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Abstract
Cardiovascular disease (CVD) presents a great burden for el-
derly patients, their caregivers, and health systems. Structural 
and functional alterations of vessels accumulate throughout 
life, culminating in increased risk of developing CVD. Several 
inflammatory pathway are involved in vascular ageing. The 
growing elderly population worldwide highlights the need to 
understand how aging promotes CVD in order to develop new 
strategies to confront this challenge. In this review we ana-
lyzed the role of stem cells and new intervention measures as 
emerging drugs for vascular aging.

Key words: stem cell, inflammation, aging, cardiovascular dis-
eases.

Streszczenie
Choroby układu krążenia (CVD) są ogromnym obciążeniem dla 
osób w podeszłym wieku i ich opiekunów, a także systemów 
opieki zdrowotnej. Zmiany strukturalne i czynnościowe w obrę-
bie naczyń krwionośnych zachodzą przez całe życie, co prowadzi 
do zwiększonego ryzyka wystąpienia CVD. W procesie starzenia 
się naczyń krwionośnych bierze udział kilka szlaków zapalnych. 
Ze względu na obserwowany na świecie wzrost liczby osób w po-
deszłym wieku konieczne jest zbadanie, w jaki sposób proces 
starzenia się wpływa na rozwój CVD. Na tej podstawie możliwe 
będzie opracowanie nowych strategii terapeutycznych, które 
pozwolą stawić czoła temu wyzwaniu. W niniejszej pracy prze-
glądowej przeanalizowano rolę komórek macierzystych i nowych 
metod interwencyjnych jako innowacyjnych sposobów niwelo-
wania skutków procesu starzenia się naczyń krwionośnych.

Słowa kluczowe: komórki macierzyste, zapalenie, starzenie, 
choroby układu krążenia.
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Introduction
Age dominates risk factors for cardiovascular disease 

(CVD) [1, 2]. Indeed, the advent of contemporary treatments 
for acute coronary syndromes and stroke have helped to 
extend life expectancy [3]. Although an enormous success 
from an individual perspective, the resultant demographic 
shift presents one of the greatest challenges for the social 
and health care systems worldwide [4]. The population over 
65 years of age will double from 12% in 2010 to 22% in 
2040 [2]. Indeed, by 2020, the number of people 60 years 
of age and older will surpass the number of children below  
5 years of age. Although aging presents an array of disor-
ders [5], CVD carries the greatest burden for older persons, 
their care givers, and health systems [6]. Coronary heart 
disease (CHD) associates strongly with age, and it is the 
leading cause of death in Europe and the United States [7–
9]. The prevalence of CVD increases in people > 65 years of 
age, especially in those > 80 years of age, and will increase 
by 10% over the next 20 years [2]. From 2010 to 2030, an 

additional 27 million people will have hypertension, 8 mil-
lion will have CHD, 4 million will have stroke, and 3 million 
will have heart failure due to the rapid accumulation of the 
elderly [3]. The cardiovascular system shows several modi-
fications with advancing age [10] in all its sections. These 
modifications are related to the inflammatory reactions 
activated by several endogenous and exogenous stimuli. 
Stem cells emerged as new therapy to reduce the ageing 
related damage in the cardiovascular system. Additionally, 
other intervention measures have been discovered. Based 
on these observations, we provide an overview on emerg-
ing literature data about the role of stem cells and new in-
tervention measures as emerging drugs for inflammation 
and vascular ageing in cardiac surgery.

Stem cells as therapeutic option 
in cardiovascular disease

Tissue loss follows heart damage in consequence of the 
activation of a  remodeling process, in which the original 
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cardiac tissue is replaced by a scar [11] (Figure 1). Cardiac 
nonmyocyte cells, including cardiac mesenchymal stem 
cells (CMSCs), currently represent candidate targets for 
novel therapeutic strategies to counteract heart diseases 
[12]. Once activated, CMSCs contribute to the re-establish-
ment of all the cardiac cell subpopulations, including car-
diomyocytes [13]. Indeed, because of their plasticity, re-
duced immunogenicity, and the relative simplicity of 
isolation and culture ex vivo, CMSCs are a  suitable adult 
stem cell population to consider for therapies based on car-
diac regeneration. Recently, a  significant effort has been 
made to enhance CMSC differentiation toward the cardiac 
lineage. As an example, the generation of induced pluripo-
tent stem cells (iPS) starting from fibroblasts opened a new 
era for cell manipulation [14]. In 2010, Ieda et al. obtained 
for the first time induced cardiomyocytes (iCMs) from mu-
rine adult cardiac and skin fibroblasts by co-transduction of 
well-characterized cardiomyogenic transcription factors 
Gata4, Mef2c, and Tbx5 (GMT). By using this approach, the 
authors detected the rapid formation of cardiac troponin 
T positive cells (cTnT+) and the formation of contractile 
cells at a  later time point. Once injected into the heart, 
GMT-transduced fibroblasts underwent in vivo reprogram-
ming leading to the generation of new cardiomyocytes 
within 2 weeks [15]. Qian et al. demonstrated that nonmyo-
cyte cells resident in the murine heart can be successfully 
reprogrammed in vivo into cardiomyocyte-like cells by the 
local delivery of GMT after coronary ligation [16]. Song et al. 
improved the effect of GMT transduction by adding Hand2, 
a  transcription factor crucial for reprogramming of adult 
mouse cardiac fibroblasts into beating cardiac-like myo-
cytes in vitro, through the so-called GHMT cocktail [17]. 
Nkx2.5, Srf, Smartcd3, Mesp1, and Myocd have also been 
described as other factors that can further increase fibro-
blast reprogramming when used in combination with GMT 
factors [18, 19]. In addition to the expression of coding 
genes, microRNAs have also been described as a powerful 
tool for non-myocyte cell reprogramming. Indeed, Jayawar-
dena and coauthors found a  combination of microRNAs 
suitable for cardiac fibroblast reprogramming both in vitro 

and in vivo. This combination included miR-1, miR-133, miR-
208, and miR499. This set of microRNAs induced the ex-
pression of cardiac markers and also efficiently converted 
fibroblasts into functional cells with cardiomyocyte-like 
features such as the expression of ion channels, the pres-
ence of spontaneous calcium oscillations, and in vivo im-
proved contractility and cardiac performance after injury 
[20, 21]. Of note, in 2013, Nam et al. combined microRNAs 
with transcription factors to further enhance cell repro-
gramming [22]. Recently, small molecules have also been 
tested in reprogramming protocols to obtain iCMs or car-
diovascular precursors from CMSCs. In 2012, Vecellio et al. 
described a  novel active epigenetic cocktail (EpiC) com-
posed of all-trans retinoic acid (ATRA); phenyl butyrate (PB), 
a known HDAC inhibitor; and a nitric oxide donor (diethyl-
enetriamine/nitric oxide – DETA/NO) as a HDAC modulator 
[23–26], which when combined with low serum (5% FBS) 
could reprogram human CMSCs into functionally compe-
tent cardiovascular precursors [27]. HDAC inhibitors such 
as VPA have been further used by Fu et al. in combination 
with three compounds, CHIR9921 (GSK3 inhibitor), RepSox 
(TGFβR1 inhibitor), and forskolin (adenylyl cyclase activa-
tor), to generate iCMs from fibroblasts without any tran-
scription factor [28]. Notably, CHIR9921 is one of the three 
inhibitors also responsible for the “ground state” in mouse 
embryonic stem cells [29], and it has been recently used in 
combination with transcription factors and other small 
molecules to obtain iCMs [30]. The possibility to design an 
optimal culture medium to generate in vitro iCMs by a com-
bination of small molecules [31] represents a tool of unlim-
ited potential and a big challenge for the future. In light of 
this finding, Cao et al. have recently reported the repro-
gramming of somatic fibroblasts into cardiomyocyte-like 
cells by a  combination of nine chemicals. The chemical 
cocktail opens chromatin of the cardiac developmental 
genes, permitting their transcription and thus the acquisi-
tion of a  phenotype similar to that of embryonal cardio-
myocytes [32]. A number of preclinical studies in large ani-
mal models of MI indicated significant positive effects of 
mesenchymal stem cell on cardiac function and on the re-

Figure 1. A subset of bone marrow mesenchymal stem cells (BM-MSCs) have been shown to differentiate, in vitro, into vascular smooth 
muscle cells (VSMC) upon platelet derived growth factor β (PDGF-β) stimulation
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duction of scar size [33–37]. In these studies, MSCs were 
administered by intravenous or intracoronary injection or 
through direct injection into the cardiac tissue. It is note-
worthy that in some of these studies, MSCs were injected 
in combination with other precursor cells [38]. In fact, the 
stochastic lifetime accumulation of alterations consequen-
tial to DNA and mitochondrial damage, metabolic changes, 
oxidative stress, and inflammation, coupled with other en-
vironmental risk factors, may directly influence the homeo-
stasis of mesenchymal niches. In 2007, APOLLO (ClinicalTri-
als.gov Identifier: NCT00442806_Phase 1) established the 
safety and feasibility of adipose-derived MSCs infused in-
tra-coronary in patients with MI and characterized by ST 
elevation. The efficacy of the treatment was demonstrated 
by a significant improvement of the cardiac perfusion and 
a 50% reduction in scar formation after a 6-month follow-
up [39]. Similar results were obtained by the ADVANCE 
(NCT01216995_Phase 2) study. However, the MyStromalCell 
trial (NCT01449032_Phase 2) found an increase in exercise 
duration, a  reduction of angina, and a  general improve-
ment of the quality of life after a 6-month follow-up after 
injection of autologous MSCs in patients affected by isch-
emic cardiomyopathy. Other such trials reported positively 
about the overall safety and tolerance of the treatment af-
ter 13-month follow-up and a decreased number of arrhyth-
mic events or reduced chest pain, paralleled by an improved 
ventricular function, in patients with acute myocardial in-
farction treated with bone marrow mesenchymal stem cell 
[40]. In the REGENT Trial (Myocardial Regeneration by Intra-
coronary Infusion of Selected Population of Stem Cells in 
Acute Myocardial Infarction), the authors compared intra-
coronary infusion of bone marrow (BM)-derived unselected 
mononuclear cells (UNSEL) and selected CD34+CXCR4+ cells 
(SEL) in patients with acute myocardial infarction (AMI) and 
reduced < 40% left ventricular ejection fraction (LVEF). Two 
hundred patients were randomized to intracoronary infu-
sion of UNSEL (n = 80) or SEL (n = 80) BM cells or to the 
control (CTRL) group without BM cell treatment. Primary 
endpoint: change of LVEF and volumes measured by mag-
netic resonance imaging before and 6 months after the 
procedure. After 6 months, LVEF increased by 3% (p = 0.01) 
in patients treated with UNSEL, 3% in patients receiving 
SEL (p = 0.04) and remained unchanged in CTRL group  
(p = 0.73). There were no significant differences in absolute 
changes of LVEF between the groups. Absolute changes of 
left ventricular end-systolic volume and left ventricular 
end-diastolic volume were not significantly different in all 
groups. A significant increase of LVEF was observed only in 
patients treated with BM cells who had baseline LVEF < me-
dian (37%). Baseline LVEF < median and time from the on-
set of symptoms to primary percutaneous coronary inter-
vention > or = median were predictors of LVEF improvement 
in patients receiving BM cells. There were no differences in 
major cardiovascular events (death, re-infarction, stroke, 
target vessel revascularization) between groups [41]. In an-
other randomized trial, Grajek et al. assessed change in left 
ventricle ejection fraction (LVEF) and myocardial perfusion 

in patients with acute myocardial infarction (AMI) of the 
anterior wall treated with bone marrow stem cells (BMSCs), 
compared with the control group – from baseline in the 
acute phase up to 12 months of follow-up. Forty-five pa-
tients were randomized 2 : 1 to the BMSC group (n = 31)  
or to the control group (n = 14). Bone marrow stem cells 
were administered into the infarct-related artery (IRA)  
at 4–6 days after primary PCI. Groups were followed up 
with Tc-99m-MIBI SPECT, radionuclide ventriculography  
(EF-RNV), echocardiography (ECHO), and the spiroergomet-
ric stress test. Coronary angiography was repeated after  
6 months. EF-RNV did not differ significantly in both groups, 
but a  trend towards increase in EF at 6 months and its 
maintenance after 12 months was noted in the BMSC 
group. In the rest study, perfusion index (PI) of the  
region supplied with blood by IRA distal to its previous oc-
clusion (PI-IRA) improved significantly in the BMSC group at 
6 months: PI-IRA at 4–6 days vs. PI-IRA at 6 months (3.00 
±0.97 vs. 2.65 ±0.64; p = 0.017). At 12 months, PI-IRA at rest 
was 2.66 ±0.55; p = 0.07. A difference between BMSC and 
control groups in the rest study in PI-IRA was not observed. 
In the dipyridamole study (PI-dip), perfusion in the BMSC 
group was better compared with controls at 6 months  
(2.26 ±0.44 vs. 2.47 ±0.40; p = 0.033) and at 12 months 
(2.34 ±0.55 vs. 2.52 ±0.42; p = 0.014), including for the re-
gion supplied with blood by IRA (PI-IRA-dip; at 6 months 
2.63 ±0.77 vs. 3.06 ±0.46; p = 0.021 and at 12 months 2.71 
±0.63 vs. 3.15 ±0.51; p = 0.001). Results of LVEF, LVEDV, 
LVESV in ECHO and results of the spiroergometric stress 
test did not differ significantly between groups. Major ad-
verse cardiac events occurred more often in the control 
group (p = 0.027). In conclusion, BMSC intracoronary trans-
plantation in patients with anterior AMI did not result in 
increase in EF. Slight improvement of myocardial perfusion 
was noted in the BMSC group. This finding may indicate 
better microcirculation enhanced by BMSCs, but the small 
number of patients allows for a hypothesis rather than a fi-
nal statement [42].

Stem cell and tissue engineering: an advanced 
strategy to treat cardiovascular pathology  
in cardiac surgery

At present, although the previously established treat-
ments for cardiac and vascular disorders, such as trans-
plantation, surgical reconstruction, use of mechanical and 
synthetic devices, or administration of metabolic products, 
are effective, they still have several constraints and compli-
cations. Hence, the development of in vitro and in vivo bio-
mimetic constructs for specific target organs or tissues are 
more suitable for regeneration of damaged vessels  
(Figure 2). Throughout recent years many advances have 
been made toward using adult stem cells clinically, and this 
includes the development of tissue engineered vascular 
grafts [43] and tissue-engineered heart valves [44]. By in-
corporating various progenitor cells such as bone marrow-
derived mononuclear cells, mesenchymal stem cells, or en-
dothelial precursor cells into biodegradable materials, 
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vascular grafts and heart valves can be created that ad-
dress limitations currently seen with other treatment ap-
proaches. Some of these cells have also shown the ability 
to initiate regenerative processes within the graft to de-
velop tissue mimicking native arteries and valve. Tissue 
engineering strategies have three basic components: first-
ly, the cells or source which must express the appropriate 
genes and maintain the appropriate phenotype in order to 
preserve the specific function of the tissue [45]; secondly, 
the bioreactive agents or signals that induce cells to func-
tion; and thirdly, the scaffolds that house the cells and act 
as a  substitute for the damaged tissue [46]. The source 
may be either embryonic stem cells (ESC) or adult stem 
cells (ASC), the scaffolds may be categorized as synthetic, 
biological, or composite, and the signals may include 
growth factors/cytokines, adhesion factors, and bioreac-
tors [47]. Currently, downstream and upstream approaches 
in tissue engineering have been continuously investigated 
by many groups as the most promising tissue engineering 
approaches. The downstream approach usually employs 
implantation of precultured cells and synthetic scaffold 
complexes into the defect area. The cells or source, gener-

ally isolated from host target tissues, are expanded in vitro 
and pre-seeded into the scaffold to provide a porous three-
dimensional structure that accommodates the seeded cells 
and forms the extracellular matrix (ECM) [48, 49]. Subse-
quently, multiple methods such as cell aggregation, micro-
fabrication, cell sheeting, and cell printing are used to gen-
erate modular tissues. These are then assembled through 
random assembly, stacking of cell sheets, or directed as-
sembly into engineered tissues with specific micro-archi-
tectural features. Thereafter, the engineered tissue is trans-
planted into the defective area. This approach allows 
scientists to finely transform the nanostructure of materi-
als by balancing polymer degradation rates with ECM pro-
duction and cellular infiltration which results in increased 
cell binding sequences, enzymatic cleavage sites, and teth-
ering of chemoattractant molecules [49, 50]. Conversely, in 
the upstream approach, there are two ways to manufacture 
the engineered tissue: (1) cells and biomaterial scaffolds 
are combined and cultured until the cells fill the support 
structure to create an engineered tissue [51]; or (2) acellular 
scaffolds with incorporated biomolecules are delivered im-
mediately after injury. The biomolecules are released from 

Figure 2. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve)
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the scaffolds in a controlled manner, and they may recruit 
progenitor cells in the injured area and promote their pro-
liferation and differentiation, eventually repairing the in-
jured tissues [52, 53]. Tissue engineering is a promising ap-
proach that may lead to novel constructs that will satisfy 
this unmet need and overcome the limitations of current 
valve prosthetics. The tissue-engineered heart valve (TEHV) 
will be constructed using a combination of a porous scaf-
fold, a  cell population, and signaling factors and has the 
potential to provide (1) excellent hemodynamics, eliminat-
ing the need for anticoagulation therapy; (2) active tissue 
remodeling, preventing degeneration; and (3) growth char-
acteristics, preventing the need for reoperation. The two 
primary types of valve scaffolds for the TEHV are natural 
scaffolds, such as decellularized tissue or biological materi-
als, and synthetic constructs fabricated from degradable 
polymers [54]. Each type has inherent benefits and chal-
lenges, but decellularized heart valves are of significant in-
terest. Decellularized heart valves are composed of biologi-
cal materials that can positively impact cell differentiation 
and serve as building blocks during the remodeling process 
[55, 56]. Additionally, decellularized valves do not necessi-
tate complete biodegradation and often maintain the me-
chanical anisotropy of the native valves from which they 
are derived [56–59]. Decellularized heart valves have been 
more clinically relevant than polymeric valves thus far, as 
they have been implanted as stand-alone valve substitutes 
and as TEHVs in animals and humans, albeit with mixed 
results [60–68]. However, decellularized heart valves are 
not without their limitations. For manufacture, decellular-
ized valves require human or animal tissue, which is limit-
ed in supply, and necessitates cryopreservation for storage. 
Freeze-drying of biologic heart valves has been explored to 
facilitate long-term storage; however, freeze-drying leads 
to collapse of the extracellular matrix (ECM) structure and 
disruption of biomolecules. Research with lycoprotectants 
may overcome this limitation in the future [69]. Addition-
ally, the success of decellularized heart valves is highly reli-
ant upon the decellularization process and the potential 
immune response following implantation. On the other 
hand, man-made scaffolds, fabricated from synthetic or 
biological materials, do not require donor tissue but have 
struggled to recreate the macro- and micro valve anatomy 
and mechanical anisotropy of the native valve. Fabricated 
scaffolds must also undergo complete biodegradation in 
synchrony with the production of ECM to remain function-
al. Fabricated or synthetic scaffolds have been used as 
a TEHV in animals, but have seen far less use clinically than 
decellularized valves. Therefore, decellularized valve scaf-
folds have the greatest potential for expeditious develop-
ment of a TEHV due to the regulatory history, long clinical 
experience with homografts, as well as a deep research fo-
cus by many groups. To date, synthetic scaffolds have not 
been used for clinical application and still are in the re-
search and development stage. Currently, the mechanical 
and biological valves are used for clinical purposes. How-

ever, the mechanical prostheses have the adverse aspect of 
lifelong anticoagulation medication, and biological ones 
suffers from progressive degeneration. Biocompatible and 
biodegradable materials have been widely used in surgical 
application with neither immunogenic nor adverse side ef-
fects of degradation. Application of biocompatible scaffolds 
will result in a completely autologous living structure with 
the potential to grow and remodel. Therefore, the risk of an 
immunogenic response and infection is low due to the use 
of biodegradable materials. Shinoka et al. [70] in May 1999 
developed synthetic heart valve scaffolds from a copolymer 
of PLA and PGA, seeded with either bone marrow cells or 
cells expanded from the saphenous vein harvest and con-
duit in 40 children with different forms of complex conge-
nial heart valve disease. Serial post-operation investigation 
such as magnetic resonance imaging (MRI) and angiogra-
phy represent no dilatation or even rupture while the histo-
logical evaluation image revealed calcification in these pa-
tients [70]. The application of bone marrow stem cells has 
been proposed recently and is still ongoing for further in-
vestigation. The harvesting is less invasive, and they grow 
faster than interstitial cells. However, the mechanism of 
differentiation is still unknown and leaves space for further 
survey. Neuenschwander and Hoerstrup [71] initially report-
ed the application and implantation of a PGA scaffold seed-
ed by autologous cells from sheep in the animal but the 
high stiffness of PGA and lack of mechanical properties 
made it unsuccessful. Later, they accepted polyhydroxyoc-
tanoate (PHO) seeded with the autologous cells of ovine 
arterial. The result after 20 weeks of the implantation con-
firms no stenosis or thromboembolism. The experiments 
on natural porcine heart valve leaflets suggested that the 
elastic modulus and tensile strength of the valve cups are 
higher in the circumferential direction (collagen architec-
ture organized direction) compared to the radial direction. 
Thus, the uni-axial tensile tests do not fully resemble the 
mechanical properties of the valve leaflets. The biaxial test 
is usually used to measure the circumferential and radial 
direction simultaneously. Stella et al. [72] investigated the 
biaxial time-dependent tensile behavior of a porcine heart 
valve including stress relaxation and strain rate under  
0–60 N/m. They found that the stretch and tensile relation 
was insensitive to the strain rate. Their study indicates that 
there is no relation between the creep mechanism and the 
relaxation in the heart valves.

Conclusions
Regenerative medicine represents a new era in cardiac 

surgery. Stem cells, vascular and valve scaffolds may be the 
new intervention measures in the treatment of cardiovas-
cular diseases. Other studies are necessary in order to de-
fine the therapeutic effect of stem cells and scaffolds.
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