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Abstract: A recently developed theory is applied to deduce the well posedness and the finite element
approximability of time-harmonic electromagnetic scattering problems involving bianisotropic media
in free-space or inside waveguides. In particular, three example problems are considered of which
one deals with scattering from plasmonic gratings that exhibit bianisotropy while the other two
deal with bianisotropic obstacles inside waveguides. The hypotheses that guarantee the reliability
of the numerical results are verified, and the ranges of the constitutive parameters of the media
involved for which the finite element solutions are guaranteed to be reliable are deduced. It is shown
that, within these ranges, there can be significant bianisotropic effects for the practical media considered
as examples. The ensured reliability of the obtained results can make them useful as benchmarks
for other numerical approaches. To the best of our knowledge, no other tool can guarantee
reliable solutions.

Keywords: electromagnetic scattering; time-harmonic electromagnetic fields; bianisotropic media;
metamaterials; variational formulation; well posedness; finite element method; convergence of
the approximation

1. Introduction

Bianisotropic media have important applications in numerous practical problems ranging from
the microwave to photonic frequency bands [1–4]. The electromagnetic problems involving such media
admit analytical solutions only in very specialized cases, and numerical simulators are necessary to
solve the vast majority of them.

In this context, the reliability of the numerical solvers is of utmost importance, and results
guaranteeing the well posedness of the problems and the convergence of the numerical solutions are
crucial. Some of the previous papers that addressed this issue were limited in their applications [5–8].
For instance, the work in [5] made strong assumptions on the losses to guarantee the reliability
of the results. The results in [6] were derived for two-dimensional problems involving axially
moving cylinders, whereas [7] dealt only with evolution problems inside cavities. As for [8],
the constitutive parameters were taken to be smooth, which did not allow applications to radiation
and scattering problems.

A considerable generalization of the conditions that allow ensuring the well posedness of
the problems and the convergence of the finite element solutions was recently achieved in [9]. A set of
non-restrictive hypotheses was shown to guarantee such results for three-dimensional time-harmonic
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problems involving bianisotropic media. The authors applied the theory to rotating axisymmetric
objects, where the effect of motion induced bianisotropy. However, the theoretical results derived
were applicable to a much wider range of bianisotropic materials and metamaterials.

In this paper, we exploit the recently developed theory to obtain novel results. We consider
examples of practical problems discussed in the open literature for which, to the best of our knowledge,
none of the previous theories were able to guarantee the reliability of the numerical results. In particular,
we study the electromagnetic scattering from plasmonic gratings, which exhibits bianisotropy [1],
and from bianisotropic obstacles in waveguides [10,11]. We demonstrate the application of the theory
in [9] to derive the conditions on the constitutive parameters of these problems that guarantee
the reliability of the results. The numerical solutions of the problems are calculated under such
conditions, which, owing to the reliability assured by the theory, can be used as references for other
numerical solvers. As far as we are aware, no other tool is available that allows obtaining benchmark
solutions for these problems.

The paper is organized as follows. In Section 2, the problem is defined and the theory is summarized to
guide the reader in its application. Section 3 contains the main results of the paper, where the application
of the theory is demonstrated and reliable solutions are obtained. Section 4 provides the conclusions.

2. Mathematical Description of the Problem

In this paper, we are interested in electromagnetic problems that involve bianisotropic media
under time-harmonic excitation, which were studied in [9]. While the full details of the problem
definition and results are available in the reference, here we provide a summary of the main points
in order to ease the understanding of the present developments.

The problem is formulated in an open, bounded, and connected domain Ω ∈ R3, which has
a Lipschitz continuous stationary boundary denoted by Γ. To take into account electromagnetic
problems involving inhomogeneous materials, we assume that Ω can be decomposed into m
subdomains (see HD3 of [9]) denoted Ωi, i ∈ I = {1, ..., m}.

The time-harmonic sources imply that all the resulting fields are in turn time-harmonic
and the assumed factor ejωt is ubiquitous and is suppressed. The media involved in the problem
are linear and time-invariant and are considered to satisfy the following constitutive relations:{

D = (1/c0) P E + L B in Ω,
H = M E + c0 Q B in Ω.

(1)

In the above equation, E, B, D, and H are complex valued functions defined in Ω and represent,
respectively, the electric field, magnetic induction, electric displacement, and magnetic field, while c0

is the speed of light in a vacuum. The space where we will seek E and H is [12] (p. 82; see also p. 69):

U = HL2,Γ(curl, Ω) = {v ∈ H(curl, Ω) | v× n ∈ L2
t (Γ)}, (2)

where [12] (p. 48):

L2
t (Γ) = {v ∈ (L2(Γ))3 | v · n = 0 almost everywhere on Γ}. (3)

Based on Maxwell’s equations, boundary conditions, and constitutive relations, the following
variational formulation of the problem can be deduced [5]: given ω > 0, the electric and magnetic
current densities prescribed by the sources Je, Jm ∈ (L2(Ω))3 and the known term fR ∈ L2

t (Γ), involved
in admittance boundary condition, find E ∈ U such that:

a(E, v) = l(v) ∀v ∈ U, (4)
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where:

a(u, v) = c0
(
Q curl u, curl v

)
0,Ω −

ω2

c0

(
P u, v

)
0,Ω − jω

(
M u, curl v

)
0,Ω

−jω
(

L curl u, v
)

0,Ω + jω
(
Y (n× u× n), n× v× n

)
0,Γ, (5)

and:
l(v) = −jω

(
Je, v

)
0,Ω − c0

(
Q Jm, curl v

)
0,Ω + jω

(
L Jm, v

)
0,Ω − jω

(
fR, n× v× n

)
0,Γ. (6)

In [9], we derived a set of sufficient conditions that guarantee the well posedness and finite
element approximability of the problem. The developed theory was applied to problems involving
rotating axisymmetric objects. In this paper, we apply the theory to a wider range of problems
involving bianisotropic materials and metamaterials demonstrating the generality of the developments
and obtaining interesting new solutions [1,10,11].

We recall important definitions and hypotheses to fix the notations that are required for proceeding
with the application of the theory. The subscript i ∈ I identifying the subdomain Ωi may belong
to two subsets, Ia and Ib of I, according to the properties of the media involved: i ∈ Ia when they
are anisotropic (that is, with L = M = 0) and i ∈ Ib when they are bianisotropic. Any matrix A
with complex entries can be split into A = As − jAss with As = A+A∗

2 and Ass = A∗−A
2j . Some of

the hypotheses will be stated using the alternative form of constitutive relations defined by:{
E = κ D + χ B in Ω,
H = γ D + ν B in Ω.

(7)

where the constitutive matrices are given by [13] κ = c0 P−1, χ = −c0 P−1 L, γ = c0 M P−1, and ν =

c0 (Q−M P−1 L).
As mentioned in Section 6 of [9], most of the hypotheses are readily satisfied for important

practical problems. That leaves us with seven critical hypotheses (HM9–HM15 in [9]) on the media
involved in the problem that need to be verified. Among them, HM9–HM12 of [9] are stated in terms
of the constitutive relations involving κ, ν, χ, and γ and are restated here as H1–H4.

Hypothesis 1 (H1). ∃∃Cκ,d > 0, Cν,d > 0 : |determinant (κ) | ≥ Cκ,d, |determinant (ν) | ≥ Cν,d, ∀x ∈
Ωi, ∀i ∈ I,

Hypothesis 2 (H2). lT
1,3 κ−1 l1,3 6= 0, lT

1,3 ν−1 l1,3 6= 0 ∀l1,3 ∈ R3, l1,3 6= 0, ∀x ∈ Ωi, ∀i ∈ Ia,

Hypothesis 3 (H3). ∃∃Cκ,r > 0, Cν,r > 0 : |lT
1,3,n κ−1 l1,3,n| ≥ Cκ,r, |lT

1,3,n ν−1 l1,3,n| ≥ Cν,r ∀l1,3,n ∈ R3 :
‖l1,3,n‖2 = 1, ∀x ∈ Ωi, ∀i ∈ Ib,

Hypothesis 4 (H4). ∃∃Cκ,s > 0, Cν,s > 0:

( 3

∑
i,j=1
|κij|

)
− min

i=1,2,3
|κii| ≤ Cκ,s ∀x ∈ Ωk, ∀k ∈ Ib, (8)

( 3

∑
i,j=1
|νij|

)
− min

i=1,2,3
|νii| ≤ Cν,s ∀x ∈ Ωk, ∀k ∈ Ib, (9)

and κ, χ, γ, and ν satisfy:

4
((

∑3
i,j=1 |γij|

)
−mini=1,2,3 |γii|

) ((
∑3

i,j=1 |χij|
)
−mini=1,2,3 |χii|

)
(
− Cκ,s +

√
C2

κ,s + 4 Cκ,d Cκ,r
) (
− Cν,s +

√
C2

ν,s + 4 Cν,d Cν,r
) < 1 (10)
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∀x ∈ Ωk, ∀k ∈ Ib.

Among the above hypotheses, H2 needs to hold only in the subdomains Ωi, i ∈ Ia. H1 can be
verified separately in any subdomain Ωi, i ∈ I, whereas H3 and H4 are to be defined and verified
only locally on any subdomain Ωi, i ∈ Ib (see Remark 1 of [9]).

The local continuity of the tensors P, Q, L, and M can be assumed in most practical problems,
which allows the definition of the following constants.

• ∃CL > 0: |(L curl u, v)0,Ω| ≤ CL‖curl u‖0,Ω‖v‖0,Ω for all u ∈ H(curl, Ω) and v ∈ (L2(Ω))3,
• ∃CM > 0: |(M u, curl v)0,Ω| ≤ CM‖u‖0,Ω‖curl v‖0,Ω for all u ∈ (L2(Ω))3 and v ∈ H(curl, Ω).

Finally, HM13–HM15 of [9] are reported here as H5–H7.

Hypothesis 5 (H5). We can find CPS > 0 such that |(Pu, u)0,Ω| ≥ CPS‖u‖2
0,Ω for all u ∈ (L2(Ω))3.

Hypothesis 6 (H6). We can find CQS > 0 such that |(Qcurl u, curl u)0,Ω| ≥ CQS‖curl u‖2
0,Ω for all

u ∈ H(curl, Ω).

Hypothesis 7 (H7). CPS, CQS, CL, and CM (i.e., all media involved) are such that CQS − CLCM
CPS

> 0.

We refer to Section 6 of [9] for some hints about the calculation of the constants involved
in the above conditions. In particular, we recall here Lemma 1 of [9] for easy reference, which is
helpful in finding the constant involved in H5.

Lemma 1. Suppose that Pss is uniformly positive definite in Ωel ⊂ Ω, that is ∃C1 > 0 such that:∫
Ωel

u∗Pssu ≥ C1

∫
Ωel
|u|2 = C1||u||20,Ωel

∀u ∈ (L2(Ω))3. (11)

whenever Ωel = Ω, we can simply define CPS = C1.
Whenever Ωel is not the whole Ω, suppose that, in the complementary region, Ps is uniformly positive or

negative definite, that is ∃C5 > 0 such that:∣∣∣∣∫Ω\Ωel

u∗Psu
∣∣∣∣ ≥ C5||u||20,Ω\Ωel

. (12)

whenever Ωel = ∅, we simply have CPS = C5, and we can set:

CPS = min
i∈I

inf
x∈Ωi

λmin(Ps), (13)

where λmin denotes the minimum of the magnitudes of the eigenvalues of the Hermitian symmetric matrix Ps.
Finally, whenever Ωel is neither the empty set nor the whole domain, under assumptions HM2 and HM3 of [9],
condition H5 is satisfied with CPS given by:

CPS =
1√
2

min

(√
(1− α)C5,

√
C2

1 + (1− 1
α
)C2

3

)
, (14)

where C3 > 0 is defined by: ∣∣∣∣∫Ωel

u∗Psu
∣∣∣∣ ≤ C3‖u‖2

0,Ωel
(15)

and α is such that 1 > α >
C2

3
C2

1+C2
3
> 0.
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Analogously, by replacing P with Q in Equations (11), (12), and (15) , we define, respectively,
Ωml and the constants C2 > 0, C4 > 0, and C6 > 0 and deduce that condition H6 is satisfied if we set:

CQS = min
i∈I

inf
x∈Ωi

λmin(Qs), (16)

whenever Ωml = ∅, CQS = C2 whenever Ωml = Ω, or:

CQS =
1√
2

min

(√
(1− α)C6,

√
C2

2 + (1− 1
α
)C2

4

)
, (17)

α being such that 1 > α >
C2

4
C2

2+C2
4
> 0, when Ωml 6= Ω and Ωml 6= ∅.

With respect to the H4, if we define:

Cχ,s = max
i∈Ib

sup
x∈Ωi

(
(

3

∑
i,j=1
|χij|)−mini=1,2,3|χii|

)
, (18)

Cγ,s = max
i∈Ib

sup
x∈Ωi

(
(

3

∑
i,j=1
|γij|)−mini=1,2,3|γii|

)
, (19)

the sufficient condition guaranteeing the validity of the inequality in the hypothesis can be expressed as:

Ku =
4Cχ,sCγ,s(

−Cκ,s +
√

C2
κ,s + 4Cκ,dCκ,r

) (
−Cν,s +

√
C2

ν,s + 4Cν,dCν,r

) < 1. (20)

3. Results and Discussion

In this section, we apply the theory developed in [9] to several classes of problems that could
not be managed with the previous theories [5–8]. The conditions are established on the constitutive
parameters of such problems, under which the well posedness and finite element approximability
can be guaranteed. In particular, we apply the theory and obtain solutions for three examples of
bianisotropic media, which are found in the open literature. The first one is that introduced in [1] where
the authors considered plasmonic gratings, which are represented by an equivalent bianisotropic media.
In this case, we study the scattering from a slab of the equivalent medium, which is placed in empty
space, in accordance with the setup considered by the authors [1]. Next, the media introduced in [10,11]
are analyzed. The authors there considered the scattering from the bianisotropic obstacles placed
inside hollow waveguides. Although we stick to the original configurations proposed by the authors,
our tools can be used to analyze other problems involving these media.

Under the conditions that guarantee that hypotheses H1–H7 are satisfied, the numerical solutions
of these problems are computed. They can be used as reference solutions for other approaches
and simulators because, on the one hand, for each problem, our theory guarantees the convergence of
the sequence of approximations, and on the other hand, we verify that the outcome we present is close
to the limit of the sequence by a stability analysis of the numerical solutions.

We use a first order edge element based Galerkin finite element simulator to obtain the solutions
as described in Section 5 of [9].

3.1. Scattering from Plasmonic Gratings Behaving as Bianisotropic Metamaterials

In [1], the authors considered a plasmonic grating that exhibits bianisotropy at visible wavelengths.
The bianisotropic media considered there are of the form:{

D = εE + ξH,
B = ζE + µH,

(21)
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with:

ε = ε0

εx 0 0
0 εy 0
0 0 εz

 , µ = µ0

µx 0 0
0 µy 0
0 0 µz

 , (22)

ξ =
1
c0

0 0 0
0 0 0
0 jξ0 0

 , ζ =
1
c0

0 0 0
0 0 −jξ0

0 0 0

 . (23)

Here, εx, εy, and εz are complex valued functions and are set to be equal to a unique value εr.
Moreover, µx, µy, and µz are each set equal to one, and ξ0 is taken to be real valued. The region occupied
by the scatterer may be denoted as Ωs ⊂ Ω. The above form can be converted into the alternative form
of constitutive relations [13] involving the P, Q, L, and M matrices defined in Equation (1), and the
final result is shown in the following equations:

P = c0ε0

εr 0 0
0 εr 0
0 0 εr − ξ2

0

 , (24)

Q =
1

c0µ0
I3, (25)

L = MT =
jξ0

µ0c0

0 0 0
0 0 0
0 1 0

 . (26)

Here, I3 is the three by three identity matrix. The complementary region Ω \Ωs is occupied
by the empty space, which is characterized by P = c0ε0 I3, Q = 1

c0µ0
I3, L = M = 0. This problem

cannot be managed by the previous theories and, in particular, by the theory in [5], which relied on
strong hypothesis about losses.

The bianisotropic medium is lossy with the imaginary part Im(εr) < 0, whereas ξ0 is assumed
real here to avoid some longer calculations. Now, Lemma 1 can be applied to verify hypothesis H5.
Inside Ωs, P can be decomposed as P = Ps − jPss with:

Ps =
P + P∗

2
= c0ε0

Re(εr) 0 0
0 Re(εr) 0
0 0 Re(εr)− ξ2

0

 , (27)

and Pss =
P∗−P

2j = −c0ε0 Im(εr)I3. Hence, we have Ωel = Ωs, the lossy region where Pss is uniformly
positive definite and the complementary region with the free space where Ps is uniformly positive
definite. This means that the conditions of Lemma 1 are satisfied, and as a result, H5 is valid.

From the definitions (see Equations (11), (12), and (15)), C1 = c0ε0|Im(εr)|, C5 = c0ε0, and C3 =

c0ε0 max(|Re(εr)− ξ2
0|, |Re(εr)|). To find the minimum of the two expressions in Equation (14), we note

that, in the valid range, the value of the first expression decreases monotonically with α, whereas
that of the second expression increases with it. The highest estimate for CPS is obtained when the two
expressions have the same value. The value of α at which this happens can be evaluated by equating
the two expressions and finding the positive root of the resulting quadratic equation. This value of α,
denoted as αopt, is given by:

αopt =
C2

5 − C2
1 − C2

3 +
√
(C2

5 − C2
1 − C2

3)
2 + 4C2

5C2
3

2C2
5

. (28)



Electronics 2020, 9, 1065 7 of 20

Thus, we may simply write:

CPS =

√
1− αopt

2
c0ε0. (29)

As mentioned in [9], this does not mean that a better value of CPS cannot be found. For example,
if Re(εr)− ξ2

0 > 0, then Ps is uniformly positive definite in Ω, and we can find another candidate for CPS,
namely C7 = c0ε0 min(1, |Re(εr)− ξ2

0|) (see Equation (31) of [9]). In particular, when Re(εr)− ξ2
0 > 1√

2
,

C7 is always going to give a value for CPS that is higher than that obtained from the lemma.
In the rest of the subsection, the discussion focuses on the cases with Re(εr) < 0, which gives

a non-definite Ps in Ω. For this case, C3 = c0ε0|Re(εr)− ξ2
0|, and we can directly use the value of CPS in

Equation (29). Since the material is assumed to be non-magnetic, the direct application of the definition
gives CQS = 1

c0µ0
, and H6 is valid. Likewise, for the continuity constants CL and CM, we can choose

the value |ξ0|
c0µ0

. Then, the inequality in H7 becomes CQS − CLCM
CPS

= 1
c0µ0

(1− ξ2
0
√

2√
1−αopt

) > 0, which gives:

|ξ0| <
(

1− αopt

2

)1/4
. (30)

Since the right-hand side of Equation (30) also depends on ξ0 due to the presence of C3

in the expression for αopt, we do not have a closed-form expression on the limit on ξ0 below which H7
is satisfied. However, a graphical analysis can be done for estimating such a limit on |ξ0|, as shown
in Figure 1. The value of Re(εr) is varied in the range (−5.0,−1.0), whereas Im(εr) assumes values
in the range (−0.5,−0.1). It can be observed that for a fixed value of Im(εr), the range of ξ0 over which
H7 is valid steadily decreases as |Re(εr)| increases. As for the dependence on Im(εr), the corresponding
range increases when the medium becomes lossier due to higher |Im(εr)|, as expected.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

Re(εr)

Im(εr) = - 0.1
Im(εr) = - 0.2
Im(εr) = - 0.3
Im(εr) = - 0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1

Im(εr)

Re(εr) = - 1.0
Re(εr) = - 2.0
Re(εr) = - 3.0
Re(εr) = - 4.0

Figure 1. The plot indicates the maximum of |ξ0| guaranteeing that condition H7 is satisfied,
for scattering problems involving different media considered in [1]. The curves are computed
by assuming ξ0 ∈ R, Re(εr) ∈ (−5.0,−1.0), Im(εr) ∈ (−0.5,−0.1), and µr = 1.

Since outside the region occupied by the bianisotropic media (Ω \Ωs), we just have the empty
space, H1 and H2 are trivially satisfied there. By Remark 1 of [9], since H1, H3, and H4 need to hold
only locally, now we have to just analyze them inside Ωs occupied by the bianisotropic medium.
We consider the alternative form of constitutive relations, which for the medium inside Ωs becomes as
in Equations (31) to (33), for examining the validity of H1, H3 and H4 [13]:

κ =
1

ε0εr

1 0 0
0 1 0
0 0 εr

εr−ξ2
0

 , (31)
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ν =
1

µ0

1 0 0
0 εr

εr−ξ2
0

0

0 0 1

 , (32)

γ = −χT =
jξ0c0

εr − ξ2
0

0 0 0
0 0 1
0 0 0

 . (33)

The constants of interest can be evaluated directly from the definitions. The determinants of κ

and ν are, respectively, 1

(ε0εr)3(1−
ξ2
0

εr )
and 1

(µ0)3(1−
ξ2
0

εr )
, which immediately give the values of Cκ,d and Cν,d.

Cκ,d =
1

|ε3
0ε3

r(1−
ξ2

0
εr
)|

, (34)

Cν,d =
1

|µ3
0(1−

ξ2
0

εr
)|

. (35)

The inverses of the diagonal matrices κ and ν are just the diagonal matrices with the reciprocal entries.
Applying Equations (40) and (41) of [9] gives the values of Cκ,r and Cν,r.

Cκ,r = |ε0εr|, (36)

Cν,r = µ0. (37)

Using Equations (36) and (37) of [9], we get Cκ,s and Cν,s.

Cκ,s =
2
|ε0εr|

, (38)

Cν,s =
2

µ0
. (39)

From Equations (18) and (19), we can easily evaluate Cγ,s and Cχ,s.

Cχ,s = Cγ,s =

∣∣∣∣∣ ξ0c0

εr − ξ2
0

∣∣∣∣∣ . (40)

The hypotheses H1 and H3 are valid due to the existence of the above constants. Using these
constants, the value of Ku can be calculated from Equation (20). The critical value of |ξ0| below
which the condition in H4 is satisfied is plotted in Figure 2, with respect to either Re(εr) or Im(εr).
The results show that the range of ξ0 for which H4 holds true increases with the increase in |Re(εr)|,
while it is practically independent of Im(εr).

Let us try to understand the implications of the theory by applying it to the numerical solution of
a specific problem involving the medium of interest. We consider the region with the scatterer Ωs to
be a cube filled with homogeneous bianisotropic media. The surrounding region is filled with empty
space, and the overall domain of numerical investigation, Ω, has a cubic shape as well and is concentric
to Ωs. In the following, Ω and Ωs are characterized by sides of length 2 µm and 0.8 µm, respectively.
The axes are taken along the sides of the cubic domain Ω, and the excitation is with a plane wave
incident along the x axis, with the electric field polarized along the z axis, having a magnitude of
1 V/m and wavelength of 1 µm.

Inside Ωs, the medium is characterized by εr = −1− j0.4, µr = 1, and ξ0 = −0.41. This value
is such that the hypotheses required for well posedness and finite element approximability are satisfied.
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In fact, for the εr considered, condition H4 is valid for |ξ0| < 0.4393, and condition H7 is valid
for |ξ0| < 0.4235.
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Figure 2. The plots indicate the maximum |ξ0| guaranteeing that condition H4 is satisfied, for scattering
problems involving different media considered in [1]. The curves are computed by assuming ξ0 ∈ R,
Re(εr) ∈ (−5.0,−1.0), Im(εr) ∈ (−0.5,−0.1), and µr = 1.

The solutions are obtained with a first order edge element based Galerkin finite element method.
The boundary condition is enforced with Y equal to the admittance of a vacuum and with an
inhomogeneous term fR, taking into account the incident field.

The domain is discretized uniformly using tetrahedral meshes. The meshing is done by first
dividing the domain into small identical cubes, each of which is in turn divided into six tetrahedra.
The parameter h denotes the maximum diameter of all the elements of the mesh [14] (p. 131), and in
this case, it is simply given by the side of the small cubes times

√
3. To study the stability of the solution,

we consider different levels of refinement of meshes ranked in order of h, ranging from “very coarse”
to “very fine”. For example, the mesh denoted as very coarse is characterized by cubes of sides
200 nm, and the resulting mesh has 1331 nodes, 6000 tetrahedral elements, and 1200 boundary faces.
A summary of the information related to the four different refinements of the meshes that were used is
given in Table 1.

Table 1. Details of the different meshes used.

Type of Mesh
Maximum Diameter Number Number Number ofof the Mesh of Nodes of Elements Boundary Faces(h in nm)

Very coarse 200
√

3 1331 6000 1200
Coarse 100

√
3 9261 48,000 4800

Fine 50
√

3 68,921 384,000 19,200
Very fine 25

√
3 531,441 3,072,000 76,800

The outcomes related to the stability of the results of the simulations are shown in Figure 3
by plotting the magnitude of the z component of the electric field along a line parallel to the y axis and
passing through the center of gravity of the domain. The difference between successive refinements
progressively decreases, and the fine and very fine meshes give stable solutions. The well posedness
and convergence result that was predicted using the theory guarantee that our solutions are reliable.

Figure 4 shows the significance of the bianisotropic effect on the z component of the electric
field along a line parallel to the x axis and passing through the center of gravity of the domain.
Here, Ez denotes the solution obtained with ξ0 = −0.41, and Ez,0 is the solution when ξ0 = 0,
while the plot shows the magnitude of the difference |Ez − Ez,0| along with |Ez|. The magnitude of
the difference is as large as 50% of the incident field. Similarly, the results along a line parallel to the
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z axis and passing through the center of gravity of the domain are shown in Figure 5, and we get
a difference of around 30% of the incident field.
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Figure 3. Stability of the solution for problem involving the medium in [1]. The magnitude of the z
component of the electric field is plotted for four different meshes along a line parallel to the y axis
and passing through the center of gravity of the domain.
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Figure 4. The magnitude of the z component of electric field along a line parallel to the x axis and
passing through the center of gravity of the domain, for the problem involving the medium in [1].
The plot for the magnitude of the field |Ez| obtained in the bianisotropic case using ξ0 = −0.41 is shown
along with the magnitude of the difference between the two solutions |Ez − Ez,0|, where Ez,0 is obtained
using ξ0 = 0.

These non-negligible effects imply that to get accurate results, it is necessary to consider
the bianisotropy of the medium. Hence, the reliability of the finite element solution in the presence of
bianisotropy is important for getting good results for these problems. The application of our theory
gives the conditions under which we can guarantee such reliability. The solutions obtained can serve
as references for other approaches.
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Figure 5. The magnitude of the z component of electric field along a line parallel to the z axis and
passing through the center of gravity of the domain, for the problem involving the medium in [1].
The plot for the magnitude of the field |Ez| obtained in the bianisotropic case using ξ0 = −0.41 is shown
along with the magnitude of the difference between the two solutions |Ez − Ez,0|, where Ez,0 is obtained
using ξ0 = 0.

3.2. Scattering from Chiral Obstacles in a Waveguide

In [10], the authors considered a metallic waveguide, which was hollow except for an obstacle
characterized by a chiral medium with the following constitutive relations.{

D = ε0εr I3E− jξc I3B,
H = −jξc I3E + 1

µ0µr
I3B.

(41)

Here, εr, µr, and ξc are strictly positive real quantities. Thus, from Equation (1), we can easily
identify P, Q, L, and M, which are given below:

P = ε0εrc0 I3, (42)

Q =
1

µ0µrc0
I3, (43)

L = M = −jξc I3. (44)

In Section 6 of [5], it was shown that this media could not be managed by the theory developed
there, independently of the value of ξc ∈ R and of any other material involved in the model of interest.
However, we show that the generality of the recently developed theory in [9] allows us to apply it to
obtain the conditions for well posedness and finite element approximability for this kind of problem of
practical interest.

Let us analyze the validity of the hypotheses by considering, as did the authors in [10], εr ≥ 1
and µr = 1. We can make use of Lemma 1 of [9] to check H5. Ps = P and is equal to ε0εrc0 inside the
material and simply ε0c0 outside. Since Ωel = ∅, a value of CPS can be found by using Equation (13).
In particular, H5 is satisfied for CPS = ε0c0. The hypothesis H6 is also trivially valid with CQS = 1

µ0c0
.
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By Equations (32) and (33) of [9], CL = CM = ξc. Then, the inequality in hypothesis H7 becomes
CQS − CLCM

CPS
= c0(ε0 − µ0ξ2

c ) > 0, which implies:

ξc <

√
ε0

µ0
= 2.654× 10−3 mho . (45)

This is not a small value considering the chiral effects reported in [10]. As the region outside the
obstacle is empty space, H2 is trivially satisfied, and by Remark 1 of [9], we need to verify that the
hypotheses H1, H3, and H4 hold true locally inside the region occupied by the bianisotropic medium.
To do this, the suitable form of constitutive relations is in terms of κ, ν, γ, and χ, which are given
by the following [13]:

κ =
1

ε0εr
I3, (46)

ν =
ε0εr + µ0ξ2

c
µ0ε0εr

I3, (47)

χ = −γ =
jξc

ε0εr
I3. (48)

κ and ν are multiples of the identity matrix with eigenvalues 1
ε0εr

and ( ε0εr+µ0ξ2
c

µ0ε0εr
), respectively.

The determinants are just the cubes of the eigenvalues, and hence, according to Equations (34) and (35)
of [9], we get the values of Cκ,d and Cν,d.

Cκ,d =

(
1

ε0εr

)3
, (49)

Cν,d =

(
ε0εr + µ0ξ2

c
µ0ε0εr

)3

. (50)

Cκ,s and Cν,s, by Equations (36) and (37) of [9], are in this case simply twice the eigenvalue of the
corresponding diagonal matrix:

Cκ,s =
2

ε0εr
, (51)

Cν,s = 2
ε0εr + µ0ξ2

c
µ0ε0εr

. (52)

The inverse of the matrices is also trivial, and Equations (40) and (41) of [9] simply evaluate to
the reciprocals of the eigenvalues of κ and ν, respectively giving Cκ,r and Cν,r:

Cκ,r = ε0εr, (53)

Cν,r =
µ0ε0εr

ε0εr + µ0ξ2
c

. (54)

From Equations (18) and (19), we get:

Cχ,s = Cγ,s =
2ξc

ε0εr
. (55)

Having shown that the hypotheses H1 and H3 are satisfied, we can use the above constants
to calculate Ku to verify H4. Figure 6 shows the dependence of Ku on ξc for various values of εr.
As the value of εr increases, the hypothesis H4 remains valid for higher and higher values of ξc.
Figure 7 shows the plot of the critical value of ξc below which H4 is satisfied against εr. The limit of
2.654× 10−3 mho, arising from Equation (45) required to satisfy H7, is also shown in the same figure.
It is seen that for low values of εr, the tighter condition arises from the need to satisfy H4. For example,
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the limiting value is 5.6× 10−4 mho for εr = 1, increases with εr, and is 1.78× 10−3 mho for εr = 10.
The curve crosses the 2.654× 10−3 mho line at around εr = 22.3, and above that value, Equation (45)
imposes the stricter limit.
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Figure 6. Plot of Ku versus ξc for the bianisotropic medium described in [10]. The plots are shown
for various values of εr. The hypothesis H4 is satisfied for Ku < 1.
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Figure 7. The value of ξc below which the hypothesis H4 is satisfied is plotted against εr. The limit of
2.654× 10−3 mho, arising from Equation (45) required to satisfy H7, is also shown.

Now, we consider a specific numerical problem for which the solution is calculated using
our finite element simulator. A rectangular waveguide with a discontinuity due to a block of
bianisotropic medium is considered as shown in Figure 8. In the simulation, the rectangular waveguide
is characterized by a = 23 mm, b = 10 mm and has a length l = 40 mm. The obstacle is a parallelepiped
with c = 11 mm, d = 5 mm and a length w = 10 mm. The origin of the axis is at the lower right
corner of the near face of the waveguide shown in Figure 8. The obstacle ranges from x = 6 mm
to x = 17 mm along the x axis, from y = 0 to y = 5 mm along the y axis, and from z = 15 mm
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to z = 25 mm along the z axis. The bianisotropic medium making up the obstacle is characterized
by εr = 5 and ξc = 1.24× 10−3 mho. For this medium, Ku = 0.98 < 1, and also, Equation (45) is
satisfied; hence, all the hypotheses required to guarantee the well posedness and convergence of finite
element solutions hold true. The waveguide is excited with TE10 mode having an amplitude of 1 V/m
and a frequency of 9 GHz. The input port is on the x-y plane, and the output port is closed on a
matched homogeneous admittance boundary condition for the TE10 mode in the empty waveguide.

a

l

b
c

w

d

z
x

y

Figure 8. The geometry of a rectangular waveguide partially filled with the chiral media considered in [10].

The details of the Galerkin finite element solver is the same as before. The tetrahedral meshes
are obtained as discussed in the previous subsection by dividing the domain into small cubes, each of
which is in turn subdivided into six tetrahedra. The stability of the solution is verified by checking
the solutions for three different meshes, which are characterized by small cubes of sides 1

2 mm,
1
4 mm, and 1

6 mm, which are referred to as, respectively, “coarse”, “fine”, and “very fine” meshes.
There are 10,824 nodes, 55,200 elements, and 6200 boundary faces in the coarse mesh, whereas the fine
mesh has 79,947 nodes, 441,600 elements, and 24,800 boundary faces, and finally, the very fine mesh
has 262,570 nodes, 1,490,400 elements, and 55,800 boundary faces. It was verified that the solutions
obtained with these meshes are stable. For example, Figure 9 shows the magnitude of the x component
of the electric field along a line parallel to the y axis and passing through the center of gravity of
the domain with the different meshes and illustrates the stability of the result. It is noted that the x
component of the electric field along this line is zero for the achiral case (ξc = 0), and there is a
difference of more than 30% of the incident field, which is induced by the bianisotropy.

Figure 10 shows the result for the magnitude and phase of the x component of the electric field
along the line parallel to the x axis and passing through the center of gravity of the domain. We have
a difference of 20% of the magnitude of the incident field for the x component of the electric field
along this line. Similarly, Figure 11 shows that the bianisotropic effect for the x component of the field
along the line parallel to the z axis and passing through the center of gravity of the domain causes
a difference in the magnitude of the electric field of around 13% of the incident field.

Figure 12 shows the y component of the electric field along a line parallel to the z axis and passing
through the center of gravity of the domain. The bianisotropic effect is again not negligible and causes
a difference of more than 10% of the incident field. A similar effect is present in the z component as
can be seen in the plot along a line parallel to the x axis and passing through the center of gravity of
the domain, which is given in Figure 13. We do not show the other figures to save space, but it is noted
that the y component of electric field along the lines through the center of the domain and parallel to
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the x and y axes shows small differences in magnitude between the chiral and achiral cases, being less
than five percent of the incident field. The z component on the other hand along the lines parallel to
the y and z axes and passing through the center of the domain shows a difference of more than 15% of
the incident field.
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Figure 9. Stability of the solution for the problem involving the medium in [10]. The magnitude of
the x component of the electric field is plotted for three different meshes along a line parallel to the y
axis and passing through the center of gravity of the domain.
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Figure 10. The magnitude and phase of the x component of the electric field along a line parallel to the
x axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24× 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 11. The magnitude and phase of the x component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24× 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 12. The magnitude and phase of the y component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24× 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 13. The magnitude and phase of the z component of the electric field along a line parallel to
the x axis and passing though the center of gravity of the domain for problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24× 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.

Together, these results provide a point of reference for other approaches of solving such
problems, owing to the reliability of the results provided here, which is guaranteed by the recently
developed theory. The previous theory [5] was not able to manage these problems, and our results
are therefore novel. In fact, to the best of our knowledge, there are no other approaches that are available
to get reliable results for benchmarking. The significant bianisotropic effects demonstrated in the results
show the practical importance of the theory for such media.

3.3. Reflection by a Short-Circuited Waveguide Half Filled with Bianisotropic Media

Another relevant bianisotropic medium was discussed in [11], where the authors considered
a short-circuited rectangular waveguide, half of which was empty and the other half filled with
a lossless bianisotropic material characterized by:

P = ε0c0 I3, (56)

Q =
1

µ0c0
I3, (57)

L = M = jκ0 A, (58)
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where A is the matrix given by:

A =

1 1 0
1 1 0
0 0 1

 , (59)

and κ0 is a positive real number.
The hypotheses H5 and H6 are trivially valid with CPS = ε0c0 and CQS = 1

µ0c0
. Further, L∗L =

M∗M = κ2
0 A2 whose eigenvalues are zero, κ2

0, and 4κ2
0. Therefore, by Equations (32) and (33) of [9],

we get CL = CM = 2κ0. The condition in hypothesis H7 then becomes CQS − CLCM
CPS

= 1
µ0c0
− 4κ2

0
ε0c0

> 0,
which gives the following limit on κ0:

κ0 <
1
2

√
ε0

µ0
= 1.327× 10−3 mho . (60)

The hypothesis H2 holds true since the anisotropic part is just empty space. H1, H3, and H4
can be studied using the alternative form of constitutive relations, which is characterized by the
following matrices [13]:

κ =
1
ε0

I3, (61)

ν =
1

µ0
I3 +

κ2
0

ε0
A2, (62)

χ = −γ =
−jκ0

ε0
A. (63)

The determinants of κ and ν can be readily calculated, and by using Equations (34) and (35) of [9],
we get Cκ,d and Cν,d:

Cκ,d =
1
ε3

0
, (64)

Cν,d =
(ε0 + µ0κ2

0)(ε0 + 4µ0κ2
0)

µ3
0ε2

0
. (65)

Cκ,s and Cν,s can be directly obtained from their definitions:

Cκ,s =
2
ε0

, (66)

Cν,s =
2ε0 + 8µ0κ2

0
µ0ε0

. (67)

By simple application of the definition:

Cκ,r = ε0 (68)

and by Equation (41) of [9], Cν,r evaluates to the reciprocal of the largest eigenvalue of the real matrix
ν, which is given by:

Cν,r =
µ0ε0

ε0 + 4µ0κ2
0

. (69)

Equations (18) and (19) give:

Cχ,s = Cγ,s =
4κ0

ε0
. (70)

The existence of the above constants verifies H1 and H3, and we can use them to calculate Ku to
check H4. It can be verified that Ku is less than one when κ0 ≤ 2.72× 10−4 mho, which is stricter than
the limit obtained from Equation (60).
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Finally, let us give some numerical solutions for this problem, which can be used as references
for other approaches. The cross-section of the waveguide is 2 cm along the x axis and 1 cm along
the y axis, and the length of the waveguide is 2 cm, half of which is filled with the bianisotropic
medium characterized by κ0 = 2.7× 10−3 mho (see Figure 1 of [11]). The origin is taken on the corner
of the open face of the waveguide on the empty side. TE10 mode is excited in the waveguide with
a source of amplitude 1 V/m and a frequency of 12 GHz.

The first order edge element based Galerkin finite element method is used to obtain the solution.
The meshing is carried out by dividing the domain into identical cubes, each of which is then
subdivided into six tetrahedra. The stability of the result is ensured by evaluating the solutions
on three meshes, termed as “coarse”, “fine”, and “very fine”, characterized, respectively, by cubes of
sides 1 mm, 1

2 mm, and 1
3 mm. The coarse mesh has 4852 nodes, 24,000 elements, and 3200 boundary

faces. The fine mesh is composed of 35,301 nodes, 192,000 elements, and 12,800 boundary faces.
The very fine mesh has 115,351 nodes, 648,000 elements, and 28,800 boundary faces. The results
obtained with these meshes are stable. For example, Figure 14 shows the stability of the results
obtained with the three meshes for the x component of the electric field along a line parallel to the y
axis and passing through the center of gravity of the domain.
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Figure 14. Stability of the solution for the problem involving the medium in [11]. The magnitude of
the x component of the electric field is plotted for three different meshes along a line parallel to the y
axis and passing through the center of gravity of the domain.

We provide the magnitudes and phases of the x component of the electric field obtained from
the simulation in Figures 15–17. The bianisotropy causes a difference in magnitude of up to 14%
of the incident field. The phases are also significantly affected by the bianisotropy of the medium.
The figures for other components are not shown to save space, but it is noted that the y component
is affected by the bianisotropy, showing a difference of up to about 10% of the incident field. The z
component of the field along the line parallel to the x axis passing through the center of gravity of
the domain does show a difference of about 10% of the incident field, but the magnitudes along
the other directions are close to zero for both values of κ0 considered.

Since the theory guarantees the reliability of these results, they can be used as references for other
solvers and approaches. It is to be noted that the previous theory developed in [5] could not be
applied to this medium since the same reasons mentioned there with respect to the medium in [10]
are valid. Hence, our results show the generality of the new theory with respect to the application to
interesting bianisotropic media. The results demonstrate that our theory can be applied to problems
with significant bianisotropic effects. This consideration underlines its practical importance.
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Figure 15. The magnitude and phase of the x component of the electric field along a line parallel to the
x axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7× 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.
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Figure 16. The magnitude and phase of the x component of the electric field along a line parallel to the
y axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7× 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.
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Figure 17. The magnitude and phase of the x component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7× 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.

4. Conclusions

In this paper, we discussed the application of a recently developed theory to electromagnetic
scattering problems involving bianisotropic materials and metamaterials of practical interest. The range
of constitutive parameters over which the reliability of the results was guaranteed was calculated
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for these problems, and the solutions were obtained. The ensured reliability of the results made
them useful as benchmarks for other numerical techniques. To the best of our knowledge, none of
the previous tools were able to get such benchmark solutions.
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