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Abstract: Chondrocyte transplantation has been successfully tested and proposed as a clinical
procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the
optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain
the main challenges in cartilage tissue engineering. In order to address these issues, we investigated
the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating
chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure
the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity
alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable
cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation
programs, as assessed by morphological and gene expression analyses.

Keywords: nasal chondrocytes; tissue dissociation; collagenases; gene expression profiles;
cell transplantation

1. Introduction

Organ transplant therapy is currently hampered by the limited availability of compatible donors,
and often by the onset of severe immune complications. In some instances, these limitations can be—at
least partially—overcome by approaches which rely on regenerative medicine, including gene and cell
therapies [1].

Chondrocytes have been shown to be among the most versatile cell types due to their
renewal/differentiation ability, which makes them suitable for various applications [2]. In this
context, autologous chondrocyte implantation (ACT) is considered the gold standard for cartilage
repair [3]; moreover, recent preclinical studies have provided promising evidence for the effectiveness
of cell-based regeneration strategies [4,5].

More recently proposed approaches for cartilage regeneration include matrix-associated
autologous chondrocyte implantation (MACI) and autologous matrix-induced chondrogenesis
(AMIC) [6].

Adult Nasal Chondrocytes (NC) are considered particularly worthy of attention due to their
unique features [7]. They derive from the neural crest, and have been recently shown to be able to
respond and adapt to heterotopic transplantation sites. In particular, chondrocytes from the nasal
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septum have shown improved reproducibility in generating hyaline-like cartilage tissues, with superior
plasticity to adapt to a joint environment, resulting in improved tissue regeneration and repair [8–10].

NC isolation is usually achieved through collagenase digestion; this step may play an important
role in the overall success of the procedure, affecting both the yield and viability of isolated cells. In fact,
collagenase treatment which is too intensive may often result in chondrocyte isolation failure [11];
conversely, collagenase treatment which is too mild may provide inadequate cell yield. In this respect,
it is not to be excluded that the isolation outcome may be also affected by donor tissue composition,
presumably because of individual variations resulting in unique collagen patterns in each donor, as
observed in the case of pancreas tissue [12]. Therefore, in prospective clinical uses, tailored digestion
protocols might be required for optimal cells yields.

Current procedures to isolate cells from tissues utilize Clostridium histolyticum collagenases to
achieve digestion of the extracellular matrix, in order to release chondrocytes. Commercially available
collagenases are either recombinant, e.g., ColG and ColH, or a blend of crude collagenase extracted
from C. histolyticum cultures (containing different percentages of the aforementioned collagenases plus
other proteolytic enzymes). Both collagenases contain collagen-binding domains which are able to
interact with soluble tropocollagen and insoluble collagen structures, which is essential in dismantling
the collagen structure and for subsequent hydrolysis [13–16]. However, the specific contribution
of these collagenases in cartilage digestion is unknown. Moreover, for various commercial blend
preparations, information about the specific activity related to each class of collagenases contained
therein is not provided [17].

This study assesses the relative contribution of each collagenase in cartilage digestion, and seeks
to establish an optimized protocol for NC isolation from cartilage using recombinant collagenases,
namely ColG and ColH [18–23], in order to obtain highly viable cells which will be useful in producing
large amounts of ECM component.

2. Materials and Methods

2.1. Determination of the Enzymatic Activity of Recombinant ColG and ColH

The recombinant collagenases ColG (145 kDa) and ColH (149 kDa) were produced and
chromatographically purified as previously described [23].

Enzymatic activity was quantified using the ninhydrin-based assay Collagenase Substrate
Kit (Sigma-Aldrich, Milan) according to manufacturer‘s instructions and in the presence of
carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH synthetic peptide, with some modification [24,25].
In particular, the synthetic substrate was prepared at a concentration of 2.4 mg/mL in 50mM TES Buffer
containing 0.36 mM CaCl2. The pH was adjusted to 7, instead of 6.3, in order to increase the sensitivity
of the assay.

2.2. Digestion of Collagen and Cartilage Tissue

Collagen type-I (BD Biosciences, San Jose, CA, USA) and type-II (Advance Biomatrix, Carlsbad,
CA, USA) were neutralized by phosphate buffer. Then, 100 µg of each collagen was incubated in a
thermomixer with 1 µg (0.0025 U) of ColG or 1 µg (0.03 U) ColH at 37 ◦C for 15–60 min. After incubation,
the protein patterns were analyzed by 7.5% SDS–PAGE assay.

To evaluate the ability of ColG and ColH to digest the cartilage, the collected tissue was
rinsed in medium without serum and then weighed, and divided into aliquots of 1 g per tube.
Each aliquot was digested in 10 mL volume with ColG at 1 mg/mL (2.5 U) and ColH 1 mg/mL
(30 U) containing Thermolysin (TML) 25 µg/mL (Promega, Milan, Italy) for different digestion times
at 37 ◦C. After digestion, the tissue was processed and filtered with 20-µm nylon filter membrane.
The undigested tissue was weighed in order to measure the dissociation percentage. All experiments
were carried out in triplicate. Different lots of ColG and ColH were used, having 2.5 and 30 U/mg
enzymatic activity, respectively.
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Moreover, in order to analyze the tissue matrix composition before and after digestion, the
nasal cartilage samples were minced and mechanically powdered in the presence of liquid nitrogen.
Aliquots of 100 mg of powdered tissue were digested for 24 h at 37 ◦C, as reported in Table 1.
The digested and undigested tissue were then loaded onto an SDS PAGE in order to analyze the protein
pattern in each condition.

Table 1. Conditions herein used to digest cartilage.

Exp1 Exp2 Exp3

ColG 2.5 U/mL - 2.5 U/mL
ColH - 30 U/mL 30 U/mL
TML 25 µg/mL 25 µg/mL 25 µg/mL

2.3. Isolation of Nasal Septal Chondrocytes from Bovine Tissue and Cell Culture Monolayer Expansion

Bovine nasal septa from a 1-year-old animal were obtained from a local abattoir within 12 h of
slaughter. Biopsies were harvested and washed with PBS to remove all blood components. One gram
of minced tissue was incubated with a mixture of 300 units of ColH plus TML 250 µg in 10 mL of
Dulbecco’s modified Eagle’s medium (Sigma, Milan, Italy) containing 1% Pen-Strep and 1% Fungizone
(Euroclone, Milan, Italy).

The sample was digested for 18 h at 37 ◦C in 5% CO2. After digestion, the collagenase/chips
solution was filtered through a 20-µm nylon filter membrane.

After centrifugation for 10 min at 250 g, the pellet containing chondrocytes was washed twice in
DMEM. The cells were than suspended by adding 20 mL of medium, and cell viability was assessed
using Trypan Blue exclusion test. Cells were seeded at an initial density of 5 × 103 cells/cm2 in
T-175 flasks in DMEM supplemented with 10% fetal bovine serum (FBS Sigma, Milan, Italy) + 1%
Pen-Strep +1% Fungizone and 50 µg/mL acid ascorbic (Sigma, Milan, Italy). Cell cultures were
expanded in an incubator humidified at atmospheric pressure at 37 ◦C and 5% CO2. For viability,
assay cells were seeded on 24-well plates at a concentration of 20,000 cells per well, in triplicate.
Growth was quantified using Alamar Blue colorimetric assay (Thermo Scientific, USA) according
to the manufacturer’s recommendations. Fluorescence was measured with a plate reader using
excitation/emission wavelengths of 530/590 nm. The standard curve was obtained using different
chondrocyte concentrations.

For 3D culture, chondrocytes were cultured inside 3D collagen gel (Rat collagen I) (BD Biosciences,
San Jose, CA, USA). The collagen solution was prepared in Hank’s buffer (2.5 mg/mL) and neutralized
with NaOH to induce polymerization of collagen. Immediately afterwards, the cell pellet was
resuspended into the neutralized solution. Cells were seeded on 24-well plates and incubated at 37 ◦C
with 5% CO2. After polymerization, 1.5 mL of the complete medium was added.

2.4. SDS Electrophoresis

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out as
described by Laemmli et al. [26]. After electrophoresis, the proteins were colored with 0.25% Coomassie
Brilliant Blue G-250 (Sigma, Milan, Italy).

The molecular weight of the enzyme was estimated using a molecular weight marker (Sigma,
Milan, Italy).

2.5. RNA Isolation and cDNA Synthesis

Total RNA was extracted using Trizol reagent (Invitrogen, CA, USA) according to the
manufacturer’s recommendations from chondrocytes cultured in a 2D system for 1 and 10 days,
or in 3D collagen type-I hydrogel cultured for 10 days, as well as from nasal bovine cartilage which
was previously flash frozen in liquid nitrogen and ground to fine powder using a tissue disruptor.
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RNA concentrations and quality were verified by spectrophotometry (optical density (OD) at
260 nm), whereas the RNA integrity was checked using a 1.5 % agarose gel. The RNA was stored at
−80 ◦C for future use.

The extracted RNA (500 ng) was treated with RNA qualified 1 (RQ1) RNase-Free DNase (Promega,
Madison, WI, USA) to remove any residual genomic DNA contamination, and the DNase was
inactivated by adding 25 mM EDTA.

First-strand cDNA was synthesized from 250 ng DNase-treated total RNA samples using random
primers and High Capacity cDNA Reverse Transcription Kit (Life Technologies Corporation, Carlsbad,
CA, USA), following the manufacturer’s instructions. The cDNA mixture was stored at −20 ◦C.

2.6. RT-qPCR

RT-qPCR was performed using the BIO-RAD CFX96 System with Power Sybr Green as the
chemical detection method (Applied Biosystems, Forster City, CA, USA). Real-time PCRs were carried
out in 96-well plates in a 20 µL mixture containing 1 µL of a 1:20 dilution of the cDNA preparations,
using the following PCR parameters: 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 10 s, and 60 ◦C
for 60 s. The sequences of the specific primer pairs used for qPCR are shown in Table 2. Samples were
run in triplicate. The absence of nonspecific products was confirmed by both the analysis of the melt
curves and electrophoresis in 2 % agarose gels. The 18S rRNA, actin β and GAPDH were chosen as
reference genes. A normalization factor was calculated based on geometric averaging of the expression
level of these reference genes, and was used to quantify the expression levels of the target genes.
Quantitative real-time PCR was conducted according to the manufacturer’s recommendations. All data
represented relative mRNA expressed as the mean ± S.D. (n = 3). Significant differences between the
values of the different treated groups and the reference control groups were determined by one-way
ANOVA using Statistica 6.0 (StatSoft, Tulsa, OK, USA).

Table 2. Oligonucleotide primers used in this study.

Primers Sequences (5′–3′) Accession Number

GAPDH ATCTCGCTCCTGGAAGATG a

TCGGAGTGAACGGATTCG b NM_001034034

Actin β
TGGGCATGGAATCCTG a

GGCGCGATGATCTTGAT b NM_173979

18S TTCGATGGTAGTCGCTGTGC a

TTGGATGTGGTAGCCGTTTC b NR 036642

Col1A2 GGATGGTCACCCTGGAAAAC a

CCCCTAATGCCCTTGAAGC b NM_174520

Col2A1 TGATCGTGGTGACAAAGGTG a

ATCTGGGCAGCAAAGTTTCC b NM_001001135

Sox9 ACGCAGATTCCCAAGACAC a

GGTTTCCAGTCCAGTTTCG b XM_014478986

Col10A1 CTGGAGTGGGGAAAAGAGG a

TGCCTTCTGGTCCTTGTTC b NM_174634

a Forward primer, b Reverse primer.

3. Results and Discussions

3.1. Cartilage Digestion Using Recombinant Collagenases G and H

Reports of comprehensive experiments aiming to investigate the ability of different collagenase
classes to digest extracellular matrix from different tissues are still lacking.

Such information may be useful in optimizing blends of digestion enzymes and, in turn, the overall
NCs isolation procedure. While the precise assessment of the specific activity of each enzyme
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in commercial blends is unreliable, as they are copurified from bacterial cultures, recombinant
enzymes offer this unique opportunity. Because they are produced separately, their specific activity
can be individually and precisely measured. Therefore, using the recombinant ColG and ColH,
with well-defined enzymatic activity, offers the unique possibility of both assessing the specific
contribution of each enzyme in tissue digestion and blending them in the most effective ratio, which is
expected to result in much higher effectiveness and reproducibility of the isolation protocols.

Therefore, we tested such recombinant enzymes in cartilage tissue digestion and compared
different protocols for cartilage dissociation. The defined amount (expressed as enzymatic activity) of
ColG and ColH per gram of cartilage was used, and the tissue was allowed to dissociate for up to 18 h
(Figure 1A). Reactions were carried out also in the presence of a low amount of thermolysin (TML).
In addition, cartilage was also incubated with TML alone, at the same concentration, which is known
to be unable to digest collagen fibrils. A high rate of cartilage disaggregation was achieved in the
presence of ColH plus TML for 18 h at 37 ◦C, whereas in the same conditions, ColG was ineffective,
similarly to what occurred in the presence of TML alone (Figure 1A).
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Figure 1. Performance of ColG and ColH in tissue disgregation. (A) Cartilage dissociation assay using
ColG and ColH in the presence of TML at different times (6, 12, and 18 h). (B) Cartilage digested with
Col H or G plus TML after 18 h of treatment. (C) Samples containing powered cartilage treated 24 h
with only TML, ColG plus TML, or ColH plus TML. (D) SDS PAGE of protein extracted from cartilage
digested with thermolysin (TLM) alone or added of ColG, ColH, or both ColG and H (Mix). M = High
molecular weight marker. The data represent the mean ± SD of three independent experiments.

As shown in Figure 1B, after digestion with ColH and TML, the tissue became translucent,
a well-known indicator of collagen digestion, which was further confirmed by the efficient release of
cells into the medium. In contrast, digestion using ColG and TML failed to efficiently degrade the
matrix, thus preventing the release of cells.

In order to obtain further insights into the individual contribution of ColG and ColH in tissue
dissociation, powdered tissue was separately digested with same amounts of ColG and ColH (in the
presence of TML). The results confirmed that only the mix containing ColH resulted in a very efficient
digestion process, and that the presence of ColG did not result in further improvement (Figure 1C).

Total protein patterns resulting from the digestion of powdered cartilage were compared
(Figure 1D). Digestion performed with ColG did not result in an evident substrate digestion compared



Cells 2020, 9, 962 6 of 11

to the total proteins extracted from the cartilage (as reported in materials and methods section);
conversely, the treatment with ColH resulted in a more complex pattern of low molecular weight
components, where the shift toward a molecular weights below 60KDa and lower fragments (Figure 1D)
indicated that a much more efficient collagen digestion had occurred. Moreover, the treatment with the
blend of collagenases (ColG + ColH) failed to show further improvements in the pattern modification
compared with ColH alone. Altogether, these observations strongly suggest that the ColG activity,
if any, is negligible in the digestion of the complex ECM of cartilage.

In order to exclude the possibility that the different digestion performances observed with the
two collagenases were due to the low enzymatic activity of the employed ColG preparations toward
natural substrates, specific assays were carried out using purified collagens. Thus, both enzymes were
incubated with soluble collagen types I and II, and the capability of recombinant ColG and ColH
in digesting type-I collagen fibrils over time (from 15 to 60 min) was investigated and assessed by
densitometric analyses after gel electrophoresis; similar behavior was observed in the digestion of
type-II collagen (Figure 2).

As expected, densitometric analyses of digested collagens showed relevant activity of both
enzymes. In particular, comparable results were obtained with both enzymes in the digestion of
type-I collagen. Meanwhile, ColG showed much higher activity toward type-II collagen, compared
with ColH.

Therefore, it was confirmed that ColG is fully active, even on purified natural substrates.
Its negligible activity in cartilage digestion might be attributable to the possible inhibitory effects of
tissue components, which might impair substrate accessibility and/or the overall enzyme activity [27].
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digested by ColG and ColH. Digestion was performed at different sampling times, i.e., 0’, 15’, 30’, 45’,
and 60’.

3.2. Isolation of Nasal Septal Chondrocytes and their characterization

Taking advantage of the previous results, bovine nasal cartilage was allowed to dissociate
in the presence of Col G-TML, ColH-TML enzymes blend, or TML alone for further isolation of
nasal chondrocytes. Col H was shown to be fully suitable for the digestion of the native cartilage,
which accomplished the release of the cells into the medium, as assessed by the quantification of
the cells obtained using the different enzyme blend reported in Figure 3. Conversely, no significant
recovery of the cells was achieved after cartilage dissociation in the presence of TLM or ColG+TML.
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Figure 3. Performance of ColG and ColH in cell release from cartilage using ColG and ColH in the
presence of TML at different times (6, 12, and 18 h).

The procedure allowed us to recover ~6–7 × 106 chondrocytes/gram of tissue, with 95 % viability.
This result represents a significant improvement in cell yield compared to the only other procedure
reported for bovine NC isolation, in which 1.5 × 106 chondrocytes/gram of tissue were obtained [7].

In order to further analyze the suitability of isolated chondrocytes for in vitro cells expansion,
which is a mandatory prerequisite for any subsequent procedure and application, isolated NCs were
put in properly selected culture media.

Various culture systems have been described for chondrocyte in vitro expansion [28], including 2D
and 3D culture conditions, where such cells have shown different propensities to expand and
differentiate. In particular, it has been reported that the collagen hydrogel tridimensional system better
supports chondrocyte differentiation [29]. Our experiments aimed first to assess the actual expansion
potential of the newly-extracted NCs, being the best culture conditions that support differentiation
and/or the maintenance of the differentiated state to be more precisely tailored in each case, even from
the perspective of specific uses of such cells. Nevertheless, differentiation markers were assessed as
well in order to get basic information about the suitability of the employed culture conditions regarding
chondrocyte differentiation. Therefore, we set up 2D and 3D collagen type-I hydrogel culture systems
in order to assess their performance in supporting chondrocytes expansion.

As shown in Figure 4, cells were able to proliferate in both 2D and 3D culture conditions exhibiting
uniform morphology with identical size and shape. However, growth in 2D resulted in a better spread
of the cells on the substrate, while cells appeared to be distributed on different planes and exhibited a
more tapered phenotype when grown in 3D type-I collagen gel.
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Moreover, in order to monitor the NCs differentiated state after culturing in different conditions,
the gene expression of some cartilage-specific phenotypes, including Sox9,Col II, and Col 10a1 [30–33],
as well as Col I as a proxy of fibrous differentiation [34–36], was evaluated and compared with that
observed in tissue. In particular, gene expression analyses were carried out on primary chondrocytes
(24 h after tissue dissociation) and after culturing for 10 days in 2D or in 3D collagen type-I hydrogel.
Additionally, gene expression analyses were performed on RNA purified from bovine nasal cartilage,
which represents the physiological condition of in vivo differentiation (Figure 5).
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The data represent the mean ± SD of three independent culture experiments. Bars with different letters
are significantly different from each other at P < 0.05.

As expected, SOX9 and COL II were overexpressed in cartilage tissue, where the COL10a1 mRNA
level, a well-known marker of terminally differentiating chondrocytes, increased. Meanwhile, the
gene expression of a fibrous marker, namely, collagen 1, was dramatically reduced. Newly-extracted
(24 h cultured), 2D or 3D cultured cells showed a different pattern of gene expression, with variable
transcription levels for Sox9 and Col II. Not surprisingly, 2D cultured cells possess some propensity
to express Col I mRNA, which has been related to the loss of the chondrocyte phenotype after
growth in monolayer [35,36]. However, the Col I transcript was found also in intact and newly
isolated articular cartilage [37]. This suggests the possibility of the isolated NCs undergoing different
dedifferentiation/differentiation fates (fibroblast vs. chondrogenic phenotype), which mainly rely on
the use of specific culture conditions and which, in turn, may lead to the activation of different genes
expression patterns. However, these effects are likely related to the culture conditions, rather than to
the isolation procedure. Unsurprisingly, Col10a1 mRNA expression in 2D or 3D cultured cells was
significantly reduced compared to adult cartilage tissue (Figure 4). However, the COL10a1 mRNA level
was slightly higher in primary chondrocytes (24 h of cultivation) than in 10-day, 2D or 3D cultivated
cells. Such a result may be explained by the limited duplication steps after 24 h of propagation of
primary chondrocytes which maintained some of the characteristics of the original tissue.

4. Conclusions

The isolation of a large number chondrocytes from cartilage is a necessary and critical step for
tissue repair/regeneration through ACT. Adult cartilage tissue is composed of an abundant family of
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ECM proteins, among which collagens are the most representative, making their digestion an essential
step for the proper purification of cells.

Since collagenase treatment which is too intensive may result in decreased chondrocyte viability,
we explored the specific contribution of two major recombinants of C. histolyticum, i.e., ColG and H.
We showed, for the first time, that the ColH alone (blended with TML) is able to digest the ECM
of NCs and to release them from the tissue; conversely, ColG showed a negligible contribution
in cartilage digestion, making its presence unnecessary. Similar results were obtained on the
carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH synthetic peptide, while insignificant differences were
found on water-soluble collagens types I and II.

The content and localization of collagen subtypes in different tissues, however, may affect
cell recovery.

The procedure herein reported showed high chondrocytes yields, with good proliferative capability
in both 2D and 3D cultures, with different propensity to dedifferentiate, as assessed by gene expression
analyses. Therefore, it may be worth considering the use of advanced cell culture systems in order to
further improve chondrocyte expansion without dedifferentiation.
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