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ABSTRACT 

In this paper a new numerical model for the simulation of the 

wave breaking is proposed. In order to represent the complex 

geometry of coastal regions, the three-dimensional equations of 

motion are expressed in integral contravariant form and are solved 

on a curvilinear boundary conforming grid. A time-dependent 

transformation of the vertical coordinate that is a function of the 

oscillation of the turbulent wave boundary layer is proposed. New 

boundary condition bottom for the equations of motion expressed 

in contravariant form are proposed. In order to correctly simulate 

the height of the breaking waves, the importance of the correct 

positioning, inside the oscillating turbulent boundary layer, of the 

centre of the calculation grid cell closest to the bottom, is 

demonstrated.  

CCS Concepts 
• Applied Computing Physical Sciences and Engineering 

➝Engineering.  
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1. INTRODUCTION 
In hydraulic engineering, the simulation of the hydrodynamic 

fields and turbulence under breaking waves allow the analysis of 

the effect produced by coastal defense structures and the 

modifications of the shoreline. The two-dimensional depth-

averaged equations of motion [1-5] is one of the most used 

approaches for the simulation of breaking waves. This approach 

assumes a simplified distribution of the hydrodynamic quantities 

along the vertical direction (depth averaged models). In the 

literature, for the three-dimensional simulation of wave induced 

free surface flows many authors adopt numerical models that 

integrate the three-dimensional Navier- Stokes equations, in 

which the so-called σ transformation is used. In such a 

framework, the vertical Cartesian coordinate is transformed in a 

vertical coordinate that moves with the free surface [6-7]. Other 

authors [8] recently express the three-dimensional equations of 

motion in a boundary conforming curvilinear coordinate system, 

where the vector and tensor quantities are expressed in a Cartesian 

frame of reference and only the vertical coordinate varies over 

time. 

In this paper, we propose a time-dependent transformation of the 

vertical coordinate that is a function also of the height of the 

oscillating turbulent wave boundary layer. In the literature, there 

is a contradiction in the way to assign the boundary conditions at 

the bottom. As it is known, the turbulent boundary layer can be 

subdivided in three regions: the viscous sub-layer is the region 

closest to the bottom and is characterized by the dominance of the 

viscous stress; the buffer layer is the intermediate region and is 

characterized by the equal importance of viscous and turbulent 

stresses; the turbulent core is the region which is further from the 

bottom and where the turbulent stresses are dominant. 

In the literature, the velocity boundary conditions, the friction 

velocity in the turbulent wave boundary layer are deduced from 

appropriate logarithmic law.  

The numerical solution of the momentum equation allows us to 

determine the cell-averaged velocity in the centre of the 

calculation cell closest to a bottom. Using the cell-averaged 

velocity, it is possible to calculate the friction velocity and the 

velocity boundary condition by the logarithmic law. The centre of 

the calculation cell closest to the bottom (where the cell-averaged 

velocity is calculated by the momentum equation) must 

necessarily be located inside of the turbulent core, because the 

logarithmic law is valid just in the turbulent core. 

Wrong evaluations of the friction velocity, velocity boundary 

conditions and turbulent stresses in the turbulent boundary layer 

are produced by placing the centre of the calculation cell closest 

to the bottom outside the boundary layer, or too close to the 

bottom (in the buffer layer or even in the viscous sub-layer). 

The above-mentioned centre of the calculation cell closest to the 

bottom oscillates coherently with the oscillations of the free-

surface, according to the current numerical models that use σ-

coordinate transformation. This oscillation is in contradictory 

form with respect to the oscillations of the turbulent wave 

boundary layer. Consequently, during the wave period, the centre 

of the calculation cell closest to the bottom is located outside or 

inside the turbulent wave boundary layer. By using these 

numerical models, wrong evaluations of velocity boundary 

conditions, friction velocity and bottom stresses occur, 
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consequently wrong simulation of the wave height at the breaking 

point and in the surf-zone occur. 

In this work, a new model for the simulation of breaking waves is 

proposed. The three-dimensional equations of motion are 

expressed in integral contravariant form in time varying 

coordinates that can adapt to free-surface movements and to the 

evolution of the turbulent boundary layer thickness and are solved 

on boundary conforming curvilinear grids that can reproduce the 

complex geometry of the coastal regions. 

New boundary condition at the bottom for the contravariant 

equations is proposed. In order to correctly simulate the height of 

the breaking wave, we present an analysis about the importance of 

the correct positioning, inside the oscillating turbulent boundary 

layer, of the centre of the calculation cell closest to the bottom. 

In this work, the centre of the calculation cell closest to the 

bottom oscillates coherently with the oscillations of the turbulent 

wave boundary layer and is always located in the turbulent core. 

On the lower face of the calculation cell closest to the bottom, the 

boundary condition for the cell averaged flow velocity, that is 

deduced form the logarithmic law, and for the eddy viscosity 

(which intervenes in the closure relation for the turbulent stress 

tensor in the turbulent boundary layer) are assigned. The above-

mentioned lower face of the calculation cell closest to the bottom 

is in the lower part of the turbulent core, close to the buffer layer, 

where the balance between the production and dissipation of 

turbulent kinetic energy take place.  

2. GOVERNING EQUATIONS 
In this paper we adopt the governing equations proposed in [9-10] 

in which the Navier-Stokes equations are expressed in integral 

contravariant form in a time-dependent curvilinear coordinate 

system. Let be 𝑢𝑘 (𝑘 = 1,3) is the contravariant component of the 

fluid velocity; 𝑣𝛼 (𝛼 = 1,3) is the contravariant component of the 

velocity of the moving coordinate lines; 𝜌 is the water density; 𝑓𝑘 

and 𝑅𝑘𝛼  (𝑘, 𝛼 = 1,3)  are, respectively, the contravariant 

component of the external body forces for unit mass vector and 

the contravariant turbulent stress tensor. 

 

𝑑

𝑑𝜏
∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝜌𝑢𝑘√𝑔)𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

+ 
 

∑ {∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝜌𝑢𝑘(𝑢𝛼 − 𝑣𝛼)√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼+

3

𝛼=1

− 
 

∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝜌𝑢𝑘(𝑢𝛼 − 𝑣𝛼)√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼−

} = 
 

∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝜌𝑓𝑘√𝑔)𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

+ 
 

∑ {∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝑅𝑘𝛼√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼+

−

3

𝛼=1

 
 

∫ (𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝑅𝑘𝛼√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼−

} 
 

(1) 

 

𝑑

𝑑𝜏
∫ (𝜌√𝑔)𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

+ 
 

∑ {∫ (𝜌(𝑢𝛼 − 𝑣𝛼)√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼+

3

𝛼=1

− 
 

∫ (𝜌(𝑢𝛼 − 𝑣𝛼)√𝑔)𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴0
𝛼−

} = 0 

(2) 

 

In the above equations 𝜏  is the time and 𝜉1, 𝜉2, 𝜉3  are moving 

curvilinear coordinates obtained from the Cartesian coordinate 

system (𝑥1, 𝑥2, 𝑥3, 𝑡)  by a time-dependent transformation 𝑥𝑖 =

𝑥𝑖(𝜉1, 𝜉2, 𝜉3, 𝜏 ), 𝑡 = 𝜏 . Let 𝑔⃗(𝑙)  and 𝑔⃗(𝑙)  be, respectively, the 

covariant and contravariant base vectors of the curvilinear 

coordinate system; √𝑔 the Jacobian of the transformation. ∆𝑉0 =

∆𝜉1∆𝜉2∆𝜉3 is the volume element in the transformed space and  

∆𝐴0
𝛼+ and ∆𝐴0

𝛼− indicate the contour surfaces of the volume ∆𝑉0 

on which 𝜉𝛼 is constant and which are located at the larger and at 

the smaller value of 𝜉𝛼 respectively. Here, the indexes 𝛼 , 𝛽, and 

𝛾 are cyclic.  

The general integral form of the Navier-Stokes equations 

expressed in a time dependent curvilinear coordinate system are 

represented by equation (1) and (2). The complete derivation of 

these equations can be found in [10]. The integral Equations (1) 

and (2) are reduced to the complete differential form of the 

contravariant Navier-Stokes equations in a time dependent 

curvilinear coordinate system that have been proposed in the 

literature by Luo and Bewley [11] by taking the limit as the 

volume approaches zero, as it has been demonstrate in [9]. 

In this paper, we start from the model proposed in [9-10] and 

obtain the following governing equations in order to simulate the 

fully dispersive wave processes and the wave breaking 

𝜕𝐻𝑢𝑙̅̅ ̅̅ ̅

𝜕𝜏
= − 

 

1

∆𝑉0√𝑔0

∑ {∫ [𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝐻𝑢𝑘(𝑢𝛼 − 𝑣𝛼) + 𝑔⃗̃(𝑙)

∆𝐴𝑜
𝛼+

3

𝛼=1

∙ 𝑔⃗(𝛼)𝐺𝐻2]√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾 − 

 

∫ [𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝐻𝑢𝑘(𝑢𝛼 − 𝑣𝛼) + 𝑔⃗̃(𝑙)

∆𝐴𝑜
𝛼−

∙ 𝑔⃗(𝛼)𝐺𝐻2]√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾} + 

 

1

∆𝑉0√𝑔0

∑ {∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝛼)𝐺ℎ𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴𝑜
𝛼+

−

3

𝛼=1

 
 

∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝛼)𝐺ℎ𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴𝑜
𝛼−

} + 
 

1

∆𝑉0√𝑔0

∑ {∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)

𝑇𝑘𝛼

𝜌
𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴𝑜
𝛼+

−

3

𝛼=1

 

 

∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)

𝑅𝑘𝛼

𝜌
𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉𝛾

∆𝐴𝑜
𝛼−

} − 
 

1

∆𝑉0√𝑔0

∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑚) 𝜕𝑝𝑑

𝜕𝜉𝑚 𝐻√𝑔0𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

 
  

(3) 
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𝜕𝐻̅

𝜕𝜏
=

1

∆𝐴𝑜
3√𝑔0

∑ [∫ ∫ 𝑢𝛼𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉3

∆𝜉𝑜
𝛼+

1

0

2

𝛼=1

− ∫ ∫ 𝑢𝛼𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉3

∆𝜉𝑜
𝛼−

1

0

]  

 

 

 

(4) 

where 𝐻 = ℎ + 𝜂  is the total water depth 𝐻 = ℎ + 𝜂 ; ℎ  is the 

undisturbed water depth and 𝜂 is the free surface elevation with 

respect to the undisturbed water level; 𝐺  is the gravity 

acceleration; pressure 𝑝  is divided into a hydrostatic part, 

𝜌𝐺(𝜂 − 𝑥3)  (the vertical coordinate 𝑥3  is zero at the still free 

surface and it is positive upwards), and a dynamic one, 𝑝𝑑. The 

curvilinear coordinates 𝜉1, 𝜉2, 𝜉3, 𝜏 are defined as 

 𝜉1 = 𝜉1(𝑥1, 𝑥2, 𝑥3)      ;      𝜉2 =  𝜉2(𝑥1, 𝑥2, 𝑥3)      ;        

𝜉3 =
𝑥3+ℎ(𝑥1,𝑥2)

𝐻(𝑥1,𝑥2,𝑥3,𝑡)
      ;      𝜏 = 𝑡 

 

(5) 

where 𝜉1  and  𝜉2  are the horizontal boundary conforming 

curvilinear coordinates and  𝜉3  is the time varying vertical 

coordinate by which the irregular varying domain in the physical 

space is mapped into a regular fixed domain in the transformed 

space. √𝑔 = 𝑘⃗⃗ ∙ |𝑔⃗(1)⋀𝑔⃗(2)| , where ⋀  indicates the vector 

product. 𝐻̅  and 𝐻𝑢𝑙̅̅ ̅̅ ̅  are spatial average values over volume 

elements defined in the form 

𝐻̅ =
1

∆𝐴0
3√𝑔0

∫ 𝐻√𝑔0𝑑𝜉1𝑑𝜉2

∆𝐴𝑜
3

 
 

𝐻𝑢𝑙̅̅ ̅̅ ̅ =
1

∆𝑉0√𝑔0

∫ 𝑔⃗̃(𝑙) ∙ 𝑔⃗(𝑘)𝑢𝑘𝐻√𝑔0𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

  

 

(6) 

In order to solve the equations (3) and (4) we adopt a finite 

volume Shock-capturing scheme in which High-Order WENO 

reconstructions and the Exact Riemann solver differently from [9-

10]. By using this numerical scheme, it is possible to calculate the 

point values of water depth and flow velocity at the centre of the 

cell faces of the computational grid.  

3. BOUNDARY CONDITION AT THE 

BOTTOM 
In this paper we adopt the governing equations proposed in [9-10] 

in which the Navier-Stokes equations are expressed in integral 

contravariant form in a time-dependent curvilinear coordinate 

system. 

 

Figure 1 Computational grid cells at the bottom 

 

The first grid cells near the bottom are shown in Figure 1.  

For the sake of simplicity, let us consider flat bottom.  We 

indicate with 𝑧2 the distance from the bottom of the centre of the 

first calculation cell closest to the bottom (indicated with 2 in 

Figure 1) and with 𝑧𝐵 the distance from the bottom of the lower 

face of the first calculation cell closest to the bottom. The centre 

of the grid cell 1 belong to the bottom (as shown in Figure 1). 𝑢2̅̅ ̅ 

is the cartesian based velocity cell-averaged, placed at the centre 

of the cell 2, deducted from the contravariant components of the 

velocity, obtained by Equations (3) and (4).  

 The friction velocity 𝑢∗ is calculated by the following 

logarithmic law 
𝑢2̅̅ ̅

𝑢∗ =
1

𝜅
ln (

𝐸𝑢∗𝑧2

  𝜈
) (7) 

where 𝐸 = 0.9 is a coefficient used for a smooth wall; 𝜅 = 0.41 is 

the von Kármán constant and 𝜈  is the kinematic viscosity. The 

velocity boundary condition 𝑢𝐵 is calculated at the lower face of 

the calculation cell closest to the bottom point, that is at (1 +
1 2⁄ ), by using the logarithmic law (𝑢 = 𝑢∗ 𝜅⁄ ln(𝐸𝑢∗𝑧𝐵   𝜈⁄ )), 

through the friction velocity 𝑢∗. 

As known, the turbulent boundary layer is divided in three 

regions: the viscous sub-layer is characterized only by the 

presence of the viscous stresses, (𝑦+ ≤ 5 where 𝑦+ = 𝑧𝑢∗ 𝜈⁄  and 

𝑧 is the distance from the wall in a Cartesian coordinate system); 

the buffer layer is characterized by the presence of the viscous 

stresses and turbulent stresses (5 < 𝑦+ < 30); the turbulent  core 

is characterized by the dominant presence of turbulent stresses 

(30 < 𝑦+ < 100). The point at the centre of the calculation cell, 

in which the velocity is calculated, (in Figure 1 is the point (2), 

distant 𝑧2 from the wall) needs to be placed on the turbulent core, 

because the logarithmic law is valid in the turbulent core. 

The points (1 + 1 2⁄ ) and (2), during the wave period, are located 

out the oscillating turbulent wave boundary layer, or in the 

turbulent core, or in the buffer layer, or in the viscous sub-layer, 

because the in the 𝜎-coordinate models, present in the literature, 

the points position (1 + 1 2⁄ ) and (2) oscillates consistent whit 

the free surface movement, as shown in Figure 2(a). By doing 

this, we determine wrong values of the velocity boundary 

condition and the turbulent stresses near the wall; indeed these 

values wrong evaluation of the phase-averaged crest elevations.  

In order to correctly evaluate the phase-averaged crest elevations, 

we propose an analysis on the importance of the correct placement 

of the points 1(1 + 1 2⁄ ) and (2)in the turbulent core. 

The turbulent closure relation used in this paper, collocated on the 

lower face of the calculation cell closest to the bottom, is 

expressed as follows  

𝜏𝑚𝑛 =  2𝜈𝑒𝑓𝑓𝑆𝑚𝑛     (8) 

where 𝜏𝑚𝑛 are the components of the turbulent stress tensor (𝑅̅); 

𝜈𝑒𝑓𝑓 = 𝜈 + 𝜈𝑡  is the effective viscosity and 𝜈𝑡  is the turbulent 

eddy viscosity; 𝑆𝑚𝑛 are the contravariant component of strain rate 

tensor.  

The turbulent eddy viscosity is expressed by 

𝜈𝑡 = 𝜅𝑢∗𝑧𝐵 (9) 

The Equation (9) is deducted by the hypothesis of the balance 

between the production and the dissipation of turbulent kinetic 
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energy, that is holds true on the lower part of the turbulent core, 

near the buffer layer. 

The turbulent eddy viscosity is evaluated by 𝜈𝑡 =

(𝐶𝑠Δ)2√2𝑆𝑚𝑛𝑆𝑚𝑛  outside the turbulent boudary layer. Let Δ =

√Δ𝜉1Δ𝜉2Δ𝜉33
 be the length scale dependent on the grid size and 

𝐶𝑠 be the Smagorinsky coefficient.  

In this paper the point (1 + 1 2⁄ ) is located in the turbulent core 

near the buffer layer, where the balance between the production 

and dissipation of turbulent kinetic energy holds true; the point 

(2) is always located in the turbulent core. Both points oscillate 

coherently with the turbulent boundary layer, as shown in Figure 

2(b).   

In Figure 2(b) it is possible to notice that the first cell thickness 

increases in correspondence of the reduction of the velocity at the 

bottom and it reduces in correspondence of the increase of the 

velocity at the bottom. 

 

        (a)        (b) 

Figure 2 Instantaneous representation of: a) computational 

grid in which the points 𝟏 + 𝟏/𝟐 and 𝟐 move whit the free 

surface; b) computational grid in which the points 𝟏 + 𝟏/𝟐 

and 𝟐 move with the oscillating wave boundary layer. 

4. RIP CURRENT TEST 
In this Section, in order to validate and verify the ability of the 

numerical model and to underline the importance of the correct 

location of the calculation cell closest to the bottom at 𝑦+ = 40, 

we numerically reproduce wave propagation, wave breaking and 

hydrodynamic velocity fields. We reproduce a laboratory 

experiment carried out by Hamm [12]. 

The tank used by Hamm [12] measured 30 m by 30 m; the sea bed 

consisted of a plane beach sloping at 1 in 30, with a rip channel 

excavated in the centre which produce a curved shaped coastline.  

The basin is symmetric with respect to the y-axis; for this reason it 

is sufficient to reproduce only one-half of the basin. 

The turbulence stress tensor is estimated by the Smagorinsky sub-

grid model in which the Smagorinsky coefficient is set to 0.21. 

In Figure 3 a curvilinear computational grid and bottom variation, 

in which only one out of every five coordinate lines. We 

numerically reproduce a regular wave train with period T= 1.25s 

and height H= 0.07m. 

In Figure 4 a three-dimensional instantaneous wave field is 

shown. From this Figure it is possible to notice that the wave 

height increases in correspondence with the channel location due 

to occurrence of a pronounced rip current along the channel. 

The time-average of the cross-shore velocity components 

calculated near the bottom along the rip channel is shown in 

Figure 5. From this Figure it is possible to notice the good 

agreement between numerical result and experimental 

measurements [12]. 

  

Figure 3 Three-dimensional view of the bottom and 

curvilinear computational grid (Only one out of every five 

coordinate lines is shown). 

 
Figure 4 Three-dimensional view detail of an instantaneous 

wave field at the time when the breaking induced circulation 

is fully developed. 

 

Figure 5 Mean current velocity along the rip channel. 

Comparison between the experimental measurements [12] for 

unidirectional (triangles) random waves and the numerical 

results (solid line). 
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5. RESULTS 
In this Section we present the results of the numerical simulations 

of the wave breaking, obtained by the proposed model and we 

compare these results with the experimental data conducted by 

Ting and Kirby [13]. 

The experimental arrangement adopted by [13] consists in a sea 

bed with a sloping beach with slope 1: 35. The still water depth is 

ℎ = 0.4𝑚. See Figure 6 for a schematic view. 

The computational grid consists, for the numerical simulation, in: 

13,728 grid cells in the horizontal direction with spacing Δ𝑥1 =
0.025 m; 13 grid cells in the vertical direction. A cnoidal wave 

with period 𝑇 = 2𝑠 and wave height 𝐻 = 0.125𝑚, is imposed as 

input boundary condition.  

 
Figure 6 Schematic experimental arrangement by Ting and 

Kirby [13] 

 

Figure 7 Ting and Kirby [13] breaking wave test case. Phase-

averaged crest elevations. Experimental data (circles) and 

numerical results obtained by 𝒚+ average fixed value of 40 

(dashed line) and 𝒚+ fixed value of 40 (solid line). 

In Figure 7, the comparison between the results obtained with an 

oscillation of the lower face of the calculation cell closest to the 

bottom, with the free-surface movement (coherently with 𝜎 -

coordinate models), and the results obtained with an oscillation of 

the aforementioned face, with the turbulent boundary layer, is 

shown.  

The dashed line shows the cross-shore distribution of crest 

obtained by the numerical simulation in which the distance 

between the wall and the lower face of the calculation cell closest 

to the bottom oscillates with the free-surface movement and it is 

set to a dimensionless wall distance that has a time-averaged value 

equal to 40. 

The solid line shows the cross-shore distribution of crest obtained 

by the numerical simulation in which the distance between the 

wall and the lower face of the calculation cell closest to the 

bottom coherently oscillates with the turbulent boundary layer and 

it is always set to a dimensionless wall distance 𝑦+ = 40, and it is 

always located inside the turbulent core, near the buffer layer, 

where the hypothesis of balance between production and 

dissipation of turbulent kinetic energy holds true.  

In both the numerical simulations, outside the turbulent boundary 

layer, a Smagorinsky coefficient  𝐶𝑠 = 0.21  is adopted, in the 

turbulent closure relation.  

The numerical results obtained with an oscillation of the lower 

face of the calculation cell closest to the bottom, with the free-

surface movement (dashed line in Figure 7), show that the initial 

wave breaking point is located at 𝑥 = 6.0𝑚 , much before the 

predicted location by the experimental results (𝑥 = 6.4𝑚); from 

𝑥 = 4.8𝑚 to 𝑥 = 10.0𝑚, the cross-shore distribution of crest is 

underestimated;  after 𝑥 = 10.0𝑚, the cross-shore distribution of 

crest is overestimated.  

The numerical results obtained with an oscillation of the lower 

face of the calculation cell closest to the bottom with the turbulent 

boundary layer (solid line in Figure 7) are in good agreement with 

the experimental measurement. 

From the comparison between the results obtained with an 

oscillation of the lower face of the calculation cell closest to the 

bottom, with the free-surface movement, and the results obtained 

with an oscillation of the aforementioned face with the turbulent 

boundary layer, it is possible to notice the limitation of the 𝜎-

coordinate models that are present in the literature.    

In the 𝜎-coordinate models, the lower face of the calculation cell 

closest to the bottom follows the free-surface movement, in a 

contradictory oscillation with respect to the one of the turbulent 

boundary layer. Consequently, in the 𝜎 -coordinate models, the 

lower face of the calculation cell closest to the bottom, during the 

wave period, may be located alternatively outside the turbulent 

boundary layer, inside the turbulent core, inside the buffer layer, 

or (when the velocity is low) inside the viscous sub-layer. By 

using these models, the velocity boundary condition, the friction 

velocity and the turbulent bottom stresses are wrong evaluated, 

consequently there is an erroneous simulation of the cross-shore 

distribution of crest elevations. 

The cell-averaged velocity value is calculated at the centre of the 

calculation cell closest to the bottom; by means of this cell-

averaged velocity value, through the logarithmic law defined in 

Section 3, the friction velocity 𝑢∗  and the velocity value at the 

lower face of the grid cell  𝑢𝐵, are computed. 

The adopted logarithmic law holds true in the turbulent core. The 

turbulent eddy viscosity in the turbulent boudary layer is 

calculated by the equation presented previously, that is valid in 

the turbulent core near the buffer layer. The necessity of letting 

the centre of the aforementioned grid cell oscillate coherently with 

the turbulent boundary layer and the necessity of letting the lower 

face of the aforementioned grid cell be located near the buffer 

layer, have been demonstrated by the accordance between the 

numerical results and the experimental measurements, in terms of 

cross-shore distribution of crest and of location of the initial wave 

breaking point. 
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Figure 8 Ting and Kirby [12] breaking wave test case. Phase-

averaged crest elevation. Experimental data (circles) and 

numerical results with 𝒚+ = 𝟖𝟎 (dash dot dot line), 𝒚+ = 𝟔𝟎 

(dash dot line), 𝒚+ = 𝟒𝟎 (solid line) and 𝒚+ = 𝟑𝟎 (dashed 

line). 

In Figure 8, the comparison among the results obtained with four 

numerical simulations, in which the lower face of the calculation 

cell closest to the bottom oscillates with the turbulent boundary 

layer, is shown. In Figure 10, the cross-shore distribution of crest, 

obtained by the aforementioned four different simulations in 

which the distance between the wall and the lower face of the 

calculation cell closest to the bottom is set to a dimensionless wall 

distance 𝑦+ = 80  (dash dot dot line), 𝑦+ = 60  (dash dot line), 

𝑦+ = 40 (solid line) and 𝑦+ = 30 (dotted line), is shown. In all 

the numerical simulations, the boundary condition proposed in 

this work is adopted. In the closure relation, outside the turbulent 

boundary layer, the Smagorinsky coefficient is set to 𝐶𝑠 = 0.21. 

The numerical results obtained with the numerical simulation 

carried out with 𝑦+ = 80 (dash dot dot line), show that the initial 

wave breaking point is located at 𝑥 = 5.75𝑚, much before the 

predicted location by the experimental results (𝑥 = 6.4𝑚); from 

𝑥 = 5.75𝑚 to 𝑥 = 9.5𝑚, the cross-shore distribution of crest is 

underestimated and their slope is lower than the one obtained by 

the experimental measurements. The numerical results obtained 

with the numerical simulation carried out with 𝑦+ = 60 (dash dot 

line), show that the initial wave breaking point is located at 𝑥 =
6.25𝑚, before the predicted location by the experimental results 

( 𝑥 = 6.4𝑚 ); from 𝑥 = 6.25𝑚  to 𝑥 = 9.0𝑚 , the cross-shore 

distribution of crest is underestimated and their slope is 

comparable to the one obtained by the experimental 

measurements; after 𝑥 = 9.0𝑚 , the cross-shore distribution of 

crest is slightly overestimated. The numerical results obtained 

with the numerical simulation carried out with 𝑦+ = 40  (solid 

line), have been already described and show the best agreement 

with the experimental results. The numerical results obtained with 

the numerical simulation carried out with 𝑦+ = 30 (dashed line), 

show that the initial wave breaking point is located at 𝑥 = 6.5𝑚, 

slightly after the predicted location by the experimental results 

(𝑥 = 6.4𝑚); after 𝑥 = 6.5𝑚, the cross-shore distribution of crest 

is overestimated and their slope is higher than the one obtained by 

the experimental measurements. The importance to correctly 

locate the lower face of the calculation cell closest to the bottom is 

demonstrated by the comparison among the different simulations 

carried out. If the distance 𝑧𝐵 between the wall and the lower face 

of the calculation cell closest to the bottom increases, the friction 

velocity 𝑢∗  decreases; the velocity boundary condition 𝑢𝐵 

decreases; the bottom turbulent stresses decrease, causing a 

decrease in the value of the cross-shore distribution of crest and 

an anticipation of the initial wave breaking point. 

The necessity to letting the lower face of the calculation cell 

closest to the bottom (where the turbulent eddy viscosity 𝜈𝑡  is 

evaluated) oscillate at the lower face of the calculation cell closest 

to the bottom (where the turbulent eddy viscosity 𝜈𝑡 is evaluated), 

has been demonstrated by the accordance of the numerical results 

(solid line in Figure 8) with the experimental measurements in 

terms of cross-shore distribution of crest elevations and of 

location of the initial wave breaking point. 

6. CONCLUSIONS 
In this paper we propose a new numerical model for the 

simulation of the wave breaking. The three-dimensional equations 

are expressed in contravariant form and are solved over a 

curvilinear boundary conforming grid, which is capable to 

represent the complex geometries, typically present in coastal 

regions. A transformation over the time of the vertical coordinate, 

as a function of the movement of the oscillating turbulent 

boundary layer, other than the free-surface elevation. It has been 

demonstrated that the proposed numerical procedure allows us to 

correctly simulate the cross-shore distribution of crest and the 

location of the initial wave breaking point. It has been 

demonstrated that the centre of the first calculation cell must 

oscillate coherently with the turbulent boundary layer. It has been 

demonstrated that the lower face of the calculation grid cell, 

where the turbulent eddy viscosity 𝜈𝑡  is evaluated, must always 

oscillate inside the turbulent core and near the buffer layer, where 

the hypothesis of balance between production and dissipation of 

turbulent kinetic energy holds true. 
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