DG. This model becomes exponential, if θ2 = 1 and squared exponential for θ2 = 2.

We perform the correlation analysis of voltage phasors for two cases. In the first case,

the generated power quantities are assumed only to be spatially correlated. And the loads

are assumed to be completely random. The temporal dependence is considered for both load

and spatially correlated generation in the second case. For this, we model the distributed

generation and load as first order auto-regressive (AR(1)) process [100]. The generalized

time-series representation of AR(1) apparent generation (Sg) and load (Sl) is:

St+1 −Dt+1 = α(St −Dt) +Wt (3.6)

where, S is common notation for Sg and Sl. α denotes the AR(1) coefficient. Wt is the

corresponding noise component and t is the time in minute. Dt is the deterministic trend

component of the time series, which is defined in per unit values[101]:

• for Sg: 0.35 + 0.025 sin
(
6πt
T

+ 0.2π
)

+ 0.1 sin
(
πt
T

)
+ 0.025 sin

(
6πt
T

+ 0.3π
)
;

• for Pl = real(Sl): 0.6 + 0.05 sin
(
6πt
T

+ 0.1π
)

+ 0.01 sin
(
πt
T

)
and

• for Ql = imag(Sl): 0.3 + 0.05 sin
(
6πt
T

+ 0.1π
)

+ 0.01 sin
(
πt
T

)
Here, T is the number of equidistant samples taken over 1440 minutes (i.e. 24 hours). These

functions are chosen for illustrations. However, other functions that can capture the periodic

variation in these variables can be used.

A single-phase equivalent test system based on the IEEE 34 node distribution test feeder

[102] is used in this paper to perform the proposed correlation analysis. The base kVA and

base kV is assumed to be 100 and 24.9, respectively. As shown in Fig.3.2, node 800 is the

distribution grid and there is a transformer between node 832 and node 888. In our analysis

we replace the transformer with an equivalent circuit and merge node 888 to node 832. We

mark the grid node i.e., node 800 as node 0. Thus, we have 32 nodes. We assume that each
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Figure 3.2: IEEE 34-Node Test Feeder (indices in parenthesis are used in this research).

of these 32 nodes have both distributed generation and loads. The distributed generations

are assumed to be spatially correlated according to (3.5) with θ1 = 20 miles and θ2 = 2.

Using the inter-node distance information [102], the exact correlation structure is illus-

trated in Fig.3.3. The corresponding admittance matrix Y is also formed using the per-unit

series impedance information from [102].

Based on the problem setup, we perform 1000 Monte Carlo simulation for the first

case and obtain the correlation matrix for voltage magnitudes and angles. It is observed

that voltage magnitudes and angles exhibit similar correlation structure as that of power

generated from DGs. The correlation matrix is shown in Fig.3.4.

We repeat the simulation for second case i.e., when the distributed generation and load

are defined as AR(1) process. For both generation and load, the time-series data is obtained

using (3.6), while T = 256. The corresponding sampling interval is 1440
256

= 5.625 min. The

AR(1) coefficients are assumed to be in range [0.6, 0.85] for both load and generation. It

should be noted that the distributed generations are still spatially correlated, whereas the

individual loads are uncorrelated AR(1) process. It is observed that, the voltage phasors

have very high correlation among them and this is not affected by the AR(1) process of
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load and generation. Both the magnitudes and angles of voltage phasors exhibit similar

correlation structure [79]. The high correlation of voltage phasors follows the electrical

coupling among distribution nodes of a radial system. An increase of load at any node

will cause excessive drawing of current and consequently all the nodes along the path of

this current will experience a drop in voltage magnitude and phase shift in voltage angles.

Conversely, a decrease of load or increase of distributed generation at a particular node will

contribute to the rise of voltage levels of all other nodes. The degree of voltage rise or drop

among the nodes follow the voltage-current relation in (3.2). Thus the admittance matrix

has a direct impact on having a unique spatial correlation structure of voltage phasors for

a particular distribution system.

3.4 Information Aggregation in Distribution Grid

As mentioned earlier, conventional state estimation method requires all available power mea-

surements. Thus for a practical distribution system, large number of measurements have

to be communicated and aggregated for estimation. This would require a communication

link with large bandwidth and high reliability. Henceforth, it is difficult to say whether the

design and maintenance of a communication link with high data overload and sophisticated

error correction scheme would be economically feasible or not. This drawback can be al-

leviated in one way by attempting to reduce the number of measurements transmitted to

the estimator. We exploit the compressibility of correlated data to reduce the number of

measurements using theory of Compressive Sensing [87]. In Section 2.1, we discuss the fun-

damentals of this concept and also describe the conditions for successful recovery of original

data. To better explain the role of compressed sensing method in the context of information

exchange we present one possible architecture. Let us consider our model of information
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aggregation as depicted in equation (2.1),

h = Φw =
N∑
i=1

wiφi (3.7)

where, each entry of the vector w is an observation value or measurement obtained in the

respective sensor. For further analysis, these measurements are required to be sent to a

fusion center. The ith sensor encrypts its measurement using the respective M -dimensional

column vector φi. The sensor at the farthest location need not send its information directly

to the fusion center. It can communicate with a sensor nearest to it. Upon receiving

the encrypted message, the neighboring sensor can aggregate the received measurement

with its own encrypted measurement and send it to its neighbor. This hierarchical process

of local information exchange is repeated sequentially all the way to the fusion center.

As illustrated in Fig. 3.5, the memory requirement at each sensor is always limited to

M = mspace and does not grow with the increase in number of aggregated measurements.

Furthermore, the communication range for all sensors (even for the farthest one) is uniform

and moderate since not every sensor has to directly link to the fusion center. Upon receiving

the compressed information, the fusion center can make a one-time recovery of the entire

set of measurements as long as the actual information is at least approximately sparse in

some linear transformation basis. Thus, the memory usage and processing time can be

considerably reduced especially when the number of active sensors N = Nspace is excessively

large. This will, in turn, enhance the capability of real-time monitoring and control of the

whole system.

In this study, we only know that the signal under consideration is approximately sparse

in wavelet domain. Mathematically, in equation (2.3), we don’t have the exact knowledge

of SR, rather an overall effect of compressed sensing is obtained by varying the CMR from

as low as 10% to 100% and observing the reconstruction error at CMR level.

Based on the discussion above, we apply Theorem 2.1, where w stands for the power
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generated from DGs and Ψ is wavelet transform basis. The random measurements of power

can be taken across space (spatial compressed sensing) or across time (temporal compressed

sensing). The compressions thus achieved are illustrated in Fig. 3.5. Alternately, we can

randomize the power measurements across both space and time (spatiotemporal compressed

sensing) applying the concept of compressed imaging or 2D compressed sensing [89].

It should be noted that, equation (2.3) gives a sparsity level based lower limit of reducing

compressed measurement, irrespective of the transformation basis. However, the numerical

process of recovering original signal or image from compressed measurement does not require

specific information about the sparsity level. Based on this observation, we explore the effect

of compressed measurement dimension on the accuracy of recovering signal or image which

are known to be approximately sparse in wavelet domain.

We investigate the effect of CMR on the recovery performance of different compressed

sensing phenomena for the IEEE 34 node distribution test feeder as used in Section 3.3. We

consider spatial, temporal and spatiotemporal compressed sensing. For each of the cases,

we take different number of random measurements and use (2.2) and (2.5) to reconstruct

the original signals. The `1 minimization problems in (2.2) and (2.5) are solved using cvx

([103], [104]). In our analysis, we use “Haar” mother wavelet to define the sparsifying basis

Ψ [105].

3.5 Results

We investigate the performance of the three compressed sensing phenomena by perform-

ing 1000 Monte Carlo simulation at different CMRs. For the purpose of comparison, the

measurements of real generated power Pg are used in this simulation. The performance

variability of spatial, temporal and spatiotemporal compressed sensing is compared using a

percentage ratio, called Integrated Normalized Absolute Error (INAE). For 1-D (spatial or
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temporal) case, we define INAE as,

INAE =

∑N
j=1 |xj − x∗j |∑N

j=1 |xj|
× 100 (3.8)

where, xj = [x]j is the real power generated at jth DG (spatial) or at the jth time instance

(temporal). The lower INAE is, the better is the reconstruction performance. For the

spatiotemporal case, INAE corresponds to

INAE =

∑Nspace

j=1

∑Ntime

k=1 |Xjk −X∗jk|∑Nspace

j=1

∑Ntime

k=1 |Xjk|
× 100 (3.9)

where, Xjk = [X]jk is the real power generated at jth DG, which is measured at the kth time

instance. Using (3.8) and (3.9), we show the average variation of INAE s for the three types

of compressed sensing in Fig.3.6. Here, we observe that, the accuracy in reconstruction

corresponds to the respective level of sparsity obtained in different schemes of compressed

sensing. However, for all the three cases, the reconstruction error can be kept within 10%

if the number of random measurements is at least 50% of the original data dimension [79].

Bearing this in mind, we show example reconstructions from spatial and temporal com-

pressed measurements in Fig.3.5 and Fig.3.8, respectively.

We extend our analysis by observing the effect of compressed power measurements on

the estimation of voltage phasors. For this purpose, equation (3.4) is used to estimate

voltage magnitudes and angles using the injected apparent power readings. Fig. 3.9 shows

the estimated voltages for all the nodes of the distribution grid. The “+” sign denotes

the voltage phasors estimated from direct measurements of injected power. The “o” sign

indicates the estimated results, when the injected power information are recovered from 50%

compressed measurements. It is interesting to see that, the voltage phasors estimated from

compressed measurements are almost identical to those estimated from direct measurements.

Thus, only half of the available smart meter readings, which are randomly selected, need to

be aggregrated via a communication link for reasonable accuracy in voltage estimation.
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3.6 Conclusions

In this chapter, the effect of correlated distributed generation on the voltage phasors in a

smart distribution grid is analyzed. It is observed that the estimated voltage phasors exhibit

strong correlation. This observation allows us to employ compressed sensing in aggregat-

ing information from voltage/power sensors, which are expected to be used in future smart

grid. The correlated nature of distributed generation also permits significant reduction of

required power measurements in spatial, temporal as well as spatiotemporal domain. A

comparative study shows that, the voltage phasors can be estimated almost accurately with

only a random half of the available measurements. Thus, compressed reading of power as

well as voltages is expected to have considerable influence in the measurement and sensing

technologies associated with smart grid. Our next step is to circumvent the need of recon-
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structing power measurements for voltage estimation i.e., we aim to combine compressed

sensing and power flow equations in order to develop a direct method to estimate voltage

states. This challenge is addressed in Chapter 4.
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Chapter 4

Distribution Grid State Estimation

from Compressed Measurements

In Chapter 3 the potential application of 1D and 2D compressed sensing in correlated

measurement aggregation is illustrated through significant reduction in the requirement

of raw data collection. Starting from these compressed power measurements, we develop

two approaches, an indirect and direct method for state estimation. We illustrate the

effectiveness of voltage estimation with significantly low number of random spatial, temporal

as well as spatiotemporal power measurements using the IEEE 34 node distribution test

feeder and a larger 100 node radial distribution system. Results show similar performance

for both methods at all levels of compression. It is observed that, even with only 50%

compressed power measurements, both methods estimate the states of the test feeder with

high level of accuracy.

4.1 Introduction

Real-time monitoring and active control of smart distribution grid is contingent upon the

knowledge of existing system states, network topology and timely update of any change in
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the network architecture. In this regard, a brief survey of the state-of-the-art estimators is

given in [40]. A multi-microgrid state estimation is proposed in [106], which incorporates the

network topology identification as well as is robust to islanded mode of operation. In [107],

an event-triggered recursive Bayesian estimator is developed for topology identification. The

change in network topology is identified in [108] by performing normalized residual test to

detect bad status of switching devices.

The states of a power system are usually defined in terms of magnitudes and angles

of either system node voltages or branch currents [32],[33]. These states form a system of

nonlinear equations with the available information of real and reactive power,

y = F(x) (4.1)

where, F : RL → RN is differentiable and non-linearly maps the L-dimensional state vector

x to the N -dimensional power vector y. Ideally, Newton-Raphson method can be used to

get exact solution of the system of equations (4.1), if it is fully determined (N equals L)[98].

However, in a conventional power distribution system, real and reactive power measurements

are not readily available from each customer. Furthermore, a distribution network consists

of loads characterized in several categories such as residential, commercial etc. Typically,

the load demands of similar class of customers (e.g., residential, commercial) is expected

to be highly correlated. As a result, pseudo-measurements are synthesized using historical

data and real-time measurements, so that an overdetermined system of equations can be

formed (i.e., N > L) [34, 35]. Such a system of nonlinear equations is then solved using

weighted least square (WLS) method (Section 2.2.1) and its variants [33]. It is worthwhile to

mention that, use of correlated load information in generating pseudo-measurements reduces

the variability in statistical distribution of estimated power system states [109, 110, 111].

In order to estimate the states of power distribution system with compressed power mea-

surements we need to find a sparse solution to equation (4.1). In the context of compressed

sensing (discussed in Section 3.4), an M dimensional compressed measurement vector is
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obtained by taking M � N random linear projections of available N original readings for a

fully determined nonlinear system. Mathematically, this process is performed by multiplying

both sides of equation (4.1) by a random projection matrix Φ : RN → RM ,

h = Φy

⇒ h = ΦF(x)

(4.2)

where,

F : RN → RN ; (N equals L)

and

ΦF : RN → RM ;M � N

Thus, a fully determined system of nonlinear equations is linearly mapped into an un-

derdetermined system. It should be noted that, conventional underdetermined nonlinear

systems are the direct mathematical models of corresponding physical system. A typical

example is a set of parameterized nonlinear equations, arising from an attempt to solve a

determined system in RM by continuation methods [36]. Another example is the method

of finding an interior point of the polytope {z ≥ 0,A ∈ RM×N : Az = b}, by using the

non-linear transformation (zi = exi , i = 1, · · · , N) [37]. As a third example, we quote a

recent article about the in-silico manipulation of biological signaling pathways, which is

modeled as an underdetermined system of nonlinear equations [38]. In prior literature,

Newton-Raphson method is reported to be the most suitable to solve these kinds of un-

derdetermined nonlinear equations [37]. However, conventional Newton-Raphson algorithm

can give only the least square solution with the use of pseudo-inverse of underlying Jacobian

matrix. On the other hand, search for the sparse solution is expected to be the appropriate
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one for an underdetermined nonlinear system as in equation (4.2). Therefore, an alternate

approach is required to solve such a system considering the sparsity of aggregated power

information.

In this chapter, our main objective is to develop algorithms to estimate states from the

compressed measurements, given that the system is non-linear. The underlying network

topology is assumed to be known a priori and fixed over the time duration of state esti-

mation. Two methods of voltage phasor estimation from the compressed power readings

are developed. In the first method, referred to as the indirect method, all power values are

reconstructed from compressed measurements and then fed as input to a Newton-Raphson

algorithm to estimate voltage states.

In the second method, referred to as the direct method, we avoid the reconstruction pro-

cedure and the compressed measurements are directly used in a modified Newton-Raphson

algorithm to estimate the states [80]. At every iteration of modified Newton-Raphson algo-

rithm, the linear system involving Jacobian matrix and random projection matrix is solved

in two steps. At the first step, sparsest solution of the mismatch vector is obtained con-

sidering only the projection matrix. The existence of sparsity for mismatch vector is also
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discussed, which authenticates the sparse solution. The mismatch vector just obtained and

the Jacobian matrix are then used to get the least square solution of the state-update vec-

tors. Fig. 4.1 shows the contrast of the proposed methods with the conventional centralized

state estimation.

Performance of these methods are obtained for different levels of compression based on

the IEEE 34 node distribution test feeder [102] and a larger radial network of 100 nodes.

4.2 State Estimation from Compressed Measurements

According to Theorem 2.1, a random projection matrix Φprojection : RN → RM is used to

make individual compressive measurements of real and reactive powers for an N -node power

distribution system:

hP = Φprojection

[
P1 · · · PN

]T
;

hQ = Φprojection

[
Q1 · · · QN

]T
(4.3)

Because of the inherent correlation structure, the real and reactive injected powers are

approximately sparse on respective linear transformation basis ΨP and ΨQ. According to

equations (3.4) and (4.3), the following relation among y, hP and hQ are obtained:

h =

[
hP

T hQ
T

]T
⇒ h = Φy

⇒ h = ΦΨa

(4.4)

Where,

Φ =

Φprojection OM×N

OM×N Φprojection
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And,

Ψ =

 ΨP OM×N

OM×N ΨQ


We incorporate these compressed measurements in voltage phasor estimation using two

different methods:

4.2.1 Indirect Method

This method, consists of two steps. At first, all the injected power values are reconstructed

from the compressed measurements. In the second step, Newton-Raphson method uses these

reconstructed values to estimate voltage phasors. The overall method constitutes Algorithm

1, which returns the estimated states, when the `∞ norm of mismatch vector b reaches the

tolerence level ε.

Algorithm 1 Indirect Method

1: procedure Reconstruct(Φ,Ψ,h)
2: a∗ ← argminz ‖ z ‖1 subject to h = ΦΨz
3: y∗ ← ΦΨa∗

4: end procedure
5: Initialize x(0) . Flat Start
6: procedure Newton-Raphson(x(0),y∗, ε)
7: x← x(0) . Take State Values
8: b← y∗ − F(x) . Calculate Initial Mismatch
9: while ‖ b ‖∞> ε do

10: J← Jacobian(x) . Calculate Jacobian Matrix
11: Solve: J∆x = b for ∆x
12: x← x + ∆x . Update x
13: b← y∗ − F(x) . Calculate Mismatch
14: end while
15: Return x
16: end procedure
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4.2.2 Direct Method

In the indirect method, all the power values are required to be reconstructed from com-

pressed power measurements prior to state estimation. The direct method uses compressed

power measurements within the Newton-Raphson iteration itself, thus avoiding the unnec-

essary reconstruction of all power values. The associated procedure results in Algorithm

2 [80]. Unlike Algorithm 1, here we are required to solve an underdetermined system of

nonlinear equations as evident from equations (3.4) and (4.4),

h = ΦF(x) (4.5)

As a result, the mismatch vector and system of linear equations to be solved at the υth

iteration would be modified as: Mismatch vector:

b(υ) = y − F(x(υ))

⇒ c(υ) = h−ΦF(x(υ))

(4.6)

where,

c(υ) = Φb(υ)

System of linear equations:

J(υ)∆x(υ) = b(υ)

⇒ ΦJ(υ)∆x(υ) = c(υ)

(4.7)

Conventional least-square method will not give accurate solution of equation (4.7), since this

system is the result of random mapping of a fully determined system. One possiblity is to
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search for the sparsest solution [38]. However, the recovery of a sparse solution is dependent

upon the coherence of ΦJ(υ). Theorem 4.1 (proof can be found in [112]) specifies the strict

upper bound on coherence to ensure at most one K-sparse solution [87].

Theorem 4.1. For any matrix D ∈ RM×N , µ(D) ∈
[√

N−M
M(N−1) , 1

]
and if

µ(D) <
1

2K − 1

there exist at most one K-sparse signal w for every measurement h ∈ RM such that h = Dw.

Where, µ(D) is the coherence of D and it is the maximum absolute off-diagonal entry of the

normalized version of Gram matrix DTD.

The Gram matrix for equation (4.7) is J(υ)TΦTΦJ(υ). For the moment, we assume Φ

be so chosen that ΦTΦ becomes an identity matrix and hence the coherence is dependent

only on the Gram matrix J(υ)TJ(υ). As dicussed earlier, for any two different nodes, the

rate of change in injected power is affected by the electrical coupling in between them. So,

two distribution nodes, directly connected and at sufficiently close geographical proximity

can have the same rate of change in injected power with respect to voltage magnitudes as

well as voltage angles. So, the off-diagonal entries of normalized version of J(υ)TJ(υ) can be

unity or very close to unity. Fig. 4.2 shows such an instance for the distribution system

model described in Section III. As a result, sparse and unique recovery of ∆x(υ) cannot be

guaranteed from equation (4.7). This lack of incoherence can be resolved if we consider the

term J(υ)∆x(υ) as a single variable w and solve equation (4.7) in following two steps,

Solve for w from:

Φw = c(υ) (4.8)

Solve for ∆x(υ) from:

J(υ)∆x(υ) = w (4.9)

Equation (4.9) represents a fully determined system and its solution is trivial. On the other
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hand, we obtain a unique solution of equation (4.8) if the intermediate variable w is sparse

in appropriate domain. Comparing equation (4.6) and (4.8) it is observed that, at the

υth iteration, the sparsity of w corresponds to the sparsity of original mismatch vector b(υ).

Thus, unique sparse solution for w is guaranteed if the mismatch vector entries of same kind

(i.e., real or reactive) are correlated. We investigate this by obtaining spatial correlation for

the 0th mismatch vector, which is shown in Fig. 4.3. As expected, the real power mismatch

is uncorrelated to reactive power mismatch. However, comparing Fig. 4.3 and Fig. 3.3, it is

observed that the auto-correlation pattern of both type of mismatch is almost same to the

correlation matrix defined in Section III. As a consequence, at every iteration, Theorem 2.1

can be applied to solve equation (4.8) and this is incorporated in steps 6− 9 of Algorithm

2.

Algorithm 2 Direct Method

1: Initialize x(0) . Flat Start
2: procedure Compressed-Newton-Raphson(x(0),h,Φ,Ψ, ε)
3: x← x(0) . Take State Values
4: c← h−ΦF(x) . Calculate Initial Mismatch
5: while ‖ c ‖∞> ε do
6: a∗ ← argminz ‖ z ‖1 subject to c = ΦΨz
7: w∗ ← ΦΨa∗

8: J← Jacobian(x) . Calculate Jacobian Matrix
9: Solve: J∆x = w∗ for ∆x

10: x← x + ∆x . Update x
11: c← h−ΦF(x) . Calculate Mismatch
12: end while
13: Return x
14: end procedure

4.2.3 Computational Complexity

The complexity order for the two methods can be obtained by observing Algorithms 1 and

2. The indirect method involves an `1 minimization problem outside the iterative loop,

whereas, the direct method has `1 minimization problem within the iterative loop. On the
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other hand, both methods have a system of equations with square jacobian matrix J within

the iterative loop.

For a typical power distribution system, the jacobian matrix J is usually sparse, since

relative changes in injected power at a particular distribution node is only affected by the

directly coupled neighboring nodes [98]. As a result, the computational complexity of solving

a fully determined linear system as in step 11 of Algorithm 1 and step 9 of Algorithm 2 can

be reduced to O(N) using various efficient factorization techniques [48]. On the other hand,

since `1 norm is convex, computational complexity of implementing the `1 minimization as

a linear programming problem is O(Nlog2(N)) [87].

Based on the above discussion, we conclude that both the indirect and direct method

have complexity order O(Nlog2(N)). In the next section, we apply Algorithms 1 and 2 to

the system model described in Section III and discuss their relative performance.

4.3 Results

For voltage phasor estimation, we apply indirect and direct method over the compressed

power measurements. For both algorithms, the tolerance level ε is kept at 10−9. That is,

the algorithm converges when the maximum absolute value of the elements in the mismatch

vector is ≤ 10−9. Fig.4.4 shows the estimated voltages for all the nodes of the distribution

grid. The “o” sign denotes the actual voltage phasors. With CMR = 50%, the “+” and “∆”

signs indicate voltage phasors estimated from indirect and direct method, respectively. It is

observed that, both indirect and indirect method can estimate the states almost accurately

from only 50% compressed measurements [80]. Also, the deviation of the actual state values

from the estimated ones is almost constant for bus 12 to bus 19 and for bus 26 to bus 32. This

is a consequence of the `1-minimization inherent in the proposed approaches. The solution

of `1-minimization is biased, because it tends to under-estimate the value of true coefficients

by having no prior knowledge of where the nonzero elements of the sparse vector are located.
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Column 1 Heading Direct Method Indirect Method
34 Node Test Feeder 0.3936 sec. 0.1363 sec.
100 Node Test Feeder 6.3494 sec. 1.6369 sec.

Table 4.1: CPU time for the proposed estimators

It is established that the bias incurred due to `1-minimization is within a logarithmic factor

of the ideal mean squared error (Theorem 1.1 of [113]). To illustrate the scalability of

our analysis, the proposed method is applied to a larger 100 node radial distribution test

feeder. The test feeder is a modified version of IEEE 123 node distribution test feeder with

the extreme case of DGs being installed at every node. The test systems are simulated

on intelr CORETM i7 PC, with clock speed 3.4 GHz and 16.0 GB RAM. MATLABr for

Windows is used as the simulation platform. Table 4.1 shows the CPU time required for

state estimation for the two test systems using the proposed estimation algorithms. For

both cases, CMR is maintained at 50%. It should be noted that, both methods converge to

solution within 4 and 6 iterations for the 34 node and 100 node systems, respectively.

The two methods of state estimation are also investigated at different CMRs and cor-

responding INAEs are obtained for the voltage magnitudes. The INAEs for voltage mag-

nitudes are calculated using equation (3.8), where xj represents the voltage magnitude of

jth node. To compare performance of the two methods in estimating voltage angles, Mean

Integrated Absolute Error (MIAE) is defined as follows,

MIAE =

∑N
j=1 |θj − θ∗j |

N
(4.10)

The overall performance for both test systems are shown in Fig. 4.5. It is observed that,

both the indirect and direct methods give almost the same performance at all CMRs. At

CMRs ≥ 50%, the error in estimating voltage magnitudes is < 2% for both test systems and

corresponding error in voltage angles is < 0.015 radian [80]. Intuitively, it is possible to esti-

mate the states of a smart distribution system without even recovering power information of
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Figure 4.5: Variation of INAE and MIAE for Indirect and Direct Methods
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all nodes and with no increase in computational complexity. These methods, therefore, hold

promising application in distribution system state estimation with a significant reduction in

storage / memory requirement.

4.4 Conclusions

In this chapter, two novel methods: indirect and direct method of state estimation from

compressed power measurements are developed, based on the well-known Newton-Raphson

algorithm. It is observed that, both methods give similar performance in distribution system

state estimation at all level of compression and maintain same complexity order. Even with

only 50% compressed measurements both methods provide accurate estimation of voltage

states. Thus, the proposed methods of state estimation from compressed measurements

can play a significant role in the perspective of centralized information processing for any

CPS including the smart distribution grid. In the upcoming chapters, we investigate the

decentralized approach, which can also reduce the information burden while distributing

the computational task among the communicable sensors. As pointed in Section 1.2, this

will help making the CPS more robust to the faulty communication network.
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Chapter 5

Agent based State Estimation in

Smart Distribution Grid

A novel agent based static state estimation strategy for a specific class of physical systems

is proposed. Physical systems, (e.g. smart distribution grid) which are well modeled using

decentralized measurements and distributed state-space formulations are considered. In

such systems, sensor nodes acting as agents estimate only a subset of states, instead of

evaluating local estimates of global states. In general, for each agent, the measurement

model reduces to an underdetermined nonlinear system and in many cases, the state elements

associated with an agent may overlap with neighboring agents. A classic example of such a

physical system is a radial power distribution grid. We propose a state estimation strategy,

which effectively integrates the principles of local consensus and least squares solution and

illustrate its potency using the power distribution grid. We also present rigorous analysis

of convergence of the proposed approach to motivate its application to other multi-agent

systems.
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5.1 Introduction

The future electric power distribution network is envisioned to be smart and intelligent us-

ing modern information and communication technology. The future smart distribution grid

is characterized by the ability of end-user to participate in system monitoring, operation and

control through two-way communication with electrically coupled neighbors and exchanging

relevent encrypted information [22]. In a sense, each end-user will act as an agent by being

proactive to environments and neighbors. It will ensure affordable, secured and reliable elec-

tric power delivery. Decentralized estimation of states is one of the important aspects of an

agent based system, that offers benefits relative to centralized and hierarchical data fusion

architecture in terms of (1) real-time implementation, (2) configuration flexibility, and (3)

communication bottlenecks [39]. In a typical decentralized architecture, each sensor node

observes only a distinct portion of underlying physical system and makes a local estimate of

overall system states by exchanging information with neighboring nodes. However, full con-

nectivity of sensor nodes is required to make the local estimate equivalent to that obtained

using a centralized systems. With the increase in sensor nodes, the number of communica-

tion links, computational memory and hardware requirements increase excessively in a fully

connected decentralized multisensor system. This problem can be resolved by introducing

sensor specific distributed state-space model (whenever applicable), so that each sensor es-

timates only a relevant subset of the overall physical system. Thus, the communication and

computational redundancy inherent to decentralized observation model can be reduced. In

this way, the sensors are acting as agents and the underlying system can be referred to as

a multi-agent system. In this chapter, we formulate an agent based scenario for estimating

the voltage states of a typical radial distribution network.

As discussed in Section 2.2.1, static estimation of states from nonlinear observations is

typically performed through Gauss-Newton iteration constituting the weighted least square

(WLS) method. In the next subsection, we briefly describe the application of WLS and its

variations for decentralized static state estimation in power system.
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5.1.1 Related Work

The WLS method is used in various literature for global state estimation from decentral-

ized observation model, specially for interconnected electric power transmission systems.

The decentralization is generally obtained by decomposing an interconnected transmission

system into a certain number of nonoverlapping subarea on a geographical basis [41]. Let

us assume that the physical system is decomposed into N subareas. And the global state

vector x is decomposed into N nonoverlapped local state vectors x1,x2, ...,xN . The set of

measurement / observations made in the ith subarea constitutes the following measurement

model,

yi = hi(xi) + wi; i = 1, 2, ..., N (5.1)

where, yi ∈ RMi is the measurement vector for ith subarea, xi ∈ RLi is the state vector

having only local state elements of ith subarea and wi ∼ N (0,Ci). The global state vector

is related to inter-area boundary measurements as,

yboundary = hboundary(x) + wboundary (5.2)

In each of the subsystem, respective local estimates are obtained using equation (2.8). The

local estimates are then centrally coordinated to obtain overall system states subject to the

constraints imposed by equation (5.2). A comprehensive survey of such multiarea scheme of

state estimation is given in [42]. A hierarchical multilevel structure of state estimation based

on factorized WLS method is described in [43]. Here, the authors define the distribution

substations as the lowest level of the multilevel structure. In [44], authors use decentralized

measurement model with the assumption that the global state may not be observable in

some of the subareas. In each subarea, the global states are synchronously updated using

the combined approach of global consensus and innovation. Mathematically, at (k + 1)th

iteration, state update at subarea i is given as,
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xi
(k+1) = xi

(k) + α(k)Hi(k)>Ci
−1[yi −Hi(k)xi

(k)]

− β(k)
∑
j∈Si

[xi
(k) − xj

(k)] (5.3)

where, xi represents the global state maintained and updated in each iteration by subarea

i and Si is the corresponding set of neighbors. The local jacobian matrix Hi(k) in equation

(5.3) is updated after a fixed number of iterations to reduce computational requirements.

It should be noted that, the convergence to global consensus is not reported in [44], when

Hi(k) violates the condition of full column rank in each of the subarea i. Unlike [41], partial

overlapping of local state vectors is considered in [45] and [46]. It is assumed that any

subarea may have some state elements, which are shared with its neighbors. The sharing is

due to the specific placement of measurement devices over the tielines of an interconnected

system. In this scenario, the multi-area state estimation (MASE) is designed as a distributed

optimization problem in each Gauss-Newton iteration [45]. At (k + 1)th iteration,

min
N∑
i=1

1

2
||yi −Hi(k)xi

(k+1)||2 (5.4)

subject to xi
(k+1)[j] = xij

(k+1), ∀j ∈ Si; i = 1, 2, ..., N . Here, xi represents the state elements

local to subarea i. xi[j] represents a vector of state elements for the ith subarea, which are

shared with its neighbor j. The auxiliary variables xij are associated with the tieline mea-

surements. Thus, at every iteration, equation (5.4) represents a partially global consensus

problem, that can be solved using alternating direction method of multipliers (ADMM) (See

chapter 7 of [47] for details). In [46], authors implement R-SDP with the help of ADMM to

solve the problem of MASE. However, two important assumptions are made in the works

of [45] and [46]: (1) in each subarea, there exists at least one state element, unshared with
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any of its neighbors, and (2) if a state element is shared, it is only between two neighboring

subareas.

In summary, the aforementioned prior efforts are based on either over-determined or fully

determined measurement models. As a consequence, efficient factorization schemes [48] can

be applied in equations (2.8) and (5.4). Furthermore, a scenario of more than two subareas

sharing the same state element as well as the case when all local state elements are shared

among neighbors is still an open challenge in distributed state estimation.

In this chapter, we propose an agent based static estimation method, specifically for a

radial network of electric power distribution. Each node in the network is considered an

agent that has access to a distinct set of measurements. A local nonlinear measurement

model is developed for every agent, which is based on the physical coupling with its neigh-

bors. Using this measurement model each agent attempts to estimate local states, when (1)

more than two agents share a particular state element and (2) each state element is shared

at least between two agents [81, 114].

5.2 System Model

The proposed methodology is based on mathematical modeling of the underlying physical

system in multi-agent framework. We consider a physical system that is monitored by a

set of distributed sensors. These sensors acquire a distinct set of measurements and can

communicate with other neighbors. Thus, the physical system can be visualized as a multi-

agent network, where each sensor acts like an agent. Additionally, the neighbors of an agent

are defined based on existing physical connections rather than geographical proximity.

Let, Si denotes the set of neighbors of agent i. The measurement model for agent i is,

yi = hi(xi) + wi; i = 1, 2, 3, ..., N (5.5)

where, yi ∈ RMi is the set of measurements taken by agent i and xi ∈ RLi represents the
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associated local state vector. Similar to equation (5.1), wi is the Gaussian noise vector for

ith agent with 0 mean and covariance Ci. Since, each agent is now an estimator, it is likely

that Mi ≤ Li,∀i. Thus, if Gauss-Newton iteration is used, the underlying Jacobian matrix

will be full row rank, representing an underdetermined system of equations. Furthermore,

each sensor / measurement unit is now acting itself as an agent / local estimator. As a

consequence, each state element associated with an agent can be shared with its neighbors

leaving the set of nonoverlapped state elements empty.

As an illustrative example, let us consider an N -node radial power distribution network

as shown in Fig. 3.1. Node 0 represents the substation grid. According to Kirchhoff’s current

law, the ith node injection current is given by,

Ii =

[
−Yi−1,i Yi−1,i + Yi,i+1 −Yi,i+1

]
Vi−1

Vi

Vi+1

 (5.6)

where, Yi−1,i = 1
Zeqi

is the single-phase equivalent admittance between node i−1 and node i

[97]. Vi (or |Vi|∠θi) is the ith node voltage phasor. Since, the network is limited to N nodes,

for consistency it is assumed that YN,N+1 = 0 and |VN+1|∠θN+1 = 0 as well.

The voltage phasors at different nodes of the network constitute the state of the overall

system. For the purpose of analyzing the network, Node 0 is taken as the reference bus with

|V0|∠θ0 = 1p.u.∠0.

As shown in Fig. 3.1, SGi and SLi represents the respective apparent power generation

and load at ith node. The corresponding real injected power, Pi = real(SGi − SLi) and

reactive injected power, Qi = imag(SGi − SLi). The injected powers satisfy the following

power flow equations throughout the network:

Pi = |Vi|2(Gi−1,i +Gi,i+1)− |Vi|
∑

j=i−1,i+1

|Vj| (Gi,j cos θi,j +Bi,j sin θi,j);
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Qi = −|Vi|2(Bi−1,i +Bi,i+1)− |Vi|
∑

j=i−1,i+1

|Vj| (Gi,j sin θi,j −Bi,j cos θi,j) (5.7)

where, Gi,j = real(Yi,j);Bi,j = imag(Yi,j) and θi,j = θi − θj. From these equations, we have

the following noiseless measurement model for each agent

yi =

Pi
Qi

 = hi(xi) (5.8)

where, hi : R6 → R2; 1 ≤ i ≤ N , and the associated state vector of agent i,

xi =

[
θi−1,|Vi−1|,θi,|Vi|,θi+1,|Vi+1|

]>
;∀i (5.9)

Thus, equation (5.8) represents an underdetermined nonlinear system for each agent.

The local state vectors as defined in equation (5.9) can be accumulated in a single matrix

X such that agent i’s state vector is in the ith column of X. The matrix takes the following

form: 

0, θ1, · · · , θi−2, θi−1, θi, · · · , θN−1

1, |V1|,· · · ,|Vi−2|,|Vi−1|, |Vi|, · · · ,|VN−1|

θ1, θ2, · · · , θi−1, θi, θi+1, · · · , θN

|V1|,|V2|,· · · ,|Vi−1|, |Vi|, |Vi+1|,· · · , |VN |

θ2, θ3, · · · , θi, θi+1, θi+2, · · · , 0

|V2|,|V3|,· · · , |Vi|, |Vi+1|,|Vi+2|,· · · , 0


(5.10)

It can be observed from equation (5.10) that, the state vector for each agent consists not

only of its own voltage and angle states but also includes four shared elements from its two

neighbors. Furthermore, for any agent, no state element is left unshared as illustrated in

the Venn diagram (Fig. 5.1). This scenario is a complete violation of the assumptions used

in [45], and [46].
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Figure 5.1: Venn Diagram of State Elements for a Radial Power Distribution Network.

5.3 Proposed Method

We wish to develop an agent-wise local consensus procedure, when (1) each agent’s obser-

vation space is nonlinear and underdetermined, and (2) each state element of the system

is shared at least between two agents. For any multi-agent system, the effect of neighbors

can be incorporated in local consensus with the help of selection matrices [114, 81]. These

matrices project the neighboring agents’ state vector with correct sign and orientation onto

the local state vector to accomplish distributed local consensus.

As shown in equation (5.10), agent (i − 1) and (i + 1) are in the set Si, located at the

trailing and leading edge of the ith agent, respectively. To compactly describe the local

consensus, three selection matrices are defined in accordance with equation (5.10),

Plead =

[
−e3,−e4,−e5,−e6,0,0

]>
; Ploc =

[
e1,e2,2e3,2e4,e5,e6

]>
; and

Ptrail =

[
0,0,−e1,−e2,−e3,−e4

]>
(5.11)

where, en is a column vector with 1 as the nth entry and zeros elsewhere. The dimension and

entries of these selection matrices depend upon the dimension of the state vectors as well

as the orientation of corresponding state elements. Therefore, these matrices are expected

to be fixed for a particular multi-agent system. Furthermore, Ploc is always symmetric

positive definite, and in this particular case, Plead = P>trail. Using the selection matrices
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and measurement model, we can write the state updates for each agent in the following

way [114, 81],

xi
(k+1) = xi

(k) + αi(k)Hi(k)†yi − αi(k)Gi(k)xi
(k)

−β(k)

(
Pleadxi−1

(k) + Plocxi
(k) + Ptrailxi+1

(k)

)
(5.12)

where, αi(k), β(k) > 0 are the time varying coefficients and Gi(k) = Hi(k)†Hi(k). All quan-

tities having subscript “i” correspond to the ith agent and k indicates the iteration index.

Hi(k)† represents the pseudo-inverse for a full row rank local Jacobian matrix. Mathemati-

cally, Hi(k)† = Hi(k)>
(
Hi(k)Hi(k)>

)−1
. Hence, by definition, Gi(k) is symmetric positive

definite.

It can be observed from equation (5.12) that, the system observability depends upon

the measurements acquired by each agent. If the agents are allowed to share measure-

ments among neighbors, each agent is expected to have accurate estimation with faster

convergence. However, issues like security and privacy has to be considered in defining the

type of information the neighboring agents can share. Furthermore, the choice of values

for αi(k), β(k) is another important factor that determines the rate of convergence of the

proposed method. In the following subsection we attempt to explore the theoretical analysis

for convergence rate of equation (5.12).

5.3.1 Convergence Analysis

Before going to detailed convergence analysis, we briefly review the concept of graph. A

networked physical system can be represented as a graph, G = (V , E), where V is the set

of vertices or nodes, whose interconnections are defined as a set of undirected edges E . An

alternate representation of G is a symmetric adjacency matrix A. The {i, j}th entry of this

79



matrix is,

[A]i,j = [A]j,i =


1{i, j} ∈ E

0{i, j} /∈ E

0 i = j

; ∀i, j ∈ V (5.13)

The above definition enables the decomposition, A = B + F and B = F> where, B and F

are strictly lower and upper triangular matrices, respectively.

In order to represent the iteration in equation (5.12) in compact form, we stack the state

vectors of all agents in a single long state vector,

x =

[
x1
>,x2

>,· · · ,xN>
]>

(5.14)

For simplicity, lets assume that the state vector dimension for each agent is L and that for

measurement set is M . As a consequence, the accumulated state updates for all agents can

be represented by the following recursive relation,

x(k+1) = x(k) +H(k)y −
(
G(k) + β(k)D

)
x(k) (5.15)

where, y =

[
y1
>,y2

>,· · · ,yN>
]>

; D = (B⊗Plead) + (F⊗Ptrail) + (IN ⊗Ploc);

H(k) = Blockdiag

[
α1(k)H1(k)†,α2(k)H2(k)†,· · · ,αN(k)HN(k)†

]
; and

G(k) = Blockdiag

[
α1(k)G1(k),α2(k)G2(k),· · · ,αN(k)GN(k)

]
. IN is the N × N identity

matrix. The symbol ⊗ represents Kronecker product.

Lemma 5.1. For radial network, D is symmetric positive semidefinite.

Proof. For the state matrix in equation (5.10), Plead = P>trail and B = F>. Therefore,(B⊗

Plead) = (F>⊗P>trail). Using the property of Kronecker product, (B⊗Plead) = (F⊗Ptrail)
>

and, (IN ⊗Ploc)
> = (IN ⊗Ploc). Hence, D = (F⊗Ptrail)

> + (F⊗Ptrail) + (IN ⊗Ploc) or,

D = A+ (IN ⊗Ploc) where, A = (F⊗Ptrail)
> + (F⊗Ptrail). Furthermore, (IN ⊗Ploc) is a
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diagonal matrix with non-zero elements, making it symmetric positive definite. However, the

strict upper triangularity of F makes the diagonal elements of A zero. Thus, A is symmetric

indefinite matrix. As a combined effect, D is symmetric positive semidefinite.

From equation (5.15) it is observed that, convergence will be achieved if the following

two limiting conditions are fulfilled [81, 114],

• Limiting condition of consensus

lim
k→∞

β(k)Dx(k) = 0 (5.16)

• Limiting condition of zero mismatch

lim
k→∞

H(k)y = lim
k→∞

G(k)x(k) (5.17)

Given the initial estimate x(0), the (k + 1)th update can also be represented in the

following way,

x(k+1) =

{
H(k) +

k−1∑
n=0

(
n+1∏
m=k

P(m)

)
H(n)

}
y +

0∏
m=k

P(m)x(0) (5.18)

where, P(m) = INL −G(m)− β(m)D.

From equations (5.17) and (5.18), we see that if,

lim
k→∞

0∏
m=k

P(m) = 0 (5.19)

then,

lim
k→∞

x(k+1) = lim
k→∞

x(k) = lim
k→∞

G(k)x(k) (5.20)
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Therefore, if λmax denotes the maximum absolute eigenvalue, equation (5.19) will be satisfied

if and only if, λmax(P(k)) < 1 [115]. Using Lemma 5.1 and properties of positive definiteness,

it implies that, 0 < λmax (G(k) + β(k)D) < 1. Applying equal weights to both matrices, the

inequality breaks down as,

λmax (G(k)) < 1/2;λmax (β(k)D) < 1/2

Equivalently, the time varying coefficients are bounded according to following inequalities ,

αi(k) <
1

2λmax (Gi(k))
; β(k) <

1

2λmax (D)
,∀i, ∀k (5.21)

The time varying coefficients are also expected to satisfy the limiting conditions of equations

(5.16) and (5.20). Based on these observations, we infer the following expressions of the

coefficients [81, 114],

αi(k) =
1

aλmax (Gi(k)) (1 + k)τ1
; a > 2, τ1 > 0 (5.22)

β(k) =
1

bλmax (D) (1 + k)τ2
; b > 2, τ2 > 0 (5.23)

5.4 Simulation and Results

The proposed method is simulated using the following model specifications:

• Number of nodes excluding substation grid, N = 10

• Base kV = 24.9; Base kVA = 100

• Inter node distance starting from grid:

{2580,1730,32230,37500,29730,10,310,10210,840,20440}ft.

• Inter node series impedance per mile:
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– From grid to 5th node: 1.3368 + j1.3343

– From 5th to 10th node: 1.9300 + j1.4115; j =
√

(−1)

• Initial estimate for each agent: Voltage magnitudes are initiated as uniform random

values between 0.95 p.u. and 1.05 p.u.. Similarly, voltage angles are initiated between

−π radian and π radian.

• For radial structure and selection matrices of equation (5.11), λmax (D) = 3.

• Empirical values for time varying coefficients

– τ1 = 2, τ2 = 1

– Effect of parameter a: a = {1, 4, 16, 64}, b = 3.

– Effect of parameter b: a = 4, b = {1, 2, 3}

• Maximum number of iterations = 100

The proposed method is applied to obtain the agent based static estimation of voltage

states. For comparison, centralized estimation of states are also obtained. Convergence

analysis is performed by calculating the following two metrics at each iterations,

INAE(k) =

∑N
i=1 ||Vi|(k) − |Vi|central|∑N

i=1 |Vi|(k)
× 100 (5.24)

MIAE(k) =
1

N

N∑
i=1

|θi(k) − θicentral| (5.25)

where, INAE and MIAE follows from equations (3.8) and (4.10), respectively. k represents

the iteration index. The superscript “central” indicates the voltage phasors estimated

using conventional WLS method as in equation (2.8). INAE and MIAE represents the

average estimation error in voltage magnitudes and angles, respectively. The entire process

of distributed estimation is repeated over 1000 independent Monte Carlo trials. At each
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iteration, the mean values of INAE and MIAE are obtained from these trials. Figures 5.2

and 5.3 illustrate respective effects of parameter a and b over the mean convergence of error

in voltage phasors.

From Fig.5.2 it can be noticed that, with the increase of a, voltage magnitude estimation

error (INAE ) decreases, while phase angle estimation error (MIAE ) increases with the

former being more significant. As shown in Fig.5.3, parameter b has similar effect over

MIAE. However, INAE seems to increase with the increase of b. When a < 2, INAE is high

enough to conclude as adequately convergent over iterations. Similarly, INAE is divergent

over iterations when b < 2. Thus, it is observed that, the conditions of convergence are

applied over the voltage magnitude estimation errors whereas, the phase angle estimation

errors converge asymptotically, with minimal effect of a and b. Henceforth, for satisfactory

convergence, the parameters a, b and exponents τ1, τ2 should be selected such that, (1)

a > b > 2 and (2) τ1 > τ2.

5.5 Conclusions

In this chapter, we propose a distributed state model and an agent based static state esti-

mation method for smart distribution grid. We specially consider the case when for each

agent, the local measurement model is underdetermined and all state elements for a particu-

lar agent is completely shared with its neighbors. An agent-wise distributed local consensus

procedure is developed, which at every iteration incorporates the least square mismatch.

Simulation results on a radial distribution grid show that the proposed method can give

satisfactory convergence based on the appropriate selection of constants and exponents. An

in-depth analysis of convergence gives an optimum selection criteria of these constants en-

suring universal application in multi-agent systems. In the next chapter, we generalize the

multi-agent formulation for dynamic state estimation and study the relative performance of

Kalman consensus filter and diffusion Kalman filter.
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Figure 5.2: Effect of a: (a) Mean Convergence of Error in Voltage Magnitudes. (b) Mean
Convergence of Error in Voltage Angles.
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Chapter 6

Distributed Agent based Dynamic

State Estimation over a Lossy

Network

In this chapter, a novel distributed agent based dynamical system estimation strategy is

proposed. We consider a spatially distributed system where each agent has a local obser-

vation space and is interested in a specific set of system state elements. The agents have

the ability of two-way communication with its neighbors (i.e., agents who share at least

one state element). At a particular time instant, each agent predicts its state and makes

intermediate correction based on its local measurements. Information about the corrected

state elements are then exchanged among the neighboring agents. Based on the final pro-

cessing of these exchanged information, an agent based Kalman consensus Filter (AKCF)

and uniform weighting based diffusion Kalman filter (ADKF) are proposed in the light of

well-established theory of distributed Kalman filtering. Two different systems are simulated

using the proposed filters. The effect of communication is also investigated by introducing

random failures in the communication link among neighboring agents. It is observed that

the mean square deviation (MSD) of AKCF is lower than that of ADKF for the scenarios
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considered. Additionally, the results also demonstrate that the AKCF is more robust to

communication link failures than the ADKF.

6.1 Introduction

Through the last five decades, Kalman filter [95] has been one tool of choice for real-time

estimation and tracking of dynamical processes. In a classical filtering approach, the sensors

communicate with a single fusion center either directly or hierarchically to send updated

measurement information in timely manner. Based on the knowledge of previous state val-

ues and overall system dynamics, the fusion center makes a minimum mean squared error

(MMSE) prediction of the states. Necessary corrections are made to the predicted states

based on sensor measurements. Now-a-days, physical systems, like the electric power grid

can be tracked via a distributed network of communicable sensors typically over a large

geographical region [49, 50]. The underlying communication and computational burden is

considerably high with a centralized or hierarchical implementation of a Kalman filter [39].

This issue is resolved through distributed implementation of Kalman filters that also offers

benefits in terms of real-time implementation and configuration flexibility. In this scenario,

the sensors have additional responsibility of implementing a local Kalman filter and inter-

sensor communication. The objective of each sensor is to have updated status of the overall

system through local prediction and necessary correction based on the type of information

(measurement and/or predicted state values) exchanged among the neighbors. Although,

the fundamental concept is unchanged, the distributed Kalman filter has evolved through

numerous versions. Among those, Kalman consensus filter (KCF) [51] and diffusion Kalman

filter (DKF) [52] are worth mentioning. In both setups, the sensors collect detailed infor-

mation about the measurements (i.e., sensed data and noisy observation space model) from

neighbors. The fused information is then applied to the classical Kalman filtering algorithm.

Thus, an intermediate estimate of the whole dynamics and the corresponding update in es-
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timation error covariance matrix is obtained at each sensor. At the last stage, the sensors

exchange information about the intermediate estimates with their neighbors. A correction

is made to each sensor’s estimate by either applying consensus (i.e., KCF), or through a

weighted combination of the received neighborhood information (i.e., DKF). Finding the

desired degree of consensus or the optimal weights for diffusion are the major issues in the

design of such distributed Kalman filters. For the Kalman consensus filter, the objective

is to design a scalar consensus gain parameter. In this regard, an optimization problem is

solved in [53] in order to find the desired consensus gain that ensures the convergence of

the over all estimation error covariance to a known steady-state matrix. However, it is also

mentioned that such steady-state matrix is hard to obtain in practical perspective and an

approximate expression for the consensus parameter is derived. On the other hand, in [54] a

Lyapunov stability analysis is carried out over the estimation error dynamics to find a range

of real numbers within which the desired consensus parameter should be chosen. When it

comes to implementing weighted diffusion of neighborhood estimates, the Laplacian [52],

the Metropolis [55] and the nearest neighbor or uniform weighting rules [56] are the popular

choices in designing the diffusion weights.

It should be noted that, besides the system dynamics and local observation space, the

topology of active sensor network as well as the inter-sensor communication reliability play

vital roles in successful implementation of distributed Kalman filters. In this regard, Kalman

consensus filter is characterized under the effect of lossy sensor network in [53] by incor-

porating a Bernoulli random variable in the consensus step. The effect is only illustrated

through simulations necessitating a theoretical analysis that involves the consensus gain pa-

rameter and network reliability. The usage of mutually independent Bernoulli distributions

is also reported in [57] to model the random presence of nonlinear dynamics as well as the

quantization effect in the sensor communication. The filter designed is of diffusion charac-

teristics and the corresponding weights are derived based on the average H∞ performance.

On the other hand, relative variance and adaptive combination rule is proposed in [56] for
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stationary diffusive estimation of single parameter under noisy communication link.

As a matter of fact, most of the advanced distributed Kalman filters are based on these

two major approaches, although they bear widely varying application specific characteristics.

We would like to refer [58] as a resource that summarizes the extensive research carried out

in this arena.

Dynamic state estimation in a large scale cyber-physical system (CPS) (e.g., Smart Grid)

presents some unique challenges namely, (1) dimension of the state vector is quite large, (2)

sensors are spatially distributed over a large area. Consequently, sensors are required to be

fully connected in order to regularly store and update the global state vector and estimation

error covariance matrix. Additionally, the number of communication links, computational

memory and hardware requirements increase with the increase in active sensor nodes. Thus,

it may be impractical to track the high dimensional state vector in its entirety at each

communicable sensor. This constraint can be overcome specifically for sparse large-scale

linear systems [59, 60]. In this case, the corresponding transition of states can be reflected on

(approximately) banded matrix to spatially decompose the overall dynamics among sensors

even when local measurement space projects onto global states. This idea is further extended

for system specific reduced order particle filtering [61] and distributed observer design for

large-scale system partitioned into disjoint areas [62]. The key fact is, the observation space

of each sensor is modified solely based on the characteristics of state dynamics.

On the contrary, in a practical physical system, overlaid with communication network,

the observation space of a sensor may be coupled to a limited set of specific state elements.

Some state elements may even be coupled to two or more sensors’ observation space. Under

these circumstances, each sensor may be relieved to track only the pertinent state elements.

In this way, the sensors are acting as agents and the underlying system can be referred to

as a multi-agent system.

In this chapter, an agent based general formulation of KCF and DKF is proposed. One

is called agent based KCF (AKCF) and the other one is agent based DKF (ADKF). Each
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agent has access to a distinct set of measurements, that are coupled to a subset of global

state elements. A set of binary projection matrices are defined based on the distribution

of system state elements over the observation space of the agents. These matrices map

the overall system dynamics to agent-specific state-space model and also define the set of

neighbors of a particular agent. AKCF and ADKF are developed by proper inclusion of

these projection matrices in the basic filtering steps. The application of proposed filters

are illustrated with two custom built 3-agent systems to make a comparative performance

analysis. The effect of losses in the inter-agent information exchange is also investigated by

allowing random and independent failure of the existing communication links.

6.2 System Model

We consider a system whose dynamics can be modeled in discrete time as 1st order Gauss-

Markov Process, i.e.,

xt = Fxt−1 + wt−1; t = 0, 1, 2, ... (6.1)

where, the overall system state is represented by the n-dimensional state vector xt at time

instant t. The initial values of the state vector elements at t = −1 follow Gaussian distri-

bution with mean µ and covariance Σ. Unlike [59, 60, 61, 62], the state transition matrix

F ∈ Rn×n is a general square matrix with eigenvalues lying within a unit circle. The process

noise wt ∼ N (0,Q).The underlying physical system is observed by N agents. The linear

observation model for the kth agent is,

yt,k = Hkxt,k + vt,k; k = 1, 2, ..., N (6.2)

where, the nk-dimensional vector xt,k is Agent k’s local state vector − a subset of xt.

The observation matrix Hk ∈ Rmk×nk is full row rank (i.e., mk ≤ nk). The measurement

noise vt,k ∼ N (0,Rk) and is independent of process noise. Unlike conventional distributed
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Kalman filtering, a particular agent k attempts to estimate only the local state vector xt,k

instead of xt. Consequently, an agent-specific local system dynamics is associated with the

filtering problem. In this regard, we introduce a binary projection matrix, which extracts

out the state elements from the global set of states and rearrange them according to the

observation space of a particular agent. For the kth agent, we name it Tk such that,

xt,k = Tkxt; k = 1, 2, ..., N. (6.3)

The projection matrix Tk is an nk × n matrix and rank deficient (nk < n). Therefore,

exact recovery of the global set of states xt from individual agent’s local state vector xt,k

is not possible and also not required in current scenario. We define it as binary projection

matrix since intuitively the matrix is projecting the n-dimensional state vector onto nk-

dimension. Here, by projection, we imply the extraction of one state element at a time

instead of creating a new one from some weighted combinations. Such binary matrices are

first reported in [66] to define multiple subsystems for decentralized model predictive control.

Unlike the proposed approach, the decomposition is performed solely based on the sparse

or block diagonal characteristics of the state transition matrix. Nevertheless, the projection

matrix also follows Lemma 6.1.

Lemma 6.1. For the binary projection matrix Tk of dimension nk × n (nk < n), TkT
>
k =

Ink
. Here, Ink

is an identity matrix of dimension nk.

Proof. An alternate representation of the projection matrix is, Tk =

[
Ink

O

]
P . Here, O is

nk × (n− nk) matrix of zeros and P is an n× n permutation matrix. Using the properties

of permutation matrices [116],

TkT
>
k =

[
Ink

O

]
PP>

I>nk

O>

 =

[
Ink

O

]
In

I>nk

O>

 = Ink
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Using the projection matrix Tk, the system dynamics of kth agent can be mapped from

equation (6.1),

xt,k = TkFxt−1 + wt−1,k (6.4)

where, wt−1,k = Tkwt−1. Therefore, wt−1,k ∼ N (0,Qk) with Qk = TkQT>k . It should

be noted that, the local system dynamics for kth agent should reflect the corresponding

observation model of equation (6.2). As a consequence, the desired 1st order Gauss-Markov

process of kth agent can be expressed as,

xt,k = Fkxt−1,k + wt−1,k, (6.5)

The above model conforms with equation (6.4) if and only if FkTk = TkF. Or, using Lemma

6.1, Fk = TkFT>k . It is important to note that, this irreversible mapping is intended only

to design the agent based Kalman filter, and subsequent derivation of theoretical bounds for

filter stability. Later in Chapters 7 and 8, a case study is carried out to verify these bounds,

where equations (6.1) (global system dynamics) and (6.3) (local state mapping) serve as

true state vectors for individual agents.

The static set of physical neighbors for the kth agent is defined based on the over-

lap/sharing of state elements. Mathematically,

Sk = {i : Pi,kxt,i projects onto Li,kxt,k,∀t} (6.6)

Here, Pi,k and Li,k are nk × ni and nk × nk binary projection matrices, respectively. When

agent i sends state information to agent k, the projection matrix Pi,k is multiplied to the

sender agent’s vector of shared states whereas Li,k is used with receiver agent’s shared state

vector. By default, Pk,k = Lk,k = Ink
.
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6.3 Proposed Method

The agent based dynamic state estimation procedure is developed with minimum mean

square error (MSE) as the metric of interest. The state vector estimated by the kth agent

at discrete time instant i is defined as,

x̂i,k|j = E [xi,k|y0,k,y1,k, ...,yj,k] (6.7)

The corresponding error covariance matrix is,

Mi,k|j = E
[
(xi,k − x̂i,k|j)(xi,k − x̂i,k|j)

>] (6.8)

The first five steps of estimation are performed according to traditional Kalman filtering,

which are represented according to the definitions given in equations (6.7) and (6.8). For

the kth agent,

• Initialization:

x̂−1,k|−1 = µk,M−1,k|−1 = Σk; (6.9)

where µk = Tkµ and Σk = TkΣT>k .

• Prediction:

x̂t,k|t−1 = Fkx̂t−1,k|t−1 (6.10)

• Update Error Covariance:

Mt,k|t−1 = FkMt−1,k|t−1F
>
k + Qk (6.11)

For this process to be stable the spectral radius of Fk has to be less than 1. The next

two steps are based on kth agent’s observation model.
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• Minimum MSE:

Mt,k|t =
(
M−1

t,k|t−1 + H>k R−1k Hk

)−1
(6.12)

• Intermediate Correction:

b̂t,k = x̂t,k|t−1 + Mt,k|tH
T
kR−1k

(
yt,k −Hkx̂t,k|t−1

)
(6.13)

At the last step of estimation, b̂t,k is used along with the exchanged information from the

neighbors to arrive at the estimate of individual agents’ local state values. This step can be

performed either using consensus [54] or uniformly diffusing the exchanged information [52].

These approaches are called agent based Kalman consensus filter (AKCF) and Diffusion

Kalman filter (ADKF), respectively [83]. The mathematical representation of this step of

information exchange is given below,

• Final Correction: AKCF

x̂t,k|t = b̂t,k + εMt,k|t
∑
i∈Sk

(
Pi,kx̂t,i|t−1 − Li,kx̂t,k|t−1

)
(6.14)

where, 0 < ε ≤ 1. Larger value of ε allows greater contribution of consensus and vice

versa.

• Final Correction: ADKF

x̂t,k|t = Dk

∑
i∈Sk∪{k}

Pi,kb̂t,i (6.15)

where, Dk = diag (dk[1], dk[2], · · · , dk[nk]). For uniform weighting,

dk[j] =
1

Number of Agents that share the state xk[j]
(6.16)

Here, xk[j] represents the jth element of agent k’s local state vector.
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Figure 6.1: Inter-agent Information Exchange

Furthermore, unlike conventional algorithms of distributed Kalman filter [], the agents are

not required to aggregate information about their neighbors’ measurements or individual

error covariance matrices.

6.4 Effect of Lossy Communication Network

In the proposed method of agent based filtering, it is evident that only the information

about relevant state elements are being exchanged among neighbors. This is illustrated in

Fig. 6.1. In AKCF, the kth agent exchanges information about the predicted state elements

obtained in equation (6.10) with its neighbors. Whereas, in ADKF, the intermediate cor-

rection vector obtained in equation (6.13) is exchanged. Therefore, the inter-agent two way

information exchange plays an important role in agent based Kalman filtering and can be

hampered if the underlying communication link fails. These circumstances can be simulated

by introducing random link failures (RLF). Mathematically, effect of RLF can be analyzed

by inserting Bernoulli random variables ζi,k(t) in equations (6.14) and (6.15). These random

variables have the following probability mass functions,
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ζi,k(t) =

0 with Prob.ρi,k

1 with Prob.1− ρi,k
;∀i ∈ Sk,∀k. (6.17)

Here, ρi,k represents the probability of failure to send information from agent i to a neighbor

agent k. From the properties of Bernoulli random variables, E[ζi,k(t)] = 1 − ρi,k. Conse-

quently, the final correction step in AKCF becomes,

x̂t,k|t = b̂t,k + εMt,k|t
∑
i∈Sk

ζi,k(t)
(
Pi,kx̂t,i|t−1 − Li,kx̂t,k|t−1

)
(6.18)

It is evident that only the consensus part of equation (6.18) is affected by communication.

On the contrary, the final correction step of ADKF is modified as follows,

x̂t,k|t = Dt,k

∑
i∈Sk∪{k}

Pi,kb̂t,i (6.19)

where, Dt,k = diag (dt,k[1], dt,k[2], · · · , dt,k[nk]). And for uniform weighting,

dt,k[j] =
1

ct,k[j]
(6.20)

where, ct,k[j] represents the number of Successfully Received estimates for xk[j] at discrete

time instant t.

The following assumptions are made in analyzing the lossy network effect over the agent

based estimation problem.

Assumption 6.1. The random events ζi,k(t) and ζk,i(t) are independent of each other ∀i ∈

Sk; ∀k.

Assumption 6.2. The random events ζi,k(t) and ζj,l(t) are independent of each other ∀i 6=

j;∀k 6= l.
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Figure 6.2: Venn diagrams for SYS1 and SYS2

6.5 Simulation and Results

We investigate the performance of the proposed filters for two 3-agent systems. The set of

global state elements for the 1st system SYS1 is {a, b, c, d, e, f} and that for the 2nd system

SYS2 is {a, b, c, d, e, f, g, h, i, j, k, l,m}. The Venn diagrams in Fig. 6.2 show the agent-wise

distribution of the state elements for the two systems. It should be noted that in SYS2, there

exist some state elements strictly local to the agents, whereas, each of the state elements is

shared between two agents in SYS1. The rest of the parameters of SYS1 and SYS2 are given

in Appendix A and B, respectively [83]. The proposed filters are applied to these systems

as illustrative examples.

6.5.1 Figure of Merit

To investigate the performance of AKCF and ADKF, an estimation error vector associated

with each agent is calculated. The estimation error of kth agent at discrete time instant t
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is, ηt,k = x̂t,k|t − xt,k. A global estimation error vector is formed by stacking ηt,k from all

agents,

ηt =

[
η>t,1· · ·η>t,N

]>
This vector is used to define the mean square deviation (MSD) as follows,

MSDt = trace
(
E
[
ηtη

>
t

])
(6.21)

MSD is used as the figure of merit to compare the performance of AKCF and ADKF. The

lower the MSD is, the better. In the upcoming subsections we present the performance of

the proposed filters in terms of MSD obtained from simulations.

6.5.2 Case Study: Perfect Communication

In this scenario, all the inter-agent communication links are assumed to be working perfectly.

The proposed ADKF is applied to SYS1 with uniform weighting rule (equation (6.16)).

AKCF is applied to SYS1 with different values of ε. MSD is calculated from 1000 independent

Monte Carlo trials at each time step. The comparative performance of ADKF and AKCF

for SYS1 is shown in Fig. 6.3. In the same way, AKCF and ADKF is applied to SYS2 and

the performance is summarized in Fig. 6.4. The MSD values from Fig. 6.3 and Fig. 6.4

differ from the classical distributed filtering approach [52] by showing better performance

of AKCF, irrespective of the selection of ε within the prescribed range [83]. In particular,

the best performance of AKCF is obtained when ε is selected to be 0.1 and 0.01 for SYS1

and SYS2, respectively. The optimum values of ε thus obtained is used in AKCF for the

following case study.

99



 

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Time Index, t

M
S

D
t

Agent Based Kalman Filter, System 1

 

 

ADKF

AKCF ( = 1)

AKCF ( = 0.1)

AKCF ( = 0.01)
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Figure 6.5: Effect of communication for SYS1

6.5.3 Case Study: Random Link Failure

The effect of inter-agent communication is investigated for SYS1 and SYS2 by using equations

(6.18-6.20) at the information exchange steps of the proposed filters. For simplicity, the

probability of link failure, ρi,k = ρ; ∀i, k, i 6= k. The MSD is obtained at different link failure

rates, which is illustrated in Fig. 6.5 for SYS1. Based on the previous case study, the value

of ε in AKCF is 0.1. The whole procedure is repeated for SYS2 with the corresponding

value of ε in AKCF being 0.01. Fig. 6.6 shows the relative performance for SYS2 affected by

imperfect communication. The effect of faulty inter-agent communication link is insignificant

for AKCF as evident from Fig. 6.5 and Fig. 6.6. This is because of relatively small values

of ε chosen for the two systems. On the other hand, a high link failure rate results in less

contribution from neighboring agents in the final correction step of ADKF. It is interesting

to see that ADKF performs better when the communication link is highly unreliable. While
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this may appear counter intuitive, it is in fact a direct consequence of the system parameter

choice. These observations suggest that, for the two systems considered in our simulations,

the underlying system states are more dependent upon the agent-wise observation space

as compared to the system dynamics itself. Nevertheless, the steady-state MSD values are

smaller for AKCF, irrespective of the choice of ε value as well as the condition of inter-agent

communication link and is more robust than ADKF [83].

6.6 Conclusions

An agent based Kalman consensus and diffusion Kalman filter is proposed. Each agent is

interested in a distinct subset of state elements and is able to communicate to its neighbors

who share at least one state element. The proposed filtering procedures are applied to two

multi-agent systems to compare their performance. The effect of communication is also

observed for the agent based Kalman filters. It is observed that AKCF performs better

than ADKF for both systems even under random failure of inter-agent communication link.

In the next chapter we propose a strategy of choosing optimal consensus weights in AKCF

formulation both under perfect and lossy communication network.
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Chapter 7

Agent based Optimally Weighted

Kalman Consensus Filter over a

Lossy Network

7.1 Introduction

The primary study of agent based Kalman filtering in Chapter 6 indicates the superior and

more robust characteristics of the consensus approach in inter-agent information exchange.

Consequently, this chapter further investigates the AKCF performance by incorporating a

varying consensus weight. In addition to that individual agent’s state elements are clearly

distinguished as shared and unshared ones. The optimal weighting of consensus is derived

through Lyapunov function based stability analysis of corresponding estimation error. The

effect of communication is also investigated by introducing random failures in the com-

munication link among neighboring agents. The corresponding bounds on the degree of

consensus and inter-agent link failure rate are also derived for stable implementation of the

agent based dynamic estimation. The proposed filter is applied to a custom built 2-agent

system to conform the desired optimal limit for the degree of consensus based information
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exchange both under perfect and lossy communication network.

7.2 Shared and Unshared State Elements in Agent

based model

Given the agent based observation model 6.2 and state dynamics 6.5, let us redfine the static

set of physical neighbors for the kth agent based on the overlap/sharing of state elements.

Mathematically,

Sk = {i : Pi,kSixt,i projects onto Li,kSkxt,k,∀t}. (7.1)

Here, Pi,k and Li,k are nsk × nsi and nsk × nsk binary projection matrices, respectively. nsk is

the number of state elements shared between agent k and its neighbors. Similar definition

applies for nsi . When agent i sends state information to agent k, the projection matrix Pi,k

is multiplied to the sender agent’s vector of shared states whereas Li,k is used with receiver

agent’s shared state vector. By default, Pk,k = Lk,k = Ins
k
. The other binary matrices

(Si,Sk) are required to extract the shared state elements for the respective agents. In

addition to that, a reordering binary matrix Os
k is used to assign the shared state elements

to their original position in the kth agent’s state vector with the entries of unshared elements

kept zero. Similar operation of extracting and reordering can be defined for completely

unshared state elements for any agent. Fig. 7.1 illustrates these operations for shared and

unshared state elements of agent k. The decomposition into shared and unshared portion

and recombining them should constitute the original state vector for the kth agent. Thus,

mathematically, it is required that [84],

Ψkxt,k = Os
kSkxt,k + Ou

kUkxt,k = xt,k

To clarify these matrices we present an example of 3-agent system. The agent-wise dis-

tribution of global state elements are obtained through their respective observation spaces.
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Fig.7.2 shows the corresponding Venn diagram. The mapping of local state vector from the

global one are obtained using the following matrices:

T1 =


0,1,0,0,0

0,0,1,0,0

0,0,0,0,1

 ; T2 =


1,0,0,0,0

0,0,0,1,0

0,0,0,0,1

 ; T3 =


0,0,1,0,0

0,0,0,1,0

0,0,0,0,1


Also, from Venn diagram, the set of neighbors, S1 = {2, 3}; S2 = {1, 3} and S3 = {1, 2}.

The corresponding S, P and L matrices are as follows:

S1 =

0,1,0

0,0,1

 ; S2 = S1; S3 = I3.

• Agent 2 → Agent 1 ← Agent 3,

P2,1 =

0,0

0,1

 ; L2,1 = P2,1; P3,1 =

1,0,0

0,0,1

 ; L3,1 = I2.

• Agent 1 → Agent 2 ← Agent 3,

P1,2 = P2,1; L1,2 = P1,2; P3,2 =

0,1,0

0,0,1

 ; L3,2 = I2.

• Agent 1 → Agent 3 ← Agent 2,

P1,3 =


1,0

0,0

0,1

 ; L1,3 =


1,0,0

0,0,0

0,0,1

 ; P2,3 =


0,0

1,0

0,1

 ; L2,3 =


0,0,0

0,1,0

0,0,1

 .
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Figure 7.1: Extracting and Reordering of Shared and Unshared State Elements.

Agent 1

Figure 7.2: Venn Diagram of an Example 3-Agent System.
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As can be seen from preceding definitions and example, the proposed concept of projec-

tion matrices is quite different from the well known successive orthogonalization procedure

by Hassan et al. [117]. In that work, the authors talk about N interconnected linear dy-

namical subsystems where, the dynamics of a particular subsystem is driven by the weighted

combination of other subsystem dynamics. This weighted aggregation also reflects the in-

terconnected characteristics of the overall process. In addition to that, the state for any

subsystem is being estimated by successively orthogonalizing the estimation error against

a Hilbert space, which consists of measurements from all the subsystems. Accordingly, we

would like to clarify the difference with the current approach in three fundamental ways.

First, the single large-scale dynamical process is decomposed exclusively based on the in-

dividual agent’s measurement space. The weighted combination is absent here and the

agent-wise decomposed dynamics does not depend upon that of other agents. Secondly, not

all the agents are interconnected rather the neighbors are defined based on the sharing of

same state elements. Third, as will be described in the upcoming AKCF algorithm, the

intermediate state estimate for each agent is based on the orthogonalization procedure with

respect to its own set of measurements and the final estimate is obtained through neigh-

borhood consensus of these estimates. Thus, the strategy proposed in this research can

efficiently handle large-scale problems while preserving data privacy.

7.3 AKCF with Adjustable Consensus Weights

The AKCF algorithm proposed in Section 6.3 is modified by incorporating the concept of

shared and unshared state elements. Algorithm 3 summarizes the procedure.

At the initialization step, µk = Tkµ and Σk = TkΣT>k . Steps 2 to 6 are performed

according to traditional Kalman filtering. The standard form calculation of Kalman gain

(step 4) is feasible since each agent k has to bear O(n3
k) complexity as compared to O(n3) in

conventional distributed Kalman filtering. At the 7th step of estimation, correction is made
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Algorithm 3 AKCF

1: x̂−1,k|−1 = µk,M−1,k|−1 = Σk . Initialization
2: x̂t,k|t−1 = Fkx̂t−1,k|t−1 . Predict State
3: Mt,k|t−1 = FkMt−1,k|t−1F

>
k + Qk . Update Error Covariance

4: Kf
t,k = Mt,k|t−1H

>
k

(
HkMt,k|t−1H

>
k + Rk

)−1
. Kalman Gain

5: Mt,k|t =
(
Ink
−Kf

t,kHk

)
Mt,k|t−1 . Correct Error Covariance

6: b̂t,k = x̂t,k|t−1 + Kf
t,k

(
yt,k −Hkx̂t,k|t−1

)
. Intermediate Correction

7: x̂st,k|t = Skb̂t,k

+ Wf
t,k

∑
i∈Sk

(
Pi,kSix̂t,i|t−1 − Li,kSkx̂t,k|t−1

)
. Shared Element Correction through

Inter-Agent Information Exchange
8: x̂t,k|t = Os

kx̂
s
t,k|t + Ou

kUkb̂t,k . Combining the Shared and Unshared Parts

to individual agents’ shared state elements by using b̂t,k and exchanged information from

the neighbors. Finally, the estimates of shared and unshared state elements are combined

in a single vector for each agent. The superscript “f” is used to indicate the Kalman filter

gain and consensus weight for filtering. It should be noted that, the fixed consensus weight

Mt,k|t used in Section 6.3 is changed to a general weight matrix Wf
t,k|t. In the upcoming

sections we discuss the probable choice of this weight matrix for a stable filtering operation.

7.4 Main Results

We present the primary outcome of this research starting with an important lemma, which

will be used in upcoming theorems and subsequent sections.

Lemma 7.1. Let’s assume G and L are two symmetric positive definite matrices. The

maximum and minimum eigenvalues of G are gmax and gmin, respectively. Similarly, lmax

and lmin denote the respective maximum and minimum eigenvalues of L. Let ε ∈ R. The

positive definiteness of the symmetric matrix quantity (G− ε2L) is guaranteed, if |ε| is

bounded as follows [84],

Proof. Let, B = G − ε2L. Therefore, B will be positive definite if and only if for all non

zero vectors u, the quadratic form, u>Bu > 0. The primary decomposition of this form
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Scenario 1: |ε| <
√

gmin

lmax

Scenario 2: |ε| <
√

gmax

lmax

Scenario 3: |ε| <
√

gmax

lmin

Real Line
Scenario 1:

Real Line
Scenario 2: 

Real Line
Scenario 3: 

Figure 7.3: Relative Positioning of the Range of Quadratic Values.

reveals the required inequality, u>(ε2L)u < u>Gu. Because of the symmetric matrices, the

quadratic values u>(·)u lie on the real line whose range is defined according to Rayleigh-Ritz

inequality. Thus, for the two sides of the above equation we have the following range of real

quadratic values, gminu
>u ≤ u>Gu ≤ gmaxu

>u, and ε2lminu
>u ≤ u>(ε2L)u ≤ ε2lmaxu

>u.

The relative positioning of the two ranges of quadratic values over the real line results

in three possible scenarios as illustrated in Fig.7.3. These scenarios satisfy the condition of

positive definiteness when,
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in scenario 1: ε2lmaxu
>u < gminu

>u
in scenario 2: ε2lmaxu

>u < gmaxu
>u

and in scenario 3: ε2lminu
>u < gmaxu

>u

Rearranging the inequalities and taking square roots on both sides complete the proof.

We also represent the sufficient condition in the following corollary of Lemma 7.1 consid-

ering the stochastic nature of symmetric positive definite matrices and following their mean

behavior.

Corollary 7.1. Let’s assume G and L are two symmetric positive definite matrices with

random elements that are independent of each other. The expectation of positive definiteness

of the matrix (G− ε2L) is guaranteed if ε is bounded as follows [85],

Scenario 1: |ε| <
√
E [λmin(G)]/E [λmax(L)]

Scenario 2: |ε| <
√
λmax (E [G])/E [λmax(L)]

Scenario 3: |ε| <
√
λmax (E [G])/λmin (E [L])

Proof. The positive definiteness is guaranteed in Lemma 7.1 by expressing the bounds in

terms of the eigenvalue ratios. The random nature of matrices under consideration results

in random ratios of eigenvalues. Therefore, we are interested in expected eigenvalue ratios.

Mathematically, our goal is to modify the general inequality ε2 < E[λ(G)/λ(L)] based on

the three scenarios mentioned in the proof of Lemma 7.1. Since, the random matrices are

independent, their eigenvalues (which are real and positive because of symmetry and positive

definiteness) are also independent. Therefore,

E [λ(G)/λ(L)] = E[λ(G)]E [1/λ(L)] > E[λ(G)]/E[λ(L)]

The above inequality is the direct consequence of the relationship between arithmetic and

harmonic means of positive datasets. Hence, we focus on more strict inequality ε2 <
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E[λ(G)]/E[λ(L)]. In addition to that, the Jensen’s inequality is used to define the following

properties of maximum and minimum eigenvalues of a random matrix X.

• Convexity of maximum eigenvalue: λmax (E[X]) ≤ E [λmax(X)]

• Concavity of minimum eigenvalue: λmin (E[X]) ≥ E [λmin(X)]

Using the above properties, we can express the sufficient bounds on ε2 under the three

scenarios.

Scenario 1: ε2 < E [λmin(G)]/E [λmax(L)]
Scenario 2: ε2 < λmax (E [G])/E [λmax(L)]
Scenario 3: ε2 < λmax (E [G])/λmin (E [L])

Taking square root on both sides of these inequalities complete the proof.

In addition to this, we define the following matrices according to AKCF steps in Algo-

rithm 3,

Definition 7.1. Ct,k =
(
Ink
−Kf

t,kHk

)
Fk; Dt,k = C−1t,kMt,k|t

(
C−1t,k
)>

;

Gt,k = M−1
t−1,k|t−1 −D

−1
t,k ; and,

[AF ](k,l)thblock =


−Os

kPl,kSlFl; l ∈ Sk∑
i∈Sk Os

kLi,kSkFk; l = k

0nk×nl
; otherwise.

(7.2)

The following theorem gives an optimal expression of the consensus weight Wf
t,k in

association with a tuning parameter ε in order to set the degree of participation in consensus.

Theorem 7.1. The error dynamics of the Kalman consensus filter for multi-agent system

described in Algorithm 3 is globally asymptotically stable if, Wf
t,k = ε (Os

k)
†Mt,k|t−1

(
F−1k

)>
Os
k;

∀k,∀t; and the sufficient conditions on the level of consensus to guarantee stability are [84],
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Scenario 1: |ε| <
√

mink λmin(Gt,k)/λmax

(
AF>DtAF

)
Scenario 2: |ε| <

√
maxk λmax(Gt,k)/λmax

(
AF>DtAF

)
Scenario 3: |ε| <

√
maxk λmax(Gt,k)/λmin

(
AF>DtAF

)

Proof. To investigate the error dynamics, an estimation error vector associated with each

agent is defined in two steps. At first, error in estimating the shared states and those of

unshared ones are defined. For shared states, the error is, ηst,k = x̂st,k|t − Skxt,k. And for

the unshared elements, ηut,k = Uk

(
b̂t,k − xt,k

)
. Here, xt,k is the true state vector of the kth

agent at discrete time instant t. At the second step, the estimation error of kth agent is

defined as,

ηt,k = Os
kη

s
t,k + Ou

kη
u
t,k (7.3)

Therefore, the error dynamics for the kth agent can be derived from equations (6.2), (6.5),

steps 2,6,7 and 8 of Algorithm 3,

ηt,k = Ct,kηt−1,k + Os
kW

f
t,kzt−1,k + Kt,kvt,k − (Ink

−Kt,kHk) wt−1,k

−Os
kW

f
t,k

∑
i∈Sk

(Pi,kSiwt−1,i − Li,kSkwt−1,k) (7.4)

where, zt−1,k =
∑

i∈Sk

(
Pi,kSiFiηt−1,i − Li,kSkFkηt−1,k

)
and Pi,kSixt,i = Li,kSkxt,k,∀i ∈

Sk,∀k,∀t. From equation (7.4) it can be observed that, the measurement and process noise

terms (i.e.,v and w) are random inputs characterized by zero mean Gaussian probability

distribution. Therefore, for kth agent, the stability of equation (7.4) is governed by the

following homogeneous equation [118],

ηt,k = Ct,kηt−1,k + Os
kW

f
t,kzt−1,k (7.5)

The optimum choice for Wf
t,k is derived using the Lyapunov stability criteria [54, 118]. The
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candidate Lyapunov function for the kth agent, Vk(t) = η>t,kM
−1
t,k|tηt,k. Hence, the change in

Vk(t) can be written as,

δVk = Vk(t)− Vk(t− 1)

= −η>t−1,kGt,kηt−1,k + 2η>t−1,k

(
C>t,kM−1

t,k|tO
s
kW

f
t,k

)
zt−1,k

+ z>t−1,k

(
Os
kW

f
t,k

)>
M−1

t,k|tO
s
kW

f
t,kzt−1,k (7.6)

In the above equation, the positive definiteness of Gt,k is ensured by the recursive property of

Kalman filter and it also justifies the current choice of Lyapunov function. We add a related

explanation in Appendix C and it complements the use of similar Lyapunov function in

[119], too. Now, second term matrix quantity of the above equation can be reduced as

follows,

C>t,kM−1
t,k|tO

s
kW

f
t,k = εOs

k; ε ∈ R

⇒ Os
kW

f
t,k = εMt,k|t

(
C>t,k
)−1

Os
k (7.7)

Consequently, the third term reduces to ε2 (Os
kzt−1,k)

>Dt,k (Os
kzt−1,k). Since, Os

k is at least

a column rank matrix (i.e., nk ≥ nsk), we can write, Wf
t,k = ε (Os

k)
†Mt,k|t

(
C>t,k
)−1

Os
k. Using

step 5 of Algorithm 3 and Definition 7.1,

Mt,k|t =
(
Ink
−Kf

t,kHk

)
Mt,k|t−1

⇒Mt,k|t = Mt,k|t−1

(
Ink
−Kf

t,kHk

)>
⇒Mt,k|t = Mt,k|t−1

(
F−1k

)> C>t,k (7.8)

Therefore, Wf
t,k = ε (Os

k)
†Mt,k|t−1

(
F−1k

)>
Os
k. With this consensus weight, we get the

change in Lyapunov function for the multi-agent system by accumulating δVk for all agents,
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δV =
∑N

k=1 δVk [54]. Therefore,

δV = −
N∑
k=1

η>t−1,kGt,kηt−1,k + 2ε
N∑
k=1

η>t−1,k (Os
kzt−1,k)

+ ε2
N∑
k=1

(Os
kzt−1,k)

>Dt,k (Os
kzt−1,k)

= −η>t−1Gtηt−1 − 2εη>t−1A
Fηt−1

+ ε2η>t−1A
F>DtA

Fηt−1 (7.9)

where, ηt =
[
η>t,1 · · ·η>t,N

]>
, Dt = Blockdiag [Dt,1 · · · Dt,N ] andGt = Blockdiag [Gt,1 · · ·Gt,N ].

From the properties of block-diagonal matrices, λmin(Gt) = mink λmin(Gt,k). Hence, the er-

ror dynamics of the multi-agent system will be globally asymptotically stable if and only

if δV < 0 i.e., the matrix
(
Gt − ε2AF>DtA

F
)

is positive definite. Using Lemma 7.1, this

condition gives the bounds on |ε| in three scenarios.

Theorem 7.1 is system specific as can be seen from the three possible upper bounds in

the degree of consensus participation. In proving this theorem, we maintain consistency in

the definition of Lyapunov function at each discrete time instances. However, following the

analysis of [54], the respective Lyapunov functions would be Vk(t) = η>t,k
(
M+

t,k

)−1
ηt,k and

Vk(t− 1) = η>t−1,kM
−1
t,k|tηt−1,k. Here, the equivalent expression of M+

t,k would be,

M+
t,k = Mt,k|t

(
M−1

t,k|t−1Mt+1,k|tM
−1
t,k|t−1 + H>k R−1k Hk

)
Mt,k|t

It should be noted that the negativity of δV can also be ensured by making a least square

estimate of Wf
t,k. However, the existence of such weight matrix is dependent upon the rank

property of a system specific composite matrix. Furthermore, the degree of consensus cannot

be adjusted for stable filtering operation. The associated derivation is given in Appendix D.
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7.5 Stability under Lossy Communication

From Algorithm 3 it is observed that only the information about relevant state elements are

being exchanged among neighbors at the final correction steps. Therefore, the inter-agent

two way information exchange plays an important role in agent based Kalman filtering and

can be hampered if the underlying communication link fails.

These circumstances can be simulated by introducing random link failures (RLF). Math-

ematically, effect of RLF can be analyzed by inserting Bernoulli random variables ζi,k(t) in

step 7 of Algorithm 3. The associated probability mass functions are defined in equation

(6.17) and assumptions 6.1,6.2 are also followed in this analysis.

With the insertion of Bernoulli random variable, the step 7 in Algorithm 1 becomes,

x̂st,k|t = Skb̂t,k + Wf
t,k

∑
i∈Sk

ζi,k(t)
(
Pi,kSix̂t,i|t−1 − Li,kSkx̂t,k|t−1

)
(7.10)

Thus, it is evident that only the consensus part of equation (7.10) is affected by com-

munication network. Additionally, the introduction of Bernoulli random variable ζi,k(t)

randomizes equation (7.2) in the following way,

[AF
t ](k,l)thblock =


−ζl,k(t)Os

kPl,kSlFl; l ∈ Sk∑
i∈Sk ζi,k(t)O

s
kLi,kSkFk; l = k

0nk×nl
; otherwise.

(7.11)

Now, we represent a corollary of Theorem 7.1 for the optimal choice of Wf
t,k under lossy

communication network.

Corollary 7.2. If the probability of failure for any neighboring agent pair (i, k) in an N-

agent system follows assumptions 1,2 and equals to ρ, the stochastic error dynamics of the as-

sociated Kalman Consensus filter is globally asymptotically stable if, Wf
t,k = ε (Os

k)
†Mt,k|t−1

(
F−1k

)>
Os
k;

∀k,∀t; and the sufficient conditions on the level of consensus to guarantee stability are [84],
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Scenario 1: |ε| <
√

mink λmin(Gt,k)

E[λmax(AF
t

>
DtA

F
t )]

Scenario 2: |ε| <
√

maxk λmax(Gt,k)

E[λmax(AF
t

>
DtA

F
t )]

Scenario 3: |ε|(1− ρ) <

√
maxk λmax(Gt,k)

λmin(AF>
DtAF )

Proof. From equations (6.2), (6.5) and (7.10) and steps 2,6 of Algorithm 3, we express the

homogeneous equation governing the error dynamics of the kth agent,

ηt,k = Ct,kηt−1,k + Os
kW

f
t,kzt−1,k (7.12)

where, zt−1,k =
∑

i∈Sk ζi,k(t)
(
Pi,kSiFiηt−1,i − Li,kSkFkηt−1,k

)
and ηt,k is defined in equation

(7.3). The stochastic nature introduced by RLF is reflected through an underline embedded

below the z vector. Furthermore, if every agent pair (i, k) within the neighborhood fails to

communicate with the same probability ρ, then ρi,k = ρ, ∀i ∈ Sk;∀k. Hence, from equation

(7.11), E
(
AF
t

)
= (1− ρ)AF . The corresponding change in kth agent’s stochastic Lyapunov

function is given by,

δV k = V k(t)− V k(t− 1)

= −η>t−1,kGt,kηt−1,k + 2η>t−1,k

(
C>t,kM−1

t,k|tO
s
kW

f
t,k

)
zt−1,k

+ z>t−1,k

(
Os
kW

f
t,k

)>
M−1

t,k|tO
s
kW

f
t,kzt−1,k (7.13)

The above equation have similar form as in equation (7.6). Hence, Wf
t,k is the same as in

Theorem 7.1. Consequently, the third term reduces to ε2
(
Os
kzt−1,k

)>Dt,k (Os
kzt−1,k

)
. It is

observed that the Lyapunov function becomes stochastic because of zt−1,k. The collected
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stochastic Lyapunov dynamics for the multi-agent system, δV =
∑N

k=1 δV k, or, equivalently,

δV = −
N∑
k=1

η>t−1,kGt,kηt−1,k + 2ε
N∑
k=1

η>t−1,kO
s
kzt−1,k

+ ε2
N∑
k=1

(
Os
kzt−1,k

)>Dt,kOs
kzt−1,k

= −η>t−1Gtηt−1 − 2εη>t−1A
F
t ηt−1 + ε2η>t−1Ltηt−1 (7.14)

where, Lt = AF
t
>
DtA

F
t and Gt, Dt are the block-diagonal matrices as defined in previous

theorem. Thus, the stochastic error dynamics of the multi-agent system will be globally

asymptotically stable if and only if δV < 0, i,e., the random matrix (Gt − ε2Lt) is positive

definite. Using Corollary 7.1, this condition gives the bounds on |ε| in three scenarios.

Intuitively, more consideration is expected in agent-wise consensus as the inter-agent

communication link continues to become more and more prone to failure. This can be

observed from Corollary 7.2 through the proportional relationship between the degree of

participation in consensus “ε” and the rate of link failure “ρ”.

7.6 Case Study

The optimal AKCF is applied to a custom 2-agent system “SYS3” as illustrative example.

The set of state elements for the 1st agent is {a, b} and that for the 2nd agent {b, c}. It

is clear that the state element b is shared between the two agents and rest of the state

elements are strictly local to the respective agents. The system parameters described in

Sections 6.2,7.2 and corresponding extraction, reordering and projection matrices are given

in Appendix E. The parameters are so chosen that SYS3 follows Scenario 2 of Lemma 7.1.

Table 7.1 lists the corresponding steady-state upper bounds of |ε| under perfect and lossy

communication network following Theorem 7.1 and Corollary 7.2, respectively.

The stability performance of the proposed optimal AKCF is investigated by running
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ρ |ε| Upper bound
Perfect Network 0 0.3849
Lossy Network 0.2 0.4103

0.4 0.4410
0.6 0.4791
0.8 0.5279

Table 7.1: Steady State Bounds for SYS3
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Figure 7.4: AKCF Stability for SYS3 in Perfect and Lossy Network.

1000 independent Monte Carlo trials over SYS3 at each time step. These trials simulate the

total mean squared deviation, (TMSD), which has the following definition,

TMSDt =
2∑

k=1

E
[
η>t,kηt,k

]
(7.15)

where, the estimation error, ηt,k = x̂t,k|t−Tkxt, the true states xt being obtained according

to equation (6.1). TMSD is used as an indication of AKCF stability under different degree

of consensus and communication reliability. The filter is stable if TMSD values converge

over time. In Fig. 7.4 this metric shows the stability performance under perfect and lossy
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network. Consistent with Theorem 7.1, it is observed that the filter becomes unstable when

ε > 0.3849 under perfect communication. Additionally, as defined in Corollary 7.2, stability

is preserved under lossy network as long as the the degree of participation in consensus does

not exceed 0.4791 given the rate of link failure is 6 out of 10.

7.7 Conclusions and Future Work

An agent based optimally weighted Kalman consensus filter is proposed. Through Lyapunov

stability analysis, the optimal degree of participation in consensus is derived under both

perfect and lossy communication network. In the next chapter we investigate the impact on

stability when agents are given the option to either aggregate their measurements and/or

exchange information.

121



Chapter 8

Agent based Kalman Filtering -

Measurement vs Consensus?

This chapter discusses a generalized architecture of AKCF where the agents have a choice

in taking measurements and/or participating in information exchange. Within this frame-

work, each agent is characterized under three different cases - deterministic, mutual and

independent. Lyapunov energy functions are obtained from the corresponding estimation

errors and recursive error covariance matrices. Stability analysis is performed based on the

mean behavior of these functions in order to derive the bounds on the consensus level. In

each case, the consensus bounds are expressed under three different scenarios of relative

eigenvalue distributions. The proposed filtering method is applied to a 10-agent system

with radial topology. It is observed that the filter becomes unstable in the event of violating

the derived bounds confirming the theoretical results.

8.1 Introduction

In Chapter 7 we have analyzed an agent based Kalman consensus filter (AKCF). Through

Lyapunov stability analysis some bounds on the degree of consensus is obtained for both
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perfect and lossy inter-agent communication network. In this chapter, we further improve

the optimally weighted AKCF as a generalized one, while the agents are introduced to a

new flexible policy. Specifically, each agent is given the flexibility of random measurement

and/or consensus. That is, agents can use either the local measurements or neighborhood

information or both for estimating the states. This is a unique aspect of this research and

completely different from the concept of intermittent measurements, which usually occurs

due to faulty communication link among sensing and computing devices. This agent-level

flexibility also allows the modeling of scenarios, when (1) the costs involved in sensing

vs communication are significantly different; (2) there is partial/temporary malfunction of

sensors that prevents its ability to take measurements but not impair its communication

interface (and vice versa). Based on the usage of measurement and consensus in state

estimation, three cases are defined. In the first case, which is discussed in Chapter 7, each

agent uses both the measurement and consensus in state estimation. In case 2, each agent

is allowed to use either measurement or consensus. Finally, in the third case, each agent’s

decision of measurement usage is independent from that of participation in consensus. The

filter stability for case 2 and 3 are analyzed in this chapter based on the mean behavior of

Lyapunov energy function. The corresponding bounds on the consensus level (in terms of

eigenvalue ratios) are derived that will guarantee convergence of the estimation process. For

each case of agent behavior, three different scenario are considered while expressing these

bounds. These scenario are characterized based on the relative eigenvalue distribution of

the underlying symmetric positive definite matrices.

8.2 Incorporation of Flexible Policy in Basic AKCF

The fundamental fileting procedure in agent based architecture is presented in Algorithm 3.

It can be observed that, at every time instance, each agent is required to collect measure-

ment (steps 5 and 6) as well as participate in consensus (step 7). We can introduce some
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flexibility into the filter by enabling the agents to decide whether to take measurement

and/or consensus into account. One way to achieve this is to incorporate some randomness

in measurement usage and consensus participation. As a consequence, we expect a reduction

in the total number of active inter-agent links as well as the amount of measurement data

aggregated by each agent.

8.2.1 Random Measurement

The concept of random measurement collection can be implemented by introducing a Bernoulli

random variable φk(t) in steps 5 and 6 of Algorithm 3,

• Minimum MSE with random measurement:

Mt,k|t =
(
Ink
− φk(t)Kf

t,kHk

)
Mt,k|t−1 (8.1)

• Intermediate correction with random measurement:

b̂t,k = x̂t,k|t−1 + φk(t)K
f
t,k

(
yt,k −Hkx̂t,k|t−1

)
(8.2)

where, the probability mass functions are as follows,

φk(t) =

{
1 with Prob.ρφ

0 with Prob.1− ρφ
; ∀k. (8.3)

Let, the expected number of agents collecting measurements be m. Then for N -agent sys-

tem, ρφ = m/N . Also, E[φ2
k(t)] = ρφ. Intuitively, m out N agents are expected to use their

collected measurements for estimation correction and subsequent error covariance update.

The inclusion of φk(t) makes steps 5 and 6 of Algorithm 3 stochastic in nature. Although

this characteristic is similar to the case of intermittent measurements, there exists a funda-

mental difference between these two scenarios. In conventional approach of dynamic state

estimation, the sensors just have to collect measurements and send this to the fusion center
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or neighbors through a lossy communication channel. This results in intermittent recep-

tion of observations and manifests itself through the stochastic error covariance update and

correction from random measurement [120]. It is worth to mention that very recently the

effect of such lossy communication channel over measurement reception is introduced in

traditional distributed Kalman consensus filter [119]. It is shown that the consensus fea-

ture performs better than a typical Kalman filter in that scenario. In [121, 8], however,

the measurement intermittency is reflected through time-varying observation model in the

distributed implementation of Kalman Consensus filter. In this scenario, the communica-

tion channel is assumed to follow 1st order Markov chain. On the other hand, in agent

based formulation, the sensing device itself has the ability to (1) collect measurements, (2)

perform computation and (3) communicate with neighbors. Consequently, the communica-

tion channel would affect the inter-agent information exchange rather than the intermittent

measurement-based dynamic estimation. We address the case of lossy communication net-

work for AKCF in Section 7.5[84]. A Bernoulli random variable is used to model the random

failure of neighborhood communication links. A bound on the link failure rate is derived

that ensures the filter stability.

8.2.2 Random Consensus

The random consensus is modeled by incorporating another Bernoulli random variable γk(t)

on the right hand side in step 7 of Algorithm 3,

x̂st,k|t = Skb̂t,k + γk(t)W
f
t,k

∑
i∈Sk

(
Pi,kSix̂t,i|t−1 − Li,kSkx̂t,k|t−1

)
(8.4)

The corresponding probability mass functions are,

γk(t) =

{
1 with Prob.ργ

0 with Prob.1− ργ
;∀k. (8.5)
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If r agents are expected to participate in consensus, then ργ = r/N , for an N -agent system.

Also, E[γ2k(t)] = ργ. Based on these discussions, the AKCF with flexible policy is presented

in Algorithm 4

Algorithm 4 Generalized AKCF

1: x̂−1,k|−1 = µk,M−1,k|−1 = Σk . Initialization
2: x̂t,k|t−1 = Fkx̂t−1,k|t−1 . Predict State
3: Mt,k|t−1 = FkMt−1,k|t−1F

>
k + Qk . Update Error Covariance

4: Kf
t,k = Mt,k|t−1H

>
k

(
HkMt,k|t−1H

>
k + Rk

)−1
. Kalman Gain

5: Mt,k|t =
(
Ink
− φk(t)Kf

t,kHk

)
Mt,k|t−1 . Correct Error Covariance if φk(t) = 1

6: b̂t,k = x̂t,k|t−1 + φk(t)K
f
t,k

(
yt,k −Hkx̂t,k|t−1

)
. Intermediate Correction if φk(t) = 1

7: x̂st,k|t = Skb̂t,k

+ γk(t)W
f
t,k

∑
i∈Sk

(
Pi,kSix̂t,i|t−1 − Li,kSkx̂t,k|t−1

)
. Shared Element Correction through

Inter-Agent Information Exchange if γk(t) = 1
8: x̂t,k|t = Os

kx̂
s
t,k|t + Ou

kUkb̂t,k . Combining the Shared and Unshared Parts

Given our interest in a flexible policy for agents, we can think of three possible cases, [85]:

• Case 1: Deterministic ⇒ Each agent collects measurement as well as exchanges infor-

mation with neighbors. There is no reduction in measurement and communication,

i.e., m = N and r = N . This case is discussed in detail in Chapter 7

• Case 2: Mutually exclusive ⇒ Each agent either collects measurement or exchanges

information with neighbors, i.e., φk(t) + γk(t) = 1 and it is expected that, m+ r = N .

• Case 3: Independent ⇒ The events of measurement collection and information ex-

change are independent, i.e., 0 ≤ φk(t) + γk(t) ≤ 2 and consequently the inequality

0 ≤ m+ r ≤ 2N is expected.

These cases constitute the generalized AKCF formulation.
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8.3 AKCF Stability in Case 2 and Case 3

We investigate Case 2 and Case 3 through the stochastic nature of equations (8.1-8.4). In this

regard, the following matrices are defined with an underline to indicate their stochasticity.

Definition 8.1. Ct,k = (Ink
− φk(t)Kt,kHk) Fk; Dt,k = C−1t,kMt,k|t

(
C−1t,k
)>

;

Gt,k = M−1
t−1,k|t−1 −D

−1
t,k ; Bt,k = F−1k Mt,k|t−1

(
F−1k

)>
; Lt,k = ρφDt,k + (1− ρφ)Bt,k;and

Jt,k = ρφ(M−1
t−1,k|t−1 −D

−1
t,k ) + (1− ρφ)(M−1

t−1,k|t−2 − B
−1
t,k ).

The matrix Dt,k is the same as in Definition 7.1. Since, Bt,k and Dt,k are symmetric

matrices, Lt,k and Jt,k are also symmetric. Furthermore, the incorporation of error covari-

ance matrices ensure the positive definiteness of these new definitions. A closer look reveals

that incorporation of random variable φk(t) results in stochastic behavior of all the relevant

matrices. Hence, we investigate the randomness of Mt,k|t, Ct,k and its inverse. By definitions

7.1 and 8.1, Mt,k|t = φk(t)Mt,k|t + (1− φk(t))Mt,k|t−1 ;∀k; and

Ct,k = φk(t)Ct,k + (1− φk(t))Fk; C−1t,k = φk(t)C−1t,k + (1− φk(t))F−1k ;∀k

Therefore, E
(
Mt,k|t

)
= ρφMt,k|t+(1−ρφ)Mt,k|t−1; E

(
Ct,k
)

= ρφCt,k+(1−ρφ)Fk; E
(
Gt,k

)
=

Jt,k; E
(
C−1t,k
)

= ρφC−1t,k + (1− ρφ)F−1k ; and E
[
Dt,k

]
= Lt,k.

Now, we express the optimal choice of Wf
t,k and the corresponding bounds on consensus

using Corollary 7.1.

Theorem 8.1. For an N-agent system, assume r agents are expected to participate in

consensus. Then the stochastic error dynamics of the agent based Kalman consensus filter is

globally asymptotically stable if, Wf
t,k = ε (Os

k)
†Mt,k|t−1

(
F−1k

)>
Os
k; ∀k,∀t; and the sufficient

conditions on the level of consensus to guarantee stability are [85],

Proof. Following the proof of Theorem 7.1, the estimation error vector associated with the

kth agent at discrete time instant t is, ηt,k = Os
kη

s
t,k + Ou

kη
u
t,k. Here, for shared states,

the error is, ηst,k = x̂st,k|t − Skxt,k. And for the unshared elements, ηut,k = Uk

(
b̂t,k − xt,k

)
.
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Scenario 1: |ε| <
√

E[λmin(Gt)]

E[λmax(AF>
DtA

F )]

Scenario 2: |ε| <
√

maxk λmax(Jt,k)

E[λmax(AF>
DtA

F )]

Scenario 3 (Case 2): |ε| <
√

N
N−m

√
maxk λmax(Jt,k)

λmin(AF>
BtAF )

Scenario 3 (Case 3): |ε| <
√

N
r

√
maxk λmax(Jt,k)

λmin(AF>
LtAF )

Therefore, the error dynamics for the kth agent can be derived from equations (6.2), (6.5),

(8.1-8.5) and step 2 of Algorithm 4,

ηt,k = Ct,kηt−1,k + γk(t)O
s
kW

f
t,kzt−1,k

+ φk(t)Kt,kvt,k − (Ink
− φk(t)Kt,kHk) wt−1,k

− γk(t)Os
kW

f
t,k

∑
i∈Sk

(Pi,kSiwt−1,i − Li,kSkwt−1,k)

where, zt−1,k =
∑

i∈Sk

(
Pi,kSiFiηt−1,i − Li,kSkFkηt−1,k

)
and Pi,kSixt,i = Li,kSkxt,k,∀i ∈

Sk,∀k, ∀t. From the above equation it can be observed that, the random noise terms (i.e.,v

and w) are zero mean Gaussian distributed. Therefore, the following homogeneous equation

governs the stability of the error dynamics [118],

ηt,k = Ct,kηt−1,k + γk(t)O
s
kW

f
t,kzt−1,k (8.6)

Here, we choose V k(t) = η>t,kM
−1
t,k|tηt,k as the candidate Lyapunov function. The corre-

sponding change in V k(t) can be written as,

δV k = V k(t)− V k(t− 1)

= −η>t−1,kGt,kηt−1,k + 2γk(t)η
>
t−1,k

(
C>t,kM−1

t,k|tO
s
kW

f
t,k

)
zt−1,k

+ γ2k(t)z
>
t−1,k

(
Os
kW

f
t,k

)>
M−1

t,k|tO
s
kW

f
t,kzt−1,k
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The second term matrix quantity of the above equation can be reduced as follows,

C>t,kM−1
t,k|tO

s
kW

f
t,k = εOs

k; ε ∈ R

⇒ Os
kW

f
t,k = εMt,k|t

(
C>t,k
)−1

Os
k (8.7)

Consequently, the third term reduces to ε2 (Os
kzt−1,k)

>Dt,k (Os
kzt−1,k). Since, Os

k is at least

a column rank matrix (i.e., nk ≥ nsk), we can write, Wf
t,k = ε (Os

k)
†Mt,k|t

(
C>t,k
)−1

Os
k. Now,

because of the stochastic nature of Mt,k|t and Ct,k, Wf
t,k can have the following expressions,

Wf
t,k =

ε (Os
k)
†Mt,k|t−1

(
F−1k

)>
Os
k;φk(t) = 0

ε (Os
k)
†Mt,k|t

(
C>t,k
)−1

Os
k; φk(t) = 1

(8.8)

It can be observed that, when φk(t) = 1, Wf
t,k equals to ε (Os

k)
†Mt,k|t−1

(
F−1k

)>
Os
k according

to equation (7.8). So the final expression of Wf
t,k is independent of the flexible policy

considered in this research. In addition to that the Lyapunov function becomes stochastic

because of γk(t) and Ct,k. The collected stochastic Lyapunov dynamics for the multi-agent

system, δV =
∑N

k=1 δV k, or, equivalently,

δV = −
N∑
k=1

η>t−1,kGt,kηt−1,k + 2ε
N∑
k=1

γk(t)η
>
t−1,kO

s
kzt−1,k

+ ε2
N∑
k=1

(Os
kzt−1,k)

> γ2k(t)Dt,kOs
kzt−1,k

= −η>t−1Gtηt−1 − 2εη>t−1A
F
t ηt−1 + ε2η>t−1A

F>DtA
Fηt−1 (8.9)

where, Gt = Blockdiag

[
Gt,1 · · · Gt,N

]
; Dt = Blockdiag

[
γ21(t)Dt,1 · · · γ2N(t)Dt,N

]
and

[
AF
t

]
(k,l)thblock

= γk(t)
[
AF
]
(k,l)thblock

.

Thus, the stochastic error dynamics of the multi-agent system will be globally asymptot-

ically stable if and only if δV < 0, i.e., the random matrix
(
Gt − ε2AF>DtA

F
)

is positive

definite. Now, we investigate the properties of Gt and Dt. Based on the definitions, both
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these matrices are symmetric positive definite. Using the expectation operator, E [Gt] = Jt,

where, Jt = Blockdiag

[
Jt,1 · · · Jt,N

]
. And,

E [Dt] =

 (N−m
N

)Bt ; Case 2

r
N
Lt ; Case 3

(8.10)

Here, Bt = Blockdiag

[
Bt,1 · · · Bt,N

]
and Lt = Blockdiag

[
Lt,1 · · · Lt,N

]
. The Case 2

expression of E [Dt] is explained in Appendix F. Therefore, using the properties of block-

diagonal matrices and Corollary 7.1, the bounds on |ε| are obtained.

From Theorem 8.1 it can be observed that increase of |ε| allows the reduction in the

expected number of consensus agents as long as the product |ε|
√
r is bounded by the specified

system parameters. Furthermore, an upper bound for ε is achieved when r equals N −m.

8.4 Simulation and Results

The generalized AKCF is applied to a 10-agent system with a radial topology. Each agent

has access to two measurements. The 1st and 2nd agent’s measurements are linked to 4

state elements whereas, the rest of the agents can track 6 state elements each. In the radial

structure, each agent shares its state elements with two nearest leading and two nearest

trailing neighbors. Additionally, no state elements are kept strictly local to any of the agent’s

state-space. This model resembles a radial network of power system [114]. Assuming agents

follow the mutually exclusive policy of case 2, the parameters of the multi-agent system are

so chosen that the upperbound on the degree of consensus (called ε∗ hereafter) is determined

from Scenario 1 of Theorem 8.1. If agents follow the independent policy of case 3, the system

parameters are chosen such that Scenario 2 of Theorem 8.1 is applicable. Fig. 8.1 shows ε∗

as a function of m and r for case 2 and case 3, respectively. In both cases, 1000 independent

Monte Carlo trials are run to obtain these system properties. An increase in ε∗ is observed
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Figure 8.1: ε Upper bounds (ε∗) for 10 agent system. (a) m = 10− r agents are expected
to use local measurements only and don’t exchange information with neighbors. (b) m = 5
agents are expected to use local measurements while 1 ≤ r ≤ 10 agents are expected to
exchange information with neighbors.

in Fig.8.1 (a) with the increase of m (hence reduction in r). On the other hand, the upper

bound decreases with r in Fig.8.1 (b) [85]. These responses indicate that as more agents

tend to participate in information exchange, the degree of consensus reduces accordingly.

Intuitively, such characteristics can also be observed in case 1 under the effect of lossy

communication network. In this scenario, if the consensus parameter ε is kept fixed, the

random failure of agent-to-agent links cause expected reduction in the information exchange

and thus balances the neighborhood contribution to the state estimation. This realization

is theorized and verified through simulation in Chapter 7 [84].

Next, we investigate the stability performance of the proposed AKCF under cases 2 and

3. The corresponding upper bounds (ε∗) are obtained from Fig.8.1 (a) and (b), respectively.

As a metric of stability we use the total mean squared deviation, (TMSD), which has the

following definition,

TMSDt =
10∑
k=1

E
[
η>t,kηt,k

]
(8.11)
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where, the estimation error, ηt,k = x̂t,k|t−Tkxt, the true states xt being obtained according

to equation (6.1). The expectation operation is simulated by taking average over 1000

independent Monte Carlo trials at each time step. TMSD is used as an indication of AKCF

stability under different degree of consensus. The filter is stable if TMSD values converge

over time. Fig. 8.2 shows the stability performance when the AKCF operates in mutual

manner with m ∈ {3, 6, 9}. The independent case is shown in Fig.8.3 with m = 5 and

r ∈ {1, 5, 9}. It is evident from these figures that the filter becomes unstable whenever

the consensus parameter ε is chosen well above the prescribed upper bound. However, the

TMSD values in Fig. 8.3 (a) show a temporary overshoot while converging over time (i.e., ε

is chosen below ε∗). Such behavior is not surprising as the filtering process itself is stochastic

in nature through the inclusion of randomness in measurement as well as consensus based

state estimation [85]. It is important to remember that, Theorem 8.1 provides the sufficient

condition and not the necessary that guarantees convergence.

8.5 Conclusions

A generalized version of AKCF (agent based distributed Kalman consensus filter) is pro-

posed in this chapter. The agents have the flexibility to independently or mutually decide

between measurement collection and consensus participation in order to estimate the local

states of a dynamical system. The underlying error dynamics are characterized and used

for the Lyapunov stability analysis. Bounds on the degree of consensus is derived under

three scenarios. The proposed filtering is applied to a custom-built 10 agent dynamical

system. It is found that the filter becomes unstable for specific system characteristics and

agent behavior when the degree of consensus exceeds the corresponding bound. In the next

chapter, this concept of agent based design will be extended to distributed control, where

the agents can take independent control decisions based on the local estimates. An efficient

and rational arbitration strategy will also be implemented to handle the conflicting (if any)
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Figure 8.2: AKCF stability performance of 10 agent system under case 2 (mutual events).
The upper bound ε∗ is mentioned in respective plots.
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Figure 8.3: AKCF stability performance of 10 agent system under case 3 (independent
events). The upper bound ε∗ is mentioned in respective plots.
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control decisions, while fulfilling agent-specific control objectives.
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Chapter 9

Stability of Agent based Distributed

Model Predictive Control over a

Lossy Network

In this chapter, an agent based control formulation of a large scale cyber-physical system

is proposed. Each agent can partially observe a part of the global dynamical process and

estimate the associated local states through a combination of traditional Kalman filtering

algorithm and consensus. The local estimates are then used for state feedback control. The

optimal feedback gain of individual agents are obtained through dynamically solving a mov-

ing horizon linear quadratic optimization problem. The agents also exchange information

among neighbors in order to design the feedback gain matrix. Finally, a control decision

incurring the least cost among all agents is applied to the global system in a distributed

manner. A Lyapunov function based stability analysis is performed in order to obtain a

bound over the degree of agent negotiation in designing the control decision. Besides, the

effect of lossy communication network in control design and henceforth in global system

stability is also investigated and corresponding bound in control consensus is obtained. The

theoretical results are verified through simulating a 10-agent dynamical process having a
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radial topology.

9.1 Introduction

The application of model predictive control has been popular in various complex multivari-

ate systems like energy [122], water [64], chemical processes [73], traffic networks [123] and

even supply chains [124]. As the name implies, model predictive control (MPC) relies on

the future prediction of state trajectories so that the set of desired control inputs can fulfill

system specific objectives under the given constraints. The set of control inputs are de-

signed for a finite length of future time instances. The control signal of only the immediate

future is applied while the whole design procedure is repeated with the finite time horizon

advanced by one step. Thus, MPC is advantageous than finite horizon approximated linear

quadratic regulator as it offers more stability in satisfying the control objective. However,

as pointed out in [63, 64], the computational complexity of MPC is the major issue that

makes its application in large-scale systems questionable in terms of efficiency, robustness

as well as reliability. Such scalability issue can be overcome by delegating the control re-

sponsibility among a set of controllers spatially distributed across the cyber-physical system

(CPS). In this regard, two basic approaches are typically used: (1) decentralized approach,

where the set of controllers independently decides specific and non-overlapped control inputs

without the requirement of communication, and (2) the distributed approach, where a more

reliable control decision is achieved through an iterative information exchange among the

controllers over a communication network [65]. The characteristics of a large-scale system

usually plays a major role in defining each controller’s observation and control space in a

distributed control scheme. In [66], a sparse and large scale system is decomposed into mul-

tiple subsystems. The subsystems are mapped using binary matrices exclusively designed

for specific dynamics irrespective of observation space. In absence of any negotiation, each

entry of the control input set is chosen from individual subsystem. The decomposed local
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subsystem is also reported to include the effect of neighborhood control decisions. In [64],

the neighboring control inputs appear as disturbance to the local controller of a radial net-

work of water delivery canal system. Alternately, a weighted combination of neighborhood

controls is considered in [67]. Here, a communication intensive repetitive procedure of con-

trol coordination is proposed. However, the typical effect of communication networks (delay,

loss of packets etc.) are not considered. A successive loss of limited number of packets are

considered in [63] to analyze the effect of lossy network over the closed loop stability of the

global dynamical process. Consensus in control using linear quadratic Gaussian regulator is

investigated in [68] and the stability criteria is derived via conditioning the spectral radius.

In recent years, distributed control is becoming popular in multi-agent operation of

cyber-physical systems. Electric power transmission and distribution system can be con-

sidered a good candidate example. In this context, a graph theoretic approach is reported

in [50] to maintain power balance at the prevalence of renewable energy sources. Authors

in [69] use multi-objective genetic algorithm to minimize phase current unbalance in distri-

bution network. More recently, the optimal power flow problem is distributed in[70] using

the Lagrangian relaxation. A lower-upper-bound switching algorithm is designed to bal-

ance the power flow between the utility and microgrid enabled communities. In a broader

perspective, the problem of optimal operation of electric power system can be addressed as

synchronous optimization in a multi-objective environment. As a result, decision conflict

is not uncommon in an agent based framework of such systems. In this regard, coalitional

game theory is used in [71] to combine different objective functions to ensure common con-

trol decisions. A recent review of the usage of consensus strategy in distributed multi-agent

optimization problem shows the focus of existing research in individual agent’s convergence

to the average of the initial states [72]. Optimal convergence for general linear and nonlin-

ear systems, however is still an open problem. Also, the distributed control framework still

needs to be generalized based on deeper insights on system behavior as well as the limited

observation spaces of the controllers [73].
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In this paper, we take a different perspective on agent based distributed control of a

large CPS. We assume that each agent can observe only a part of the global dynamical

process. For each agent, the global dynamics is scaled down to agent-wise local system

model according to respective measurement space. Irrespective of physical placements, the

agents identify neighbors based on the sharing of state elements. This enables to overcome

the limitation of scalability in model predictive control. The control objective functions of

individual neighboring agents won’t be combined rather the agents participate in respective

control decision adjustment through a consensus strategy. We investigate the agent based

MPC performance under perfect and lossy communication network. Through a collective

measure of agent-wise Lyapunov functions we present three sufficient conditions that will

ensure global system stability under different network scenario.

9.2 System Model

We consider a linear time-invariant system whose dynamics can be modeled in discrete time

as 1st order Gauss-Markov Process, i.e.,

xt+1 = Fxt + Gut + wt; t = 0, 1, 2, ... (9.1)

where, the overall system state is represented by the n-dimensional state vector xt at time

instant t. The initial values of the state vector elements at t = 0 follow Gaussian distribution

with mean µ and covariance Σ. Unlike [66, 59, 60, 61, 62], the state transition matrix

F ∈ Rn×n is a general square matrix with eigenvalues lying within a unit circle. The process

noise is wt ∼ N (0,Q); the control input is ut ∈ Rp, and G ∈ Rn×p. The optimal control

inputs for such stochastic process are obtained through the solution of a finite moving

horizon linear quadratic optimization problem. The associated cost function at any time
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instance t is,

J(Ut) = E

[
t+tf−1∑
τ=t

(x>τ Xxτ + u>τ Uuτ ) + x>t+tfXxt+tf

]
(9.2)

Here, Ut = {ut, · · · ,ut+tf−1}. X � 0, U � 0 and tf defines the length of moving horizon.

Hence, the desired set of control inputs between t and t+ tf − 1 are,

{u∗t , · · · ,u∗t+tf−1} = arg min J(Ut)

subject to

xt+1 = Fxt + Gut + wt

With the help of dynamic programming, one can obtain the control inputs in state feedback

form. A model-predictive control is achieved when only the first entry u∗t at the time instance

t is applied. The global states at (t + 1) is obtained from the model (9.1) and the finite

time horizon is shifted one time step forward. The linear quadratic optimization is then

repeated. To achieve stochastic control through state feedback, estimate of system states

has to be obtained from some set of observations. We introduce the multi-agent architecture

by letting N agents to observe the entire system. The observation of the kth agent follows

the additive noise model of equation (6.2), where the noise is Gaussian with zero mean and

covariance Rk. This model reflects individual agent’s attempt to estimate only the local

state vector xt,k instead of xt. Consequently, an agent-specific local system dynamics is

associated with the filtering problem. In this regard, we utilize the binary projection matrix

of equation (6.3), which projects the n-dimensional state vector onto nk-dimension. Here,

by projection, we imply the extraction of one state element at a time instead of creating

a new one from some weighted combinations. Such binary matrices are first reported in

[66] to define multiple subsystems for decentralized model predictive control. Unlike the

proposed approach, the decomposition in [66] is performed solely based on the sparse or

block diagonal characteristics of the state transition matrix. Nevertheless, the projection

matrix also follows Lemma 6.1.
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Using the projection matrix Tk, the system dynamics of kth agent can be mapped from

equation (9.1),

xt+1,k = TkFxt + Gkut,k + wt,k (9.3)

where, Gk = TkG and wt,k = Tkwt. Therefore, wt,k ∼ N (0,Qk) with Qk = TkQT>k .

It should be noted that, the local system dynamics for kth agent should reflect the cor-

responding observation model of equation (6.2). As a consequence, the desired 1st order

Gauss-Markov process of kth agent can be expressed as,

xt+1,k = Fkxt,k + Gkut,k + wt,k, (9.4)

The above model conforms with equation (9.3) if and only if FkTk = TkF. Or, using Lemma

6.1, Fk = TkFT>k . It is important to note that, this irreversible mapping is intended only

to design the agent based model predictive control (AMPC) (Algorithm 6), and subsequent

derivation of theoretical bounds for system stability. Later in Section 9.5, a case study

is carried out to verify these bounds, where the system stability is illustrated through a

quadratic value calculated from global state vector xt.

The static set of physical neighbors for the kth agent is defined according to equation

(7.1) and follows the subsequent arguments of Section 7.2.

In multi-agent system, every agent has four major responsibilities, (1) sensing, (2) com-

puting (3) networking and (4) controlling. At any time instant, the desired control signal

is goal specific and depends upon the current system dynamics [122]. As can be seen from

equation (9.4), each agent is responsible for making the same set of control decisions. As

a consequence, agents will have to negotiate their control decisions among neighbors, while

reaching agent-specific goal as close as possible. Bearing this in mind, we define the following
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distributed optimization problem for the kth agent,

{u∗t,k, · · · ,u∗t+tf−1,k} = arg min J(Ut,k)

subject to

xt+1,k = Fkxt,k + Gkut,k + wt,k

here, Ut,k = {ut,k, · · · ,ut+tf−1,k}; Xk = TkXT>k . And,

J(Ut,k) = E

[
t+tf−1∑
τ=t

(x>τ,kXkxτ,k + u>τ,kUuτ,k)

]
+ E

[
x>t+tf ,kXkxt+tf ,k

]
(9.5)

From a model predictive control perspective, the first element of the set Ut,k, u∗t,k represents

the control decision of the kth agent at time t. It can be observed that the agents are

independent in control decisions rather than cooperative [125] as long as a conflict of interest

does not occur. In this scenario, the fundamental question arise about agents’ behavior

related to conflicting (if any) control decisions. Our endeavor is to model a consensus

strategy in agent-wise control decisions.

As a first step, the agents solve their individual linear quadratic optimization problem in

order to obtain the state feedback gain. Algorithm 5 depicts calculation of the corresponding

control gain matrix. The superscript “c” is used to denote control gain. The algorithm is

Algorithm 5 State Feedback Gain

1: τ = t+ tf : −1 : t+ 1 . Define Time Horizon
2: Υτ,k = Xk . Initialization

3: Kc
τ−1,k = −

(
U+ G>k Υτ,kGk

)−1
G>k Υτ,kFk; . Control Gain

4: Υτ−1,k = F>k Υτ,k(Fk + GkK
c
τ−1,k) +Xk . Update

based on the following Hamilton-Jacobi inequality:

Υτ−1,k − F>k Υτ,k(Fk + GkK
c
τ−1,k) ≥ Xk (9.6)
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Each agent uses the control gain Kc
t,k to design a state feedback control. The states are

being estimated using the agent based Kalman consensus filter embedded with a flexible

policy of measurement and/or consensus [85]. When the agents are aware about the local

states through this MMSE criterion, they make a second phase of neighborhood informa-

tion exchange to make agent based control decisions. Individual control decisions are then

sent back to the original system and control input with the lowest cost (i.e., u>t,kUut,k) is

implemented. These whole procedure is represented as Algorithm 6.

Algorithm 6 AMPC

1: x̂0,k|0 = µk,M0,k|0 = Σk . Initialization
2: x̂t,k|t−1 = Fkx̂t−1,k|t−1 + Gkut−1,k . Prediction
3: Mt,k|t−1 = FkMt−1,k|t−1F

>
k + Qk . Predict Error Covariance

4: Kf
t,k = Mt,k|t−1H

>
k

(
HkMt,k|t−1H

>
k + Rk

)−1
. Kalman Gain

5: Mt,k|t =
(
Ink
− φk(t)Kf

t,kHk

)
Mt,k|t−1 . Correct Error Covariance if φk(t) = 1

6: b̂t,k = x̂t,k|t−1 + φk(t)K
f
t,k

(
yt,k −Hkx̂t,k|t−1

)
. Intermediate Correction if φk(t) = 1

7: x̂st,k|t = Skb̂t,k

+ γk(t)W
f
t,k

∑
i∈Sk

(
Pi,kSix̂t,i|t−1 − Li,kSkx̂t,k|t−1

)
. Shared Element Correction through

Inter-Agent Information Exchange if γk(t) = 1
8: x̂t,k|t = Os

kx̂
s
t,k|t + Ou

kUkb̂t,k . Combining the Shared and Unshared Parts

9: ut,k = Kc
t,kx̂t,k|t + Wc

t,k

∑
i∈Sk

(
Kc
t,ix̂t,i|t −Kc

t,kx̂t,k|t
)

. Consensus in Control

10: ut = argminut,k,k=1,··· ,N
(
u>t,kUut,k

)
. Desired Control for Global System

In the above algorithm, the flexible policies are modeled through Bernoulli random

variable φk(t) and γk(t). In Chapter 8 they have been introduced in equations 8.3 and 8.5,

respectively. The state estimation consensus weights (i.e., Wf
t,k) are chosen according to

Theorem 8.1 [85]. How does the choice of Wc
t,k then impact the stability of our feedback

control system? The results in the next section help address this fundamental question.

9.3 Main Results

We present the primary outcome of this research starting with the definitions of following

matrices [86]. These definitions are based on the AMPC steps in Algorithm 6.
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Definition 9.1. Bt,k = Υt,k− (Fk + GkK
c
t,k)
>Υt+1,k(Fk + GkK

c
t,k); Ct = Ξ−1t Υ−1t+1

(
Ξ−1t

)>
;

Bt = Blockdiag [Bt,k]; and,

[Kt](k,l)thblock =


−
(
Kc
t,k

)>
Kc
t,l; l ∈ Sk

|Sk|
(
Kc
t,k

)>
Kc
t,k; l = k

0nk×nl
; otherwise.

(9.7)

Using these definitions, we state Theorem 9.1 [86], which gives an optimal expression

of the consensus weight Wc
t,k in association with a tuning parameter ν in order to set the

degree of participation in control consensus.

Theorem 9.1. The closed loop system dynamics obtained through the state feedback control

for multi-agent system described in Algorithm 6 is globally asymptotically stable if, Wc
t,k =

νG†kΥ
−1
t+1,k

[
F>k + (Kc

t,k)
>G>k

]−1
(Kc

t,k)
>;∀k,∀t; and the sufficient conditions on the level of

consensus to guarantee stability are,

Scenario 1: |ν| <
√

mink λmin(Bt,k)/λmax
(
Kt
>CtKt

)
Scenario 2: |ν| <

√
maxk λmax(Bt,k)/λmax

(
Kt
>CtKt

)
Scenario 3: |ν| <

√
maxk λmax(Bt,k)/λmin

(
Kt
>CtKt

)

Proof. Following the proof of Theorem 7.1, the estimation error vector associated with the

kth agent at discrete time instant t is, ηt,k = Os
kη

s
t,k + Ou

kη
u
t,k. Here, for shared states,

the error is, ηst,k = x̂st,k|t − Skxt,k. And for the unshared elements, ηut,k = Uk

(
b̂t,k − xt,k

)
.

Therefore, the closed loop dynamics for the kth agent can be derived from this definition of

estimation error, equation (9.4) and step 8 of Algorithm 6,
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xt+1,k = (Fk + GkK
c
t,k)xt,k + GkK

c
t,kηt,k + wt,k

+ GkW
c
t,k

∑
i∈Sk

(Kc
t,ixt,i −Kc

t,kxt,k)

+ GkW
c
t,k

∑
i∈Sk

(Kc
t,iηt,i −Kc

t,kηt,k) (9.8)

From the above equation it can be observed that, the estimation error terms are not

recursive in nature. Therefore, for kth agent, the stability of the corresponding closed loop

state dynamics is governed by the following homogeneous equation [118],

xt+1,k = (Fk + GkK
c
t,k)xt,k + GkW

c
t,kξt,k (9.9)

where, ξt,k =
∑

i∈Sk(Kc
t,ixt,i−Kc

t,kxt,k). Consider, the candidate Lyapunov function, Vk(t) =

x>t,kΥt,kxt,k. The change in Lyapunov function,

δVk = Vk(t+ 1)− Vk(t)

= −x>t,kBt,kxt,k

+ 2x>t,k(Fk + GkK
c
t,k)
>Υt+1,kGkW

c
t,kξt,k

+ ξ>t,k
(
GkW

c
t,k

)>
Υt+1,kGkW

c
t,kξt,k (9.10)

In the above equation, the positive definiteness of Bt,k is ensured by the Hamilton-Jacobi

inequality and it also justifies the current choice of Lyapunov function. We add a related

explanation in Appendix G. From the second term of the above equation, Wc
t,k can be

chosen such that, (Fk + GkK
c
t,k)
>Υt+1,kGkW

c
t,k = ν(Kc

t,k)
>; ν ∈ R. That is,

Wc
t,k = νG†kΥ

−1
t+1,k

[
F>k + (Kc

t,k)
>G>k

]−1
(Kc

t,k)
>. Here, the superscript “c” is used to denote

the weight matrix for control. We get the change in Lyapunov function for the multi-agent

system by accumulating δVk for all agents, δV =
∑N

k=1 δVk. Therefore,

δV = −a>t Btat + ν2a>t K
>
t CtKtat − 2νa>t Ktat (9.11)
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where, at =
[
x>t,1 · · ·x>t,N

]>
. Therefore, the closed loop system dynamics of the multi-

agent system will be globally asymptotically stable if and only if δV < 0 i.e., the matrix(
Bt − ν2Kt

>CtKt

)
is positive definite. Using Lemma 7.1, this condition gives the bounds

on |ν| in three scenarios.

It should be noted that the negativity of δV can also be ensured by making a least square

estimate of Wc
t,k. However, the existence of such weight matrix is dependent upon the

rank property of a system specific composite matrix. Furthermore, the degree of consensus

cannot be adjusted for stable state feedback control. The associated derivation is given in

Appendix H.

9.4 Effect of Lossy Network on Agent based control

In the proposed method of agent based control, it is evident from Algorithm 6 that the

agents exchange control information only among neighbors. Therefore, the inter-agent two

way information exchange plays an important role in agent based model predictive con-

trol and can be hampered if the underlying communication link fails. These circumstances

can be simulated by introducing random link failures (RLF) at every link of inter-agent

communication. Mathematically, effect of RLF can be analyzed by inserting Bernoulli ran-

dom variables ζi,k(t) in step 9 of Algorithm 6. The associated probability mass functions

are defined in equation (6.17) and assumptions 6.1,6.2 are also followed in this analysis.

Consequently, step 9 in Algorithm 6 becomes,

ut,k = Kc
t,kx̂t,k|t + Wc

t,k

∑
i∈Sk

ζi,k(t)
(
Kc
t,ix̂t,i|t −Kc

t,kx̂t,k|t
)

(9.12)

Thus, it is evident that only the consensus part of equation (9.12) is affected by com-

munication network. Additionally, the introduction of Bernoulli random variable ζi,k(t)
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randomizes equation (9.7) in the following way,

[Kt](k,l)thblock =


−ζl,k(t)

(
Kc
t,k

)>
Kc
t,l; l ∈ Sk∑

i∈Sk ζi,k(t)
(
Kc
t,k

)>
Kc
t,k; l = k

0nk×nl
; otherwise.

(9.13)

Now, we represent a corollary of Theorem 9.1 for the optimal choice of Wc
t,k under lossy

communication network.

Corollary 9.1. If the probability of failure for any neighboring agent pair (i, k) in an N-

agent system follows assumptions 1,2 and equals to ρ, the stochastic closed loop dynamics

of the multi-agent system is globally asymptotically stable if,

Wc
t,k = νG†kΥ

−1
t+1,k

[
F>k + (Kc

t,k)
>G>k

]−1
(Kc

t,k)
>;∀k,∀t; and the sufficient conditions on the

level of consensus to guarantee stability are,

Scenario 1: |ν| <
√

mink λmin(Bt,k)/E
[
λmax

(
Kt
>CtKt

)]
Scenario 2: |ν| <

√
maxk λmax(Bt,k)/E

[
λmax

(
Kt
>CtKt

)]
Scenario 3: |ν|(1− ρ) <

√
maxk λmax(Bt,k)/λmin

(
Kt
>CtKt

)

Proof. We use the same definitions of estimation errors as used in the proof of Theorem

9.1. Therefore, using equations (9.4), and (9.12), we express the homogeneous equation

governing the state dynamics of the kth agent,

xt+1,k = (Fk + GkK
c
t,k)xt,k + GkW

c
t,kξt,k (9.14)

Where, ξ
t,k

=
∑

i∈Sk ζi,k(t)(K
c
t,ixt,i −Kc

t,kxt,k). The stochastic nature introduced by RLF is

reflected through an underline embedded below the ξ vector. Furthermore, if every agent

pair (i, k) within the neighborhood fails to communicate with the same probability ρ, then

ρi,k = ρ, ∀i ∈ Sk;∀k. Hence, from equation (9.13), E (Kt) = (1 − ρ)Kt. The candidate
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stochastic Lyapunov function is, V k(t) = x>t,kΥt,kxt,k. Hence, the change in stochastic

Lyapunov function,

δV k = V k(t+ 1)− V k(t)

= −x>t,kBt,kxt,k

+ 2x>t,k(Fk + GkK
c
t,k)
>Υt+1,kGkW

c
t,kξt,k

+ ξ>
t,k

(
GkW

c
t,k

)>
Υt+1,kGkW

c
t,kξt,k (9.15)

With the same choice of Wc
t,k as in Theorem 9.1 and using equation (9.13), the collective

Lyapunov dynamics is,

δV = −a>t Btat + ν2a>t K
>
t CtKtat − 2νa>t Ktat (9.16)

where, Bt and Ct are the block-diagonal matrices as defined in previous theorem. at rep-

resents the accumulation of local state vectors of individual agents. Thus, the stochastic

closed-loop dynamics of the multi-agent system will be globally asymptotically stable if and

only if δV < 0, i,e., the random matrix
(
Bt − ν2K>t CtKt

)
is positive definite. Therefore,

using the properties of block-diagonal matrices and Corollary 7.1, the bounds on |ν| are

obtained.

9.5 Simulation and Results

The proposed agent based model predictive control is applied to a 10-agent system with

a radial topology. Each agent has access to two measurements. The 1st and 2nd agent’s

measurements are linked to 4 state elements whereas, the rest of the agents can track 6

state elements each. In the radial structure, each agent shares its state elements with two

nearest leading and two nearest trailing neighbors. Additionally, no state elements are kept

strictly local to any of the agent’s state-space. This model resembles a radial network of
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power system [114], [82]. For state estimation at any time instant, we assume that each

agent is allowed either to use the local measurement or strictly participate in consensus.

Under this assumption, the simulation is set up such that 6 agents are expected to use only

the local measurements while the rest 4 agents are expected just to exchange information

with neighbors. This constitutes the mutually exclusive event, which is defined as Case 2 in

Chapter 8. The corresponding parameters are so chosen that the multi-agent system follows

scenario 1 of Corollary 7.1 and the upperbound on the degree of estimation consensus is

0.107 [85]. On the other hand, the control parameters are so chosen that the multi-agent

system follows Scenario 2 of Lemma 7.1. Table 9.1 lists the corresponding steady-state

upper bounds of |ν| under perfect and lossy communication network following Theorem 9.1

and Corollary 9.1, respectively.

ρ |ν| Upper bound
Perfect Network 0 0.02
Lossy Network 0.2 0.0224

0.4 0.0263
0.6 0.0332
0.8 0.049

Table 9.1: Steady State Bounds

The continuous increase of |ν| upper bound from top to bottom in Table 9.1 indicates

the necessity of more and more degree of control consensus as the agent communication

links become less reliable. Next, we investigate the closed loop stability performance of the

proposed AMPC. As a metric of stability we use the following,

Jt = E
[
x>t Xxt

]
(9.17)

At each time step, Jt is simulated through 1000 independent Monte Carlo trials over the

multi-agent system. Fig. 9.1(a) shows the stability performance for perfect communication.

Fig. 9.1(b) and Fig. 9.1(c) show the closed loop stability performance of the global dynam-
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Figure 9.1: Agent based MPC Performance. (a) Perfect Network, (b) Lossy Network with
Failure Probability = 0.4, (c) Lossy Network with Failure Probability = 0.8
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ics when the communication between two neighboring agents fails 40% and 80% of time,

respectively. For each of these cases, two values of ν is chosen - one following the bound

in Table 9.1 and other violating them. It is evident from Fig. 9.1 that, the global system

becomes unstable as soon as the bound on the degree of control consensus is violated under

both perfect and lossy communication network.

9.6 Conclusions

In this chapter, an agent based distributed model predictive control is proposed for large-

scale cyber-physical system. For each agent a local model of system dynamics is derived

based on the respective observation space. Using this local model, each agent solves a linear

quadratic cost minimization problem in order to derive optimal state feedback gain matrix.

Through neighborhood agent consensus the final control decisions are obtained and the one

with minimum cost is applied to the actual process. The bounds on the underlying degree of

consensus is obtained through Lyapunov function based closed loop stability analysis under

both perfect and lossy communication network. Simulation results confirm the findings by

illustrating stable and unstable system behavior while the degree of control consensus obeys

and violates the theoretical bounds, respectively.
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Chapter 10

Conclusion and Future Work

This chapter concludes the dissertation with a summary of research results and future

research directions.

10.1 Summary

In this dissertation, a compressed sensing based information aggregation and techniques for

agent based distributed information processing are proposed, which address the scalability

and complexity issues of a large-scale cyber-physical system. Specifically, six fundamental

research questions are identified that represent the challenges of sensing massive volume

of raw data, making fast and concurrent control decisions and most importantly ensuring

stable operation under a lossy communication network. We summarize the key research

contributions of this dissertation below:

• As an example CPS, we consider the smart grid and investigate the effect of correlated

distributed generation on the voltage phasors. The estimated voltage states exhibit

strong correlation that encourages the application of compressed sensing in aggregating

information from the spatially deployed voltage/power sensors.

• The correlated nature of distributed generation enables the spatial, temporal and
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spatiotemporal compressed sensing and it is found that, such aggregated information

can be used to estimate the power system states (i.e., the voltage phasors) accurately

without recovering all the measurements.

• It is also verified that the direct usage of compressed measurements within the Newton-

Raphson iteration can offer excellent state estimation performance while having the

same computational complexity as the indirect method.

• We decentralize the static state estimation procedure for a radial power distribution

network by defining network specific binary selection matrices and enabling each sensor

to compute and interact with other sensors. We refer to each sensor as an agent and

address two unique aspects of radial topology commonly encountered in a distribution

grid: (1) each agent shares state elements with two other agents in immediate vicin-

ity, and (2) no state elements are left unshared. Through an extensive convergence

analysis, we derive the necessary bounds for such agent based static state estimation

and verify these bounds via a simulation of a 10-node system.

• We extend the agent based formulation to the 1st order Gauss-Markov process by in-

troducing binary projection matrices that reflect individual agents’ perspective on the

global system dynamics. In this setup, for two custom built multi-agent systems, the

agent based Kalman consensus filter (AKCF) performs better than the agent based

uniformly weighted diffusion Kalman filter (ADKF) and is more robust to communi-

cation network impairments.

• We perform the Lyapunov stability analysis for the AKCF estimation error dynamics,

which gives the optimal consensus weight as well as the upper bound on the degree of

consensus for stable filtering operation. The analysis is further extended to incorporate

the effect of lossy communication network resulting in a bound on the link failure rate

that guarantees system stability. The theoretical bounds are verified via a custom

built 2-agent system.
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• The AKCF formulation is also generalized by introducing a flexible policy where the

agents have the freedom of either collecting measurement and/or participating in con-

sensus. Within this framework, the agents are characterized under three different cases

- deterministic, mutual and independent. In the first case, each agent has both tasks of

collecting measurements and engaging in consensus. Whereas, in the second case, an

agent can choose between the two tasks at any time instance. An agent may also inde-

pendently decide whether or not to take measurements or participate in consensus or

even avoid both, which constitutes the third case. Through the stability analysis of the

associated stochastic Lyapunov energy functions, we derive the necessary consensus

bound in each case under three different scenarios of relative eigenvalue distributions.

We verify the bounds and the filter stability for a custom built 10-agent system with

radial topology.

• Finally, we develop an agent based distributed model predictive control, where each

agent designs the state feedback control decisions, interacts with respective neighbors

and control signal with the least cost is sent to the physical system. Through Lyapunov

stability analysis, the corresponding bound over the control consensus is derived that

ensures the closed loop system stability. The control strategy is verified by simulating a

radial 10-agent system, where the system states exhibit instability once the theoretical

bounds are violated.

Based on the research accomplished in this dissertation, some future research directions

are highlighted in the next section.

10.2 Future Work

In this research, we do not consider the effect of bad or noisy data while implementing the

centralized state estimation from compressed measurements. Secondly, we apply the agent

based dynamic state estimation and control techniques to a linear system. Thirdly, we
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assume synchronous communication among neighboring agents, i.e., equal packet delay is

considered in neighborhood communication. Only random and independent failure of com-

munication links is considered to analyze the stability of the proposed estimation technique.

Overall, the research is carried out for a single layer of agents out of the holonic structure.

As a consequence, we summarize the following potential research directions:

• In the centralized estimation of static states from compressed measurements, the effect

of topology changes, noise and bad data can be considered. Since bad data is expected

to be sparse (i.e., infrequent in space and / or time), we can filter out the unaffected

measurements through a weighted combination of `1-minimization and least square

solution as presented in [126].

• The agent based dynamic state estimation technique can be applied to the general

case of nonlinear systems. Usually, nonlinear systems are tracked using extended or

unscented Kalman filters. The distributed implementation of these filters is reported

in [127] with the use of diffusion algorithm. Authors in [128] include a consensus part

in the unscented Kalman filter and apply it to a jump Markov nonlinear systems.

In recent work, unscented Kalman filter is applied in power system dynamic state

estimation [129]. In addition to that, applicability of the proposed approach can be

investigated for multi-agent formulation of stochastic hybrid systems [130].

• Effect of correlated link failure as well as packet delay can be investigated for the agent

based estimation and control. Recently, correlated link failure is considered in [20] in

order to derive the critical link failure rate above which the centralized Kalman filter

becomes unstable for a spatially distributed linear dynamical process. In [131], the

effect of randomly varying packet delay is considered to derive the asymptotic stability

condition of H∞ filter.

• The effect of random switching topologies can be investigated for the proposed agent

based estimation and control approach. Such effect is recently investigated in [132] for
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multi-agent consensus problem with Markovian switching topologies.

• The detection of faulty as well as malicious agents in the proposed architecture can be

another potential research thrust. Faulty behavior of agents are generally the outcome

of malfunctioning of the physical device (e.g., the sensing, computation or the commu-

nication part of the agent may be out of order or even the energy source for the agent

can be depleted). One approach in detecting such faulty agent can be the assessment

of the excessive delay in communication with the neighbors. On the other hand, an

agent can act as an “attacker” by exhibiting abnormal behavior through delivering

unexpected measurement or by giving harmful or impractical control decisions [133].

Existence of such agents in cyber-physical system necessitates a robust and vigilant

multi-agent framework.

• The single layer multi-agent system analysis conducted in this research can be extended

to the multi-layer holonic structure. As seen in Fig.1.2(a), the holonic model of multi-

agent system is a hierarchical structure of multiple (heterogeneous) layers, where each

layer is formed by a number of homogeneous agents. It is evident that we want to keep

a uniform flow of information and control decisions across multiple layers instead of

overburdening either end of the hierarchical structure. As a consequence, the following

questions arise,

– What is the minimum information that should flow from layer “(n− 1)” to layer

“(n)”?

– What control decisions must be passed from layer “(n)” to “(n− 1)”?

The answer to these questions is system specific and will also determine the inter-layer

channel capacity, minimum allowable latency and also the critical rate above which

the inter-layer communication should not fail.
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Appendix A

SYS1 Parameters

• State initialization: µ =

[
10 5 20 2.5 40 1.25

]>
; Σ = diag(.8, .2, .5, 1.3, .1, .3);

• Global state transition matrix: F =



0.3153 0.0090 0.0541 0.2342 0.1712 0.2162

0.0270 0.2883 0.0631 0.1892 0.2072 0.2252

0.2793 0.0811 0.0180 0.1982 0.2432 0.1802

0.0721 0.2523 0.2973 0.1532 0.0901 0.1351

0.2703 0.0450 0.3063 0.1081 0.1261 0.1441

0.0360 0.3243 0.2613 0.1171 0.1622 0.0991


;

• Process noise: Q = diag(1.8, .9, 2.7, 3.6, 1.0, .5);

• Agent-wise observation model:
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H1 =


13.3758 3.2277 5.2820 18.3034

6.7976 0.3931 4.9316 4.1200

8.1333 6.3871 13.2687 13.6812

;

R1 = diag(0.9217, 0.3057, 0.7316);

H2 =

41.4826 10.9732 27.7157

22.6780 28.1071 39.7014

;

R2 = diag(0.0019, 0.2653);

H3 =



41.6863 49.7289 39.0787 26.8042 4.2471

13.5406 48.6878 63.23 7.3416 14.5855

15.2408 46.3493 2.1896 73.8971 73.7868

68.2435 38.4299 46.5694 43.9841 10.4298


;

R3 = diag(0.3703, 0.3765, 0.2747, 0.3410).
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Appendix B

SYS2 Parameters

• Dynamics of SYS2:

µ =

[
10 5 20 2.5 40 1.25 4 3.7 25.8 21.4 76 51.6 88.9

]>
;

Σ = diag(.8, .2, .5, 1.3, .1, .3, .4, 1, .7, 1.2, .9, 3.9, 5.7);

Q = diag(1.8, 0.9, 2.7, 3.6, 1, 0.5, 0.1, 4.5, 2, 8, 5, 1.5, 0.3);

175



F =



0.0842 0.0977 0.1113 0.1249 0.1385 0.1520 0.0009 0.0145 0.0281 0.0416 0.0552 0.0688 0.0824

0.0968 0.1104 0.1240 0.1376 0.1511 0.0118 0.0136 0.0271 0.0407 0.0543 0.0679 0.0814 0.0833

0.1095 0.1231 0.1367 0.1502 0.0109 0.0127 0.0262 0.0398 0.0534 0.0670 0.0805 0.0941 0.0959

0.1222 0.1357 0.1493 0.0100 0.0235 0.0253 0.0389 0.0525 0.0661 0.0796 0.0932 0.0950 0.1086

0.1348 0.1484 0.0090 0.0226 0.0244 0.0380 0.0516 0.0652 0.0787 0.0923 0.1059 0.1077 0.1213

0.1475 0.0081 0.0217 0.0353 0.0371 0.0507 0.0643 0.0778 0.0914 0.1050 0.1068 0.1204 0.1339

0.0072 0.0208 0.0344 0.0362 0.0498 0.0633 0.0769 0.0905 0.1041 0.1176 0.1195 0.1330 0.1466

0.0199 0.0335 0.0471 0.0489 0.0624 0.0760 0.0896 0.1032 0.1167 0.1186 0.1321 0.1457 0.0063

0.0326 0.0462 0.0480 0.0615 0.0751 0.0887 0.1023 0.1158 0.1294 0.1312 0.1448 0.0054 0.0190

0.0452 0.0588 0.0606 0.0742 0.0878 0.1014 0.1149 0.1285 0.1303 0.1439 0.0045 0.0181 0.0317

0.0579 0.0597 0.0733 0.0869 0.1005 0.1140 0.1276 0.1412 0.1430 0.0036 0.0172 0.0308 0.0443

0.0706 0.0724 0.0860 0.0995 0.1131 0.1267 0.1403 0.1421 0.0027 0.0163 0.0299 0.0434 0.0570

0.0715 0.0851 0.0986 0.1122 0.1258 0.1394 0.1529 0.0018 0.0154 0.0290 0.0425 0.0561 0.0697



;

• Agent-wise observation model:

H1 =



5.03 1.9 19.88 15.16 5.23 2.1 18.42

14.55 4.19 2.18 8.78 8.23 4.46 12.04

4.82 7.87 17.23 3.49 13.23 17.94 10.37

6.91 2.91 4.45 7.97 4.73 12.60 7.36


;

R1 = diag(0.84, 0.16, 0.29, 0.37);
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H2 =



15.45 25.53 6.17 46.70 16.23 41.32 32.43

5.06 39.37 31.16 0.27 32.76 8.01 20.26

39.33 18.28 44.17 27.31 6.27 27.23 13.33

42.76 8.67 35.13 49.78 44.14 15.19 22.33

17.46 39.27 48.45 31.98 15.56 6.85 44.79

9.14 27.59 2.34 34.65 34.39 42.29 30.44


;

R2 = diag(0.47, 0.23, 0.82, 0.32, 0.58, 0.42);

H3 =


8.19 75.38 68.21 77.34 13.89 58.98 73.77

15.3 38.88 68.12 45.0 56.2 65.84 17.77

18.96 20.23 66.23 61.85 51.02 18.76 58.98

;

R3 = diag(0.45, 0.81, 0.53).
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Appendix C

Positive Definiteness of Gt,k

From the definition of Dt,k, Gt,k = M−1
t−1,k|t−1 − C>t,kM

−1
t,k|tCt,k. Using the definition of Ct,k

and then step 5 of Algorithm 3, Gt,k = M−1
t−1,k|t−1 − F>k M−1

t,k|t−1Mt,k|tM
−1
t,k|t−1Fk. Now, in

the information form of Kalman filter, M−1
t,k|t = M−1

t,k|t−1 + H>k R−1k Hk. Therefore,

Gt,k = M−1
t−1,k|t−1

− F>k

(
M−1

t,k|t −H>k R−1k Hk

)
Mt,k|tM

−1
t,k|t−1Fk

= M−1
t−1,k|t−1 − F>k M−1

t,k|t−1Fk

+
(
Mt,k|tH

>
k R−1k HkFk

)>
M−1

t,k|t−1Fk (C.1)

From step 3 of Algorithm 3, the alternate expression of F>k M−1
t,k|t−1Fk is,

= F>k
{
FkMt−1,k|t−1F

>
k + Qk

}−1
Fk

=
{

F−1k Qk

(
F−1k

)>
+ Mt−1,k|t−1

}−1
= M−1

t−1,k|t−1 −M−1
t−1,k|t−1F

−1
k Y

−1
t,k

(
F−1k

)>
M−1

t−1,k|t−1 (C.2)
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where, Yt,k = Q−1k +
(
F−1k

)>
M−1

t−1,k|t−1F
−1
k . Combining the above two equations,

Gt,k = M−1
t−1,k|t−1

(
F>k Yt,kFk

)−1
M−1

t−1,k|t−1

+ F>k

({
H>k R−1k Hk

}
Mt,k|tM

−1
t,k|t−1

)
Fk (C.3)

The final expression ensures the positive definiteness of Gt,k.
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Appendix D

Least Square Estimate of AKCF

Weights

We start with the definitions of following block matrices,

• A block matrix Af ,

[Af ](k,l)thblock =


−Pl,kSlFl; l ∈ Sk∑
i∈Sk Li,kSkFk; l = k

0ns
k×nl

; otherwise.

(D.1)

• Block diagonal matrices, Ct = Blockdiag [Ct,1 · · · Ct,N ];

M−1t = Blockdiag
[
M−1

t,1|t · · ·M
−1
t,N |t

]
; Os = Blockdiag [Os

1 · · ·Os
N ] and

W
f
t = Blockdiag

[
Wf

t,1 · · ·W
f
t,N

]
.

All the inner matrices of the above block structures are according to Chapter 7. Follow-

ing equation 7.6, we get the change in Lyapunov function for the multi-agent system by
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accumulating δVk for all agents, δV =
∑N

k=1 δVk. Therefore,

δV = −
N∑
k=1

η>t−1,kGt,kηt−1,k + 2
N∑
k=1

η>t−1,k

(
C>t,kM−1

t,k|tO
s
kW

f
t,k

)
zt−1,k

+
N∑
k=1

z>t−1,k

(
Os
kW

f
t,k

)>
M−1

t,k|tO
s
kW

f
t,kzt−1,k

= −η>t−1Gtηt−1 − 2η>t−1C
>
t M

−1
t O

sW
f
tA

fηt−1

+ η>t−1

(
OsW

f
tA

f
)>
M−1t O

sW
f
tA

fηt−1

= −η>t−1Gtηt−1 + η>t−1

(
OsW

f
tA

f − 2Ct

)>
M−1t O

sW
f
tA

fηt−1 (D.2)

Therefore, δV < 0 when, OsWf
tA

f = 2Ct. Using the block matrix properties,

Os
kW

f
t,k[A

f ](k,l)thblock =

 2Ct,k; l = k

0nk×nl
; l 6= k, l ∈ Sk.

(D.3)

For all the neighbors of the kth agent, the above relation can be written as,

Os
kW

f
t,k

[
[Af ](k,k)thblock, · · · , [A

f ](k,l)thblock, · · ·
]

= 2 [Ct,k, · · · ,0nk×nl
, · · · ]

Taking transpose, 

[Af ]>
(k,k)thblock

.

.

.

[Af ]>
(k,l)thblock

.

.

.



(
Os
kW

f
t,k

)>
= 2



C>t,k

.

.

.

0nl×nk

.

.

.



(D.4)
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Now, the matrix Os
k operates on Wf

t,k and creates zero rows at corresponding indices.

Therefore,
(
Os
kW

f
t,k

)>
will have the columns of

(
Wf

t,k

)>
along with some zero columns.

From the prior knowledge of Os
k we can find the indices ik of nonzero columns such that

1 ≤ ik ≤ nk and
(
Os
kW

f
t,k

)>
[:, ik] 6= 0ns

k×1. These non-zero columns will constitute the

transpose of desired weight matrix Wf
t,k. Therfore,

(
Os
kW

f
t,k

)>
[:, ik] = 2

(∑
l∈Sk

[Af ](k,l)thblock[A
f ]>

(k,l)thblock

)−1
[Af ](k,k)thblockC

>
t,k[:, ik] (D.5)

Rearranging these columns as rows gives us Wf
t,k. The solution can also be written as,

Wf
t,k = 2 (Os

k)
† Ct,k[Af ]>

(k,k)thblock

(∑
l∈Sk

[Af ](k,l)thblock[A
f ]>

(k,l)thblock

)−1> (D.6)

The inverse exists if rank
(∑

l∈Sk [Af ](k,l)thblock[A
f ]>

(k,l)thblock

)
= nsk.
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Appendix E

SYS3 Parameters

• Global state transition matrix:

F =


0.95, 0, 0

1, 0.9, 0

1, 1, 0.8


• Process noise: Q = diag(1.8, 0.9, 0.5).

• State initialization: µ =

[
10, 5, 8

]>
; Σ = diag(0.8, 0.2, 0.5).

• Agent 1:

H1 =

[
2, 0

]
; R1 = 0.0648; S1 =

[
0, 1

]
; Os

1 = S>1 ; U1 =

[
1, 0

]
; Ou

1 = U>1 ;

P2,1 = 1; L2,1 = 1;

T1 =

1, 0, 0

0, 1, 0


• Agent 2: H2 =

[
3, 0

]
; R2 = 0.05; S2 = U1; Os

2 = Ou
1 ; U2 = S1; Ou

2 = Os
1; P1,2 = 1;

L1,2 = 1;
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T2 =

0, 1, 0

0, 0, 1
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Appendix F

Expected Value in Equation (8.10)

From definition 8.1, Dt,k = φk(t)Dt,k+(1−φk(t))Bt,k. For mutually exclusive events, γk(t) =

1−φk(t). Therefore, γ2k(t)Dt,k = {φk(t)−2φ2
k(t)+φ

3
k(t)}Dt,k+{1+3φ2

k(t)−3φk(t)−φ3
k(t)}Bt,k.

In other words,

γ2k(t)Dt,k =

 O ;φk(t) = 1

Bt,k ;φk(t) = 0
;∀k.

Hence, E[γ2k(t)Dt,k] = (1− ρφ)Bt,k; ∀k.
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Appendix G

Positive Definiteness of Bt,k

From Definition 9.1

Bt,k = Υt,k − F>k Υt+1,k(Fk + GkK
c
t,k)

−
(
GkK

c
t,k

)>
Υt+1,k(Fk + GkK

c
t,k) (G.1)

From step 3 of Algorithm 5,
(
U+ G>k Υt+1,kGk

)
Kc
t,k = −G>k Υt+1,kFk.

Therefore,
(
GkK

c
t,k

)>
Υt+1,k(Fk + GkK

c
t,k) = −

(
Kc
t,k

)>
UKc

t,k. Using these relations and

Hamilton-Jacobi inequality, from equation (G.1),

Bt,k ≥
(
Kc
t,k

)>
UKc

t,k +Xk (G.2)

Hence, the positive definiteness of Bt,k is ensured.
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Appendix H

Least Square Estimate of AMPC

Weights

We start with the definitions of following block matrices,

• A block matrix Kc
t ,

[Kc
t ](k,l)thblock =


−Kc

t,l; l ∈ Sk

|Sk|Kc
t,k; l = k

0p×nl
; otherwise.

(H.1)

• Block diagonal matrices,

G = Blockdiag [Gk]; Ξt = Blockdiag
[
Fk + GkK

c
t,k

]
;

Υt+1 = Blockdiag [Υt+1,k]; and, Wc
t = Blockdiag

[
Wc

t,1 · · ·Wc
t,N

]
.

All the inner matrices of the above block structures are according to Chapter 9. Follow-

ing equation 9.10, we get the change in Lyapunov function for the multi-agent system by

accumulating δVk for all agents, δV =
∑N

k=1 δVk. Therefore,
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δV =
N∑
k=1

δVk

= −
N∑
k=1

x>t,kBt,kxt,k

+ 2
N∑
k=1

x>t,k(Fk + GkK
c
t,k)
>Υt+1,kGkW

c
t,kξt,k

+
N∑
k=1

ξ>t,k
(
GkW

c
t,k

)>
Υt+1,kGkW

c
t,kξt,k

= −x>t Btxt − 2x>t Ξ>t Υt+1GW
c
tK

c
txt

+ x>t (GWc
tK

c
t)
>Υt+1GW

c
tK

c
txt

= − x>t Btxt

+ x>t

[
(GWc

tK
c
t)
> − 2Ξ>t

]
Υt+1GW

c
tK

c
txt (H.2)

Therefore, δV < 0 when,GWc
tK

c
t = 2Ξt. Using the block matrix properties,

GkW
c
t,k[K

c
t ](k,l)thblock =

 2(Fk + GkK
c
t,k); l = k

0nk×nl
; l 6= k, l ∈ Sk.

(H.3)

For all the neighbors of the kth agent, the above relation can be written as follows,

GkW
c
t,k

[
[Kc

t ](k,k)thblock, · · · , [K
c
t ](k,l)thblock, · · ·

]
= 2

[
(Fk + GkK

c
t,k), · · · ,0nk×nl

, · · ·
]

The least-square solution is then given by,

Wc
t,k = 2 (Gk)

† (Fk + GkK
c
t,k)[K

c
t ]
>
(k,k)thblock

(∑
l∈Sk

[Kc
t ](k,l)thblock[K

c
t ]
>
(k,l)thblock

)−1> (H.4)
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We get this solution with assumptions (1) rank
(∑

l∈Sk [Kc
t ](k,l)thblock[K

c
t ]
>
(k,l)thblock

)
= p, and

(2) p ≤ nk,∀k.
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