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Diffractive optical components can be made using multiple level kinoforms or single level artificial

dielectric structures. The latter require the fabrication of pillars of equal depth but differing width

and spacing. As a demonstration device, the diffractive optic equivalent of a wedge has been made

in GaAs for use at 1.15 gm. The need for all pillars to have the same height was met by using a

selective etch and a very thin etch-stop layer on AIGaAs. The experimental diffraction efficiency

was 87.8%, among the best ever obtained and close to the theoretical maximum of 97.6%. @ 1998
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l. INTRODUCTION

Diffractive optical components offer, in principle, marked
manufacturing advantages in comparison to conventional
shaped components, as well as the possibility of performing
functions (for example, the generation of multiple spots)
which cannot be readily done by conventional components.
However diffractive (0.4 to 0.7 grn) optical components,
particularly those for use in the visual and at high numerical

aperture, present a very significant challenge to the art of
nanofabrication.

In this article we discuss how modern electron beam li-

thography and dry etching techniques can be used to make

devices for use in the visual.
There are two main approaches to the realization of high

efficiency components in diffractive optics: a multiple level

approach to approximate a locally curved profile as closely

as possible, and the newer approach (for optics, it is well

known in microwave practice) of using artificial dielectrics.

The multiple step approach uses successive steps of pat-

tern definition and etching to create the desired shape. For,

say, an approximation of 16 levels (2 4 ), four pattern defini-

tion steps are used and four etching steps; the relative depth

of the etching in subsequent steps being l, 2, 4, and 8. Not

only is excellent depth control necessary but each new pat-

tern has to be aligned to the last one, despite the difficulties

introduced by the resist profile being more complex on each

new etching step.

The artificial dielectrics approach uses features of the

same depth but with widths much smaller than the wave-

length of the light. The phase of the light is controlled locally

by using a series of slots of different widths. These slots are

narrow enough to avoid diffraction, thus forming an artificial

dielectric. This control of the phase allows the creation of

components that can fulfill all the conventional optical re-

quirements.

The great advantage of the approach is that only single

level lithography (so, no alignment) is required; the disad-

vantage is that, in comparison to a multiple level approach,
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higher aspect ratios in the features are required.

Artificial dielectric structures can be used to make antire-

flection elements for the fabrication of beam shaping and

beam focusing devices, and for the synthesis of artificially

created birefringent materials.2-8

Artificial dielectric structures can be designed using a

complex theory implemented by several theoretical ap-

proaches, such as the rigorous coupled wave approach

(RCWA) or the finite element method (FEM).9 13 With sub-

wavelength elements, it is necessary to take into account the

vectorial nature of an electromagnetic wave.

In this work the design phase was addressed by using a

hybrid technique that combines the RCWA and an approxi-

mate method called effective medium theory (EMT).2' 14 The

model allows the spatial constraints imposed by fabrication

(minimum feature width, maximum aspect ratio) to be in-

cluded automatically in optimization of the design.15

From the manufacturing point of view, a general artificial

dielectric is an unequally spaced binary grating. The param-

eters that have to be controlled are the etch depth which has

to be the same in all slots, the position of the transition points

which define the slots and grooves of the grating, and the
refractive indices of the materials at the working wavelength.

In Sec. Il, it will be seen how the difficulties connected
with these challenging input constraints were overcome, and

in Sec. Ill the experimental results will be presented.

ll. FABRICATION CONSIDERATION

A. Outline of the process

The first device designed was a wedge made of gallium

arsenide for operation at a wavelength of 1152 nm. This

produces an output beam deflected by 300 from the initial

normally incident beam.

The wedge has an overall period of 2.3 gm, each divided

into seven slots 735±5 nm deep, with a minimum pillar

width of 50 nm, a minimum slot width of 150 nm, and a
maximum aspect ratio of about 14.5:1 and 5:1 for pillars and

grooves, respectively.

To meet these very tight requirements, it proved desirable

to have as few steps as possible in the process and, to maxi-
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FIG. I. Schematic of the nanofabrication process.

mize the reliability, to use, as far as possible, established
nanolithographic techniques and processes.

It was decided to use the wholly subtractive process

shown in Fig. l. While liftoff of the ion resistant mask is

potentially less time consuming, experience showed that is

less reliable.

A suitable GaAs substrate was covered with a 100 nm

thick silicon dioxide layer using a standard plasma enhanced

chemical vapor deposition (PECVD) machine. Two layers of

PMMA (Elvacite with a molecular weight of 350 000) di-

luted with xylene in a 4% solution was spin coated onto the

wafer to give a total thickness of 240 nm. The resist was

exposed in a Leica EBPG5-HRlO() electron-beam writing

machine and developed in 1:3 MIBK:IPA at 23 oc for 45 s.

The silicon dioxide was then reactively ion etched (RIE) in a

20 sccm flow of CHF3 at a total pressure of 15 mTorr and

with 100 W rf power using a process designed to allow the

PMMA to be used as a resist while giving a vertical profile.

The GaAs substrate was etched in SiC14 using another RIE

process that is described later. Both dry-etching phases were

carried out in RIE machines from Oxford Plasma Technol-

ogy.

B. Lateral resolution issues

The minimum feature size was 50 nm which necessitated

the use of electron-beam (e-beam) lithography to define the

master pattern. The e-beam machine used in this work has a

spot size that is adjustable from 10 nm upwards and a mini-

mum beam deflection step of 5 nm. The overall field size

depends on the deflection step. The stitching error between

fields is of the order of 80 nm. A suitable compromise be-

tween the conflicting aims of high spatial fidelity that would

give the correct local phase and a large field was found to be

a 28 nm spot size and a 12.5 nm deflection step which al-

lowed a 400X400 pm and confined the device inside one

field. With these parameters no proximity correction was

necessary at 50 kev of acceleration voltage.
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FIG. 2. Scanning electron micrographs of (a) one main period of the artificial

dielectric (2.3 gun) and (b) a detail showing smallest pillar and groove.

C. Pattern transfer considerations

When deep slots are made by reactive ion etching, it is

often found that the etch depth varies markedly from feature

to feature depending on its width. The variation in depth,

after the same etch time, for features varying in aspect ratio

from to 10:1 can be as much as 2: l. This phenomenon is

called RIE lag. Proper realization of the present device re-

quires a uniform etch depth. To overcome this very real dif-

ficulty an etch stop and a highly selective etching process

which does not etch the stop level were used.

So, a 90 nrn thick Alo 4Ga06As stop layer was deposited

by molecular beam epitaxy (MBE) onto the GaAs wafer be-

fore the 735 nm thick GaAs layer that is designed to give the

correct phase shift. The aluminum in the layer underneath

was chosen to be sufficient to give very high selectivity in

the etching process. Its presence does introduces a constant

phase shift since the refractive index of AIGaAs differs from

that of GaAs.

The wafer was then used to carry out the processing, as

shown in Fig. l. In the last etching phase, the pattern was

transferred into the GaAs using silica dioxide as a mask. The

sample was reactively ion etched in silicon tetrachloride with

15 W rf power. a 3 sscm flow giving a 4 mTorr of total
pressure inside the chamber, and a bias of around 100 V.

These low pressure and low power conditions give verti-

cal sidewalls, while realizing a selective process which stops

on the AIGaAs layer. 16 A slightly higher starting pressure in

the chamber is sometimes necessary to minimize the induc-
tion time of the etching process. This leads to the wiggle at
the top of the structures seen in Fig. 2.

The etch rate in open areas, say areas more than a few
microns wide, was about 50 nrn/min so the AIGaAs layer
was reached in around 15 min. The etching process assured
enough GaAs/AlGaAs selectivity to permit an amazing 30
min of overetching which insured uniform depth in all the
slots. Finally, the oxide layer was removed by wet etching in
a buffered solution of HF prior to testing.

D. Design considerations

As we saw in Sec. Il C, a lot of effort was expended in
order to find a reliable fabrication process, taking into ac-
count the diffractive requirements. On the other hand, the
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fabrication process imposed some technological limits butthey were used in the design phase to find the best link be-tween design and fabrication issues.
First of all, the finite dimension of the realizable features,dictated by the physical resolution limits of the fabricationprocess. allowed a maximum theoretical diffraction effi-ciency of 97.6%.

Among these satisfactory solutions, the best set of param-eters chosen (transition points and depth of the grating) werethe ones with transition points spaced at multiples of thee-beam deflection step size selected. In addition. a subse-quent filtering action chose the solutions with the lowest sen-sitivity against fabrication errors in the location of the tran-sition points. Finally, the different refractive index ofAIGaAs was also incorporated into the design phase throughthe proper choice of its thickness.

Ill. EXPERIMENTAL RESULTS
The results obtained can be analyzed from the micro-

graphs shown in Figs. 2(a) and 2(b). From the lateral reso-
lution point of view. the tolerance between the pattern de-
signed and the real device was kept within one step of the
resolution grid, that is, 12.5 nm.

A very uniform etch depth can clearly be seen even in the
region with the biggest change in aspect ratio. The etching
process gives very vertical features; the thinnest pillars are
less than 200 atoms wide, and have aspect ratios well above
10: l.

For the optical point of view, the diffraction efficiency
measurements were carried out by positioning the grating in
front of a 75 gm spot from a near-infrared helium—neon
laser working at a 1152 nm wavelength. Only three propa-
gating orders were present, as is easily deduced from the
designed periodicity, and the, experimental diffraction effi-

ciency of the first transmitted order was 87.8% of the total
power transmitted. During the measurements the samples

were always coated with a PMMA layer that acted ms an
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antireflection coating. The PMMA layer does not have the

correct refractive index to match GaAs perfectly with air,

and this may explain the difference between the diffraction

efficiency that resulted from the design and that obtained

experimentally. However this diffraction efficiency value is,

to the best of the authors' knowledge, among the best seen so

far.
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