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Abstract  

 

 

Biomimetic design represents an emerging field for improving knowledge of natural molecules, as 

well as to project novel artificial tools with specific functions for biosensing. Effective strategies 

have been exploited to design artificial bioreceptors, taking inspiration from complex 

supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide 

bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of 

chemical species at the molecular scale. Herein, a novel biomimetic peptide enabling herbicide 

binding was designed bioinspired to the D1 protein of the Photosystem II of the green alga 

Chlamydomonas reinhardtii. The D1 protein portion corresponding to the QB plastoquinone binding 

niche is capable of interacting with photosynthetic herbicides. A 50-mer peptide in the region of D1 

protein from the residue 211 to 280 was designed in silico, and molecular dynamic simulations were 

performed alone and in complex with atrazine. An equilibrated structure was obtained with a stable 

pocked for atrazine binding by three H-bonds with SER222, ASN247, and HIS272 residues. 

Computational data were confirmed by fluorescence spectroscopy and circular dichroism on the 

peptide obtained by automated synthesis. Atrazine binding at nanomolar concentrations was 

followed by fluorescence spectroscopy, highlighting peptide suitability for optical sensing of 

herbicides at safety limits. 
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1. Introduction 

 

In the last decades, synthetic biology and biomimetic chemistry demonstrated huge potential to 

handle living matters by re-designing complex biological systems or their sub-components, with the 

aim to improve knowledge on biological mechanisms, as well as to furnish novel advantageous 

functions. In sensing field, for example, these multidisciplinary technologies allow for the design of 

powerful tuneable analytical tools able to respond to external stimuli, with customised properties in 

terms of sensitivity, selectivity, and stability, among others [1]. To realize that, the convergence of 

different technologies is required, including structural chemistry and rational design, to provide 

novel biological recognition elements for sensing applications, taking inspiration from complex 

supramolecular assemblies present in living organisms, whose effectiveness is the result of 

millennia of natural selection.  

Due to the complex structure derived from the hierarchical organization of chemical species (e.g. 

polypeptides folded to form proteins) the overall property/function is often the result of a wide 

scenario of interactions from steric effects to polar-polar, Van deer Waals and dispersion 

interactions, as well as directional H-bonds, leading to emerging properties which cannot be usually 

traced back to short-range or single-molecule characteristics. In this framework, therefore, the key-

point is the comprehension of the essential factor giving the desired functions: the successive size-

minimization strategy getting rid of the unnecessary part of the complex structure renders the 

production of the biomimetic tool affordable. In this context, computer modelling can help in 

understanding the different roles of the various share of the overall chemical structure in order to 

better identify and select the essential fragments. However, due to the complex nature of the system 

and the high number of atoms involved, a detailed and accurate description, which could give 

trustful indications, is still a challenge. 

Herein, we present the design of novel artificial biomimetic peptides through a rational size-

minimization of the pivotal D1 protein from the green photosynthetic alga Chlamydomonas 

reinhardtii. This protein, together with the D2 protein, constitutes the heterodimer core of 

Photosystem II (PSII). Many intrinsic features have made D1 protein one of the most investigated 

photosynthetic protein, in particular on aspects related to structure-function, gene, messenger, 

protein regulation, electron transport, reactive oxygen species, photo inhibition, stromal-granal 

translocations, reversible phosphorylation, specific proteases, and herbicide binding [2, 3]. Focusing 

on D1 protein capability to bind either plastoquinone or xenobiotics, several studies have 

demonstrated the competitive atrazine interaction with D1 protein, physically entering in the same 

site of plastoquinone QB, and hence hindering the natural redox cascade reactions in the 
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photosynthetic system. In this context, with the aim to produce customised bioreceptors for sensing 

applications with tailored analytical features in terms of selectivity and sensitivity, we describe an 

in silico strategy to design novel synthetic peptides as a result of ad hoc size minimization of the 

photosynthetic herbicide-binding niche of the D1 protein. We also took advantage of our previous 

work [4], which describes the design, synthesis, and characterisation of a particular segment of 70 

amino acids in the D1 protein involved in the formation the D1-plastoquinone assembly [5], to 

design a shorter version of 50 amino acids. The effectiveness of this size minimization together with 

the preservation of the atrazine-recognition functionality shed light at a molecular base on the 

essential factors regulating the protein inhibition by xenobiotic poisons. Furthermore, the possibility 

to exploit synthetic peptides, compared to supramolecular complexes, can not only greatly improve 

the features of biosensors, in terms of cost, time, reproducibility, selectivity and stability, but also 

allow for simpler and lower-cost synthesis of smart bioreceptors. In fact, in the case of extracted 

reaction centres (RC) or photosystems (PSII), long and expensive laboratory procedures are 

required [6,7]. Moreover, once produced, such photosynthetic sub-components, e.g. D1 protein, are 

highly sensitive to ROS species being degraded in few minutes. Finally, D1 protein in particular is 

highly hydrophobic, thus hindering its use as bioreceptor in biosensor design. It could be exploited 

as soluble protein only if solved in high concentrated detergents [8]; however, in such solvents the 

protein loose the typical structure of the binding site, thus lowering its affinity towards the target 

herbicides. The stability of the reaction centres is also a concern, considering that extracted RCs are 

stable for 20 min at room temperature, 1 hour at 4 °C, and 1 month at -20 °C [9]. On the other hand, 

the exploitation of whole cells means more variables as biological systems, and these aspects should 

not be underestimated during the development of a biosensor [3]. For this reason, the simple and 

cost-effective synthesis of artificial bioreceptors inspired to natural macromolecules is gaining 

momentum. In this study, by computational modelling and automated synthesis, a wild type and 

two mutated 50-mer peptides were obtained and further characterised by circular dichroism and 

fluorescence spectroscopy, to provide deep insights on their structural and functional features as 

well as their interaction dynamics in response to atrazine. 
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2. Materials and methods 

 

2.1 Computational details 

 

Protein and peptide structures and complexes with atrazine were modelled through molecular 

docking calculations, using the Autodock Vina package [10]. Molecular dynamic simulations were 

performed using the GROMACS 5.1.1 package [11, 12]. Interactions were described using an all-

atoms CHARMM27 force field [13, 14]. The simulations for the various systems were performed 

using a cubic box of NaCl 150 mM in explicit TIP3P water solution. Periodic boundary conditions 

were applied. Force field parameter files and initial configuration for the polypeptides were created 

by GROMACS utilities programs. Force field parameters for atrazine was taken from the ATB 

repository [15]. The equilibration procedure was done in several steps, starting from a NVT 

simulation at 300K with the polypeptides heavy atom positions restrained to equilibrate the solvent 

around it, followed by a NPT run at 300 K and pressure at 1 bar, for a 10 ns run. After the 

equilibration phase, the system was run for a total of 300 ns for a NVT production run; the 

trajectory was saved at a frequency of 10 ps to evaluate dynamical and structural properties. The 

simulations were always checked versus the root mean square displacement (RMSD) and the 

energy profile. During the production runs for the temperature coupling, we used a velocity 

rescaling thermostat [16] (with a time coupling constant of 0.1 ps), while for the pressure coupling, 

we used a Parrinello-Rahman barostat [17] (1 ps for the relaxation constant). The Leap-Frog 

algorithm with a 2-fs time step was used for integrating the equations of motion. Cut-offs for the 

Lennard-Jones and real space part of the Coulombic interactions were set to 10 Å. For the 

electrostatic interactions, the Particle Mesh Ewald (PME) summation method [18] was used, with 

an interpolation order of 4 and 0.16 nm of FFT grid spacing. Selected images and peptide 

manipulation were done using Maestro [19] and VMD [20, 21]. To quantify the binding strength of 

the peptide-atrazine complexes their equilibrium geometry of the peptide-atrazine complexes was 

further fully optimized by the empirical UFF force field [22], using the Gaussian 09 program 

package [23]. The relaxed force constants of atrazine-peptide bonds were evaluated by the 

COMPLIANCE software [24, 25], after performing a vibration frequency analysis on the optimized 

geometry, in the harmonic approximation. 
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2.2 Peptide synthesis 

 

The peptides were produced by automated synthesis by Aurogene S.R.L. (Via dei Lucani, 51, 

00185 Rome, Italy). The peptides were synthesized by liquid phase peptide synthesis (LPPS) and 

solid phase peptide synthesis (SPPS), and purified to obtain samples with > 95% of purity. The 

synthetic molecules were analyzed by MS/HPLC and sequence confirmation was performed. 

 

2.3 Circular dichroism 

 

Circular dichroism spectra were performed under a nitrogen flow on a J-1500 Spectropolarimeter 

(Jasco, Tokyo, Japan) equipped with the Neslab RTE-110 temperature-controlled liquid system 

(Neslab Instruments, Portsmouth, NH). Peptide solutions of about 5.7 M in 1 mM NaPi buffer pH 

7.0, were placed in sealed cuvettes with a 0.1 cm path length (Hellma, Mullheim, Germany), and 

spectra were measured between 270 and 195 nm with the following setup: bandwidth 1 nm, 

response 0.25 sec, speed 20 nm/min, sensitivity 20 mdeg, 8 accumulations, and step resolution 1 

nm. All spectra were averaged 16 times and smoothed with the Spectropolarimeter System Software 

(Jasco). Before measurements, all samples were temperature equilibrated for 5 min. During the 

measurement the photomultiplier voltage never exceeded 600 V. The results were expressed in 

terms of the molar ellipticity. 

 

2.4 Fluorescence spectroscopy 

 

Fluorescence spectra were recorded in 1 mM NaPi buffer, pH 7.0 peptide solutions. Steady-state 

fluorescence measurements were performed on a F-8200 Spectrofluorometer (Jasco, Tokyo, Japan) 

with a cell temperature-controlled sample holder, equipped with the Neslab RTE-110 temperature-

controlled liquid system (Neslab Instruments, Portsmouth, NH). Peptide fluorescence was excited at 

280 nm, with emission and excitation slit width of 5 nm. Before measurements, all samples were 

temperature equilibrated for 5 min.  
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3. Results and discussion 

 

3.1 Computational results 

 

The primary structure of C. reinhardtii Photosystem II (PSII) D1/D2 proteins was taken from Rea 

et al. (2009), which was built using the crystal structure of Thermosynechococcus elongatus D1/D2 

proteins as template (PDB code 2AXT), thanks to the high sequence homology between the two 

reaction centres (87% and 89% amino acid sequence identity, respectively) [26]. From this 

structure, a fragment of 70 residues, D1Pep70-WT, known to bind atrazine, was designed from the 

D1 chain [4]. In a first step, detailed docking simulation served to produce putative host-guest 

structures, which were used as starting structures for our in-depth MD simulations, in order to 

explore both static and dynamic aspects. As a result of this approach, the molecular docking 

provided various complexes established by D1Pep70-WT with atrazine, with different scorings. 

Among them, the three top-score configurations for the D1Pep-70-WT complex with atrazine were 

selected (Figure S1), and used as initial configurations for our MD simulations. The details of the 

procedure followed for MD is described in the experimental section. Due to our simulations at the 

equilibrium stage (300 ns run), only one of the above three configurations, specifically the number 

2 of Figure S1 (Supplementary Materials), resulted in a tertiary structure where atrazine is well 

placed inside the pocket. The analysis performed in the last 50 ns of the MD simulations with the g-

cluster tool, within the GROMACS package [27], showed that the most probable structure is the 

one reported in Figure 1A, where the interaction between the two portions occurs via the residues 

PHE255, PHE265, and ALA263. In details, two kinds of interactions are present: N-based H-bond 

which involve ALA263 and PHE255, and π-π stacking involving PHE255 and PHE265. It must be 

noticed that the residue PHE265 can interact in both ways and that all these interactions involve two 

different segments in the tertiary structure of the peptide chain. Nevertheless, due to the calculated 

relaxed force constants these interactions are negligible, being lower than 0.2 N/cm. 

The diverse interactions and the cooperation between different peptide segments in atrazine 

stabilization suggest that eventual actions on the peptide sequence, aiming at reducing its length, 

must preserve the delicate equilibrium between interactions and the overall geometry. For this 

reason, a new fragment of 50 residues, D1Pep-50-WT, was created by substituting the amino acid 

residues from 224 to 245 with two glycine residues (Figure 1B). This choice allowed the cutting out 

of a quite linear chain of peptide not interacting with atrazine, simultaneously preserving distances 

and angles between residues 223 and 246. Thanks to the free rotation around -bonds, the short 

two-glycine segment backbone can be adapted to the two joint moieties sufficiently preserving, in 
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principle, the overall freedom in conformational dynamics. This cutting procedure was applied to 

the three equilibrium structures of D1Pep-70-WT/atrazine structures coming out from the MD 

simulations. Then, a new MD simulation was performed on each of the three D1Pep-50-

WT/atrazine complexes. The result evidenced the equilibrated structure reported in Figure 2A. In 

this complex, atrazine is tightly inserted in the D1Pep-50-WT pocket and makes three H-bonds with 

residues SER222, ASN247 and HIS272. Noteworthy, atrazine seems to make a stronger binding 

with the shorter polypeptide than the longer one. In fact, as shown in Figure 2A, the molecule is 

closer to two alpha helices of polypeptide, in contrast to what observed in Figure 1A, in which 

atrazine interacts only with one branch of the polypeptide. However, similarly to the D1Pep70-

WT/atrazine, the relaxed force constants of such interactions are lower than 0.2 N/cm also in 

D1Pep50-WT/atrazine complex. It can be concluded that the cutting out of the portion 224-245 

would result to be effective, since it gives a shorter peptide which is, however, still able to bind 

atrazine. The primary structures of D1Pep70-WT and D1Pep-50-WT were reported in Table 1. 

Molecular MD simulation shows that both bare peptide D1Pep-50-WT and its complex with 

atrazine possess similar structure. The two structures were superimposed in Figure 3A, showing that 

D1Pep-50-WT is slightly affected by the binding with the herbicide. From the experimental point of 

view, the chemically synthesized D1Pep-50-WT appears as a slight hydrophobic molecule soluble 

only in buffers containing DMSO (10% v/v). This, together with the calculated conformational 

minor changes of the peptide occurring when atrazine is bound, suggested a further action directed 

to the increase in peptide hydrophilicity. 

For this reason, taking inspiration from a previous work [4] and considering the substitution of the 

peptide portion from residue 224 to 245 with 2 glycines, a new peptide (hereafter called as D1Pep-

50-Mut) was designed on the basis of the previously reported sequence. In detail, 5 Phe residues 

(211, 260, 265, 273, and 274) were substituted with isosteric Tyr residues, and 3 Ala residues (213, 

250, and 263) were substituted with more polar Ser residues. D1Pep-50-Mut is a 5639.26 Da 

molecule with a theoretical pI of 9.16 and an extinction coefficient at 280 nm measured in water 

equal to 17420 M
-1

 cm
-1

 (Supporting Materials), containing 7 tyrosine residues at positions 211, 

246, 254, 260, 262, 265, 273, 274, a phenylalanine at position 255, and a tryptophan residue at 

position 278. The primary structures of D1Pep-50-Mut was reported in Table 1. 

The typical MD procedure shows that the most probable structure of D1Pep-50-Mut is that depicted 

in Figure 2B. By perusal of the figure several clues can be derived: 

i) the peptide structure is changed, as a consequence of the different primary structure of the 

peptide. This new structure is able to host atrazine in a position closer to its inner cavity. 
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ii) different residues now bind atrazine, in the specific SER264 and TYR265. Moreover, TYR265 

was not present in D1Pep-50-WT, suggesting that its insertion evidently triggers the possibility for 

a strong peptide-atrazine bond, in this structure. 

iii) the host-guest interactions can be characterized as strong H-bonds, with relaxed force constants 

of 10.0 and 17.4 N/cm, respectively [28].  

Such values are more than one order of magnitude higher than those present in D1Pep-50-WT and 

in D1Pep70-WT. This also suggested that the change made in the peptide primary structure is 

crucial to stabilise the overall structure. These clues are confirmed by the calculation of the binding 

standard Gibbs free energy (G°) calculations: the insertion of atrazine in D1Pep-50-WT implies a 

G° of -14 KJ mol
-1

, whereas the value is decreased to -139 KJ mol
-1

 in the case of D1Pep50-Mut. 

The observed increase in the absolute value of the binding standard Gibbs free energy of a factor of 

ten, clearly confirms that changes made to prepare D1Pep50-Mut are crucial to increase its binding 

with atrazine. The derived binding constants are 3·10
2
 and ~10

24
 for D1Pep-50-WT / atrazine and 

D1Pep-50-Mut / atrazine complexes, respectively. 

The strong interactions between D1Pep50-Mut and atrazine, as well as the atrazine binding through 

one portion of D1Pep50-Mut chain only (differently from D1Pep50-WT binding atrazine by two 

different portions of its chain), allows us to expect a marked peptide conformational change when 

the atrazine is inserted or taken out from the cavity. This would be an essential factor for producing 

a switch-type biosensor. This hypothesis is confirmed if the structures of the mutated peptide in the 

absence and in the presence of atrazine are compared. They were reported in Figure 3B, 

superimposed for better comparison. The final clue is therefore that D1Pep-50-WT structure is 

affected by the binding with the herbicide. The conformational change occurring upon atrazine 

binding is also evidenced by spectroscopic analysis. The overall result of MD simulation confirms 

that the change in the primary structure can end up in a quite hydrophilic peptide able to stably bind 

atrazine in its cavity and perform a conformational change consequent to its interaction. 

 

3.2 Spectroscopic structural and functional characterisation 

 

The structure and binding capability of the synthetic peptides D1Pep-50-WT and D1Pep-50-Mut 

were explored by circular dichroism (CD) and fluorescence spectroscopy (FS). The far-UV CD 

spectra of D1Pep-50-WT and D1Pep-50-Mut at 25 °C are reported in Figure 3A and B, 

respectively. CD spectra of D1Pep-50-WT shows a minimum at 228 nm, and it is similar to the one 

reported for helical peptides in aggregated conditions [29]. This could be ascribed to the low 

hydrophilicity of the molecule, which does not find a proper accommodation into a water solvent. 
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Moreover, the addition of atrazine is not able to provide any conformational change in the peptide 

structure as evidenced by the CD spectra. The CD profile of D1Pep-50-Mut is similar to the one of 

the parent peptide, but it has a lower intensity and the minimum is shifted to lower wavelengths 

(222 nm). This suggests that the D1Pep-50-Mut peptide is less aggregated than the wild type. 

Furthermore, atrazine addition induces a marked conformational change in the mutated peptide, as 

described by the CD spectra variations, which show an isodichroic point, suggesting equilibrium 

between two different conformations [30]. In accordance to CD spectra, the fluorescence emission 

spectrum of D1Pep-50-WT shows a double maximum, suggesting the presence of aggregation [31]. 

Both peptides show an intrinsic emission band of TRP278 centred at 345 nm, which indicates an 

indole ring quite exposed to the aqueous medium. Upon atrazine binding, the wild-type peptide 

provides increased fluorescence intensity, while the mutated one shows decreased fluorescence 

intensity, revealing the heterogeneity of the microenvironments of the fluorescent residues, which 

are spread in the two different structures.  

In depth-fluorescence analyses were performed to shed light on the effect of herbicide binding on 

the structural stability of D1Pep-50-Mut. Variations of the D1Pep-50-Mut intrinsic fluorescence 

induced by physic denaturant agents (i.e. temperature), were determined in the absence and in the 

presence of atrazine. As shown in Figure 4A, the fluorescence melting curve of D1Pep-50-Mut 

decreases almost linearly in the range 25 - 95 °C. This transition exhibits a good cooperativity both 

in the absence and in the presence of 100 nM atrazine, giving a sigmoidal profile that fits with a 

two-state unfolding model and thus suggesting that structural change takes place in this temperature 

range. Interestingly, by fitting this curve, melting temperatures (TM) of 30 and 45 °C were obtained 

in the absence and in the presence of 100 nM atrazine, respectively. This pattern indicates that 

atrazine induces a conformational change in the D1Pep-50-Mut structure stabilizing it, so that the 

fluorescent residues, directly (or indirectly) affected by its presence, display a cooperative transition 

at a higher temperature, as expected by a niche/site of a folded protein. In addition, with the rise of 

the temperature both a decrease of the fluorescence intensity and a red shift of the wavelength 

underline that the peptide has a folded structure which is subjected to an unfolding mechanism due 

to the temperature increase, indicating the displacement of the fluorescent residues to the solvent 

(Figure 4B). 

In the framework of the design of novel bioreceptors for sensing applications, further 

characterization by fluorescence spectroscopy D1Pep-50-Mut was carried out to probe its binding 

ability for atrazine and, in particular, the effect of atrazine binding on peptide conformational 

properties. The binding ability of D1Pep-50-Mut towards atrazine was followed by fluorescence 

spectroscopy in a lower concentration range. Serial additions from 10 to 100 nM of atrazine were 
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supplied to D1Pep-50-Mut (5.7 µM), and the peptide intrinsic fluorescence emission intensity due 

to the fluorescent residues was recorded. The samples were excited at 280 nm and the emission was 

monitored in the 300 to 450 nm region. The fluorescence emission band decreases as the atrazine 

concentration increases. Corrections were made for dilution of the sample and for background 

signal from buffer. A linear response was obtained in the atrazine concentration range exploited 

allowing for the construction of a calibration curve using the linear regression reported by the 

equation y = 1(±0.005) - 0.005(±0.0013) x, with an R
2
 = 0.9983 (Figure 4C). A detection limit of 

4.8 nM was obtained (calculated as 3.3 × standard deviation of the regression line / slope). 

 

4. Conclusions 

 

The prime purpose of this work relies on the development of smarter bioreceptors for biosensor 

design, not only with custom-made analytical features, in terms of e.g. sensitivity, but also through 

simple and cost-effective procedures. In this context, the possibility to exploit artificial peptides, 

bioinspired to supramolecular complexes, can greatly improve the features of sensing systems, in 

terms of cost, time, reproducibility, selectivity, and sensitivity. Indeed, the laboratory procedures 

required for the production of natural photosynthetic sub-components, as reaction centres or 

photosystem extracts, can result highly laborious and expensive; on the other hand, the exploitation 

of whole cells, although very sensitive, entails higher biological variables, these aspects becoming 

extremely disadvantageous during the biosensor development [3]. 

In this scenario, novel biomimetic peptides for atrazine sensing were designed by in silico approach. 

In particular, molecular dynamic-based computer modelling showed that in the case of peptide 

D1Pep-50-Mut, the residues 211-280 portion of the Photosystem II (PSII) D1 protein from C. 

reinhardtii can be effectively subjected to size minimization (resides 226-245 substituted by two 

glycines) as well as to ad hoc mutations to improve their hydrophilicity, while preserving the final 

capability to bind atrazine. Despite the obvious changes in the interactions involved in atrazine 

binding, D1Pep-50-Mut showed to undergo structural changes upon target binding, making it a 

promising candidate for atrazine sensing. Experimentally, circular dichroism and fluorescence 

spectroscopy have self-consistently confirmed this possibility, highlighting also that the peptide 

possesses good thermal stability. Benefits of the peptide presented in this work include the reduced 

number of amino acids thus decreasing the complexity and costs of the peptide synthesis, the 

adequate water solubility, and the low detection limit (4.8 nM) towards atrazine, meeting the 

requirements of EU regulations (EU Directive 2013/39/EC). We believe that the accordance 

between the information experimentally derived and those foreseen by computer modelling is due 
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to the refined procedure adopted in our calculations, a resources-saving method, which can be 

tailored for ad hoc design of novel molecules in sensor applications and which could be of 

inspiration for future research.  
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Figure captions 

 

Figure 1. A) Most frequent equilibrium structure of the complex between atrazine and D1Pep-70-

WT. The 2D structure, highlighting the H-bond (in purple) and dispersion (in green) interactions, is 

also shown (inset). B) Picture showing the cut (orange to blue unstructured backbone) performed on 

D1Pep-70-WT to obtain the shorter D1Pep-50-WT model. 

 

Table 1. Primary sequences of the obtained peptides. The amino acidic substitutions of the newly 

designed peptides are highlighted in yellow.  

 

Figure 2. A) Most frequent equilibrium structure of the complex between atrazine and D1Pep-50-

WT (left). The 2D structure, highlighting the H-bond (in purple) interactions, is also shown (right). 

The arrow points to the position where the cutting action was carried out. B) Most frequent 

equilibrium structure of the complex between D1Pep-50-Mut with atrazine (left). The 2D structure, 

highlighting the H-bond (in purple) interactions, is also shown (right). The molecular structures of 

D1Pep-50-WT and D1Pep-50-Mut are reported in electronic supporting materials as pdb files. 

 

Figure 3. MD) Superimposed structures of the peptide-atrazine complex and the isolated peptide (in 

purple) with sequence D1Pep-50-WT (A) and sequence D1Pep-50-Mut (B). CD) Circular dichroism 

(centre) and FS) fluorescence spectroscopy (right) analysis for each peptide in the absence and in 

the presence of atrazine, with 100 nM as the first concentration (molar ratio peptide/atrazine 1:2). 

Arrows indicate the maximum atrazine concentration exploited (600 nM). 
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Figure 4. Temperature-induced conformational transitions of D1Pep-50-Mut (black curve) and its 

complex with atrazine (red curve) as changes in fluorescence intensity at 345 nm (A) and changes 

in wavelength (B). Calibration curve for atrazine with 100 nM as the maximum concentration 

(molar ratio peptide/atrazine 1:2) (C). 
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D1Pep70-WT 211-FSAMHGSLVTSSLIRETTENESANEGYRFGQEEETYNIVAAHGYFGRLIFQYASFNNSRSLHFFLAAWPV-280 

D1Pep-50-WT 211-FSAMHGSLVTSSLGG-225      246-YNIVAAHGYFGRLIFQYASFNNSRSLHFFLAAWPV-280 

D1Pep-50-Mut 211-YSSMHGSLVTSSLGG-225      246-YNIVSAHGYFGRLIYQYSSYNNSRSLHYYLAAWPV-280 
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