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Abstract Environmental and commercial drivers are leading to a circular
economy where systems and components are routinely recycled or remanu-
factured. Unlike traditional manufacturing, where components typically have
a high degree of tolerance, components in the remanufacturing process may
have seen decades of wear, resulting in a wider variation of geometries. This
makes it difficult to translate existing automation techniques to perform Non-
Destructive Testing (NDT) for such components autonomously. The challenge
of performing automated inspections, with off-line tool-paths developed from
Computer Aided Design (CAD) models, typically arises from the fact that
those paths do not have the required level of accuracy. Beside the fact that
CAD models are less available for old parts, these parts often differ from their
respective virtual models. This paper considers flexible automation by com-
bining part geometry reconstruction with ultrasonic tool-path generation, to
perform Ultrasonic NDT. This paper presents an approach to perform custom
vision-guided ultrasonic inspection of components, which is achieved through
integrating an automated vision system and a purposely developed graphic
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user interface with a robotic work-cell. The vision system, based on structure
from motion, allows creating 3D models of the parts. Also, this work compares
four different tool-paths for optimum image capture. The resulting optimum
3D models are used in a virtual twin environment of the robotic inspection
cell, to enable the user to select any points of interest for ultrasonic inspection.
This removes the need of offline robot path-planning and part orientation for
assessing specific locations on a part, which is typically a very time-consuming
phase.

Keywords Robotic inspection · 3D reconstruction · Non-Destructive Testing
(NDT)

1 Introduction

Robotic inspection of components in the manufacturing and remanufacturing
industry has been a growing research area [2,13]. Ultrasonic-based inspection
techniques have been used in robotic systems to speed up the NDT inspection
of critical components [26, 27, 34]. Although such robotic systems have in-
creased inspection rates, these autonomous systems are based on robots that
manipulate ultrasonic sensors through predefined tool paths. The robot tool
paths are typically defined on the digital computer aided design (CAD) models
of the parts to be inspected. Unfortunately, parts and components undergoing
remanufacturing often differ from their respective virtual models. Therefore,
robotic inspection systems are still lacking strategies to achieve flexible au-
tomation at a reasonable cost. There is an increasing need for automating the
process of robotic tool path generation, to enable an effective NDT inspection
of components with complex geometries.
A robotic tool path can be generated by either a time intensive manual mea-
surement of the object, expensive 3D scanning of the object [40], or the process
of photogrammetry, which is cheap and readily accessible. Photogrammetry
methods offer its widespread applications contributing to achieving flexible
autonomy in fields such as engineering, geology, health, safety and manufac-
turing [11,21,22,36,39,41]. It provides a cost-effective solution to acquire part
geometries in the form of 3D models. 3D models produced through techniques
such as structure from motion (SfM) can be used to construct suitable sub-
millimetre accurate tool paths for robotic ultrasonic testing (UT) [44]. In this
paper, we present a photogrammetry framework that starts with automated
image acquisition to capture the images of the component placed in the robotic
work-cell by using a single red, green, and blue (RGB) color machine vision
camera, mounted at the end effector of the KUKA AGILUS robot arm [23].
The collected images are used by SfM [24], a 3D reconstruction technique, to
obtain sparse scene geometry and camera poses. Then, patch-based multi-view
stereo is used to obtain the dense scene geometry, producing a 3D model of
the object. This 3D model is used to construct the tool path for a robot to
perform the NDT inspection of specific locations through an ultrasonic probe.



Title Suppressed Due to Excessive Length 3

SfM-based 3D reconstruction is the process of generating a computer model
of the 3D appearance of an object from a set of 2D images and provides an
alternative to costly and cumbersome 3D scanners such as Velodyne Puck [42].
In the projection process, the estimation of the true 3D geometry is an ill-posed
problem (e.g. different 3D surfaces may produce the same set of images). The
3D information can be recovered by solving a pixel-wise and/or point-based
correspondence using multiple images. However, images of specimens acquired
in industrial environments can be challenging to use, because of the self-similar
nature of industrial work-pieces, their reflective surfaces, and the image lim-
ited perspective (when scanning at a fixed stand off). This makes it difficult to
produce the 3D model for a component and the associated robotic tool path
with high accuracy. An accuracy of 1.0-3.0 mm is, typically, a requirement
for automated ultrasonic testing. Furthermore, automating the NDT inspec-
tion of components in the manufacturing and remanufacturing industries is
a difficult task because of the inconsistencies in the size and geometry of the
components to inspect. We used the SfM technique to develop an autonomous
3D vision system. As SfM-based 3D reconstruction techniques are sensitive to
environmental factors such as motion blur, non-uniform lighting, and changes
in contrast, the image acquisition approach influences the resulting 3D model.
For this purpose, we developed four approaches to acquire the images of sample
objects. Moreover, UT-based NDT inspection requires the accurate position-
ing of the ultrasonic probe on the surface of the object. In this regard, our
work aimed at producing complete and accurate 3D models which could be
used to generate the required tool path for UT. This paper aims to contribute
to the existing state-of-the-art in two-fold:

1 The work compares different image acquisition techniques and presents the
results of each method on SfM-produced 3D models.

2 The work introduces the use of accurate 3D models, resulting from the
3D vision system, to produce the robot tool paths for ultrasonic NDT
inspection.

Section 2 provides the relevant literature for robot vision supporting various
visual inspection tasks. Section 3 provides a brief description of the experi-
mental setup and is followed by an overview of the proposed system in section
4. Section 5 presents the image acquisition system, the 3D modelling, and the
integration of the resulting 3D model into the in-house developed interactive
graphical user interface (GUI) for vision-guided NDT. The experimental setup
is presented in section 6. Section 7 presents results obtained from the exper-
imental setup and a detailed discussion is presented. Section 8 provides the
concluding remarks.

2 Related Work

Robots are equipped with sensors such as cameras [35], lasers [17], radars [16],
and ultrasonic probes [26]. For example, in a factory setting, robots equipped
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with ultrasonic probes have been able to perform NDT inspection success-
fully [26, 27, 37]. Although the use of artificial intelligence (AI) might intro-
duce many layers of autonomy in several robotic systems, it is expected that
a degree of human involvement will remain in the automated NDT inspection
of safety critical components (e.g. in the specifications of the areas to inspect
and in the assessment of the inspection results). With the advancements in
robot vision, new robot control systems have the potential to enable flexible
automation. In particular, 3D reconstruction methods can provide component
digital twins to drive a robot to the user-defined areas of interest [29, 30].
A plethora of 3D reconstruction techniques have been developed, which are
mainly categorised as RGBD (using RGB and Depth images), monocular,
and multi-camera-based methods. RGBD sensors operate on the basis of ei-
ther structured light or Time-of-Flight technologies. Structured light cameras
project an infrared light pattern onto the scene and estimate the disparity
given by the perspective distortion of the pattern due to the varying object’s
depth. ToF cameras measure the time that light emitted by an illumination
unit requires to travel to an object and back to a detector. RGBD cameras
such as Kinect achieve real-time depth sensing (30 FPS), but for each image
frame, the quality of the depth map is limited [20]. Kinectfusion [18, 31] is
recommended for achieving the 3D reconstruction of static objects or indoor
scenes for mobile applications with a tracking absolute error of 2.1-7.0 cm.
In recent years, simultaneous localisation and mapping (SLAM) [7, 8, 10, 32]
using only cameras has been actively discussed, as this sensor configuration is
simple, operates at real-time and achieves drift-free performance inaccessible
to Structure from Motion approaches.
One of the limitations of the RGBD sensor is that it fails to produce depth
information for glossy and dark solid colour objects leading to holes and noisy
point clouds. Additionally, in visual SLAM, the loss of tracking results in
recomputing the camera pose with respect to the map, a process called re-
localization [38]. RGBD sensors are more suitable for applications that require
real-time operation at the cost off accuracy, 3D mapping and localisation, path
planning, autonomous navigation, object recognition, and people tracking.
Multi-camera systems promise to provide 3D reconstruction with the highest
accuracy, as that reported in [1, 3, 33,45], although the cost for the setup and
maintenance is high. Fig. 1 illustrates a typical work-flow of a multi-camera
3D vision system.
Structure from motion (SfM) is a classical method based on a single camera
to perform 3D reconstruction; however, achieving millimetre to sub-millimetre
accuracy is challenging. An SfM-based 3D reconstruction pipeline is illustrated
in Fig. 2.

3 Experimental Setup

This section provides a description of the hardware and software technologies
used to realise the work reported in this paper.
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Fig. 1: Work-Flow diagram denoting the Multi-Camera based 3D reconstruc-
tion pipeline.

Fig. 2: Flow diagram denoting the SfM-based 3D reconstruction pipeline.

3.1 Robotic Arm

The KUKA KR AGILUS is a compact six-axis robot designed for particularly
high working speeds. It has a maximum reach of 901 mm, maximum payload
of 6.7 kg, and pose repeatability of (ISO 9283) 0.02 mm [23].
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3.2 Machine Vision Camera System

An industrial FLIR machine vision camera BFLY-PGE-50S5C-CS supporting
the USB 3.0 interface is used; it consists of a global shutter CMOS sensor
Sony IMX264 and M0824-MPW2 lens. The sensor provides a high resolution
of 5 MP, which is perfectly suitable for applications under low-light conditions
and extremely low-noise images at full resolution (2456 x 2054 px) with a
compact size of 2/3”. The chosen lens supports the sensor size and resolution.
It has a fixed focal length of 8 mm, manual iris control and uses the C-mount
interface to connect to the sensor. The camera system can be mounted to the
end effector of the robot arm as shown in Fig. 3.

Fig. 3: Industrial machine vision camera attached to the end effector of KUKA
AGILUS.

3.3 Ultrasonic Wheel Probe

A dry-coupled wheel transducer [9,25] that houses two piezoelectric ultrasonic
elements with a nominal centre frequency of 5 MHz is attached to the robot as
shown in Fig. 4. It operates on the basis of the pulse-echo mode, performing
both the sending and the receiving of the ultrasonic waves as the sound is
reflected back to the device. The ultrasound is reflected by the interfaces, such
as the back wall of the object or an imperfection within the object. The probe
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shown in Fig. 4 is a dry-coupled transducer, which was selected to avoid using
liquid couplant during the robotic ultrasonic inspection.

Fig. 4: Ultrasonic wheel probe mounted to the end effector of KUKA AGILUS.

3.4 Software Technologies

For robot control and path planning, a C++ language-based toolbox, namely
the Interfacing Toolbox for Robotic Arms (ITRA), developed by some of the
authors of this work, was used [28,30]. ITRA was used to achieve fast adaptive
robotic systems, with a latency of as low as 30 ms and facilitate the integration
of industrial robotic arms with server computers, sensors, and actuators. We
used a MATLAB-based interface to access ITRA.
A Python-based spinnaker SDK [12] supporting the FLIR camera systems was
used to automate the image acquisition process.
VisualSFM is 3D reconstruction software using structure from motion (SfM)
[43]. This program integrates the execution of Yasutaka Furukawa’s PMVS/CMVS
[14] tool chain, which was used to produce dense reconstruction. The dense
re-constructed model was post-processed in MeshLab [4].
To mitigate the environmental brightness variations, we used four additional
135-W lights with a colour temperature of 5500K and set them up at suitable
locations around the robotic work-cell.
A workstation consisting of Intel(R) Core(TM) i7-4710HQ CPU, 16 GB of
memory, and the 64-bit Windows 10 operating system was used to perform
image acquisition, 3D modelling, and ultrasonic NDT testing guided by the
3D vision system.
In order to quantitatively analyse the 3D model produced by the 3D vision
system to the CAD model, GOM Inspect software [15] was used to perform
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the mesh surface analysis on the CAD model. The obtained mesh from 3D
modelling was aligned with the CAD model, and then, surface analysis was
performed by computing the standard deviation of the distance as an error
metric.

4 Overview of the Vision-guided Robotic UT System

Obtaining the image data for a given component newly introduced in the
robotic work-cell is an important stage. In order to acquire image data free
from motion blur and exposure of uniform lighting, containing 75%-85% over-
lap between image pairs, we developed an automated image acquisition system
as part of the 3D vision system, which could gather images for a given sample
object in the robotic work-cell. This image acquisition system could execute
four different approaches to capture the object appearance in the work-cell.
Each approach was investigated for its impact on the 3D model produced by
the 3D vision system.
Images collected from the vision system were used to produce a sparse point
cloud of the sample object along with the associated camera poses by using
structure from motion. Both the sparse point cloud and the camera poses were
used by patch-based multi-view stereo (PMVS2) [14] to obtain a dense point
cloud. The dense point cloud was further processed to obtain a mesh and fi-
nally integrated into the KUKA KR5 robot control graphical user interface
(GUI). The schematic workflow of the vision-guided robotic UT inspection
system is illustrated by the flow chart shown in Fig. 5. The GUI (see Fig. 6
represents the reconstructed mesh in the virtual simulation environment of the
robotic work-cell. This allowed for pre-planning the robot action by selecting
a surface point on the object mesh, providing easier access for the operator.
Thereafter, robot actions were invoked by finding the optimum tool path for
the ultrasonic wheel probe to approach the selected point on the object. Fi-
nally, a trajectory normal to the object surface brought the probe into contact
with the component, and UT inspection was carried out at the requested point.

5 Three-Dimensional Vision System

This section describes an automated 3D vision system that performs image
acquisition for an object in a robotic work-cell and produces a 3D model from
the collected images using SfM. The following sub-sections provide further
details on the 3D vision system.

5.1 Automated Image Acquisition

The image acquisition system was fully automated and capable of capturing
images for a component placed in the robotic work-cell using four different
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Fig. 5: Flow chart presenting overview of vision-driven NDT inspection.
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Fig. 6: Graphical user interface to import the reconstructed part geometry and
execute vision-driven NDT inspection.

robot tool paths. These tool paths were motivated by the geometric shape
of objects and to ascertain sufficient overlap (75%-85%) between image pairs,
which was a requirement for obtaining complete and accurate 3D models using
SfM. Acquiring images through a robot-mounted camera prevented motion
blur and had less contrast variance, thereby producing high-quality image
datasets. In order to reconstruct the geometry of the sample object, we tested
four different image acquisition robot tool paths, which are briefly described
below.

5.1.1 Raster

A raster path is a scanning pattern of parallel lines (passes) along which pic-
tures are collected at constant pitch distances (Fig. 7). Raster tool-paths are
best-suited to larger components.

5.1.2 Polar Raster

A polar raster is the corresponding version of the Cartesian raster in polar
coordinates. The passes are hemisphere meridians, separated by a constant
angle (the scanning pitch). The pictures are taken at constant angle pitch
along the scanning passes (Fig. 7b). An inconvenience of the polar raster is
that the density of locations where pictures are taken, increases at the pole of
the polar raster and redundant pictures are collected at the pole.
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Fig. 7: Raster (a) and polar raster (b) scanning paths.

5.1.3 Helical Path Constructed on a Hemisphere

To overcome the limitations of the raster and polar raster scanning patterns,
helicoid (spiral) tool-paths have been tested. A circular helicoid is a ruled
surface having a cylindrical helix as its boundary. In fact, the cylindrical helix
is the curve of intersection between the cylinder and the helicoid. The circular
helicoid bounded by the planes z = a and z = b is given in parametric form
by:







x = u · cos(v)
y = u · sin(v)

z = cv

(u, v) ∈ [0, r] ×

[

a

c
,
b

c

]

. (1)

Let f be a positive continuous function. A surface of revolution generated by
rotating the curve y=f(z), with z∈ [a, b], around the z-axis has the equation:

x2 + y2 = f2 (z) (2)

and a parametric representation can be given by:






x = f(t) · cos(s)
y = f(t) · sin(s)

z = t

(t, s) ∈ [a, b] × [0, 2π] . (3)

As the intersection of a circular helicoid and cylinder is a cylindrical helix,
the intersection of a helicoid and another surface of revolution gives rise to a
three-dimensional spiral. Equating x, y and z, respectively from equations (1)
and (3) one gets:







u · cos(v) = f(t) · cos(s)
u · sin(v) = f(t) · sin(s)

cv = t

(4)
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Imposing the condition f (t) ∈ [0, r], it follows: u=f (t), hence the equations
of the three-dimensional spiral are given by:







x = f(t) · cos(t)
y = f(t) · sin(t)

z = t

t ∈ [a, b] (5)

The hemisphere of radius r is generated by the function f : [0, r] , f (z)=
√
r2−z2.

Then the hemispherical helical curve is given by:







x =
√
r2 − t2 · cos( t

c
)

y =
√
r2 − t2 · sin( t

c
)

z = t

(t, c) ∈ [0, r]× [0,∞] (6)

Imposing the condition f (t) ∈ [0, r], it follows: u=f (t), hence the equations
of the three-dimensional spiral are given by:







x = f(t) · cos(t)
y = f(t) · sin(t)

z = t

t ∈ [a, b] (7)

The hemisphere of radius r is generated by the function f : [0, r] , f (z)=
√
r2−z2.

Then the hemispherical helical curve is given by:







x =
√
r2 − t2 · cos( t

c
)

y =
√
r2 − t2 · sin( t

c
)

z = t

(t, c) ∈ [0, r]× [0,∞] (8)

Fig. 8 shows the top and lateral view of a hemispherical helicoid path, used
for robotic photogrammetric scan.

(a) (b)

Fig. 8: Top (a) and lateral view (b) of a hemispherical helicoid path, used for
robotic photogrammetric scan.
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5.1.4 Helical Path Constructed on Paraboloid

Consider the function of the primitive parabola of a paraboloid of revolution,
f (z)=a

√
b−z with z∈ [a, b], the equations of paraboloid spiral are:







x = a
√
b− t · cos( t

c
)

y = a
√
b− t · sin( t

c
)

z = t

t ∈ [a, b] (9)

Fig. 9 shows the top and lateral view of a paraboloid helicoid path, used for
robotic photogrammetric scan.

(a) (b)

Fig. 9: Top (a) and lateral view (b) of a paraboloid helicoid path, used for
robotic photogrammetric scan.

5.2 Three-Dimensional Modelling

SfM was used to reconstruct a scene incrementally and did not require a par-
ticular order of 2D images. It took an input consisting of a set of images,
calculated the image features (SIFT used in this study) and image matches,
and produced a 3D reconstruction of the camera poses and the sparse scene
geometry as the output. We used patch-based multi-view stereo [14] to use
this sparse representation of the scene from SfM and produced a dense scene
geometry as the output in the form of a point cloud along with the computed
surface normals. MeshLab commands were used to post-process the point cloud
and produce a mesh, which was a collection of vertices, edges, and faces that
described the shape of a 3D object. The resultant mesh and the associated sur-
face normals were used to underpin the required UT tool path for any given
point on a given object undergoing inspection. This allowed the robot to guide
the UT wheel probe in order to approach the selected point for inspection and
make the contact. Typical UT measurements could then be taken for further
analysis.
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6 Experimental Design

This section presents the experimental setup used to test and validate the
proposed vision-guided robotic component inspection system.

6.1 Samples and Ground Truth

Two sample objects, namely a circular steel flow iron pipe segment (shown
in Fig. 10(a)) and an aluminium stair case) (shown in Fig. 10(b)), were cho-
sen; they contained self-similar geometric shapes, low texture, and reflective
surfaces in order to reflect on the type of components that typically undergo
inspection in the manufacturing and remanufacturing industry. To acquire the

(a) (b)

Fig. 10: Sample objects: segment of a steel flow iron steel flow iron pipe segment
(a) and aluminum stair case(b).

ground truth/CAD model in the form of a mesh for the above samples, a GOM
Scanner [5] was used. It is noteworthy that because of the self-similar nature
of these sample objects and glossy appearance, initially, the GOM Scanner
also struggled to produce a complete and accurate model. Reference markers
were applied on the sample objects to enrich the sample surfaces with texture.
Additionally, to mitigate the glossy and reflective effects, a matt developer
spray was used to dull the sample finish.

6.2 Acquiring Image Datasets

This sub-section describes the setup for the image acquisition system and the
tool-path approaches used to capture the view sphere of the objects.
We captured the images of an object such that the overlap between two con-
secutive image pairs was 70%-90%. The development of these approaches was
motivated by the flexibility of the robot control over using a turntable and
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reaching the limitation of the KUKA KR5 robot arm. However, these ap-
proaches were flexible and hardware independent. A discreet robot movement
was used for all the tool paths, with the robot stopping at every target lo-
cation and triggering the image capture on the data collection computer by
setting a digital Boolean output to a high value. The system allowed the user
to specify the required number of images. The following sections describe these
approaches as used in the experiments.

6.2.1 Aluminium stair case Sample

For rectangular shape objects such as aluminium stair case sample, the raster
scan was used. With this tool-path approach, in all, 600 images were acquired
using a raster scan (sample images are shown in Fig. 11). The measured light
for the aluminium stair case object was 410 lux.

Fig. 11: Sample images of aluminium stair case captured from different view
angles.

6.2.2 Steel flow iron pipe segment sample

For components with complex appearances such as steel flow iron pipe seg-
ments (sample images are shown in Fig. 12), more sophisticated tool paths
were required to acquire images in order to capture the fine details observed
in the different views of the surface of the object. In all, 2298 frames were
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acquired using the polar raster tool path, 2294 using the hemispherical spi-
ral, and 857 using the paraboloid spiral. The number of images acquired per
tool path was influenced by the reach limit of the robot and the consistency
constraint on the image pairs for a given object.

Fig. 12: Sample images of steel flow iron pipe segment captured from different
view angles.

6.3 Obtaining 3D Model

We used Visual SfM [43] to produce an estimation of the camera positions and
the sparse scene geometry and generate a dense scene geometry using PMVS2
[14]. It had the advantage of GPU support, reducing the computational time.
The dense point cloud representing the scene geometry was processed using
MeshLab commands [4] to segment, clean, and scale the point cloud. Poisson’s
surface reconstruction algorithm [19] was used to reconstruct the surface from
the point cloud in the form of a mesh; a polygon mesh is a collection of vertices,
edges, and faces that make up a 3D object.

6.4 Integrating into Robot Kinematic Chain

A script was developed in MATLAB to perform robot control actions for the
image acquisition tasks and for generating an ultrasonic tool path for the NDT
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inspection. The coordinate system of the mesh obtained from the previous sec-
tion was transformed into the KUKA KR5 robot arm’s base frame. This could
be visualised using the robot control graphical user interface (GUI) developed
in-house. This GUI (see Fig. 1) allowed user-friendly interactions in a simu-
lated environment for the selection of a surface point on the component and
could later be used to perform the UT-based NDT inspection of the selected
point.

7 Results and Discussion

This section presents the results obtained from the experiments to evaluate and
validate our proposed vision-guided robotic component inspection system for
the manufacturing and remanufacturing industry. Firstly, we evaluated the im-
age acquisition approaches of the 3D vision system by comparing the obtained
mesh surfaces with their respective CAD models. Secondly, we validated the
accuracy and repeatability of our vision-guided robotic component inspection
system. For this purpose and for the sake of simplicity while demonstrating
the proof of concept, we have reported the experimental results obtained for
the aluminium stair case sample by enabling the ultrasonic tool path executed
by the robot to perform tasks such as NDT.
We analysed the automated image acquisition system for four tool-path ap-
proaches by comparing the quality of the obtained image datasets. After each
image dataset was captured, the quality of a dense point cloud for an object
was unknown until the final result. In this regard, the image quality metrics
were used to analyse the quality of the image dataset at the beginning of the
process. We use the Mutual Information (MI) as a metric to determine the
quality of the image datasets. It is a measure of how well one can predict the
signal in the second image, given the signal intensity in the first image [6]. With
this simple technique, we could measure the cost of matching image pairs with-
out the requirement of having the same signal in the two images. The lower
value of MI for the image pairs translated into a high content overlap. Table
1 shows the summary of the MI metrics computed for each dataset obtained
from all of the image acquisition tool paths. For the polar tool-path approach,
the standard deviation of 0.32 was observed while translating to a high overlap
of content for the image pairs. Furthermore, the observed standard deviations
for the polar, hemispherical spiral, and paraboloid spiral tool-paths were 0.69,
0.44, and 0.46 respectively. From Table 1, by comparison, we deduced that
despite the image dataset containing a reduced number of images by a factor
of approximately 2

3
, the standard deviation of 0.46 was achieved, translating

to having a better content overlap in the image pairs than in the cases of the
polar raster and hemispherical spiral tool paths.
In the following sections, we present an analysis of the 3D models produced
from each image dataset and compare with their respective ground truth.



18 Aamir Khan et al.

Table 1: Summary of MI metric computed for each dataset obtained from all
image acquisition tool paths.

Component Type Tool-path Type No. of Images Mean STD
aluminum stair case Raster 600 0.97 0.32

steel flow iron pipe segment
Polar 2298 1.89 0.69

Hemispherical spiral 2294 1.13 0.44
Paraboloid spiral 857 1.36 0.46

7.1 Aluminium stair case sample

Figure 13(a) shows the mesh produced for the aluminium sample resulting
from the images obtained through the raster tool path. The artefacts on the
sides of the mesh were trivial, as with the raster scan, the sides of the alu-
minium sample object could not be imaged entirely. We were interested in
the top surface of the sample to be reconstructed accurately for the valida-
tion of the proof of concept proposed in this paper. The surface analysis of
the obtained mesh on the CAD model is shown in Fig. 13(b). The standard
deviation of distance of 2.77 mm was achieved. The surface analysis of the

Fig. 13: Mesh of aluminium stair case (a) and deviation from CAD (b).

obtained mesh on the CAD model is shown in Figure 13. A distance standard
deviation of 2.77 mm is achieved.

7.2 Steel flow iron pipe segment sample

The performance related to the three tool paths (polar, hemispherical spiral,
and paraboloid spiral) used to acquire the three image datasets is discussed



Title Suppressed Due to Excessive Length 19

here for the steel flow iron pipe segment sample. The three resultant meshes
are shown in Fig. 14. Figure 14(a) and Figure 14(b) show the meshes resulting
from the polar and the hemispherical spiral-based image datasets, respectively,
and contain more artefacts than the mesh resulting from and paraboloid spiral-
based image dataset depicted in Fig. 14(c). Both the polar and the hemispher-

Fig. 14: Resultant meshes of the steel flow iron pipe segment for the three
image acquisition approaches: polar raster (a), hemispherical spiral (b), and
paraboloid spiral (c).

ical spiral tool paths produced image datasets with the centre of the focus
at the top of the object, resulting in an incomplete and deformed mesh at
the bottom of the steel flow iron pipe segment. Moreover, the polar tool path
produced redundant images, because the same camera position was revisited
multiple times. The hemispherical spiral tool path performed better, produc-
ing a reduced image dataset that provided a more complete mesh, with less
artefacts. The paraboloid spiral produced the best image dataset that allowed
one to obtain a complete triangulated model, with the least number of arte-
facts.
Surface analysis plots are shown in Fig. 15. Fig. 15(a) corresponds to the polar-
based image dataset, 15(b) is related to the hemispherical spiral-based image
dataset, and 15(c) represents the paraboloid spiral-based image dataset.

Table 2: Summary of the results obtained from all image acquisition tool paths.

Component Type Tool-path Type No. of Images Mean (mm) STD (mm)
aluminum stair case Raster 600 0.71 2.77

steel flow iron pipe segment
Polar 2298 -0.68 2.53

Hemispherical spiral 2294 0.30 2.34
Paraboloid spiral 857 -0.65 1.28

Paraboloid spiral (sub-area) 857 -1.28 0.43

From Fig. 15(a), we inferred that the distance standard deviation of 2.53
mm from the CAD was recorded for the mesh resulting from the polar raster
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(a) (b) (c) (d)

Fig. 15: Surface comparison of the steel flow iron pipe segment mesh on CAD
model: (a) polar tool path yields standard deviation of 2.53 mm, (b) hemi-
spherical spiral tool path yields standard deviation of 2.34 mm, and paraboloid
spiral tool path yields standard deviation of 1.28 mm, and (d) sub-region of
the paraboloid spiral tool path yields standard deviation of 0.43 mm.

image dataset. The dataset originating from the hemispherical spiral tool path
produced a mesh with a 2.35-mm standard deviation of the distance from the
CAD model, as shown in Fig. 15(b). The mesh produced by the paraboloid
spiral tool path reported a 1.2-mm standard deviation of the distance from
the CAD model. Note that because of the robot’s reach limit, the far side of
the steel flow iron pipe segment was compromised, resulting in the presence
of artefacts on the same side of the object. For this purpose, we selected
points on the surface comparison plot shown in Fig. 15(c) to correspond to
the true helical paraboloid flexible path scan, which is depicted in Fig. 15(d)
for achieving the sub-millimetre accuracy. A summary of the results obtained
for the distance-wise surface comparison of meshes produced by a tool path on
the CAD models is shown in Table 2. Both Table 1 and Table 2 show that the
paraboloid spiral tool path could produce image data for a component with
a high content overlap between the image pairs and generate 3D models with
the best accuracy, and with a reduced number of images.

7.3 Vision Guided Robotic Component Inspection

To demonstrate the validity of the proposed robotic component NDT inspec-
tion system, the tool path generated by the 3D vision system was utilised to
perform the robotic component inspection. For this purpose, we evaluated the
proposed system by using the tool path produced by the 3D vision system,
to approach the top surface of the aluminium stair case sample and position
the ultrasonic wheel probe in contact with the chosen surface point. Then, the
excitation pulse was generated using JSR Ultrasonics DPR35 Pulser-Receiver,
and the signals were then measured by PicoScope 5000a Series controlled by
LabVIEW, as shown in Fig. 17. We observed that with the proposed method,



Title Suppressed Due to Excessive Length 21

the success rate for obtaining an ultrasonic measurement for the selected sur-
face points on the sample under inspection was 80%.

(a) (b)

Fig. 16: Vision-guided robotic component NDT inspection: an operator select-
ing a point on the surface of the 3D model inside the GUI (a) and ultrasonic
wheel probe approaches along the normal of the point for data measurement
(b).

Fig. 17: Ultrasonic signal measured by PicoScope 5000a Series controlled by
LabVIEW.
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Our proposed method addresses the challenges posed to photogrammetry-
based 3D approaches since typical manufactured and remanufcatured compo-
nents are plain, glossy and/or lack in texture. In addition, existing Robotic
systems [26, 27, 34] that manipulate ultrasonic sensors through pre-defined
tool-paths can carry out the inspection in both manufacturing and remanu-
facturing industries. Albeit, the robot tool-paths are typically defined on the
CAD models of the components under inspection which is not always available.
In such case, our proposed vision guided robotic inspection system provides
a solution to perform inspection for parts in manufacturing and remanufac-
turing industry. For example, the oil and gas industry could benefit from our
system that involves pipe inspection during manufacturing and remanufac-
turing which is a critical task as new line pipe is rolled and/or fabricated,
inspection is important to ensure no faulty pipe and materials are installed.
A complete pipe inspection involves on-surface (e.g. using photogrammetry)
and sub-surface (e.g. UT) analysis of the pipe component both addressed by
our proposed method.

8 Conclusion

The authors present an automated vision-guided ultrasonic tool path-based
NDT inspection method for components in the manufacturing and remanu-
facturing industry. To add flexibility to autonomous ultrasonic NDT inspec-
tion, a 3D vision system based on SfM was used to generate complete 3D
models with sub-millimetre accuracy. These 3D models were used to obtain
an ultrasonic tool path which facilitated the autonomous NDT inspection.
The developed 3D vision system had an automated image acquisition sub-
module with four different tool-path approaches that were tested, evaluated,
and analysed. The paraboloid spiral image acquisition approach produced a
UT tool path with an accuracy of 0.43 mm. This generated tool path was
used to approach the top surface of the aluminium stair case sample, position
the ultrasonic wheel probe in contact with the chosen surface point, and take
ultrasonic measurements. Furthermore, we observed an 80% success rate of
capturing the ultrasonic pulse-echo data for the desired surface points on the
sample under inspection. Finally, this paper met the aim of contributing to
the existing state-of-the-art by proposing a new practical method for accurate
3D reconstruction, instrumental to produce the robot tool paths for ultrasonic
NDT inspection.
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