

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Existence and uniqueness of the global solution to the Navier–Stokes equations

Alexander G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

ARTICLE INFO

Article history: Received 27 February 2015 Received in revised form 12 April 2015

Accepted 12 April 2015 Available online 25 April 2015

Keywords:

Global existence and uniqueness of the weak solution to Navier–Stokes equations

ABSTRACT

A proof is given of the global existence and uniqueness of a weak solution to Navier–Stokes equations in unbounded exterior domains.

 \odot 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let $D \subset \mathbb{R}^3$ be a bounded domain with a connected C^2 -smooth boundary S, and $D' := \mathbb{R}^3 \setminus D$ be the unbounded exterior domain.

Consider the Navier–Stokes equations:

$$u_t + (u, \nabla)u = -\nabla p + \nu \Delta u + f, \quad x \in D', \ t \ge 0, \tag{1}$$

$$\nabla \cdot u = 0, \tag{2}$$

$$u|_S = 0, u|_{t=0} = u_0(x).$$
 (3)

Here f is a given vector-function, p is the pressure, u=u(x,t) is the velocity vector-function, $\nu=const>0$ is the viscosity coefficient, u_0 is the given initial velocity, $u_t:=\partial_t u$, $(u,\nabla)u:=u_a\partial_a u$, $\partial_a u:=\frac{\partial u}{\partial x_a}:=u_{;a}$, and $\nabla\cdot u_0:=u_{a;a}=0$. Over the repeated indices a and b summation is understood, $1\leq a,b\leq 3$. All functions are assumed real-valued.

We assume that $u \in W$,

$$W := \{u | L^2(0, T; H_0^1(D')) \cap L^{\infty}(0, T; L^2(D')) \cap u_t \in L^2(D' \times [0, T]); \nabla \cdot u = 0\},\$$

where T > 0 is arbitrary.

E-mail address: ramm@math.ksu.edu.

Let $(u, v) := \int_{D'} u_a v_a dx$ denote the inner product in $L^2(D')$, $||u|| := (u, u)^{1/2}$. By u_{ja} the a-th component of the vector-function u_j is denoted, and $u_{ja;b}$ is the derivative $\frac{\partial u_{ja}}{\partial x_b}$. Eq. (2) can be written as $u_{a;a} = 0$ in these notations. We denote $\frac{\partial u^2}{\partial x_a} := (u^2)_{;a}$, $u^2 := u_b u_b$. By c > 0 various estimation constants are denoted.

Let us define a weak solution to problem (1)–(3) as an element of W which satisfies the identity:

$$(u_t, v) + (u_a u_{b;a}, v_b) + \nu(\nabla u, \nabla v) = (f, v), \quad \forall v \in W.$$

$$(4)$$

Here we took into account that $-(\Delta u, v) = (\nabla u, \nabla v)$ and $(\nabla p, v) = -(p, v_{a;a}) = 0$ if $v \in H_0^1(D')$ and $\nabla \cdot v = 0$. Eq. (4) is equivalent to the integrated equation:

$$\int_0^t [(u_s, v) + (u_a u_{b;a}, v_b) + \nu(\nabla u, \nabla v)] ds = \int_0^t (f, v) ds, \quad \forall v \in W.$$
 (*)

Eq. (4) implies Eq. (*), and differentiating Eq. (*) with respect to t one gets Eq. (4) for almost all $t \ge 0$. The aim of this paper is to prove the global existence and uniqueness of the weak solution to the Navier–Stokes boundary problem, that is, solution in W existing for all $t \ge 0$. Let us assume that

$$\sup_{t>0} \int_0^t ||f|| ds \le c, \quad (u_0, u_0) \le c. \tag{A}$$

Theorem 1. If assumptions (A) hold and $u_0 \in H^1_0(D)$ satisfies Eq. (2), then there exists for all t > 0 a solution $u \in W$ to (4) and this solution is unique in W provided that $\|\nabla u\|^4 \in L^1_{loc}(0,\infty)$.

In Section 2 we prove Theorem 1. There is a large literature on Navier–Stokes equations, of which we mention only [1,2]. The global existence and uniqueness of the solution to Navier–Stokes boundary problems has not yet been proved without additional assumptions. Our additional assumption is $\|\nabla u\|^4 \in L^1_{loc}(0,\infty)$. The history of this problem see, for example, in [1]. In [2] the uniqueness of the global solution to Navier–Stokes equations is established under the assumption $\|u\|^8_{L^4(D')} \in L^1_{loc}(0,\infty)$.

2. Proof of Theorem 1

Proof of Theorem 1. The steps of the proof are: (a) derivation of a priori estimates; (b) proof of the existence of the solution in W; (c) proof of the uniqueness of the solution in W.

(a) Derivation of a priori estimates

Take v = u in (4). Then

$$(u_a u_{b;a}, u_b) = -(u_a u_b, u_{b;a}) = -\frac{1}{2}(u_a, (u^2)_{;a}) = \frac{1}{2}(u_{a;a}, u^2) = 0,$$

where the equation $u_{a;a} = 0$ was used. Thus, Eq. (4) with v = u implies

$$\frac{1}{2}\partial_t(u, u) + \nu(\nabla u, \nabla u) = (f, u) \le ||f|| ||u||.$$
 (5)

We will use the known inequality $||u|| ||f|| \le \epsilon ||u||^2 + \frac{1}{4\epsilon} ||f||^2$ with a small $\epsilon > 0$, and denote by c > 0 various estimation constants.

One gets from (5) the following estimate:

$$(u(t), u(t)) + 2\nu \int_0^t (\nabla u, \nabla u) ds \le (u_0, u_0) + 2 \int_0^t \|f\| ds \sup_{s \in [0, t]} \|u(s)\| \le c + c \sup_{s \in [0, t]} \|u(s)\|.$$
 (6)

Recall that assumptions (A) hold. Denote $\sup_{s \in [0,t]} \|u(s)\| := b(t)$. Then inequality (6) implies

$$b^{2}(t) \le c + cb(t), \quad c = const > 0. \tag{7}$$

Since $b(t) \ge 0$, inequality (7) implies

$$\sup_{t>0} b(t) \le c. \tag{8}$$

Remember that c > 0 denotes various constants, and the constant in Eq. (8) differs from the constant in Eq. (7). From (6) and (8) one obtains

$$\sup_{t>0} [(u(t), u(t)) + \nu \int_0^t (\nabla u, \nabla u) ds] \le c. \tag{9}$$

A priori estimate (9) implies for every $T \in [0, \infty)$ the inclusions

$$u \in L^{\infty}(0, T; L^{2}(D')), \qquad u \in L^{2}(0, T; H_{0}^{1}(D')).$$

This and Eq. (4) imply that $u_t \in L^2(D' \times [0,T])$ because Eq. (4) shows that (u_t, v) is bounded for every $v \in W$. Note that $L^{\infty}(0,T;L^2(D')) \subset L^2(0,T;L^2(D'))$, and that bounded sets in a Hilbert space are weakly compact. Weak convergence is denoted by the sign \rightharpoonup .

(b) Proof of the existence of the solution $u \in W$ to (4) and (*)

The idea of the proof is to reduce the problem to the existence of the solution to a Cauchy problem for ordinary differential equations (ODE) of finite order, and then to use a priori estimates to establish convergence of these solutions of ODE to a solution of Eqs. (4) and (*). This idea is used, for example, in [1]. Our argument differs from the arguments in the literature in treating the limit of the term $\int_0^t (u_s^n, v) ds$.

Let us look for a solution to Eq. (4) of the form $u^n := \sum_{j=1}^n c_j^n(t)\phi_j(x)$, where $\{\phi_j\}_{j=1}^\infty$ is an orthonormal basis of the space $L^2(D')$ of divergence-free vector functions belonging to $H^1_0(D')$ and in the expression u^n the upper index n is not a power. If one substitutes u^n into Eq. (4), takes $v = \phi_m$, and uses the orthonormality of the system $\{\phi_j\}_{j=1}^\infty$ and the relation $(\nabla \phi_j, \nabla \phi_m) = \lambda_m \delta_{jm}$, where λ_m are the eigenvalues of the vector Dirichlet Laplacian in D on the divergence-free vector fields, then one gets a system of ODE for the unknown coefficients c_m^n :

$$\partial_t c_m^n + \nu \lambda_m c_m^n + \sum_{i,j=1}^n (\phi_{ia} \phi_{jb;a}, \phi_{mb}) c_i^n c_j^n = f_m, \quad c_m^n(0) = (u_0, \phi_m). \tag{10}$$

Problem (10) has a unique global solution because of the a priori estimate that follows from (9) and from Parseval's relations:

$$\sup_{t \ge 0} (u^n(t), u^n(t)) = \sup_{t \ge 0} \sum_{j=1}^n [c_j^n(t)]^2 \le c.$$
(11)

Consider the set $\{u^n=u^n(t)\}_{n=1}^{\infty}$. Inequalities (9) and (11) for $u=u^n$ imply the existence of the weak limits $u^n \to u$ in $L^2(0,T;H_0^1(D'))$ and in $L^\infty(0,T;L^2(D'))$. This allows one to pass to the limit in Eq. (*) in all the terms except the first, namely, in the term $\int_0^t (u_s^n,v(s))ds$. The weak limit of the term $(u_a^n u_{b;a}^n,v_b)$ exists and is equal to $(u_a u_{b;a},v_b)$ because

$$(u_a^n u_{b;a}^n, v_b) = -(u_a^n u_b^n, v_{b;a}) \to -(u_a u_b, v_{b;a}) = (u_a u_{b;a}, v_b).$$

Note that $v_{b;a} \in L^2(D')$ and $u_a^n u_b^n \in L^4(D')$. The relation $(u_a^n u_{b;a}^n, v_b) = -(u_a^n u_b^n, v_{b;a})$ follows from an integration by parts and from the equation $u_{a;a}^n = 0$.

The following inequality is essentially known:

$$||u||_{L^4(D')} \le 2^{1/2} ||u||^{1/4} ||\nabla u||^{3/4}, \qquad ||u|| := ||u||_{L^2(D')}, \quad u \in H_0^1(D').$$
 (12)

In [1] this inequality is proved for $D' = \mathbb{R}^3$, but a function $u \in H_0^1(D')$ can be extended by zero to $D = \mathbb{R}^3 \setminus D'$ and becomes an element of $H^1(\mathbb{R}^3)$ to which inequality (12) is applicable.

It follows from (12) and Young's inequality $(ab \leq \frac{a^p}{p} + \frac{b^q}{q}, p^{-1} + q^{-1} = 1)$ that

$$||u||_{L^4(D')}^2 \le \epsilon ||\nabla u||^2 + \frac{27}{16\epsilon^3} ||u||^2, \quad u \in H_0^1(D'),$$
 (13)

where $\epsilon > 0$ is an arbitrary small number, $p = \frac{4}{3}$ and q = 4. One has $u_a^n u_b^n \rightharpoonup u_a u_b$ in $L^2(D')$ as $n \to \infty$, because bounded sets in a reflexive Banach space $L^4(D')$ are weakly compact. Consequently, $(u_a^n u_{b;a}^n, v_b) \to (u_a u_{b;a}, v_b)$ when $n \to \infty$, as claimed. Therefore, $\int_0^t (u_a^n u_{b;a}^n, v_b) ds \to \int_0^t (u_a u_{b;a}, v_b) ds$. The weak limit of the term $\nu \int_0^t (\nabla u^n, \nabla v) ds$ exists because of the a priori estimate (9) and the weak compactness of the bounded sets in a Hilbert space. Since Eq. (*) holds, and the limits of all its terms, except $\int_0^t (u_s^n, v) ds$, do exist, then there exists the limit $\int_0^t (u_s^n, v(s)) ds \to \int_0^t (u_s, v(s)) ds$ for all $v \in W$. By passing to the limit $n \to \infty$ one proves that the limit u satisfies Eq. (*). Differentiating Eq. (*) with respect to t yields Eq. (4) almost everywhere.

(c) Proof of the uniqueness of the solution $u \in W$

Suppose there are two solutions to Eq. (4), u and w, $u, w \in W$, and let z := u - w. Then

$$(z_t, v) + \nu(\nabla z, \nabla v) + (u_a u_{b:a} - w_a w_{b:a}, v_b) = 0.$$
(14)

Since $z \in W$, one may set v = z in (14) and get

$$(z_t, z) + \nu(\nabla z, \nabla z) + (u_a u_{b;a} - w_a w_{b;a}, z_b) = 0, \qquad z = u - w.$$
(15)

Note that $(u_a u_{b;a} - w_a w_{b;a}, z_b) = (z_a u_{b;a}, z_b) + (w_a z_{b;a}, z_b)$, and $(w_a z_{b;a}, z_b) = 0$ due to the equation $w_{a;a} = 0$. Thus, Eq. (15) implies

$$\partial_t(z, z) + 2\nu(\nabla z, \nabla z) \le 2|(z_a u_{b;a}, z_b)|. \tag{16}$$

Since $|z_a u_{b;a} z_b| \leq |z|^2 |\nabla u|$, one has the following estimate:

$$|(z_a u_{b;a}, z_b)| \le \int_{D'} |z|^2 |\nabla u| dx \le ||z||_{L^4(D')}^2 ||\nabla u|| \le ||\nabla u|| \Big(\epsilon ||\nabla z||^2 + \frac{27}{16\epsilon^3} ||z||^2 \Big). \tag{17}$$

Denote $\phi := (z, z)$, take into account that $\|\nabla u\|^4 \in L^1_{loc}(0, \infty)$, choose $\epsilon = \frac{\nu}{\|\nabla u\|}$ in the inequality (13), in which u is replaced by z, use inequality (17) and get

$$\partial_t \phi + \nu(\nabla z, \nabla z) \le \frac{27}{16\nu^3} \|\nabla u\|^4 \phi, \quad \phi|_{t=0} = 0.$$
 (18)

In the derivation of inequality (18) the idea is to compensate the term $\nu \|\nabla z\|^2$ on the left side of inequality (16) by the term $\epsilon \|\nabla u\| \|\nabla z\|^2$ on the right side of inequality (17). To do this, choose $\|\nabla u\| \epsilon = \nu$ and obtain inequality (18). It follows from inequality (18) that

$$\partial_t \phi \le \frac{27 \|\nabla u\|^4}{16\nu^3} \phi, \quad \phi|_{t=0} = 0.$$

Since we have assumed that $\|\nabla u\|^4 \in L^1_{loc}(0,\infty)$ this implies that $\phi = 0$ for all $t \geq 0$.

Theorem 1 is proved. \Box

Remark 1. One has (summation is understood over the repeated indices):

$$2|(z_a u_{b;a}, z_b)| = 2|(z_a u_b, z_{b;a})| \le 18 \|\nabla z\| \||z||u|\| \le \nu \|\nabla z\|^2 + \frac{81}{\nu} \||z||u|\|^2.$$

Thus,

$$\partial_t \phi + \nu(\nabla z, \nabla z) \le \frac{81}{\nu} \| |z| \|u\|^2.$$

If one assumes that $|u(\cdot,t)| \leq c(T)$ for every $t \in [0,T]$, then $\partial_t \phi \leq c\phi, \phi(0) = 0$, on any interval $[0,T], \ c = c(T,\nu) > 0$ is a constant. This implies $\phi = 0$ for all $t \geq 0$. The same conclusion holds under a weaker assumption $||u(\cdot,t)||_{L^4(D')} \leq c(T)$ for every $t \in [0,T]$, or under even weaker assumption $||u(\cdot,t)||^8_{L^4(D')} \in L^1_{loc}(0,\infty)$.

In [1] it is shown that the smoothness properties of the solution u are improved when the smoothness properties of f, u_0 and S are improved.

References

- [1] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
- [2] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North Holland, Amsterdam, 1984.