
A CUDA-based Implementation of an improved SPH

method on GPU

L. Antonellia,c, E. Francomanob,c, F. Gregorettia,c

aInstitute for High Performance Computing and Networking of CNR - via Pietro
Castellino, 111 - Napoli

bUniversity of Palermo, Department of Engineering - Viale delle Scienze, Ed. 6 - 90128
Palermo

cIstituto Nazionale di Alta Matematica “Francesco Severi”, Research group GNCS,
Piazzale Aldo Moro 5, 00185 Rome, Italy

Abstract

We present a CUDA-based parallel implementation on GPU architecture of
a modified version of the Smoothed Particle Hydrodynamics (SPH) method.
This modified formulation exploits a strategy based on the Taylor series ex-
pansion, which simultaneously improves the approximation of a function and
its derivatives with respect to the standard formulation. The improvement in
accuracy comes at the cost of an additional computational effort. The com-
putational demand becomes increasingly crucial as problem size increases but
can be addressed by employing fast summations in a parallel computational
scheme. The experimental analysis showed that our parallel implementation
significantly reduces the runtime, when compared to the CPU-based imple-
mentation.

Keywords:
Smoothed Particle Hydrodynamics, Fast Gauss Transform, Graphics
Processing Unit.

1. Introduction

Smoothed Particle Hydrodynamics (SPH) method, introduced independently
by Lucy [1], and Gingold and Monaghan [2], can be regarded as the oldest

Preprint submitted to Applied Mathematics and Computation July 2, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/333574865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


among the modern mesh-free particle methods. The most important advan-
tage of these methods is that the mesh generation is not required during the
discretization of the domain, as is the case with the grid based methods.
This allows the simulations of real problems with complex geometry or con-
taining discontinuities, singularities or with a non linear behavior. Moreover,
computations with high dimensional data can be considered too. In recent
years these methods have received a strong interest emerging as valid com-
putational alternatives in numerous problems, from different areas of science
and engineering, that require the numerical solution of integral equations or
PDEs with different boundary conditions [3, 4, 5, 6, 7]. Applications can
be found in geodesy and mapping [8], geoscience [9], metereology [10], com-
puter graphics [11], signal and image processing [12], computational finance
[13, 14], learning theory [15, 16, 17], biomathematics [18, 19, 20]. Many of
these applications involve function approximation or need derivative estima-
tion at any data location with any known data distribution in the problem
domain. In SPH, the state of a system is represented by integral approxi-
mation on a set of arbitrarily scattered data which interact with each other
within the range controlled by a smoothing function. Since its introduction
in the 1970’s, Smoothed Particle Hydrodynamics has been widely applied,
permitting a straightforward handling of very large deformations [21] such
as happens in high energy phenomena i.e. explosion, high velocity impact,
and penetrations. We address the reader for further study about variations
of the SPH methods and new applications to [22, 23] and references therein.
The SPH has been successfully adopted for electromagnetics (EM) transients
simulations too [5, 24, 25, 26] and better results have been gained dealing
with an improved formulation of SPH based on the Taylor series expansion
adopting the Gaussian as kernel function [26]. The corrections turned out
to be suitable, providing significant mesh-free estimates of the electric and
magnetic field components. With the aim to treat real applications in an
accurate and fast fashion, here we present some preliminary investigations
of the improved method on GPU referring to various test functions with dif-
ferent data sets. Although originally designed to process computer graphic,
the GPUs evolved into a highly parallel, multithreaded, manycore processor
giving rise to the general-purpose GPU computing. In fact, many scientific
and numerical algorithms have building blocks with inherent massive par-
allelism, that can benefit from GPU acceleration [27, 28]. GPU-accelerated
algorithms still run on the CPU but offload these parallel building blocks
on GPUs taking advantage of its computational horsepower. A fully parallel

2



implementation of the improved SPH on GPU and its experimental analysis
is described throughout the work. This work completes and extends the one
presented in [29] where only one task of the improved SPH algorithm was
implemented on the GPU. The paper is organized as follows. In the Section
2 the fundamental computational tasks of the improved SPH are provided.
In Section 3 a detailed GPU implementation of the method is presented.
Section 4 provides the experimental results referring to two different hard-
ware configurations with two different GPU architectures (Volta [30] and
Turing [31]). Finally, in Section 6 the conclusions and the future work are
given.

2. The method: standard and improved formulation

In this section the theoretical basis of the method are shortly described in
order to introduce the fundamental computational tasks for the CUDA-based
implementation. An approximation to a multivariate function f : Ω ⊂ <d → <
with d ≥ 1 is generated as:

< fh(x) >=

∫
Ω

f(ξ)K(x, ξ;h)dΩ, (1)

where K(x, ξ; h) is the kernel function, x = (x(1), x(2), . . . , x(d)) ∈ Ω and ξ =
(ξ(1), ξ(2), . . . , ξ(d)) ∈ Ω are the evaluation and source points respectively, and
h ∈ <+ measures the influence of K. Using a discrete representation of the

computational domain by N d-dimensional source points, Ξ =
{
ξj
}N
j=1

, each

associated with a subdomain Ωj ⊂ Ω, the so-called particle approximation of
(1) is defined as

fh(x) =
N∑
j=1

f(ξj)K(x, ξj;h)dΩj, (2)

where dΩj is the measure of Ωj. From now on we will indicate with X the
set of the evaluation points, where #(X)=M . The formula (2) can lose
accuracy, e.g., when irregular point distributions are considered.

In order to increase the accuracy of the standard method up to the order
k+1, we consider the k -th order Taylor expansion of f(ξ), with f a function
sufficiently smooth:

f(ξ) =
∑
|α|≤k

1

α!
(ξ − x)αD(α)f(x) +O(hk+1), (3)

3



where α = (α(1), α(2), . . . , α(d)) ∈ Nd is a multi-index, |α| =
∑d

i=1 α
(i),

α! =
∏d

i=1(α(i))!, yα = (y(1))α
(1) · (y(2))α

(2) · . . . · (y(d))α
(d)

, and

D(α) = ∂|α|

(∂x(1))α
(1)
...(∂x(d))α

(d) .

By multiplying (3) by the kernel function and its derivatives up to the k-th
order, integrating over Ω and adopting (2), an approximation of the func-
tion f and its derivatives till the order k, at each evaluation point x, are
simultaneously provided by solving the linear system [32]:

A(k)
x c(k)

x = b(k)
x , (4)

where

A(k)
x =



N∑
j=1

K(x, ξj;h)dΩj . . . 1
k!

N∑
j=1

(ξ
(d)
j − x(d))kK(x, ξj;h)dΩj

...
. . .

...
N∑
j=1

D(k)K(x, ξj;h)dΩj . . . 1
k!

N∑
j=1

(ξ
(d)
j − x(d))kD(k)K(x, ξj;h)dΩj


,

c(k)
x =

 f(x)
...

D(k)f(x)

 , b(k)
x =



N∑
j=1

f(ξj)K(x, ξj;h)dΩj

...
N∑
j=1

f(ξj)D(k)K(x, ξj;h)dΩj


.

The size m of the system (4) increases as both the data dimension and the
order of accuracy increase, i.e. m = (d+k)!/(d! k!). As described in [32], the
construction of the coefficient matrix and the rhs vector of the system (4),
and its solution at each evaluation point, raise the computational cost of the
method. When the Gaussian function, infinitely differentiable and smooth
even for high order derivatives, is adopted, such as in electromagnetics tran-
sients simulations [26], this further computational effort can be controlled
by the use of fast summation methods. In fact, being the derivative of a
Gaussian kernel a Hermite polynomial times a Gaussian kernel, the elements
of A

(k)
x are obtained through the computation of weighted Gaussian sums of

4



this form:

N∑
j=1

(ξ
(r)
j − x(r))βK(x, ξj;h)dΩj =

=
N∑
j=1

β∑
n=0

(−1)n
(
β

n

)
(ξ

(r)
j )n(x(r))β−nK(x, ξj;h)dΩj =

=

β∑
n=0

(−1)n
(
β

n

)
(x(r))β−n

[
N∑
j=1

(ξ
(r)
j )nK(x, ξj;h)dΩj

]
,

(5)

where β = 0, . . . , 2k, r = 1, . . . , d; similarly the elements of b
(k)
x are obtained

through the computation of weighted Gaussian sums of this form:

N∑
j=1

(ξ
(r)
j − x(r))γf(ξj)K(x, ξj;h)dΩj =

=

γ∑
n=0

(−1)n
(
γ

n

)
(x(r))γ−n

[
N∑
j=1

(ξ
(r)
j )nf(ξj)K(x, ξj;h)dΩj

]
,

(6)

where γ = 0, . . . , k, r = 1, . . . , d. Therefore, the construction of the systems
(4) requires the evaluation of the Gaussian transforms in the square brackets,
that we denote as:

Gl(x) =
N∑
j=1

wl(ξj)K(x, ξj;h), l = 1, . . . , L. (7)

Once this evaluation has been carried out, the elements of A
(k)
x and b

(k)
x

can be computed simultaneously, for all the evaluation points, through a
linear combination of the vectors containing the transforms Gl(x) and the
powers of a specific coordinate vector of x, as highlighted in (5) and (6)
respectively. In summary, the improved SPH method can be structured into
the five computational tasks (a)-(e) described in Algorithm 1.

Following this task organization, we developed a serial version [29] of the
improved SPH algorithm in C++, that served as reference for validating the
results of the parallel implementation.

5



Algorithm 1: Improved SPH

Input: d, k, N, M, f
Output: c

(k)
x ,∀x ∈X

(a) generate:
Ξ← N d-dimensional source points
X ← M d-dimensional evaluation points

(b) compute the weights in (7): wl(ξj), ∀ξj ∈ Ξ , l = 1, . . . , L
(c) evaluate the Gauss transforms (7): Gl(x), ∀x ∈X, l = 1, . . . , L

(d) compute the matrices A
(k)
x and the rhs vectors b

(k)
x in (4), ∀x ∈X

(e) solve (4): A
(k)
x cx

(k) = b
(k)
x , ∀x ∈X

Task (a)

In our implementation, in the scope of task (a), Ω was set equal to [0, 1]d

and three distributions of N source points were considered: uniform d-
dimensional mesh, Halton [33] and Sobol’ [34] d-dimensional sequences. The
Halton and Sobol’ points were generated by using the C++ code available
from [35] with O(dN) FLOPs. The M evaluation points were distributed on
a uniform mesh over Ω requiring O(dM) FLOPs.

Task (b)

The weights wl(ξj), l = 1, . . . , L of the Gaussian transforms (7) required in
(5) and (6), can be computed according to the graded lexicographic order of
the d-dimensional monomial ξj as follows

wl(ξj) = ρj(ξ
α
j )s, |α| = β = 0, . . . , 2k, s = 1, . . . ,

(
d+ β − 1

β

)
(8)

wl(ξj) = ρj(ξ
α
j )tf(ξj), |α| = γ = 0, . . . k, t = 1, . . . ,

(
d+ γ − 1

γ

)
. (9)

In (8) and (9), ρj = 1
πh2

dΩj, f(ξj) is the function to be approximated and
evaluated in ξj, while, according to the previous multi-index notation, (ξαj )s
and (ξαj )t are the s-th and the t-th monomial of ξj, with total degree β and
γ respectively. The total number of wl(ξj), i.e. the number of Gaussian

transforms required for the construction of A
(k)
x , ∀x ∈X is

6



L
A

(k)
x

=
2k∑
β=0

(
d+ β − 1

β

)
=

(d+ 2k)!

d!(2k)!
, (10)

while the total number of wl(ξj), i.e. the number of Gaussian transforms

required for the construction of b
(k)
x , ∀x ∈X is

L
b
(k)
x

=
k∑
γ=0

(
d+ γ − 1

γ

)
=

(d+ k)!

d!k!
. (11)

Note that L
b
(k)
x

is equal to m, while L
A

(k)
x

< m2. Therefore L = L
A

(k)
x

+

L
b
(k)
x
< m2 + m. L

A
(k)
x

and L
b
(k)
x

increase as both the data dimension d and
the order of accuracy k increase, as shown in Table 1 for common values of
k and d.

Accuracy order data dimension
(k + 1) d = 1 d = 2 d = 3

k = 0
L
A

(0)
x

1 1 1

L
b
(0)
x

1 1 1

k = 1
L
A

(1)
x

3 6 10

L
b
(1)
x

2 3 4

k = 2
L
A

(2)
x

5 15 35

L
b
(2)
x

3 6 10

Table 1: Number of Gauss transforms to be evaluated by the improved SPH for common
values of k and d.

A sketch of the algorithm to compute the weights (8) and (9) with O(LdN)
FLOPs is described in the Algorithm 2.

7



Algorithm 2: Improved SPH - task (b)

Input: d, k, N, Ξ, h,dΩ, f
Output: w(ξj), ∀ξj ∈ Ξ
l := 0
% compute weights wl(ξj) in (8)

for β ← 0 to 2k do
% number of monomials of total degree β
s :=

(
d+β−1
β

)
for n← 1 to s do

l := l + 1
% compute the multi-index α according to the graded
lexicographic order
α := (α(1), α(2), . . . , α(d)) s.t. |α| =

∑d
i=1 α

(i) = β
for j ← 1 to N do

ρj := 1
πh2

dΩj

wl(ξj) := ρj(ξ
α
j )s

end

end

end
% compute weights wl(ξj) in (9)

for γ ← 0 to k do
% number of monomials of total degree γ
t :=

(
d+γ−1
γ

)
for n← 1 to t do

l := l + 1
% compute the multi-index α according to the graded
lexicographic order
α := (α(1), α(2), . . . , α(d)) s.t. |α| =

∑d
i=1 α

(i) = γ
for j ← 1 to N do

ρj := 1
πh2

dΩj

wl(ξj) := ρj(ξ
α
j )tf(ξj)

end

end

end

8



Task (c)

Task(c) is unquestionably the most computationally intensive task (see Table
2). Several approaches exist to accelerate the Gaussian kernel summations
[36, 37, 38]. These approaches evaluate the weighted Gaussian sum, using
special data structures and approximation techniques, breaking down the
computational complexity from O(LMN) to O(L(M + N)). figtree [39],
that we used in our serial implementation, integrates different computational
strategies and automatically chooses the fastest method for a given data and
desired accuracy.

Task (d)

We note that for a given data dimension d the matrix A
(k)
x and the vector

b
(k)
x contain respectively, all the matrices A

(p)
x and the vectors b

(p)
x with p < k

as described in the scheme below




[A(0)

x

]
A

(1)
x


A

(2)
x


. . .

A
(k)
x


;




[b(0)

x

]
b

(1)
x


b

(2)
x


...

b
(k)
x


. (12)

For the sake of simplicity, we give the details for this task with d = 2 and
k = 2.

Recalling the (5) and setting

(q(r))β :=
N∑
j=1

(ξ
(r)
j − x(r))βK(x, ξj;h)dΩj,

with β = 0, . . . , 2k and r = 1, 2, the computation of the M coefficient ma-
trices, for each evaluation point x = (x(1), x(2)), requires linear combinations
between the M -dimensional vectors Gl, l = 1, . . . , L

A
(2)
x

and the powers of the

coordinate vectors of all evaluation points. Specifically, being X(r), r = 1, 2,
the r-th coordinate vector of all evaluation points, the required linear com-
binations are:

9



Ã1 := (q(1))0 = (q(2))0 = G1

Ã2 := (q(1))1 = G2 −X(1)G1

Ã3 := (q(2))1 = G3 −X(2)G1

Ã4 := (q(1))2 = G4 − 2X(1)G2 + (X(1))2G1

Ã5 := (q(1))(q(2)) = G5 −X(1)G3 −X(2)G2 +X(1)X(2)G1

Ã6 := (q(2))2 = G6 − 2X(2)G3 + (X(2))2G1

Ã7 := (q(1))3 = G7 − 3X(1)G4 + 3(X(1))2G2 − (X(1))3G1

Ã8 := (q(1))2(q(2)) = G8 −X(2)G4 − 2X(1)G5 + 2X(1)X(2)G2 + (X(1))2G3+

− (X(1))2X(2)G1

Ã9 := (q(1))(q(2))2 = G9 −X(1)G6 − 2X(2)G5 + 2X(1)X(2)G3 + (X(2))2G2+

−X(1)(X(2))2G1

Ã10 := (q(2))3 = G10 − 3X(2)G6 + 3(X(2))2G3 − (X(2))3G1

Ã11 := (q(1))4 = G11 − 4X(1)G7 + 6(X(1))2G4 − 4(X(1))3G2 + (X(1))4G1

Ã12 := (q(1))3(q(2)) = G12 − 3X(1)G8 −X(2)G7 + 3(X(1))2G5 + 3X(1)X(2)G4+

− 3(X(1))2X(2)G2 − (X(1))3G3 − (X(1))3X(2)G1

Ã13 := (q(1))2(q(2))2 = G13 − 2X(1)G9 + (X(1))2G6 + 4X(1)X(2)G5 − 2X(2)G8+

− 2(X(1))2X(2)G3 + (X(2))2G4 − 2X(1)(X(2))2G2 + (X(1))2(X(2))2G1

Ã14 := (q(1))1(q(2))3 = G14 −X(1)G10 − 3X(2)G9 + 3X(1)X(2)G6 + 3(X(2))2G5+

− 3X(1)(X(2))2G3 − (X(2))3G2 +X(1)(X(2))3G1

Ã15 := (q(2))4 = G15 − 4X(2)G10 + 6(X(2))2G6 − 4(X(2))3G3 + (X(2))4G1.
(13)

In a similar way, recalling the (6) and setting

(p(r))γ :=
N∑
j=1

f(ξj)(ξ
(r)
j − x(r))βK(x, ξj;h)dΩj,

with γ = 0, . . . , k and r = 1, 2, the linear combinations required by the
computation of the M rhs vectors, for each evaluation point x = (x(1), x(2)),
involve the vectors Gl, l = L

A
(2)
x

+ 1, . . . , L
b
(2)
x

and the powers of the coordi-

10



nate vectors of all evaluation points, as follows

b̃1 := (p(1))0 = (p(2))0 = G16

b̃2 := (p(1))1 = G17 −X(1)G16

b̃3 := (p(2))1 = G18 −X(2)G16

b̃4 := (p(1))2 = G19 − 2X(1)G17 + (X(1))2G16

b̃5 := (p(1))(p(2)) = G20 −X(1)G17 −X(2)G18 +X(1)X(2)G16

b̃6 := (p(2))2 = G21 − 2X(2)G18 + (X(2))2G16.

(14)

Note that in (13) and (14) all the operations are intended component-wise.

The algorithm for the computation of matrix A containing all the A
(k)
x , and

of the vector b containing all the b
(k)
x , is shown in Algorithm 3. Note that

in Algorithm 3 each Ãl is used to compute more entries of the A
(k)
x .

Task (e)

Since linear systems (4) are dense and unstructured they can be solved by
using common linear algebra solvers. In fact, in our serial implementation,
task (e) was implemented by using the LAPACK routines DGETRF and
DGETRS from the auto-tuning ATLAS library [40]; DGETRF computes the

LU factorization of A
(k)
x with O(M(m3/3)) FLOPs, while DGETRS performs

the corresponding triangular solves with O(M(m2/2)) FLOPs.

In Table 2 we summarize the overall computational tasks along with the
number of floating point operations required.

3. GPU implementation of the improved SPH

We developed a GPU-based approach to accelerate the improved SPH algo-
rithm. Its scheme is presented in Figure 1.

Three kernels were implemented and are actually essential for efficient parallel
execution of the improved SPH algorithm: BuildGtWeights to compute the
set of weights used for the Gauss transforms computation, EvaluateGt to
evaluate the Gauss transforms and BuildSystems to compute the matrices
and rhs vectors. Instead, for the solution of the systems, we made use of the
batched dense linear algebra kernels available in the NVIDIA cuBLAS library
as already described in [29]. In particular, the factorization of the matrices
was performed by using the cuBLAS function cublasDgetrfBatched and
the solution of the triangular systems by using cublasDgetrsBatched.

11



Algorithm 3: Improved SPH - task (d)

Input: d, k, M, X, h,dΩ, G
Output: A, b
% compute size of the system (4)
m :=

(
d+k
k

)
Compute the vectors Ãj , j = 1, . . . , L

A
(k)
x

and b̃j , j = 1, . . . , L
b

(k)
x

as described in

(13) and (14);
for i← 1 to M do

% building the i-th coefficient matrix
ii = i ∗m2;

A11(ii) = Ã1(i); A12(ii) = Ã2(i); A13(ii) = Ã3(i);

A21(ii) = Ã2(i); A22(ii) = Ã4(i); A23(ii) = Ã5(i);

A31(ii) = Ã3(i); A32(ii) = A23(ii); A33(ii) = Ã6(i);

A41(ii) = −Ã1(i) +
2

h2
Ã4(i); A42(ii) = −Ã2(i) +

2

h2
Ã7(i); A43(ii) = −Ã3(i) +

2

h2
Ã8(i);

A51(ii) = Ã5(i); A52(ii) = Ã8(i); A53(ii) = Ã9(i);

A61(ii) = −Ã1(i) +
2

h2
Ã6(i); A62(ii) = −Ã2(i) +

2

h2
Ã9(i); A63(ii) = −Ã3(i) +

2

h2
Ã10(i);

A14(ii) =
1

2
Ã4(i); A15(ii) = Ã5(i); A16(ii) =

1

2
Ã6(i);

A24(ii) = Ã7(i); A25(ii) = Ã8(i); A26(ii) = Ã9(i);

A34(ii) =
1

2
Ã8(i); A35(ii) = Ã9(i); A36(ii) =

1

2
Ã10(i);

A44(ii) =
1

2
(−Ã4(i) +

2

h2
Ã11(i)); A45(ii) = −Ã5(i) +

2

h2
Ã12(i); A46(ii) =

1

2
(−Ã6(i) +

2

h2
Ã13(i));

A54(ii) =
1

2
Ã12(i); A55(ii) = Ã13(i); A56(ii) =

1

2
Ã14(i);

A64(ii) =
1

2
(−Ã4(i) +

2

h2
Ã13(i)); A65(ii) = −Ã5(i) +

2

h2
Ã14(i); A66(ii) =

1

2
(−Ã6(i) +

2

h2
Ã15(i));

% building the i-th rhs vector
ii = i ∗m;
b1(ii) = b̃1(i);
b2(ii) = b̃2(i);
b3(ii) = b̃3(i);
b4(ii) = b̃1(i) + 2

h2 b̃4(i);

b5(ii) = b̃5(i)
b6(ii) = b̃1(i) + 2

h2 b̃6(i);

end

12



Tasks of the improved SPH

(a) generate data points O(dN + dM)
(b) compute the weights O(LdN)
(c) evaluate the Gauss transforms O(L(M +N))

(d) compute A
(k)
x and b

(k)
x ,∀x ∈X O(LdM)

(e) solve linear systems A
(k)
x cx

(k) = b
(k)
x , ∀x ∈X O(M(m3/3 +m2/2))

Table 2: Number of floating point operations for each task of the improved SPH. In (b)
FLOPs estimate doesn’t take into account the complexity of function evaluations.

The scheme 1 highlights only the data transferred from CPU to GPU and vice
versa. All the other data relevant to the computation is only allocated on the
GPU (d w to store the weights, d G to store the Gaussian transforms and
d A, d b to store the system matrices and rhs vectors). We stored source
and evaluation data points in contiguous linear arrays in column-major order
i.e. data points vectors are split up by coordinates, stored with a spacing of
N and M respectively. Thus, accesses of the same coordinate from threads
per block (tpb) data points to global memory are coalesced (BuildGtWeights
and BuildSystems) and transfer of the same coordinate from tpb data points
from global memory to shared memory are coalesced (EvaluateGt).

Being Algorithm 2 and Algorithm 3 naturally parallel, BuildGtWeights and
BuildSystems implements those algorithms organizing parallel execution by
assigning to each thread one source point and one evaluation point respec-
tively. We set tpb for them as 512. We didn’t experiment too much with
their block size being those task computational complexities neglectable, in
practise, compared to the one of the Gauss transforms evaluation (see Ta-
ble 2). Direct evaluation of Gaussian transforms would have an high benefit
from GPU implementation. Despite the expected high speedups obtained
by a GPU-based approach, the asymptotic dependence on data size is still
O(NM). Therefore, a linear approach like figtree will anyway, outper-
form the GPU implementation at some point. Moreover, this latter one will
be likely always outperformed by a parallel implementation of an approxi-
mation approach. In all the conducted experiments with accuracy ε set to
10−6, figtree always automatically selected the direct evaluation using tree
data structure (direct+tree method) [39] that was therefore our choice for
the parallel implementation.

13



generate data points

d ξ, d x Ξ, X

compute weights

Build a kd-tree

d kd nodes, d ids kd nodes, ids

evaluate Gauss transforms

compute the matrices and the rhs vectors

solve systems

d c c

GPU CPU

Figure 1: Flowchart of the improved SPH algorithm implementation on GPU

Thus, in this section we give details about our implementation of the di-
rect+tree method implemented in figtree. This method computes the
Gauss transforms by summing only the source points within a certain dis-
tance from the evaluation point whose contribution is at least ε. At this pur-
pose, a tree data structure (a kd-tree) is used allowing efficient fixed-distance
nearest neighbor search (‘k’ Nearest Neighbors search algorithm [41]).

Our parallel implementation uses a fixed number of nearest neighbor source
points ensuring equal computational load on GPU multiprocessors. Con-
ducted experimental tests showed that 32 was a number of neighbor sources
enough to guarantee the same accuracy as obtained with figtree implemen-
tation, with ε set to 10−6.

The GPU implementation of the direct+tree method is summarized in Al-
gorithm 4. Recursive nature of traditional kd-tree based Nearest Neighbors
algorithm makes it not suitable to be implemented on the GPU. Therefore, in

14



our implementation, first, we construct the kd-tree on the source points set
on the host (BuildKDTree), then we transfer it to the device to allow nearest
neighbor search of sources, for different evaluation points, to be executed in
parallel.

We used the kd-tree data structure implementation of [42]: a balanced static
kd-tree, with height bounded to dlog2(N)e, built by setting the cutting plane
through the median point of each sub-tree, stored as a left-balanced binary
array. Child pointers are directly computed through the index relationship
between the array elements (given a node at index i, its left and right children
are found at 2i and 2i+1 respectively). This results in a fully minimal kd-tree
(kd nodes), where each kd-node contains just the original points rearranged
into a left-balanced binary tree order. We also store a remapping array of
size O(N) (ids) for converting rearranged node indices back into the original
point indices to obtain the final search results.

In our implementation we adopted a parallelization approach analogous to
the one used by [43], where the direct method for kernel summation was
employed: a chunk of evaluation points is stored in the shared-memory by
all threads in a thread-block and each thread is responsible to evaluate a
particular evaluation point. Each thread block then finds (KNNSearch) the
32 nearest neighbors source points to that evaluation point. The resulting
nearest neighbors distances are stored in a fixed size array, in order to get the
compiler to likely put it in the register file, which is much faster than local
memory. The weights corresponding to each nearest neighbor source point
are also stored in a fixed size array. Since it is good to have a number of
threads per block that is a multiple of 32, as that is the warp size, and since
we wanted all threads in a block to jointly process the entire neighborhood
of a single evaluation point, the CUDA thread block size was set to 32.
Finally each thread updates the evaluation sum at each evaluation point. We
use a local variable for the evaluation sum. Once all the nearest neighbors
source points are evaluated, the sum in the register is written back to global
memory.

The KNNSearch function, that implements the ‘k’ Nearest Neighbors algo-
rithm, uses a search stack and a trim optimization to avoid unproductive
search paths. The neighbors are tracked by a closest heap data struc-
ture. Search stack is declared as fixed size data structure, therefore, to
prevent overflowing the stack, the length of any kd-tree search path had to

15



be bounded. Bounding the maximum height of the kd-tree accomplishes to
this need. For more details about BuildKDTree and KNNSearch see [42].

We used double precision arithmetic throughout all the computations ex-
cept for kd-tree data structure and KNNSearch whose algorithmic correctness
didn’t require it.

4. Results and Discussion

We performed numerical experiments with d = 2 and k = 1, 2, using the four
test functions reported in Table 3.

Table 3: functions used in the numerical experiments.

fa(x
(1), x(2)) = 16x(1)x(2)(1− x(1))(1− x(2))

fb(x
(1), x(2)) = tanh

1

9
(9(x(2) − x(1)) + 1)

fc(x
(1), x(2)) =

1.25 + cos(5.4x(2))

6 + 6(3 x(1) − 1)2

fd(x
(1), x(2)) =

1

3
exp

(
−81

16

((
x(1) − 1

2

)2

+

(
x(2) − 1

2

)2
))

For each distribution of source points as described in Section 2, we set N =
(2n + 1)2 and h = 1/2n, with n = 4, . . . , 12, and M = (

√
N + 1)2.

The experiments were run on two different hardware configurations: System
a) Intel Xeon Gold 5215 2.50GHz CPU with 92 GB of RAM and NVIDIA
Quadro RTX600 GPU with 64 cores in 72 streaming multiprocessors (SMs)
running at 1.77 GHz; system b) Intel Xeon Gold 5218 2.30GHz with 192 GB
of RAM and NVIDIA V100 NVLINK GPU with 64 cores in 80 SMs running
at 1.53 GHz. Both systems have the Linux CentOS 7.6 operating system,
the GNU 4.8.5 C++ compiler and CUDA 10.1.

On both hardware configurations, we executed the parallel code on the GPU
and compared the execution time with the one obtained by the serial C++
version running on one core of the CPU.

16



Figure 2 and Figure 3 show, for each distribution of source points, the run-
time in milliseconds for the execution on the GPU and CPU, as well as
the speedup achieved. For each number of source points N and evaluation
points M = (

√
N + 1)2, the time is the average over the runs for all the test

functions.

cpu_vs_gpu_Nfixed_uniform_quadrortx6000_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_uniform_quadrortx6000_2-eps-converted-to.pdf

cpu_vs_gpu_Nfixed_halton_quadrortx6000_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_halton_quadrortx6000_2-eps-converted-to.pdf

cpu_vs_gpu_Nfixed_sobol_quadrortx6000_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_sobol_quadrortx6000_2-eps-converted-to.pdf

Figure 2: GPU vs CPU performance comparison with N fixed and varying M and
with M fixed and varying N on System a).

With our parallel implementation, we are able to evaluate one million of
points in one second, achieving a maximum error accuracy in approximating
the function of about 10−6 and a maximum error accuracy in approximating
the derivative of the function of about 10−3. Overall, we obtained the same
results in terms of accuracy as those obtained with the serial implementations
(MATLAB, C++ [29]).

Figure 2 shows the efficiency results obtained on configuration a). We see
that the speedup of the GPU over the CPU goes up to 80. Figure 3 shows the
efficiency results obtained on configuration b). Here the speedup of the GPU
over the CPU goes up to 90. Better speedup results on configuration b) are
due to the slightly greater number of its GPU SMs compared to configuration
a). On both configurations, we can observe a better speedup when sources are
not uniformly distributed. Moreover, the lower speedup for smaller values of
N and M is due to a poor performance of the batched linear systems solving
that almost nullify the gain obtained in the Gaussian transforms evaluation
task. Anyway, the GPU-based proposal exhibits an increasing speed-up as
M increases with N fixed.

The efficiency results confirm what we asserted in our previous work [29]:

17



that the improved SPH method could benefit from an implementation on
GPU.

cpu_vs_gpu_Nfixed_uniform_v100_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_uniform_v100_2-eps-converted-to.pdf

cpu_vs_gpu_Nfixed_halton_v100_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_halton_v100_2-eps-converted-to.pdf

cpu_vs_gpu_Nfixed_sobol_v100_2-eps-converted-to.pdfcpu_vs_gpu_Mfixed_sobol_v100_2-eps-converted-to.pdf

Figure 3: GPU vs CPU performance comparison with N fixed and varying M and
with M fixed and varying N on System b).

5. Conclusions

This paper presents a CUDA-based parallel implementation on GPU of an
improved SPH method. The experimental analysis demonstrates the signifi-
cant acceleration of the GPU implementation compared to its CPU counter-
part. It provides a speed up of the execution time of up to 90 times and can
evaluate one million of points in one second, achieving a good accuracy or-
der, in approximating the function and its derivatives, with various uniform
and non uniform source point sets and different test functions. Dealing with
EM problems derivative estimates, at any data location with irregularly data
spaced in the problem domain, are frequently required. Satisfactory accuracy
results and computational advantages of the proposed method, encourage its
use as a building block for implementing parallel applications, capable of
solving very large real EM problems, on GPU-based architectures.

6. Acknowledgments

This research has been carried out within RITA (Rete ITaliana di Approssi-
mazione) and was partially supported by the Research INdAM – GNCS
Project 2020, “Multivariate approximation and functional equations for nu-
merical modeling”.
The authors are grateful to Daniela di Serafino for valuable suggestions and
comments on the work presented here.

18



Algorithm 4: direct+tree on GPU

Input: d,N,M,Ξ,d ξ, h,d w,d x
Output: d G
Sets up the thread blocks for the GPU and the number of nearest
neighbour (k,BLOCK SIZE);

Allocates host and device memory for the kd-tree structure and
remapping array;
BuildKDTree(d,Ξ, kd nodes);
Transfers the kd-tree structure and remapping array onto the GPU
(d kd nodes and d ids);

for w ← 1 to L do
Invokes the parallel GPU EvaluateGt() kernel to evaluate the
Gauss transforms;

end

Procedure EvaluateGt()

Ti ← (blockIdx.x ∗ blockDim.x+ threadIdx.x);
i← threadIdx.x;
declare evalutation sum local variable gt val, fixed size arrays Dist
and w respectively for NN distances and weights;
gt val← 0.0;
hSquare← h ∗ h;
x shared xi ← d xTi ;
x shared yi ← d xM+Ti ;
for n← 1 to dk/BLOCK SIZEe do

KNNsearch(Dist,w,d ξ,d w, k, x shared xi,
x shared yi, d kd nodes,d ids, N, w);

for e← 1 to k do
gt val← gt val + we ∗ exp(−Diste/hSquare);

end

end
d Gw∗M+Ti ← gt val;

19



References

[1] L. B. Lucy, A numerical approach to the testing of the fission hypothe-
sis., The Astronomical Journal 82 (1977) 1013–1024.

[2] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: the-
ory and application to non-spherical stars., Monthly Notices of the Royal
Astronomical Society 181 (1977) 375–389.

[3] E. J. Kansa, Y. C. Hon, Circumventing the ill-conditioning problem
with multiquadric radial basis functions: Applications to elliptic partial
differential equations (1998).

[4] E. Kansa, Exact explicit time integration of hyperbolic partial differen-
tial equations with mesh free radial basis functions, Engineering analysis
with boundary elements 31 (7) (2007) 577–585.

[5] G. Ala, E. Francomano, An improved smoothed particle electromagnet-
ics method in 3d time domain simulations, Int. J. Numer. Model. 25 (4)
(2012) 325–337.

[6] G. Ala, G. E. Fasshauer, E. Francomano, S. Ganci, M. J. McCourt, An
augmented MFS approach for brain activity reconstruction, Mathemat-
ics and Computers in Simulation 141 (2017) 3 – 15.

[7] X. Chen. J.H. Jung, Matrix Stability of Multiquadric Radial Basis Func-
tion Methods for Hyperbolic Equations with Uniform Centers, Journal
of Scientific Computing 51 (2012) 683—702.

[8] R. Hardy, Theory and applications of the multiquadric-biharmonic
method 20 years of discovery 1968–1988, Computers & Mathematics
with Applications 19 (8) (1990) 163 – 208.

[9] Z.-L. Wang, J. Wang, R. Shen, The application of a meshless method
to consolidation analysis of saturated soils with anisotropic damage,
Computers & Geosciences 34 (7) (2008) 849 – 859.

[10] D. W. Pepper, J. Waters, A local meshless method for approximating
3d wind fields, Journal of Applied Meteorology and Climatology 55 (1)
(2016) 163–172.

20



[11] J. Belinha, Meshless methods in biomechanics-Bone tissue remodelling
analysis, Lecture Notes in Computational Vision and Biomechanoics 16,
Springer, 2014.

[12] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, 2004.

[13] D.J. Duffy, Finite Difference Methods in Financial Engineering: A Par-
tial Differential Approach, 2006.

[14] Y.-C. Hon, X. zhong Mao, A radial basis function method for solving
options pricing model, Financial Engineering 8 (1998) 31–49.

[15] B. Scholkopf, A. J. Smola, Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond, MIT Press, Cam-
bridge, MA, USA, 2001.

[16] C.E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning,
MIT Press, Cambridge, Massachussetts, 2006.

[17] I. Steinwart, A. Christmann, Support Vector Machines, Information Sci-
ence and Statistics, Springer, New York, 2008.

[18] E. Francomano, F. M. Hilker, M. Paliaga, E. Venturino, An efficient
method to reconstruct invariant manifolds of saddle points, Dolomites
Research Notes on Approximation 10 (2017) 25–30.

[19] E. Francomano, F. M. Hilker, M. Paliaga, E. Venturino, Separatrix re-
construction to identify tipping points in an eco-epidemiological model,
Applied Mathematics and Computation 318 (2018) 80 – 91, recent
Trends in Numerical Computations: Theory and Algorithms.

[20] E. Francomano, M. Paliaga, Detecting tri-stability of 3d models with
complex attractors via meshfree reconstruction of invariant manifolds of
saddle points, Mathematical Methods in the Applied Sciences 41 (17)
(2018) 7450–7458.

[21] S. Li, W.K. Liu, Meshfree Particle Methods, Springer-Verlag, Berlin,
2007.

21



[22] M. B. Liu, G. R. Liu, Smoothed particle hydrodynamics (sph): an
overview and recent developments, Archives of Computational Methods
in Engineering 17 (1) (2010) 25–76.

[23] J. S. Chen, T. Belytschko, Meshless and Meshfree Methods, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 886–894.

[24] G. Ala, G. Di Blasi, E. Francomano, A numerical meshless particle
method in solving the magnetoencephalography forward problem, Int.
J. Numer. Model. 25 (5–6) (2012) 428–440.

[25] G. Ala, E. Francomano, A multi-sphere particle numerical model for
non-invasive investigations of neuronal human brain activity, Progress
in Electromagnetics Research Letters 36 (2013) 143–153.

[26] G. Ala, E. Francomano, Numerical investigations of an implicit leapfrog
time-domain meshless method, J. Sci. Comput. 62 (3) (2015) 898–912-

[27] R. Couturier: Designing Scientific Applications on GPUs, Chapman &
Hall/CRC (2013).

[28] V. Kindratenko: Numerical Computations with GPUs, Springer Pub-
lishing Company, Incorporated (2014).

[29] L. Antonelli, D. di Serafino, E. Francomano, F. Gregoretti, M. Paliaga,
Towards an efficient implementation of an accurate sph method, in:
Y. D. Sergeyev, D. E. Kvasov (Eds.), Numerical Computations: Theory
and Algorithms, Springer International Publishing, Cham, 2020, pp. 3–
10.

[30] NVIDIA, NVIDIA Volta Architecture Whitepaper.
http://www.nvidia.com/object/volta-architecture-whitepaper.html,
2017.

[31] NVIDIA, NVIDIA Turing Architecture Whitepaper.
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf, 2018.

[32] E. Francomano, M. Paliaga, Highlighting numerical insights of an ef-
ficient SPH method, Applied Mathematics and Computation 339 (C)
(2018) 899–915.

22



[33] J. H. Halton, On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals, Numer. Math. 2 (1)
(1960) 84–90.

[34] I. Sobol’, On the distribution of points in a cube and the approximate
evaluation of integrals, USSR Computational Mathematics and Mathe-
matical Physics 7 (4) (1967) 86 – 112.

[35] Burkhardt, J.: https://github.com/cenit/jburkardt/tree/master/halton
and https://cenit/jburkardt/tree/master/sobol.

[36] L. Greengard, J. Strain, The Fast Gauss Transform, SIAM J. Sci. Stat.
Comput. 12 (1) (1991) 79–94.

[37] D. Lee, A. Gray, A. Moore, Dual-tree Fast Gauss Transforms, in: Pro-
ceedings of the 18th International Conference on Neural Information
Processing Systems, NIPS’05, MIT Press, Cambridge, MA, USA, 2005,
p. 747–754-

[38] V. C. Raykar, R. Duraiswami, The improved fast Gauss transform with
applications to machine learning, Large Scale Kernel Machines (2007)
175–201.

[39] V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami,
L. S. Davis, Automatic online tuning for fast gaussian summation, in:
D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.), Advances in
Neural Information Processing Systems 21, Curran Associates, Inc.,
2009, pp. 1113–1120. See also https://github.com/vmorariu/figtree.

[40] R. C. Whaley, A. Petitet, J. J. Dongarra, Automated empirical opti-
mizations of software and the ATLAS project, Parallel Computing 27 (1)
(2001) 3 – 35, new Trends in High Performance Computing.

[41] N. S. Altman, An introduction to kernel and nearest-neighbor nonpara-
metric regression, The American Statistician 46 (3) (1992) 175–185.

[42] Brown, S.: Case Studies on Optimizing Algorithms for GPU Architec-
tures. Chapel Hill, NC: University of North Carolina at Chapel Hill
Graduate School. (2015). https://doi.org/10.17615/jybr-f558

23



[43] B. Srinivasan, Q. Hu, R. Duraiswami, Gpuml: Graphical processors for
speeding up kernel machines, Workshop on High Performance Analytics-
Algorithms, Implementations, and Applications (2010).

24


