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Abstract: Hyperkalemia may cause life-threatening cardiac and neuromuscular alterations, and it is 

associated with high mortality rates. Its treatment includes a multifaceted approach, guided by 

potassium levels and clinical presentation. In general, treatment of hyperkalemia may be directed 

towards stabilizing cell membrane potential, promoting transcellular potassium shift and lowering 

total K+ body content. The latter can be obtained by dialysis, or by increasing potassium elimination 

by urine or the gastrointestinal tract. Until recently, the only therapeutic option for increasing fecal 

K+ excretion was represented by the cation-exchanging resin sodium polystyrene sulfonate. 

However, despite its common use, the efficacy of this drug has been poorly studied in controlled 

studies, and concerns about its safety have been reported. Interestingly, new drugs, namely 

patiromer and sodium zirconium cyclosilicate, have been developed to treat hyperkalemia by 

increasing gastrointestinal potassium elimination. These medications have proved their efficacy and 

safety in large clinical trials, involving subjects at high risk of hyperkalemia, such as patients with 

heart failure and chronic kidney disease. In this review, we discuss the mechanisms of action and 

the updated data of patiromer and sodium zirconium cyclosilicate, considering that the availability 

of these new treatment options offers the possibility of improving the management of both acute 

and chronic hyperkalemia. 

Keywords: hyperkalemia; chronic kidney disease; heart failure; sodium polystyrene sulfonate; 
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1. Introduction 

Potassium (K+) is a key element in body physiology. It regulates many biological processes, such 

as acid–base homeostasis, hormone secretion, systemic blood pressure control and gastrointestinal 

motility [1]. However, probably the most important role of K+ is its participation in generating 

bioelectricity, by establishing ion gradients and flows between the extracellular and intracellular 

spaces, thus regulating resting membrane potential and cellular excitability, which are essential to 

the function of excitable tissues, such as nerve, muscle and cardiac conduction tissues. 

This function is a consequence of the high compartmentalization of K+, due to the ubiquitous 

presence of plasma membrane Na-K-ATPases, which pump sodium out of, and K+ into, the cell [2]. 

Therefore, K+ results from the most concentrated intracellular electrolyte, while its extracellular 

concentration is extremely low. We estimate a total K+ body content of approximately 50 mEq/ kg 

(i.e., 3500 mEq in a 70-kg person); about 98% of this K+ is within cells, while only 2% (70 mEq) is in 

the extracellular fluid, where it reaches normal concentrations of 3.5 to 5.0 mmol/L [3]. 
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Hyperkalemia is defined as a serum potassium level greater than 5.0 mmol/L, while severe 

hyperkalemia is defined as a level greater than 6.0 mmol/L. It is a very common disorder, and in the 

United States more than 800,000 emergency department (ED) visits occur annually because of 

hyperkalemia [4]. The actual incidence and prevalence of hyperkalemia in the general population are 

unknown, but studies based on large cohorts have reported incidence rates between 1 and 3 per 100 

persons per year, rising to 10% in hospitalized patients [5,6]. 

Moreover, hyperkalemia prevalence may be significantly high in the presence of certain 

predisposing conditions. So, although the available data are not uniform [7,8], an analysis of a large 

geographically diverse population showed basal potassium values of ≥ 5.0 mmol/L in 9.1% of patients 

with chronic heart failure (CHF), in 11.5% of chronic kidney disease (CKD) stage 3–5 patients, in 8.3% 

of patients with diabetes, and in 13.1% of those patients with all these conditions [9]. In addition, 

among CKD patients, those requiring dialysis represent a group at particularly high risk of 

hyperkalemia [10]. 

Clinical complications and death in hyperkalemia patients are mainly determined by the cardiac 

electrophysiological effects of elevated K+ levels [11]. Indeed, hyperkalemia, by diminishing the K+ 

intracellular/K+ extracellular ratio, reduces the membrane potential, causing a partial depolarization 

of the cell membrane, which results in an initial increase in conduction velocity. Then, if persistent 

and profound, hyperkalemia also decreases membrane excitability by the inactivation of the voltage-

gated sodium channels, making the cell refractory to excitation, and thus leading to arrhythmias and 

heart block [12]. Moreover, besides cardiac effects, hyperkalemia can also cause other physiologic 

perturbations, such as muscle weakness progressing to flaccid paralysis, and metabolic acidosis, 

which in turn may contribute to the progression of CKD [13]. 

The treatment of hyperkalemia may involve the recognition different time-points and goals, 

guided by potassium levels and the severity of the clinical presentation. In general, the first aim is to 

prevent cardiac consequences and lower serum potassium to safe levels as soon as possible; then it is 

important to reduce the K+ body content, aiming to maintain serum potassium at normal values [14]. 

The latter can be obtained by dialysis, or by increasing potassium elimination via urine or the 

gastrointestinal tract. For a long time, the only therapeutic option for increasing fecal K+ excretion has 

been represented by sodium polystyrene sulfonate, a cation-exchanging resin the efficacy and safety 

of which have been questioned. Recently, new drugs able to promote gastrointestinal potassium 

elimination, namely patiromer and sodium zirconium cyclosilicate, have been developed and studied 

in large trials, proving their efficacy and safety in different clinical contexts. In this review, we briefly 

discuss the pathophysiology of potassium homeostasis and hyperkalemia, focusing attention on the 

mechanisms of action and the clinical data of patiromer and sodium zirconium cyclosilicate, 

considering that these new treatments may represent a chance to improve the management of both 

acute and chronic hyperkalemia. 

2. Potassium Homeostasis: An Overview 

Due to its important functions, and considering that large deviations in K+ serum levels are not 

compatible with life, K+ homeostasis is finely regulated by numerous mechanisms. 

Classically, we distinguish between external and internal K+ balance [3]. External K+ balance 

regulates K+ body content, and it is the result of the relationship between K+ assumption (by diet or 

other sources, such as infusions) and K+ excretion, which is a function of the kidney and the gut. 

Internal balance accounts for K+ distribution across cell compartments, which can be influenced by 

several factors and may be important in determining the actual K+ extracellular level.  

The external potassium balance is mainly influenced by K+ excretion via the kidney. The normal 

kidney has a large capacity to excrete potassium and maintain a normal serum potassium 

concentration. Potassium is freely filtrated by the glomerulus, and is then reabsorbed by the proximal 

tubule and thick ascending limb, such that only a small amount reaches the aldosterone-sensitive 

distal nephron, where K+ excretion, coupled with sodium reabsorption, is finely regulated [15]. 

The main factors modulating renal K+ excretion are sodium delivery to the distal nephron, K+ 

serum levels and aldosterone plasma concentration. In particular, a relevant role in regulating K+ 
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homeostasis is played by the adrenal glands, where aldosterone is synthesized, in a negative feedback 

loop in response to high K+ levels [16]. 

Interestingly, evidence is emerging concerning the role of the central nervous system in 

influencing circadian variability in relation to potassium excretion [1]. Apart from the kidneys, the 

gastrointestinal tract also contributes to K+ excretion. In healthy subjects, this contribution is minimal 

(about 10% of the total), while in the case of renal disease it may increase until it accounts for 50% of 

the total potassium excretion in patients on dialysis [17]. However, these systems are strictly related, 

and recently it has been shown that the K+ enteral load may influence renal excretion, suggesting the 

presence of a gut-dependent kaluresis, the mechanisms of which are still under investigation [18].  

Complementarily to the external K+ balance, the internal mechanisms of K+ distribution are very 

important in regulating K+ homeostasis and extracellular levels. The physiological factors involved 

in modulating the shifting of potassium into the cells include the acid–base balance, insulin, and beta-

adrenergic stimulation [19]. In particular, metabolic acidosis induces K+ shift from the intra-to the 

extracellular space, while the opposite is mediated by insulin and beta-adrenergic 

signaling. However, external and internal K+ regulatory mechanisms are integrated, and need to 

always be active in order to maintain K+ homeostasis. 

A western diet typically contains approximately 50–100 mEq (2–4 g), while a potassium intake 

of about 90–120 mEq/day (3.5–4.5 g) is recommended [20]. Consequently, the potassium content in a 

meal may be higher than the potassium present in the plasma, so compensatory mechanisms are 

necessary in order to avoid a rapid rise in extracellular K+ levels. For example, after a potassium-rich 

meal, the K+ transcellular shift into the cells is suddenly activated, until the kidney reestablishes total 

body potassium content trough the adjustment of renal potassium excretion. 

Knowledge of the basal physiologic regulators of external and internal K+ homeostasis is 

necessary in order to understand the main clinical conditions leading to K+ dysregulation and the 

appropriate therapeutic approaches, providing, at the same time, a rational basis for developing new 

drugs [21]. 

3. Hyperkalemia: Physiopathology, Risk Factors, Clinical Consequences 

Hyperkalemia may be caused by several conditions that may alter K+ homeostasis [1]. First, it 

could be the consequence of an increased K+ body content due to excessive K+ intake, or, more 

commonly, due to reduced renal excretion. Renal K+ excretion may be impaired as a result of 

advanced renal damage. Indeed, while the normal kidney presents adaptation mechanisms that 

preserve potassium homeostasis, the diseased kidney has a much lower capacity for handling acute 

potassium loads [22]. Failures of the kidneys in regulating the potassium balance may result from 

multiple factors, including a reduced glomerular filtration rate, decreased distal delivery of sodium, 

intrinsic abnormalities of the distal nephron, and decreased mineralocorticoid activity (e.g., 

hypoaldosteronism), which impair the capacity of the distal nephron to eliminate K+ from the urine. 

Moreover, concomitant metabolic alterations, such as acidemia and hyperglycemia, may also concur 

[23]. 

Hypoaldosteronism, in turn, may be caused by diabetes, adrenal disease, numerous drugs (e.g., 

nonsteroidal anti-inflammatory drugs, beta-blockers, inhibitors of the renin-angiotensin-aldosterone 

system-RAASi, mineralocorticoid receptor blockers, calcineurin-inhibitors, etc.) and old age [24]. 

Beyond an increase of K+ body content, alterations in the K+ distribution across cell compartments 

can also lead to hyperkalemia. These conditions determine the net release of potassium from 

damaged cells, such as in cases of trauma, rhabdomyolysis or hemolysis. Moreover, an impaired 

distribution of K+ between the intracellular and extracellular spaces can also be due to metabolic 

acidosis, decompensated diabetes or dysfunctions of the autonomic nervous system. 

Considering the physiopathology of potassium homeostasis, it is not surprising that advanced 

age, chronic kidney disease (CKD), chronic heart failure (CHF), diabetes, use of RAASi (such as ACE-

inhibitors-ACEi and angiotensin receptor blockers-ARB) and mineralocorticoid receptor blockers 

(MRA) constitute the main risk factors in the development of hyperkalemia [9]. 
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However, a special consideration must be given to the risk of hyperkalemia linked to the use of 

RAASi and MRA. Indeed, these drugs, because of the evidence of their morbidity and mortality 

benefits, are widely prescribed to fragile patients, such as patients with diabetes, CKD and CHF [25]. 

Several studies have evaluated the risk of hyperkalemia associated with RAASi therapy. For example, 

in the Stockholm Creatinine Measurements (SCREAM) project, 69,426 new users of ACEi/ARB 

therapy were followed for one year. Overall, hyperkalemia occurred in 1.7% of the entire cohort, but 

its incidence rose to 29% in patients with severe CKD [26]. Moreover, the risk of hyperkalemia seems 

further increased when combined RAASi therapy is prescribed. In the Veterans Affairs Nephropathy 

in Diabetes (VA NEPHRON-D) study, designed to assess the safety of RAASi for type II diabetic 

kidney disease patients, hyperkalemia was observed in 18.4% of the patients on losartan 

monotherapy, and in 31.5% of those on a combination therapy with lisinopril [27]. 

Following the results of these and other studies, the combination of ACEi and ARB is no longer 

recommended [28]. Similar results have been observed among patients treated with the combination 

of RAASi and MRA, which, although effective in improving clinical outcomes, may expose patients 

to a high risk of hyperkalemia [25,29]. 

The early recognition and treatment of hyperkalemia is essential, because this condition, 

although often clinically silent, may have severe consequences. Hyperkalemia is associated with poor 

outcomes and high mortality rates, both in the general population and in different clinical settings, 

including patients with cardiac and renal diseases and critically ill patients [30,31]. Moreover, 

hyperkalemia has been described as an independent predictor of mortality in patients admitted to 

the ED [32]. 

4. Hyperkalemia: Treatment Strategies 

From the pathophysiological point of view, the therapeutic approaches to hyperkalemia can 

have three different targets: i) cell membrane potential stabilization; ii) shifting potassium from 

extracellular spaces into the cells (i.e., acting on internal K+ balance); and iii) lowering K+ levels and 

enhancing potassium elimination (i.e., acting on external K+ balance). 

Membrane stabilization may be achieved through the administration of intravenous calcium 

(calcium chloride or calcium gluconate), while potassium redistribution may be promoted using 

insulin/glucose, beta-adrenergic agonists (such as albuterol and salbutamol, both intravenous and 

inhaled) and sodium bicarbonate [33]. These treatments are often preferred in emergency 

interventions, since they can reduce K+ levels within a few minutes [34]. However, while they act 

rapidly, their effects also fade very rapidly. 

So, complementary to the strategies that promote the shifting of potassium into cells, the 

reestablishment of potassium homeostasis should include the reduction of body K+ content. 

This can be achieved through the limitation of potassium intake and the use of medications that 

increase potassium elimination via urine or the gastrointestinal tract (GI), such as loop diuretics or 

cation-exchanging resins, or alternatively, by use of hemodialysis, which can reduce body K+ content 

but usually require more time to act [35].  

In particular, the use of drugs increasing GI potassium elimination is valuable in patients with 

advanced CKD, who, as discussed above, present significant fecal K+ excretion. 

Although these treatments are widely used in clinical practice, it should be recognized that, as 

also shown by a recent Cochrane review, standardized therapeutic protocols do not exist [36]. So, in 

a prospective multicenter study exploring real-life hyperkalemia management in many EDs, it has 

been shown that there was a great heterogeneity among the different sites, while, even if 

insulin/glucose was the most common therapy employed, in the majority of the patients multiple 

treatments were prescribed [37]. 
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5. The “Old-Fashioned” Sodium Polystyrene Sulfonate 

Among the different possibilities for treating hyperkalemia, recently, attention has been focused 

on the GI elimination of potassium, mainly because of the availability of new drugs, such as patiromer 

and sodium zirconium cyclosilicate. 

Indeed, historically, the only options for promoting K+ elimination by the GI have been limited 

to the “old” cation-exchanging resin, sodium polystyrene sulfonate (SPS), and its derivate calcium 

polystyrene sulfonate. SPS is a benzene, diethenyl-polymer with ethenylbenzene-sulfonated sodium 

salt, whose reactive sulfonic groups exchange preloaded sodium for K+ along the GI lumen (mostly 

in the large intestine) [38]. It can be given orally or as an enema, and it is often given with sorbitol to 

prevent constipation. Theoretically, the exchanging capacity of SPS is 1 mmol of potassium per 1 g of 

resin, but its efficiency in vivo may be lower than expected because sodium release is only partial 

[39]. Moreover, the peak effect is seen 4–6 h after the administration, and this is the reason why SPS 

is not indicated as an emergency intervention for hyperkaliemia [40]. 

SPS was approved for treatment of acute hyperkalemia in 1958, but surprisingly, despite its 

common use, its safety and efficacy have been poorly studied in controlled studies [41]. 

In 2011, analyzing a recent retrospective cohort of 122 patients (38% with CKD), Kessler et al. 

documented a possible direct dose–response relationship between SPS (used at a dose of 15, 30, 45 

and 60 g) and a reduction in serum potassium [42]. Similarly, in 2015, in a randomized placebo-

controlled trial involving 33 CKD patients with mild hyperkalemia, Lepage et al. found that SPS was 

superior to the placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia 

and CKD [43]. So, these data confirm the clinical practice of using SPS as a part of the treatment of 

hyperkalemia. 

The adverse effects of SPS include electrolyte disturbances, such as hypokalemia and 

hypomagnesemia, and gastrointestinal symptoms, such as nausea, constipation and diarrhea. 

However, severely adverse gastrointestinal effects, including ulceration, bleeding, ischemic colitis 

and perforation have also been reported, especially when combined with sorbitol [44]. In a 

retrospective case-control study including 123,391 inpatients, of whom 2194 were prescribed SPS, 

there was a doubling of the incidence of colonic necrosis between SPS users and non-users, which 

was not significant (0.14% vs. 0.07%, P = 0.2) [45]. Interestingly, a large retrospective population-

based study from Canada similarly documented a significant two-fold increase in the incidences of 

hospitalization for serious adverse GI events in 20,020 SPS users, when compared with matched non-

users [46]. Moreover, Laureati et al. examined SPS use and GI safety in a cohort including 3690 adults 

with CKD stages 4–5 (1288 on chronic dialysis) naive to SPS. They found that SPS initiation was 

associated with a higher incidence of severe GI adverse events, mainly ulcers and perforations, in a 

probable dose-dependent manner [47]. Beyond the GI side effects, it should be underlined that 

significative drug interactions have also been described while using SPS, and this could be relevant 

for cardiac and renal patients, who often take multiple pharmacological therapies [48]. 

Evaluating all these potential detriments associated with the chronic use of SPS, currently, the 

Food and Drug Administration (FDA) recommends the avoidance of SPS prescription for patients 

with active GI diseases or with a history of recent bowel surgery, and in any case the avoidance of 

taking SPS at the same time as any other oral medications [39]. These important limitations, together 

with the scarce data on SPS efficacy, may explain why there has been a need to develop new drugs 

for treating hyperkalemia by increasing GI potassium elimination. 

6. Hyperkalemia: New Treatment Options 

6.1. Patiromer 

Patiromer FOS (for oral suspension), formerly known as RLY5016, was approved by the FDA in 

the USA in 2015, for the treatment of hyperkalemia.  

Patiromer is a cross-linked polymer of 2-fluoro acrylic acid (91%), with divinylbenzenes (8%) 

and 1,7-octadiene (1%). It is used in the form of its calcium salt (ratio 2:1) and with sorbitol (one 
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molecule per two calcium ions or four fluoroacrylic acid units, corresponding to 4 g of sorbitol for 

each 8.4 g of patiromer); a combination called patiromer sorbitex calcium [49].  

It appears as a dry powder for oral suspension, made of insoluble, spherical beads, with an 

average particle size of ≈ 100 µm. Pharmacokinetic analysis in animals showed that patiromer is not 

absorbed from the gut, is not metabolized, and is excreted in an unchanged form in the feces [50]. 

Patiromer works by binding the free potassium ions in the gastrointestinal tract, mainly in the distal 

colon lumen, and releasing calcium ions for exchange, thus lowering the amount of potassium 

available for absorption and increasing the amount that is excreted via the feces. The net effect is a 

reduction of the potassium levels in the blood serum. In CKD patients, it has been demonstrated that 

patiromer at a dose of 8.4 g twice a day lowered potassium levels within 7 hours of administration. 

These levels continue to decrease for at least 48 hours if treatment is continued, and remain stable for 

24 hours after the administration of the last dose [51]. 

Because of its delayed onset of action (4–7 h), patiromer cannot be used as an emergency 

treatment for hyperkalemia [52]. 

6.2. Efficacy Data 

Under in vitro conditions mimicking the pH and potassium content of the colon, patiromer binds 

8.5–8.8 mmol of potassium per gram of polymer, which is a 1.5- to 2.5-fold improvement over the 

other polymers. In 33 healthy volunteers, 4.2, 8.4 and 16.8 g of patiromer, administered for 8 days 

three times a day, caused a dose-dependent increase in fecal potassium excretion (all P < 0.02 vs. 

placebo), with a corresponding dose-dependent reduction in urinary extraction [53]. 

A similar effect was also found in small cohorts of CKD and hemodialysis hyperkalemic patients, 

including those receiving RAASi [54]. However, the efficacy, safety and tolerability of patiromer were 

also tested in large clinical trials, which enrolled patients at high risk of hyperkalemia, such as 

patients with CHF, diabetes and CKD (see Table 1). 

The first study exploring the efficacy and safety of patiromer in a large population was the 

"Evaluation of Patiromer in Heart Failure Patients" (PEARL HF) study, which was a 4-week, 

multicenter, double-blind, placebo-controlled study designed to evaluate the use of patiromer in the 

prevention of hyperkalemia. A total of 105 normokalemic patients (K+ 4.3–5.1 mmol/L) with CHF and 

either i) a history of hyperkalemia resulting in the discontinuation of ACEi/ARB/MRA and/or beta-

blockers, or ii) CKD (eGFR < 60 mL/min) treated with one or more CHF therapies (ACEIs/ARBs and 

beta-blockers), were randomized to undertake double-blind treatment with 30 g/day patiromer or a 

placebo for 4 weeks, in association with spironolactone (at the initial dose of 25 mg/day, increased to 

50 mg/day on day 15 if K+ was ≤ 5.1 mmol/L) [55]. 

The endpoints included the change in serum K+, the proportion of patients with hyperkaliemia 

(K+ > 5.5 mmol/L) and the proportion titrated to spironolactone 50 mg/day. At the end of treatment, 

compared with the placebo group, the group on patiromer showed significantly lowered serum K+ 

levels (−0.45 mmol/L, P < 0.001), a lower incidence of hyperkaliemia, and a higher proportion of 

patients on spironolactone 50 mg/day. Interestingly, in patients with CKD (n = 66), the difference in 

K+ levels between groups was −0.52 mmol/L (P = 0.031), and the incidence of hyperkaliemia was 6.7% 

for patiromer vs. 38.5% for the placebo. Adverse events were mainly gastrointestinal, and mild or 

moderate in severity. 

Furthermore, the AMETHYST-DN study was a multicenter, open-label, dose-ranging, phase 2 

trial that evaluated the efficacy of patiromer in the treatment of hyperkalemia in type 2 diabetic 

patients, with diabetic nephropathy and CKD and receiving RAAS inhibitors (ACEi and/or ARB for 

at least 28 days) [56]. The primary endpoint was potassium reduction, from baseline to week 4 or 

before the start of dose titration. The mean age was 66 years, 86% of patients had CKD stage 3–4, and 

35% had CHF. Hyperkalemic patients at screening were immediately randomized into the treatment 

phase, while normokalemic patients were re-evaluated after the adjustment of antihypertensive 

therapy with the addition of losartan and/or spironolactone. Overall, 306 hyperkalemic patients 

(serum K+ 5–6 mmol/L) were eligible, and were stratified by potassium level into the categories of 

mild (5–5.5 mmol/L) and moderate (5.5–6 mmol/L) hyperkalemia, before being randomized to receive 
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patiromer at increasing dosages (4.2 g, 8.4 g or 12.6 g bid in mild hyperkalemia, and 8.4 g, 12.6 g and 

16.8 g bid for moderate hyperkalemia). The dosage was titrated to achieve a target serum K+ ≤ 5 

mmol/L.  

Patiromer significantly reduced serum potassium levels from the baseline in all patients in a 

similar manner for the different doses, regardless of the initial potassium levels and independently 

of other comorbidities, such as CHF, advanced CKD or resistant hypertension. Moreover, in all 

patients the potassium lowering began ≈ 48 h after starting the patiromer, while target levels were 

reached early by patients with mild hyperkalemia. Interestingly, the reduction in serum K+ was 

achieved at week 8 (end of treatment phase) and maintained up to 52 weeks in patients who 

continued the treatment, whereas after discontinuation, serum potassium levels significantly 

increased. Regarding the safety profile, hypomagnesemia (7.2%) was the most common side effect, 

while constipation (6.3%) was the most common gastrointestinal adverse event. Moreover, patiromer 

treatment was also evaluated in a phase 3 study with CKD patients. So, in the OPAL-HK study, 237 

patients with CKD stage 3–4 and serum potassium level of 5.1–6.5 mmol/L, undergoing stable 

treatment with one or more RAASi, were divided into two groups: those with mild hyperkalemia 

(serum K+ 5.1–5.5 mmol/L) that received patiromer 4.2 g bid, and those with moderate to severe 

hyperkalemia (5.5–6.5 mmol/L) that received 8.4 g bid [57]. Then the patiromer dosage was titrated 

to reach and maintain a potassium level of 3.8–5.1 mmol/L, and the patients were followed-up for 4 

weeks. The authors found that patiromer significantly lowered potassium levels from baseline to 

week 4 in the whole study population, and for all prespecified subgroups (age < or > 65 years, 

presence/absence of diabetes or CHF, and maximal or submaximal dose of RAASi). Notably, at week 

4, 76% of the overall population reached the target serum potassium level. After this first phase, the 

study proceeded with a randomized phase, in which patients with a baseline potassium level of 5.5–

6.5 mmol/L and who achieved a target serum potassium level were randomized to continue the same 

dosage of patiromer or switch to placebo, and were followed-up for an additional 8 weeks. 

Furthermore, in this case, patiromer showed its efficacy, since, unlike the patiromer group, patients 

taking the placebo presented a significant increase in serum K+ (median K+ increase of +0.72 mmol/L). 

This difference was also observed across the prespecified subgroups of patients (regardless of age, 

gender, baseline K+ levels, diabetes, CHF and maximal/not maximal RAASi dosage) [58]. Moreover, 

a post-hoc analysis showed that the patiromer K-lowering efficacy and safety profile in CKD patients 

was not compromised by diuretic therapy [59]. 

An interesting opportunity offered by the potassium-lowering effects of patiromer has been 

explored in the recent phase 2 randomized AMBER study, which evaluated whether the use of 

patiromer allows a more persistent use of spironolactone in patients with CKD (eGFR 25 to ≤ 45 

mL/min) and resistant hypertension [60]. 295 patients were randomly assigned to receive either 

placebo or patiromer (8.4 g once daily), in addition to open-label spironolactone (starting at 25 mg 

once daily). At week 12, 98 (66%) of the 148 patients in the placebo group, and 126 (86%) of the 147 

patients in the patiromer group, remained on spironolactone, suggesting that patiromer can enable 

more patients to continue treatment with spironolactone under conditions in which this drug may be 

beneficial. 

Although many data have been reported on the efficacy and safety of treatments with patiromer, 

on the other hand, several clinical studies are ongoing concerning the evaluation of patiromer in 

specific clinical settings. This is the case for the DIAMOND study, a phase 3b placebo-controlled and 

randomized trial, the intent of which is to determine if the patiromer treatment of CHF subjects with 

hyperkalemia while receiving RAASi allows the continued use of RAASi medications. Interestingly, 

this study will consider primary "hard" endpoints, constituted by the time to the first occurrence of 

cardiovascular death or hospitalization. The completion date of this trial is estimated as the middle 

of 2022 [61]. 
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Table 1. Main clinical trials evaluating use of patiromer for chronic hyperkalemia. 

Study, 

Year 
Study Population N 

Study Design 

(with Patiromer Dosage) 

Follow-Up 

(Weeks) 
Main Results 

PEARL-HF 

2012 [55] 

CHF, CKD or previous hyperkalemia 

causing RAASi interruption plus indication 

to start spironolactone 

105 

Randomized and double 

blind: patiromer 15 g bid 

vs. placebo  

Spironolactone starting 

dose 25 mg, progressive 

dose titration 

4 

Mean K+ reduction: 

−0.45 mmol/L 

patiromer vs.  

placebo (P < 0.001) 

AMETHYST-

DN 

2015 [56] 

Diabetes plus CKD (stage 3–4) receiving 

RAASi with known hyperkalemia or those 

who developed hyperkalemia during run-

in phase 

306 

Randomized and open 

label.  

Patients on ACEi or ARB 

started on spironolactone 

1) Mild HK (5.1–5.5 

mmol/L): Patiromer 4.2–

8.4–12.6 g bid 

2) Moderate HK (5.6–

5.9 mmol/L): 

Patiromer 8.4 g–12.6 g–16.8 

g bid 

52 

1) Mild HK: K+ 

reduction  

−0.35 mmol/L for 4.2 

g, 

−0.51 mmol/L for 8.4 

g, 

−0.55 mmol/L for 

12.6 g 

2) Moderate 

HK: K+ reduction  

−0.87 mmol/L for 8.4 

g 

−0.97 mmol/L for 

12.6 g  

−0.92 for 16.8 g 

OPAL-HK 

2015 [57] 
CKD patients (stage 3–4) on RAASi 243 

Initial treatment phase: 

1) Mild HK (K+ 5.1–5.5 

mmol/L)  

Patiromer 4.2 g bid 

2) Moderate HK (K+ 

5.6–5.9 mmol/L) 

Patiromer 8.4 g bid 

4 

Mean K+ reduction:  

−1.01 mmol/L vs. 

basal values 

  107 

Randomized maintenance 

phase: 

Continue patiromer (n = 

55) vs. placebo (n = 52) 

8 

K+ increase: 

+0.72 mmol/L in 

placebo vs.  

0 mmol/L in 

patiromer (P < 

0.001) 

Abbreviations: CHF, Chronic heart failure; CKD, Chronic Kidney Disease; HK, Hyperkalemia; 

RAASi, Renin-Angiotensin-Aldosterone system inhibitors; bid, twice a day. 

6.3. Safety and Tolerability 

Patiromer was generally well tolerated. Overall, treatment-related adverse effects reported in 

the clinical trials occurred in ≈ 20% of the patients included. 

They include electrolyte disorders, such as hypomagnesemia and hypokalemia, and mild 

gastrointestinal symptoms, such as constipation (8%), diarrhea (5%), nausea and flatulence [52]. In 

the product labeling, hypomagnesemia and hypokalemia are reported as adverse reactions in 5.3% 

and 4.7% of the treated patients, respectively [62]. 

Monitoring of serum magnesium is recommended, considering supplementations for patients 

who develop hypomagnesemia while on patiromer. 

No cases of intestinal necrosis have been reported, probably as a consequence of the optimized 

characteristic of patiromer (i.e., uniform spherical shape, defined polymer bead size, low swelling 

ratio), which may improve the GI tolerability of this drug [63]. 

However, the use of patiromer is discouraged in patients with severe constipation, bowel 

obstruction or impaction, including abnormal post-operative bowel motility disorders, because of the 

potential ineffectiveness and the possibility of worsening gastrointestinal conditions [62]. 

6.4. Dosage, Administration and Drug Interactions 

Based on the above-mentioned large trials, patiromer is recommended at a starting dosage of 8.4 

g once daily, administered orally, which can be increased by 8.4-g increments per week, titrated up 

to a maximum of 25.2 g once daily.  

There are limited data on the use of patiromer for dialysis patients. As such, currently, no dose 

adjustment is advised. Patiromer presents as a powder that can be mixed with water, apple juice or 
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cranberry juice. It should be mixed in an initial volume of 40 mL of water, then stirred and more 

water added to obtain the desired consistency. Then, the mixture should be taken within 1 hour of 

initial suspension, and its results are equally effective and well-tolerated when taken without food or 

with food [64]. 

Finally, it should be underlined that in vitro studies indicated the possibility that patiromer may 

interact with some medications. In particular, in studies of healthy volunteers, the use of patiromer 

decreased the systemic exposure of coadministered ciprofloxacin, levothyroxine and metformin [65]. 

For these reasons, the administration of other oral medications at least 3 hours before or 3 hours after 

patiromer is recommended. 

7. Sodium Zirconium Cyclosilicate 

Sodium zirconium cyclosilicate (SZC), formerly known as ZS-9, is an insoluble, inorganic, non-

polymer zirconium silicate compound, comprising units of oxygen-linked zirconium and silicon 

atoms in the form of a microporous cubic lattice framework.  

It works as a selective cation exchange agent, primarily releasing hydrogen and sodium and 

preferentially capturing potassium, thus increasing its fecal excretion [66]. 

Its selectivity for potassium, which is > 25 times greater than that for calcium and magnesium 

ions, is due to the size of the pore, which is similar in diameter to unhydrated potassium 

(approximately 3 Å). Because of its high selectivity for potassium, SZC may bind it throughout the 

entire GI tract, and may exert a rapid K-lowering effect. It has been estimated that one gram of SZC 

binds about 3 mmol of potassium, and its activity begins within 1 h of the consumption [67]. 

At this stage, there are no studies comparing the pharmacodynamics properties of SZC when 

administered with or without food. Clinical studies have demonstrated that SCZ was not 

systemically absorbed, and no differences in urine and blood concentration were detected between 

treated and untreated patients.  

7.1. Efficacy Data  

SZC has been primarily evaluated in four randomized trials (ZS-002, ZS-003, ZS-004 and ZS-

004E) and one open-label long-term study (ZS-005) (Table 2).  

The ZS-002 was a phase 2 study investigating the safety, tolerability, efficacy and 

pharmacodynamics of SZC in 90 patients with stage 3 CKD and hyperkalemia (K+ 5.0–6.0 mmol/L), 

who were randomized to receive SZC 0.3, 3 or 10 g three times a day, or a placebo. SZC showed a 

dose-dependent effect, and potassium levels significantly declined in the first 48 hours of the patients 

taking SZC at the doses of 3 g and 10 g (P = 0.048 and P < 0.0001, respectively, versus placebo) [68]. 

Then, SZC was also investigated in larger phase 3 randomized trials, where it showed a 

significant superiority to the placebo in achieving and maintaining normal serum potassium levels 

[69]. 

In particular, in the ZS-004 (Hyperkalemia Randomized Intervention Multidose ZS-9 

Maintenance, HARMONIZE) trial, SZC safety and efficacy was tested in 258 patients with 

hyperkaliemia (K+ > 5.1 mmol/L), who initially received SZC 10 g three times a day for 48 h [70]. Then, 

those achieving normokalemia (N = 237) were randomized to receive SZC 5, 10 or 15 g once daily, or 

a placebo for the next 28 days (double-blind maintenance phase). Both initial and maintenance phases 

were characterized by a significant dose-dependent reduction of K+ in all SZC groups, compared with 

the placebo, even in the prespecified subgroups (CHF, diabetes, CKD and patients on RAASi). 

Compared with all other study groups, during the maintenance phase, there was a higher incidence 

of generalized and peripheral oedema in the SZC 15 g group (14.3%).  

Designed as an open-label extension of the HARMONIZE trial, the ZS-004E study investigated 

the safety and efficacy of SZC in patients with hyperkalemia who completed ZS-004, or who 

discontinued ZS-004 due to hypokalemia or hyperkaliemia in the maintenance phase and had a mean 

K+ of 3.5–6.2 mmol/L [71]. For 11 months, 123 patients received additional open-label treatment with 

SZC 10 g a day as an initial dose, which was then then titrated to maintain K+ 3.5–5.0 mmol/L. During 
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the study period, a serum potassium value ≤ 5.1 mmol/L (primary endpoint) was achieved in 100% 

of THE patients, and K+ ≤ 5.5 mmol/L in 88.3%. 

The long-term efficacy and safety of SZC were also investigated in the ZS-005 trial, a phase 3, 

prospective, open-label, single-arm,12-month study, in which 751 outpatients with hyperkalemia (K+ 

> 5.1 mmol/L) were enrolled [72]. No dietary restrictions or changes in RAASi therapy were required. 

The starting dosage was SZC 10 g thrice daily, for 24 to 72h (correction phase), then those who 

reached serum K+ 3.5–5.0 mmol/L at any point during the correction entered the maintenance phase 

(starting dose of SZC 5 g once daily). Dose titration (up to a maximum of 15 g daily, down to a 

minimum of 5 g every other day) was allowed based on serum potassium measurements. During the 

correction phase, 99% of patients achieved K+ 3.5–5.5 mmol/L, while the proportions of patients who 

achieved mean K+ ≤ 5.1mmol/L and ≤ 5.5 mmol/L across the maintenance were 88% and 99%, 

respectively. 

Interestingly, a post hoc analysis of ZS-005 focused on the study of the subgroups of patients 

with CKD. Furthermore, in this case, SZC use was associated with a significant reduction in serum 

K+ levels in the long-term maintenance phase, in a similar manner even when patients were stratified 

via baseline-estimated glomerular filtration rate (i.e., eGFR < 30 or > 30 mL/min) [73]. 

The recent phase 3, randomized, double-blind HARMONIZE-Global trial examined the efficacy 

and safety of SZC among outpatients with hyperkalemia, from diverse geographic and ethnic origins 

[74]. 

A total of 248 patients achieving normokalaemia following a 48-h correction phase, with thrice-

daily SZC 10 g, were randomized to once-daily SZC 5 g, SZC 10 g or placebo during a 28-day 

maintenance phase. Both initial and maintenance SZC regimens were associated with a significant 

reduction in K+ levels when compared to baseline values and placebo, and this effect lasted over the 

28 days of treatment. 

However, besides general studies on the treatment of chronic hyperkalemia, SZC has also been 

tested in acute and specific clinical settings. So, based on the pharmacokinetics data and the findings 

of clinical trials that reported a rapid effect of SZC in lowering serum K+, the authors of the 

ENERGIZE study explored the use of SZC in the ED [75]. It was a phase 2, multicenter, randomized, 

double-blind, placebo-controlled study, in which 70 patients with serum K+ > 5.8 mmol/L admitted 

at the ED were randomized 1:1 to SZC 10 g or placebo, administered up to three times during a 10-h 

period, in association with insulin and glucose. Reductions in K+ levels at 1 hour with SZC or the 

placebo were similar, probably due to the predominant potassium-lowering effect of the concomitant 

insulin and glucose treatment. A greater reduction in mean K+ from the baseline was observed in the 

SZC group, compared with the placebo at 2 hours (−0.72 vs. −0.36 mmol/L, respectively), suggesting 

that SZC may provide an incremental benefit in the emergency treatment of hyperkalemia. 

However, the K+ level’s reduction was not significantly different between the SZC and placebo 

groups when they were evaluated 4 h after drug consumption. 

Instead, the authors of the DIALIZE study tested the capacity of SZC to reduce blood potassium 

levels among patients undergoing HD [76]. 

So, they performed a phase 3b, double-blind, randomized trial, in which 197 patients on 

maintenance HD and predialysis hyperkalemia were randomized to receive a placebo or SZC 5 g 

once daily, on non-dialysis day, and were titrated to maintaining normokalemia over 4 weeks in 

increments of 5 g, up to a maximum of 15 g. The primary efficacy outcome involved the proportion 

of patients maintaining pre-dialysis serum K+ levels of 4–5 mmol/L, on three out of four dialysis 

treatments, after long interdialytic and not receiving rescue treatment. At the end of the study, 40 

patients of the 97 receiving SZC (41.2%) met the primary endpoint, compared with 1 patient out of 

the 99 on placebo (1%). Interestingly, adverse effects, including interdialytic weight gain, were similar 

between the two groups. Thus, these findings suggest that SZC is an effective and well-tolerated 

treatment for predialysis hyperkalemia in HD patients (Table 2). 

Further information on specific patient populations will be expected from the results of the 

ongoing PRIORITIZE-HF trial, which will evaluate SZC vs. placebo in patients with CHF taking 

RAASi. The completion date of this trial is estimated as the end of 2020 [77]. 
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Table 2. Main clinical trials evaluating the use of sodium zirconium cyclosilicate for acute and chronic 

hyperkalemia. 

Study, 

Year 
Study Population N 

Study Design 

(with SCZ Dosage) 

 

Follow-Up 

(Weeks) 
Main Results 

HARMONIZE 

2014 [70] 

 

K+ > 5.1 mmol/L  

69% CKD 
258 

Open-label:  

SZC 10 g tid 

No control group 

48 h 

Normokalemia (K+ 

3.5−5 mmol/L): 

84% at 24 h 

98% at 48 h 

  237 

Randomized 

normokalemic pts:  

Placebo vs. 

SZC 5 g–10 g–15 g 

single dose 

4 

Normokalemia: 

Placebo 46% 

SZC 5 g: 80%, SZC 

10 g: 90 % 

SZC 15g: 94%  

(p < 0.001 vs. 

placebo for all SZC) 

ZS-005 

2019 [72] 

K+ ≥ 5.1 mmol/L 

74% CKD 

751 

 

Open-label:  

SZC 10 g tid 
72 h 

Normokalemia (K+ 

3.5–5 mmol/L): 

99% 

  
746 

 

Maintenance phase 

SZC 5 g daily, titrated 

to 5g–15g 

No control group 

52 

K+ < 5.1 mmol/L: 

Overall 88% months 

3–12  

(466 pts completed 

the trial) 

ENERGIZE 

2020 [75] 

K+ ≥ 5.8 mmol/L in 

ED  
7 

Randomized: 

SZC 10 g (n = 38) vs.  

Placebo (n = 32)  

up to 3 times in 10 h 

+ (glucose-insulin)  

1 

Mean change in K+ 

at 4 h:  

−0.41 mmol/L SZC 

−0.27 mmol/L 

placebo 

Mean change in K+ 

at 2 h: 

−0.72 mmol/L SZC 

−0.36 mmol/L 

placebo 

DIALIZE  

2020 [75] 

HD patients with 

predialysis K+ ≥ 5.4 

mmol/L  

 

Randomized: 

SZC 5–15 g single dose 

in non-dialysis days 

vs. 

Placebo  

8 

K+ 4–5 mmol/L: 

SZC group 41.2%  

placebo group 1.0%  

Abbreviations: SZC, Sodium Zirconium Cyclosilicate; : CHF, Chronic heart failure; CKD, Chronic 

Kidney Disease; HK, Hyperkalemia; RAASi, Renin-Angiotensin-Aldosterone system inhibitors; ED, 

Emergency Department; HD, hemodialysis; tid, three times a day. 

7.2. Safety and Tolerability 

SZC is generally well tolerated. Hypokalemia occurred in 5.8% of patients enrolled in the ZS-

005 trial [72]. 

In phase 2 and 3 trials, the incidence of gastrointestinal adverse events (nausea, constipation, 

vomiting or diarrhea) was similar between the treated group and the placebo group [78]. However, 

as was the case for patiromer, SZC should also not be used in patients with severe constipation, bowel 

obstructions or impaction, including abnormal postoperative bowel motility disorders [79]. 

A dose-related mild to moderate edema was observed in the SZC during the maintenance period 

(mostly in patients receiving maximum SZC dosage), but it was resolved spontaneously or with 

diuretic therapy. So, it is recommended to monitor signs of edema, especially in patients at risk of 

fluid overload, such CKD and CHF patients, probably adjusting dietary salt intake and the dose of 

diuretics [79].  
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Finally, a non-clinically relevant QTc interval prolongation, without an increased rate of 

arrhythmia, has been reported in some cases, probably as a consequence of the rapid decrease in 

serum potassium levels [69]. 

7.3. Dosage, Administration and Drug Interactions 

The recommended starting dosage of SZC is 10 g three times a day; then, once normokalaemia 

is achieved (usually in 24–48 hours), the maintenance dosage is 5 g daily (the dosage can be titrated 

up to a maximum of 10 grams once daily, or down to a minimum of 5 g every other day).  

For patients on dialysis, SZC should only be given on non-dialysis days at starting doses of 5 g 

once daily, followed by titrating the dose according to the pre-dialysis serum potassium value after 

the long inter dialytic interval [79]. 

SZC presents as a powder, and before consumption, the entire content of a sachet should be 

mixed with approximately 45 mL of water, and stirred well. It can be taken with or without food [66]. 

If hyperkaliemia persists after 72 hours with the maximum dosage, other treatment approaches 

should be considered. 

SZC can transiently increase gastric pH, potentially affecting the absorption of co-administered 

drugs that exhibit pH-dependent solubility. 

In vivo studies in healthy volunteers showed that, when co-administered with SZC, there was 

an increase in systemic exposure to weak acids, such as furosemide and atorvastatin, and a decrease 

in systemic exposures to weak bases, such as dabigatran [80]. 

So, the general advice is that other oral medications should be administered at least 2 hours 

before or 2 hours after SZC. 

8. Conclusions 

For decades, the absence of a therapeutic alternative to SPS has represented one of the main 

limitations to the management of hyperkalemia, especially in patients at high risk, such as those with 

CHF, diabetes and CKD undergoing treatment with RAASi.  

Therefore, the development of new potassium-lowering agents, such as patiromer and SZC, has 

offered new opportunities for improving the management of hyperkalemia, even considering that, 

unlike SPS, these medications have proven their efficacy in large clinical trials in different clinical 

settings (see Table 3). Remarkably, patiromer and SZC appear to be well tolerated and safer compared 

to SPS, with the report of only mild GI disorders and no cases of intestinal necrosis. 

However, although the available data are encouraging and support the use of patiromer and 

SZC in the management of hyperkalemia, several important issues remain to be explored [81]. 

For example, there are no data on compliance with the treatment, and no study has yet directly 

compared the efficacy and tolerability of patiromer with SZC.  

Moreover, one of the main barriers to the use of the new potassium-lowering agents may be 

constituted by the higher cost of these treatments compared to SPS. There is thus a need to perform 

accurate cost-effectiveness analyses, also to evaluate the economic effects of the implementation of 

these new treatments. These analyses should consider the potential benefits derived from the reduced 

incidence of adverse effects, and from the optimization of chronic RAASi treatment, which, in turn, 

may improve clinical outcomes for CHF and CKD patients. 

In this regard, it has been demonstrated by mathematical models that hyperkalemia prevention 

and treatment with patiromer is a potentially cost-effective intervention for the long-term 

maintenance of RAASi in patients at risk of hyperkalemia [82]. 

So, several studies are ongoing, and others should be designed to define the potentiality offered 

by the application of these new potassium binders in specific clinical settings, and to elucidate their 

roles in improving long-term clinical outcomes. 
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Table 3. Main characteristics of the approved potassium binders for the treatment of hyperkalemia. 

Drug, 

FDA 

Approval 

Mechanisms 

Location 

Onset of 

Action 

Patient Groups 

Tested in 

Clinical Trials 

Adverse Effects Cost 

SPS, 

1958 

Non-specific organic 

ion-exchange resin. 

It exchanges sodium 

for 

Potassium. 

Colon 

Variable , 

hours to 

days [39] 

CKD, HD 

Mild to moderate 

gastrointestinal 

effects, including colonic 

necrosis, poor tolerability,  

electrolyte disorders 

Low 

Patiromer, 

2015 

Non-specific organic 

ion-exchange resin. 

It exchanges calcium 

for potassium. 

Colon 

Within 7 h 

[51] 

CHF, 

Diabetes, 

CKD 

+/- mRAASi 

Mild gastrointestinal 

effects, 

hypomagnesaemia, 

hypokalemia (3–6%) 

Very 

high 

SZC, 

2018 

Selective inorganic 

non-polymer. 

It exchanges sodium 

and hydrogen for 

potassium. 

Entire gastrointestinal 

tract 

Median 

time 2 h 

[69] 

CHF, 

CKD, HD 

ED 

+/- RAASi 

Mild gastrointestinal 

effects,  

oedema and hypokalemia 

(dose-dependent) 

Very 

high 

Abbreviations: SPS, Sodium Polystyrene Sulfonate; SZC, Sodium Zirconium Cyclosilicate; CHF, 

Chronic heart failure; CKD, Chronic Kidney Disease; HK, Hyperkalemia; RAASi, Renin-Angiotensin-

Aldosterone system inhibitors; ED, Emergency Department; HD, hemodialysis. 
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