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Introduction

A bicuspid aortic valve (BAV) is characterized by an aortic 
valve with two semilunar leaflets. BAV is the most common 
congenital cardiovascular malformation with a prevalence 
of 0.5% to 2%, and it affects males four times more than 

females (1). BAV may evolve in serious complications, 
which occur in about 33% of patients. Aortic dilatation is 
the most common consequence of BAV, which determines 
the onset of thoracic aortic aneurysms (TAA) (2). Compared 
with patients with tricuspid aortic valve (TAV), patients 
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with BAV have a higher progression rate of dilation (3,4), 
suggesting differences in the process of dilation of the 
thoracic aorta. TAA onset is a very complex process; in 
which both cellular and extracellular mechanisms are 
involved. These mechanisms converge in a multiple 
signaling pathways and result in the maladaptive remodeling 
of the vascular extracellular matrix (5). The two main 
theories explaining the phenomenon of aortopathy in BAV 
disease are the genetic and the hemodynamic hypothesis (6).  
According to the genetic theory, the presence of aortic 
wall fragility is a consequence of a common developmental 
defect involving the aortic valve and the aortic wall and the 
mutation in NOTCH1 gene the main pathway involved 
(7-11). This hypothesis is further supported by reporting 
altered molecular and/or metabolic characteristics in the 
aortic wall and valve leaflets in BAV and differences in 
elastic lamellae, with a loose attachment of vascular smooth 
muscle cells (VSMCs), and precocious apoptosis. According 
to the hemodynamic theory, the abnormal hemodynamic 
stress on the aortic wall induced by eccentric turbulent flow 
through the BAV leads to subsequent aortopathy. Although 
the hemodynamic theory was the first explanation for BAV 
aortopathy, the genetic theory has become increasingly 
popular over the last decade (12-16). However, the 
widespread belief that BAV disease is a congenital disorder 
of vascular connective tissue led to recommendations 
for a more aggressive treatment of the proximal aorta in 
patients with TAA, approaching aortic management for 
patients with Marfan Syndrome-related aortopathy (17). 
Nevertheless, the aggressive surgical strategy for the 
treatment of aneurismatic aortopathy in patients with BAV 
has been questioned by some authors (18). In order to 
improve information on TAA in patients with BAV (BAV-
TAA) and to better address the issue of pathogenesis of 
BAV-associated aortopathy, we investigated biomechanical 
properties and histological features of BAV and TAV. 

Methods

Our study received approval from local ethic committees 
(Protocol Title: 01-Aorta-2018; Protocol Number: 179/18) 
and all participants gave their informed consent. Data were 
encoded to ensure patient and control protection. 

Population

We compared patients with TAA associated with or not 
with BAV, with no history of aortic dissection. Our study 

included 26 TAA patients, 12 of them with TAV-TAA 
and 14 patients with BAV-TAA. Patients were admitted 
at the Cardiac Surgery Unit of Tor Vergata University 
from July 2017 to December 2018 to perform surgical 
treatment of the ascending aorta TAA. At the admission, 
all patients with BAV-TAA had an aortic valve dysfunction 
(regurgitation or stenosis), instead only half of patients 
with TAV-TAA had aortic valve dysfunction. Patients 
with aortic valve dysfunction, usually, referred dispnea at 
the admission. Patients without aortic valve dysfunction 
where asymptomatic. Clinical data of the studied patients 
were collected from clinical charts. Diameter evaluation of 
ascending aorta was made both preoperatively and in the 
operating room by transthoracic echocardiography (TTE) 
and transesophageal echocardiography (TEE) estimations 
performed as follows: dimensions of aortic annulus, sinuses 
of Valsalva and proximal ascending aorta (above 2.5 cm of 
the sinotubular junction) were estimated in parasternal long 
axis; the ones of aortic arch was evaluated from suprasternal 
view. Echocardiography derived sizes were reported as 
internal diameter size. Color Doppler was used to assess the 
presence and severity of aortic regurgitation and stenosis (see 
Figure S1). Furthermore, aortic root and ascending aorta 
diameter sizes were carried out using helical computed 
tomography image analysis techniques (Figure S2). For 
surgical procedure of TAA, we used the criteria advocated 
in the ESC/EACTS Guidelines 2017 on Heart Valve Diseases. 
In particular, we considered the surgical approach for those 
patients with a maximal ascending aortic diameter ≥50 mm 
in the presence of BAV and ≥55 mm in the presence of TAV. 
In addition, according our experience we considered surgery 
in presence of specific anatomical abnormality of aortic root 
unless the diameter: Valsalva sinus prolapse, thin and weak 
aortic wall with graining. Finally, when surgery was primary 
indicated for the aortic valve, replacement of the aortic root 
or tubular ascending aorta was considered when ≥45 mm, 
especially in the presence of BAV. The mostly used surgical 
procedures were isolated ascending aorta replacement or 
the button Bentall operation, which is a modification of the 
original technique described by Kouchoukos et al. 1991 (19).  
All the operations were performed using crystalloid or 
blood cardioplegia. 

Biomechanical characterization

The mechanical properties of the aortic tissues were 
measured by tensile tests performed by the system 
MTS Insight 5 equipped by a load cell of 100 N. This 
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device allows the tensile tests of virtually any material by 
prescribing the stretching force, the crosshead velocity 
(possibly time dependent) and the time evolution of the 
cycle, all desired features for the testing of biological 
materials.

Tissue specimens were extracted from the explanted 
aortic tract according to prescribed dimensions and shapes. 
Being the specimen dimensions fixed, the only variable 
dimension is the thickness of the tissue (S0) that depends on 
the specific aortic sample and on the position of extraction 
(Figure 1).

Most of the biological tissues have a viscoelastic 
nature therefore, before proceeding to the material 
characterization, a preliminary preconditioning phase 
consisting of ten stretching cycles with a force in the range 
Fmin=0.1 N and Fmax=0.5 N is performed. This action aims 
at eliminating the initial transient behavior of the tissue 
so that its cycle-independent features can be measured. 
According to previous experiences, four cycles were enough 
to attain the final regime for human samples. It was decided 

anyway to precondition all samples with 10 cycles in 
order to be sure that every test had been performed under 
identical conditions. Immediately after the preconditioning, 
the final tensile test was performed with a constant 
crosshead velocity V=10 mm/min up to the rupture of the 
specimen. During this phase, data were collected in the 
form crosshead (mm) versus force (N) and successively 
processed to extract the relevant quantities. We considered 
L0 and S0 as the initial specimen length and thickness and 
A0 as the initial minimum cross section area. Upon applying 
a stretching force F a length variation ∆L of the specimen 
was obtained and quantified by the stress σe=F/A0 and the 
deformation εe=∆L/L0. It must be noted, however, that 
as the specimen is stretched the length increases and its 
thickness decreases owing to volume conservation. If A, L 
and s are, respectively, the actual cross-sectional area, length 
and thickness of the specimen under tensile stretching, 
the volume conservation yields A*s = A0*S0 from which the 
actual stress can be computed as σ=σe(1+εe) while the actual 
deformation is ε=ln(1+εe). All the cases have been analysed 

Figure 1 Biomechanical characterization. (A) Surgical aorta segment; (B) schematic description of segmental analysis of the aorta in the 
two directions; (C) MTS Insight Testing System (MTS System Corporation) used for the mechanical tests; (D) schematic description of the 
dimensions of each individual specimen.
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by reporting σ versus ε obtaining curves as in Figure 2 from 
which the peak stress (in MPa), i.e., the maximum stress 
achieved before specimen rupture, and the first Young 
Modulus (in MPa), which is the slope of the curve in the 
first linear part (20-24), have been obtained. 

Hemodynamic simulations

Hemodynamic simulations have been performed using a 
finite volume, cell centered, computational fluid dynamics 
(CFD) code (IB-raptor, developed by PMSQUARED 
Engineering). The software is based on a semi-automatic 
decomposition of the fluid volume into small elements for 
which a discretized form of mass, momentum and energy 
conservation is applied. The Immersed Boundary (IB) 
method, which allows an efficient handling of complex 
geometries while retaining the accuracy of the solution is 
adopted. Another advantage of this CFD tool is that it can 
use the triangulated geometries directly obtained by the CT-
scan of the patients. The fluid model for these simulations 
is Newtonian since the non-Newtonian blood features are 
known to be relevant only in sub-millimeter vessels; the 
kinematic viscosity of the blood has been assumed therefore 
constant and equal to ν=3.8×10−6 N/m2. A second order 
upwind scheme has been used for spatial discretization and 
an implicit Gauss-Seidel method for advancing in time to 
a steady state solution. A typical simulation is performed 
on a mesh containing one million of discrete elements 
whose dimensions are of the order of 0.1 mm next to the 

aortic wall and about 0.5 mm in the bulk of the flow. This 
difference is necessary in order to achieve enough spatial 
resolution for the accurate wall shear stress evaluation while 
keeping the computational load at an acceptable level. Such 
simulations take 4–8 hours on a parallel computer with 
four Intel i7 processors and generate solutions consisting 
of three-dimensional fields velocity, pressure and wall shear 
stress that can be reported and analysed through volume 
and surface renderings as in Figure 3.

Morphological and histomorphometric analysis

Serial 4-µm thick paraffin sections from 10% neutral-
buffered formalin-fixed aortic tissue samples were stained 
with Haematoxylin&Eosin for microscopic examination 
or used for histochemical studies (25). Sections were 
stained with Alcian blue and Verhoeff-Van Gieson 
and extracellular accumulation of glycosaminoglycans 
(GAGs) and loss and fragmentation of elastic fibers were 
evaluated as reported (26,27). As control, we collected 
and analyzed autoptic thoracic aorta tissue samples 
(n=6) from patients (mean age =65.8 years) died for non-
cardiovascular diseases (pulmonary and cerebral edema) 
to obtain healthy aorta samples. Moreover, Masson’s 
trichrome-staining was performed to assess the collagen 
and elastic composition of the meshes and possible 
changes over the time after implantation. Masson’s 
trichrome-staining intensity was arbitrarily scored on a 
scale of four grades: 0= negative, 1= weak positivity, 2= 
moderate positivity, 3= strong positivity (28). 

Immunohistochemistry analysis

For immunohistochemistry, sections were reacted with 
rabbit polyclonal anti-metalloproteinases-2 (MMP-2, 1:750; 
Thermo Scientific Pierce, IL, USA, P1-16667). MMP-
2 staining intensity was arbitrarily scored on a scale of 
four grades: 0= negative, 1= weak positivity, 2= moderate 
positivity, 3= strong positivity. Immunostainings were 
performed with positive and negative controls (29).

Statistical analysis 

All blinded measurements were performed by two 
independent  researchers ,  wi th  an  interobserved 
reproducibi l i ty  >95%. Demographic and cl inical 
analyses were performed with STATA 14.1 software. 
Histomorphometric and biomechanical analyses were 

Figure 2 Example of traction curve: standard values and effective 
values. 
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Figure 3 Hemodynamic simulations. (A) Pressure distribution (left) and fluid volume (right) on the aortic wall in a control, bicuspid and 
tricuspid aorta; (B) distribution of shear stress on the aortic wall (left) and fluid volume velocity (right) in a control, bicuspid and tricuspid 
aorta; (C) representative bar graphs of peak stress in BAV and TAV; (D) representative bar graphs of Young modulus in BAV and TAV. t-test: 
* and **, P<0.05 and P<0.01, respectively. I: anterior longitudinal region; II: anterior circumferential region; III: posterior longitudinal 
region; IV: posterior circumferential region; V: left lateral longitudinal region; VI: left lateral circumferential region; VII: right lateral 
longitudinal region; VIII: right lateral circumferential region. CTR, control aorta; BAV, bicuspid aortic valve; TAV, tricuspid aortic valve.
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performed using SPSS 22 software (IBM SPSS Statistics). 
All categorical variables were reported as frequencies and 
percentages, while quantitative variables were synthesized 
as mean and standard deviation or standard error mean 
(SEM), minimum and maximum. The Fisher test for 
qualitative variables and the Kruskal-Wallis test or the one-
way ANOVA technique for quantitative variables were 
used. The hypotheses of normality and homoscedasticity 
were verified through the Shapiro-Wilk test and the Fisher 
test. All the tests were considered significant for relative 
values P<0.05. Furthermore, odds ratios (OR) with 95% 
confidence intervals (CI) and their significance were 
calculated. Association between histological parameters and 
wall shear stress (WSS) was evaluated by using Pearson test. 
Statistical analyses were performed using SPSS 22 software 
(IBM SPSS Statistics). 

Results

Characteristics of study population 

All demographic variables, echocardiographic parameter, 
operat ive and postoperat ive character ist ics  were 
summarized in Table 1. The mean age in TAV patients was 
76.5 [54–79] years and 62 [36–70] years in BAV patients (P 
value =0.001). The mean BMI in TAV patients was 28.2±3 
and 25.8±2.5 in BAV patients. There were not statistical 
differences in term of hypertension and smoking between 
TAV and BAV patients. Sinus of Valsalva mean size was 
41.2±6 mm in TAV patients and 42±9.01 mm in BAV 
patients (P value =0.332). Aneurysmatic ascending aorta 
mean size was 50.8 (6.1) mm in TAV patients and 47.6 
(5.3) mm in BAV patients (P value =0.032). A Bentall de 

Table 1 Demographic and clinical characteristics of study population

Variables BAV (n=14) TAV (n=12) P value

Gender, male 10 (71.4%) 7 (58.3%) 0.683

Age 62 [36–70] 76.5 [54–79] 0.001

BSA 2 (0.1) 1.9 (0.2) 0.410

BMI 28.2 (3) 27 (3) 0.332

Smoke 13 (68.4%) 10 (83.3%) 0,628

Hypertension 14 (73.6%) 9 (75%) 0.438

Preoperative echocardiographic parameters

Aortic root 42 (9.01) 41.2 (5.6) 0.784

Ascending aorta 47.6 (5.3) 50.8 (6.1) 0.032

LVTDD 55 (6.2) 53 (7.7) 0.472

LVTSD 35.9 (4.8) 36.5 (6) 0.764

Septum 13 (1.4) 11.6 (1.6) 0.023

PP 12.5 (1.2) 11.8 (1.9) 0.283

LVTDV 120 (28.7) 116 (24.3) 0.708

LVTDV 50 [20–130] 50 [30–70] 0.306

EF 60 [47–65] 55 [20–60] 0.254

Mitral valve regurgitation 2 (14.2%) 2 (16.6%) 1.000

Aortic stenosis 7 (50%) 0 (0%) 0.006

Aortic regurgitation 12 (85.7%) 6 (50%) 0.090

PASP 35 [25,35] 35 [25,52] 0.302

Operative characteristics      

Procedure type     0.012

Bentall 14 (100%) 7 (58.3%)  

Ascending aorta 
replacement

0 (0%) 5 (41.6%)  

Cross clamp time 99.8 (26.8) 90.9 (33.4) 0.460

Cardioplegia      

Custodiol 3 (21.4%) 1 (8.3%) 0.598

Ematica 0 (0%) 1 (8.3%)  

St. Thomas 11 (78.5%) 10 (83.3%)  

Surgery time 240.5 [166–330] 206 [164–296] 0.180

Post operative characteristics

Bleeding 2 (14.2%) 1 (8.3%) 1.000

Low cardiac output 0 (0%) 2 (16.6%) 0.203

Pace maker implantation 2 (14.2%) 2 (16.6%) 1.000

Table 1 (continued)

Table 1 (continued)

Variables BAV (n=14) TAV (n=12) P value

Post operative 
myocardial infarction

0 (0%) 2 (16.6%) 0.203

Pulmonary 
complications

2 (14.2%) 0 (0%) 0.483

Renal failure 2 (14.2%) 0 (0%) 0.483

Hospital  mortality 0 0 –

LVTDD, left ventricular telediastolic diameter; LVTSD, left 
ventricular telesystolic diameter; LVTDV, left ventricular 
telesystolic volume; LVTSV, left ventricular telesystolic volume; 
EF, ejection fraction; PASP, pulmonary artery systolic pressure.
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Bono operation was performed in all BAV patients and in 7 
TAV patients; in the remaining 5 TAV patients an isolated 
ascending aorta replacement was performed. No statistical 
difference was observed in term of postoperative mortality 
and morbidity, including bleeding, permanent and transient 
brain injury, low cardiac output, pace-maker implantation, 
post-operative myocardial infarction, pulmonary failure 
requiring prolonged mechanical ventilation (>48 hours) and 
renal failure requiring dialysis. 

Biomechanical properties

The biomechanical test showed that the value of peak 
stress before the aortic wall rupture was higher in BAV-
TAA than in TAV-TAA tissue (see Figure 3A,B,C—V, VI, 
VII portions P<0.05, and IV portion P<0.01, respectively). 
The Young modulus value was lower in BAV-TAA than in 
TAV-TAA tissue (see Figure 3D—II, III, V portions P<0.05, 
respectively). In both BAV and in TAV patients, the right 
lateral longitudinal region of the TAA wall showed lowest 
value of peak stress before rupture and the highest value of 
Young modulus. TAA wall rupture was different between 
TAV-TAA and BAV-TAA (Figure S3). In BAV patients, 
the rupture of the aortic wall was sudden and involved 
uniformly all aortic wall layers, whereas in that from TAV 
patients a gradual and progressive aortic wall breakage was 
observed. Owing to the large computational cost of the 

hemodynamic simulations, a CFD analysis for each of the 
cases considered above has not been possible. Nevertheless, 
in order to assess the different flow features and a possible 
relation with the mechanical properties, one case for every 
patient category (BAV, TAV and CTR control) has been 
analysed and the results reported in Figure 3. Although 
these volume and surface renderings give an overall 
impression of the flow topology, they are not suitable to 
extract quantitative information and, for this reason, we 
have computed the mean value of the root mean square 
(RMS) of pressure, wall shear stress and velocity fluctuations 
that quantify the smoothness of the flow. The values are 
normalized with the mean value of the same quantity so 
that a root mean square of say 0.3 implies an intensity of the 
fluctuations that is 30% of the mean value. The bar graph 
of Figure 4 clearly shows that both the TAV and the BAV 
configurations have fluctuation levels higher than for the 
control case. In particular, it is true for the wall shear stress 
and, in the long term, the anomalous stress fluctuation 
might be responsible for a remodelling of the tissues that, 
in turn, is evidenced by the different mechanical properties. 
In BAV patients the pressure, wall shear stress and velocity 
fluctuations were higher in the convexity of the ascending 
aorta and aortic arch. In TAV patients, there was a uniform 
distribution of the pressure, wall shear stress and velocity 
fluctuations. 

Histomorphometric findings

Microscopic and histomorphometric examination of 
BAV and TAV aortic tissues did not show morphological 
characteristics or significant thickness variations (Figure 5). 
Microscopically, a variable diffuse medial thickening was 
present, with no differences in mean medial and intimal 
thickness between BAV, TAV TAA and control aortas. 
Semiquantitative evaluation of alcianophilia of the tunica 
media did not documented significant differences in GAG 
accumulation in TAA tissue of BAV and TAV groups, 
whereas control aortas showed lower GAGs accumulation 
(P<0.01). Verhoeff-Van Gieson staining showed increased 
fragmentation and reduced amount of elastic tissue in both 
BAV and TAV-TAA compared to control aorta (P<0.01 and 
P<0.05, respectively), with no differences between the two 
groups. Moreover, Masson’s trichrome staining evidenced a 
different staining pattern in BAV compared with TAV group. 
In particular, TAV-TAA showed a significant increased 
density of collagen fibers compared to BAV-TAA (P<0.05).  

Figure 4 Representative bar graph of the root mean square (RMS) 
of pressure, wall shear stress and velocity fluctuations that quantify 
the smoothness of the flow. CTR, control aorta; BAV, bicuspid 
aortic valve; TAV, tricuspid aortic valve; P, pressure on the aorta 
wall; tau, wall shear stress; V, velocity fluctuations.
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Figure 5 Microscopic and istomorphometric finding of aspects of human aortas in BAV and TAV aortopathy and in control aortic samples. 
(A) Aneurysmatic aortic tissue sections stained with Haematoxylin&Eosin showing medial degeneration with accumulation of basophilic 
material in BAV and TAV aortas. Alcian Blue staining shows accumulation of alcianophilic material in the tunica media of BAV, TAV and 
the control aortas. Verhoeff-Van Gieson staining documenting the loss and fragmentation of elastic fibers in the tunica media of a patient 
affected by BAV compared with the more regular arrangement of the tunica media in TAV aorta. Masson’s trichrome staining showed a 
higher accumulation of collagen fibers in BAV compared with TAV group, instead in both groups collagen fibers were reduced compared 
with the control aortas. MMP-2 expression was increased in BAV compared to TAV and control groups. Original magnification, 100× and 
200× for Masson’s trichrome and MMP-2 staining; The magnification for VVG, Alcian blue, and H&E staining is 100×. (B) Representative 
bar graphs of Haematoxylin & Eosin, Alcian Blue, Verhoeff-Van Gieson, Masson’s trichrome and MMP-2 staining in media tunic. t-test: * 
and **, P<0.05 and P<0.01, respectively. VVG, Verhoeff-Van Gieson; AU, arbitrary units; MMP-2, metalloproteinases-2. 
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Immunohistochemical findings

Representative images of immunostaining for MMP-2 are 
reported in Figure 5. BAV-TAA showed an increased MMP-
2 expression in the tunica media compared to other groups 
(P<0.05). MMP-2 medial expression in TAV-TAA was 
similar to that of control group. 

Correlation between histomorphometric findings and 
biomechanical properties 

Correlation analysis (Table 2) between histological 
parameters (alcianophilia, elastic tissue fragmentation 
and elastic tissue amount) and biomechanical properties 
(peak stress and Young modulus) revealed a moderate 
negative correlation between peak stress and alcianophilia 

in all BAV tissue portions (I and IV, P<0.05 and II, V, VII, 
P<0.01), except for the H portion, that displayed a weak 
positive correlation (P<0.01). The same moderate negative 
correlation was observed for the elastic fragmentation 
variable (I, IV and VII, P<0.01 and II and V, P<0.001), 
except for F portion displayed a weak positive correlation 
(P<0.01). Remaining correlations were almost weak and not 
significant (Table 2). Instead, correlation analysis in TAV 
group showed a weak positive correlation between peak 
stress and alcianophilia in II portion (P<0.01). The same 
was true for the correlation with the elastic fragmentation 
variable (II, P<0.01). Young modules and alcianophilia 
showed a significant weak negative correlation in I 
portion (P<0.01). Furthermore, Young modules value and 
elastic tissue fragmentation revealed a moderate positive 
correlation in A and G portions (P<0.001) (Tables 2,3).

Table 2 Correlation among histomorphometric findings and biomechanical properties

Groups
Peak stress vs. 

alcianophilia
Peak stress vs. elastic 
tissue fragmentation

Peak stress vs. 
tissue amount

Young modulus vs. 
alcianophilia

Young modulus vs. elastic 
tissue fragmentation

Young modulus vs. 
tissue amount

BAV

I −0.67* −0.28** 0.29 −0.06 −0.28 0.29

II −0.70** −0.73*** 0.29 −0.33 −0.21 0.13

III −0.56 −0.40 0.34 0.32 0.12 0.25

IV −0.90* −0.88** 0.57 −0.04 −0.22 0.16

V −0.66** −0.69*** 0.45 0.25 0.40 0.01

VI −0.38* 0.02** 0.32 −0.04 0.13 −0.12

VII −0.62** −0.28** 0.32 −0.41 −0.03 −0.06

VIII 0.10** 0.35 0.35 −0.14 −0.17 0.25

TAV

I −0.12 0.52 −0.01 −0.13** 0.52*** −0.41

II 0.07** −0.04** −0.30 −0.21 0.70 −0.75

III 0.06 −0.19 0.28 0.28 0.58 −0.48

IV 0.21 0.02 −0.08 −0.24 0.71 −0.81

V 0.36 −0.37 0.02 0.01 0.62 −0.67

VI −0.16 0.20 −0.16 −0.29 0.27 −0.09

VII −0.08 0.36 −0.37 −0.19** 0.58*** −0.46

VIII 0.40 0.23 −0.40 −0.35 0.60 −0.80

I: anterior longitudinal region; II: anterior circumferential region; III: posterior longitudinal region; IV: posterior circumferential region; V: left 
lateral longitudinal region; IV: left lateral circumferential region; VII: right lateral longitudinal region; VIII: right lateral circumferential region. 
t-test: *, ** and ***, P<0.05, P<0.01 and P<0.001, respectively. Positive correlation: weak, 0<P<0.3; moderate, 0.3<P<0.7; strong, P>0.7. 
Negative correlation: weak, −0.3<P<0; moderate: −0.7<P<−0.3; strong: P<−0.7. BAV, bicuspid aortic valve; TAV, tricuspid aortic valve.
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Table 3 Summary of computational analysis of aorta, mechanical evaluation of aortic specimens and histology in patients with bicuspid aortic valve 
(BAV) and tricuspid aortic valve (TAV)

Type of aortic valve Computational analysis Biomechanical evaluation Histomorphometrics and immunohistochemical findings

BAV • Levels of fluctuation 
was high; 
• Flow velocity and 
pressure was higher 
in the convexity of the 
ascending aorta and 
aortic arch

• Before the aortic wall rupture the 
value of peak stress was higher in 
TAA tissue;  
• The Young modulus value was 
low in the aortic wall;  
• The right lateral longitudinal 
region of the TAA wall showed 
lowest value of peak stress before 
rupture and the highest value of 
Young modulus

• A variable diffuse medial thickening was present with 
no differences in mean medial and intimal thickness 
between groups;  
• Semiquantitative evaluation of alcianophilia of the 
tunica media documented similar accumulation of 
GAGs in TAA tissue between groups;  
• Verhoeff-Van Gieson staining showed increased 
fragmentation and reduced amount of elastic tissue;  
• Masson’s trichrome staining showed a low density of 
collagen fibers;  
• Immunostaining for MMP-2 showed an increased 
expression in the aortic tunica media

TAV • Levels of fluctuation 
was high; 
• There was a uniform 
distribution of flow 
velocity and pressure

• Before the aortic wall rupture the 
value of peak stress was lower in 
TAA tissue;  
• The Young modulus value was 
high in the aortic wall;  
• The right lateral longitudinal 
region of the TAA wall showed 
lowest value of peak stress before 
rupture and the highest value of 
Young modulus

• A variable diffuse medial thickening was present with 
no differences in mean medial and intimal thickness 
between groups;  
• Semiquantitative evaluation of alcianophilia of the 
tunica media documented similar accumulation of 
GAGs in TAA tissue between groups;  
• Verhoeff-Van Gieson staining showed increased 
fragmentation and reduced amount of elastic tissue;  
• Masson’s trichrome staining showed a significant 
density of collagen fibers;  
• Immunostaining for MMP-2 showed a low expression 
in the aortic tunica media

Discussion

In the characterization of BAV aortopathy, flow dynamic is 
an emerging issue that induces dilation in the proximal aorta. 
This theory (hemodynamic theory) is supplanting the genetic 
hypothesis (6-8). Accordingly, several studies have reported 
that the differences in the phenotypes of BAV and in the type 
of valve dysfunction (stenosis versus regurgitation) result in 
distinct hemodynamics in the proximal aorta and influence 
strongly the risk for severe aortic events such as aortic rupture 
and dissection (30-37). To investigate how the hemodynamic 
turbulence induces aortic events, we investigated biomechanical 
properties and histological features of TAA tissue of BAV 
with those of TAV patients. Our histomorphometrical 
analysis reveled an increase of collagen content and MMP-
2 expression in BAV-TAA compared to TAV-TAA wall. 
Biomechanical properties of ascending aorta largely depend on 
the composition and content of the extracellular matrix (38).  
The two main structural components responsible for aortic 
compliance are elastin and collagen, and their structural 
as well as functional modification may lead to altered 
mechanical properties, contributing to aortic dilatation 

and aneurysm development. Biomechanical prediction 
of vessel wall properties critically depends on realistic 
constitutive models of the aortic wall. Ex vivo tissue tests, 
together with mechanically histologic information provide 
valuable input to develop constitutive descriptions (39). 
Integrated microstructural information also helps to 
explore the mechanisms by which wall morphology and 
structure are linked to wall mechanics and allow testing the 
predictability of reported aortic adaptation models (40).  
According to our analysis, BAV-TAA showed a higher 
deformability and elasticity compared with TAV patients. 
Consequently, the increased wall shear stress according the 
hemodynamic theory could not explain the sudden onset of 
rupture and dissection in BAV patients. On the other hand, 
if BAV aorthopathy was a disease only caused by altered 
hemodynamics, the replacement of the malfunctioning BAV 
would subsequently not only cure the valvular disease but 
also prevent further dilatation of proximal aorta. Whereas 
this hypothesis was suggested to be partially true in stenotic 
BAVs (41), potentially representing the more flow-related type 
of BAV dysfunction, it appears allusive regarding regurgitant 
BAV. The more extended BAV aortopathy involving the 
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aortic root is associated with regurgitant BAV and remarkably, 
aortic dilatation and the risk of aortic events does not stagnate 
after aortic valve replacement but further progress (37,42). 
Additionally, Girdauskas et al. (43) reported that extensive 
aortic dilatation including the aortic root also occurred in a 
considerable amount of patients with only trace regurgitant 
BAV, indicating that hemodynamic stress is unlikely to explain 
this kind of BAV aortopathy, likely being more induced by 
a genetic pathways. Moreover, recent studies showed that 
epigenetic signals (non-coding RNAs, DNA methylation, 
histone modifications) and the alteration of microbiota are 
involved in vascular pathology of the thoracic ascending 
aorta associated with BAV (44,45). In our opinion, instead of 
considering hemodynamics and genetics as separate principles 
in the development of BAV aortopathy, the manifold phenotype 
of this disease could result rather from individually different 
impacts of both factors and their individual interaction. It is 
likely that wall shear stress activates specific genetic pathways 
in BAV patients affecting local extracellular matrix homeostasis 
and subsequently the phenotype of BAV aortopathy (43,46,47). 
This is a typical example of mechanotransduction trying 
to adapt to the altered force impact on the wall (48,49). 
According to this theory, we could also explain the different 
mechanism of rupture comparing TAA tissue from BAV and 
TAV patients. In particular, in BAV patients the rupture of the 
aortic wall was sudden and involved uniformly all the aortic 
wall layers, whereas in TAV patients there was a gradual and 
progressive aortic wall breakage. Our biomechanical and 
histomorphometric results have an important implication in 
the clinical field in term of surgical indication. In fact, since 
BAV patients display a higher susceptibility for rupture and 
dissection independently of the ascending aorta diameter and 
of the aortic wall shear stress, a more aggressive treatment 
recommendation of TAA is suggested in BAV patients. The 
main limitation to the present study is that small simple size, 
and an additional work is required to improve experiences to 
confirm our observations. The small simple size also made it 
impossible to evaluate the potential influence of valve disease 
on the observed results. Finally, cases of BAV-TAA cases were 
not enough to assess the flow dynamics related to the different 
BAV phenotypes according the fusion of the coronary cusps 
and the raphe position.

Conclusions

The TAA tissue of BAV patients showed a higher 
deformability compared with TAV patients. The increased 
wall shear stress according to the hemodynamic theory 

could not explain the sudden onset of rupture and dissection 
in BAV patients and other mechanisms, including the 
activation of specific genetic pathways, epigenetic signals 
and alteration of the microbiota, could be investigated 
to explain differences in aortic deformability and rupture 
in those patients. The recommendation of a more 
aggressive treatment of BAV-TAA is needed for the high 
resusceptibility for rupture and dissection independently of 
the ascending aorta diameter and of the shear stress.
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Figure S1 Transthoracic echocardiography examination: (A) ascending aorta aneurysm; (B) bicuspid aortic valve; (C) aortic valve 
regurgitation; (D) ecocolor Doppler evaluation. 

Figure S2 Ascending aorta aneurysm and bicuspid aortic valve. (A) Intraoperative view of bicuspid aortic valve (BAV); (B) intraoperative 
view of ascending aortic aneurysm associated to BAV; (C) computed tomography view of ascending aortic aneurysm.

Figure S3 Ascending aorta specimens. (A) Uniform rupture of all layers of the aorta, found in the bicuspid aortic valve (BAV) group; (B) 
rupture with “flaking” of the aortic wall and progressive rupture of the three layers, found in the tricuspid aortic valve (TAV) group.
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