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Abstract: The paper investigates a nonlinear elliptic problem with a Robin boundary condition,
which exhibits a convection term with full dependence on the solution and its gradient. A sub-
supersolution approach is developed for this type of problems. The main result establishes the
existence of a solution enclosed in the ordered interval formed by a sub-supersolution. The result is
applied to find positive solutions.
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1. Introduction

In this paper we study the following nonlinear elliptic boundary value problem{
−div(A(x,∇u)) + α(x)|u|p−2u = f (x, u,∇u) in Ω

A(x,∇u) · ν(x) + β(x)|u|p−2u = 0 on ∂Ω
(1)

on a bounded domain Ω ⊂ RN with N ≥ 3 and with a boundary ∂Ω of class C1. The notation ν(x)
stands for the unit exterior normal at any x ∈ ∂Ω and p is a real number with 1 < p < +∞. We note
that, in the stated problem, the boundary condition is of Robin type.

We describe the data entering our problem. The leading differential part of the equation in (1) is
the term div(A(x,∇u)) in divergence form driven by the map A : Ω×RN → RN which is composed
with the (weak) gradient ∇u of the solution u : Ω→ R. No homogeneity condition is required for the
map A. Precisely, we assume that A : Ω×RN → RN is continuous and fulfills the conditions:

(A1) There exist constants c1 and c2 with 0 < c1 ≤ c2 such that

A(x, ξ) · ξ ≥ c1|ξ|p and |A(x, ξ)| ≤ c2(|ξ|p−1 + 1) for all (x, ξ) ∈ Ω×RN .

(A2) For all x ∈ Ω, A(x, ξ) is strictly monotone in ξ.

Here and subsequently we denote by | · | and · the standard Euclidean norm and scalar product
on RN , respectively.

As important examples of operators div(A(x,∇u)) complying with the preceding hypotheses
we mention: the p-Laplacian ∆pu := div(|∇u|p−2∇u) where A(x, ξ) = |ξ|p−2ξ, the (p, q)-Laplacian
∆pu + ∆qu := div((|∇u|p−2 + |∇u|q−2)∇u) where 1 < q < p < +∞ and A(x, ξ) = |ξ|p−2ξ + |ξ|q−2ξ,

the generalized p-mean curvature operator div((1 + |∇u|2)
p−2

2 ∇u) where A(x, ξ) = (1 + |ξ|2)
p−2

2 as
well as numerous weighted versions.
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The values of u on ∂Ω in the boundary condition of (1) are in the trace sense, whereas A(x,∇u) ·
ν(x) represents the co-normal derivative of u associated with A. For more details we refer to ([1],
pages 7–9) and ([2], Section 2). In the statement of problem (1) we fix the functions α ∈ L∞(Ω) and
β ∈ L∞(∂Ω) satisfying α(x) ≥ 0 for almost everywhere (in short a.e.) x ∈ Ω and β(x) ≥ 0 for a.e.
x ∈ ∂Ω, β 6≡ 0, where ∂Ω is endowed with the (N − 1)-dimensional Hausdorff measure. Contrary to
the Neumann problem, here it is allowed to have α = 0. Recall that if α ∈ L∞(Ω) with α ≥ 0, α 6≡ 0, the
term α(x)|u|p−2u was essential to develop the method of sub-supersolution under Neumann boundary
condition (see [3]). Actually, in the Robin problem, the hypothesis β(x) ≥ 0 for a.e. x ∈ ∂Ω, β 6≡ 0, is a
substitute for the condition α(x) ≥ 0 for a.e. x ∈ Ω, α 6≡ 0, assumed for the Neumann problem.

The reaction term f (x, u,∇u) in the equation (1) is determined by a Carathéodory function
f : Ω×R×RN → R, i.e., f (·, s, ξ) is measurable for all (s, ξ) ∈ R×RN and f (x, ·, ·) is continuous
for a.e. x ∈ Ω. This term, depending not only on the solution u but also on its gradient ∇u, is called
convection. It prevents to have a variational structure for problem (1) and thus the variational methods
are not applicable, which creates a serious difficulty for handling (1).

The Robin problems exhibiting convection term as is the case in (1) have only recently been
studied. We refer to [4–8] for results on the existence of solutions to such problems, where the approach
is based on fixed point theorems or on surjectivity criteria for monotone-type operators. We also
mention that a singular Robin problem involving convection has recently been treated in [9]. There are
many results for Robin problems with variational structure, thus without a convection term. In this
direction, we cite, e.g., [10–15]. The aim of the present work is to study the Robin problem (1) with
general gradient dependence through the method of sub-supersolution. Due to the lack of variational
structure, one cannot handle such a problem by variational methods. We recall that in the study
of non-variational elliptic problems one develops arguments as, for instance, the lower and upper
solution method with monotone iterations, approximation approach of Galerkin-type, surjectivity
theorems for monotone-type operators, fixed point theorems, topological degree theory, bifurcation
theory examining phenomena as branches of solutions and blow-up. It is beyond the scope of our
paper to review this huge amount of work. We only illustrate certain of these topics with a few recent
references: a comparison principle and approximation process relying on a Schauder basis in [16], a
fixed point approach using minimal solutions in [17], estimates based on Trudinger-Moser inequality
for problems with exponential nonlinearities in [18]. We also mention the classical monographs [19,20],
which are fundamental references for general elliptic equations.

According to our knowledge, this is the first time when the method of sub-supersolution is
systematically implemented for nonlinear Robin problems with convection. We prove a general
existence and location result for a solution to be enclosed in the ordered interval determined by a
sub-supersolution. Specifically, given a subsolution u and a supersolution u for problem (1) with u ≤ u
a.e. in Ω (see Section 2 for the relevant definitions), our main abstract result provides the existence of a
solution u to problem (1) satisfying u ≤ u ≤ u a.e. in Ω. This is an important qualitative property of
the solution u offering a priori estimates. The growth condition that we suppose in the variable s for
the nonlinearity f (x, s, ξ) concerns only the real interval [u(x), u(x)]. We emphasize that our abstract
result can be applied provided we know sub-supersolutions, i.e., ordered pairs of a subsolution u and a
supersolution u for problem (1) with u ≤ u i.e., in Ω, so the task to find such ordered pairs becomes the
primary task in applying the method. In this sense, we provide an application of our main result to get
positive solutions for a class of nonlinear Robin problem with convection term by showing explicitly
how one can effectively determine sub-supersolutions. Results, as are given here, have recently been
established in [21] for nonlinear Dirichlet problems with convection and in [3] for nonlinear Neumann
problems with convection. General ideas regarding the method of sub-supersolution can be found
in [1,22].

The rest of the paper is organized as follows. Section 2 discusses the background needed in the
sequel. Section 3 focuses on a related operator equation, which is of independent interest. Section 4
sets forth our main result. Section 5 contains our application to produce positive solutions.
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2. Prerequisites of Sub-Supersolution Method

This section contains preliminaries that will be used in the sequel. First, we fix some notation.
For any r ∈ R, we set r+ = max{r, 0} (the positive part of r). If r > 1, we also set r′ = r

r−1 (the Hölder
conjugate of r). In particular, for p ∈ (1,+∞) we have p′ = p

p−1 .

As indicated in Section 1, Ω is a bounded domain in RN with N ≥ 3 whose boundary ∂Ω is of
class C1. In order to avoid repetitive arguments, we suppose that N > p. The complementary case
N ≤ p can be treated along the same lines and actually is easier. By ‖ · ‖Lr(Ω) we denote the usual
norm on the Banach space Lr(Ω).

We seek the solutions to problem (1) in the Sobolebv space W1,p(Ω), which is a Banach space
equipped with the norm

‖u‖1,p :=
(
‖u‖p

Lp(Ω)
+ ‖∇u‖p

Lp(Ω)

) 1
p .

For our study of problem (1) it is convenient to use the following equivalent norm on W1,p(Ω)

(see, e.g., ([23], Lemma 2.7) or ([15], Proposition 2.8))

‖u‖β,1,p :=
(∫

∂Ω
β(σ)|u(σ)|pdσ + ‖∇u‖p

Lp(Ω)

) 1
p

. (2)

The dual space of W1,p(Ω) is denoted (W1,p(Ω))∗, while the notation 〈·, ·〉 designates the duality
pairing between W1,p(Ω) and (W1,p(Ω))∗, we denote by → the strong convergence and by ⇀ the
weak convergence. The Sobolev embedding theorem ensures that the space W1,p(Ω) is continuously
embedded in Lp∗(Ω), where p∗ is the Sobolev critical exponent p∗ = Np

N−p (we have supposed N > p).

Moreover, by the Rellich–Kondrachov theorem, W1,p(Ω) is compactly embedded in Lr(Ω) for every
r ∈ [1, p∗).

Corresponding to the map A : Ω×RN → RN describing the principal part of the equation in
problem (1), we introduce the operator Ã : W1,p(Ω)→ (W1,p(Ω))∗ defined by

〈Ã(u), v〉 =
∫

Ω
A(x,∇u) · ∇vdx for all u, (3)

which is well defined thanks to assumption (A1). It turns out from assumption (A2) and the continuity
of A that A(x, ξ) is maximal monotone in the variable ξ for all x ∈ Ω. This allows us to invoke ([2],
Proposition 10), which yields:

Proposition 1. Assume that the continuous map A : Ω × RN → RN satisfies the conditions (A1) and
(A2). Then the map Ã : W1,p(Ω) → (W1,p(Ω))∗ in (3) has the (S+)-property, that is, any sequence
{un} ⊂W1,p(Ω) with un ⇀ u in W1,p(Ω) and lim sup

n→+∞
〈Ã(un), un − u〉 ≤ 0 fulfills un → u in W1,p(Ω).

There exists a unique continuous linear map γ : W1,p(Ω)→ Lp(∂Ω) called the trace map such that

γ(u) = u|∂Ω
for all u ∈W1,p(Ω) ∩ C(Ω).

The kernel of γ : W1,p(Ω) → Lp(∂Ω) is W1,p
0 (Ω). Recalling that N > p, the trace map γ is

compact from W1,p(Ω) into Lη(∂Ω) for all η ∈ [1, (N−1)p
N−p ) (see, e.g., ([22], Theorem 2.79)). As usual,

we drop the notation of the trace map γ writing simply u in place of γ(u). The co-normal derivative
A(x,∇u) · ν(x), appearing in the boundary condition in problem (1), is obtained by extending the map
u(·) 7→ A(·,∇u(·)) · ν(·), from C1(Ω) to W1,p(Ω).
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By a (weak) solution to problem (1) we mean a function u ∈ W1,p(Ω) such that f (x, u,∇u) ∈
L(p∗)′(Ω) and∫

Ω
A(x,∇u) · ∇v dx +

∫
Ω

α(x)|u|p−2uv dx +
∫

∂Ω
β(x)|u|p−2uvdσ =

∫
Ω

f (x, u,∇u)v dx (4)

for all v ∈W1,p(Ω).
A function u ∈W1,p(Ω) is called a subsolution for problem (1) if f (·, u(·),∇u(·)) ∈ L(p∗)′(Ω) and∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx +

∫
∂Ω

β(x)|u|p−2uvdσ ≤
∫

Ω
f (x, u,∇u)vdx, (5)

for all v ∈W1,p(Ω), v ≥ 0 a.e. in Ω.
Symmetrically, a function u ∈ W1,p(Ω) is called a supersolution for problem (1) if

f (·, u(·),∇u(·)) ∈ L(p∗)′(Ω) and∫
Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx +

∫
∂Ω

β(x)|u|p−2uvdσ ≥
∫

Ω
f (x, u,∇u)v dx, (6)

for all v ∈W1,p(Ω), v ≥ 0 a.e. in Ω.
Due to assumption (A1), the integrals in the above definitions exist. We notice that u ∈W1,p(Ω)

is a solution of (1) if and only if u is simultaneously a subsolution and a supersolution.
We are going to argue with a sub-supersolution for problem (1), that is, an ordered pair of a

subsolution u and a supersolution u such that u ≤ u, which means the pointwise inequality u(x) ≤ u(x)
for a.e. x ∈ Ω. Then we can associate the ordered interval

[u, u] = {w ∈W1,p(Ω) : u ≤ w ≤ u}.

Our goal is to obtain a solution u ∈W1,p(Ω) of problem (1) with the location property u ∈ [u, u],
which will be achieved through comparison by means of a truncation operator that we now describe.
Corresponding to a subsolution u and a supersolution u satisfying u ≤ u a.e. in Ω, we define the
truncation operator T = T(u, u) : W1,p(Ω)→W1,p(Ω) by

T(u)(x) =


u(x) if u(x) < u(x)
u(x) if u(x) ≤ u(x) ≤ u(x)
u(x) if u(x) > u(x)

(7)

for all u ∈W1,p(Ω) and a.e. x ∈ Ω. It readily follows that T : W1,p(Ω)→W1,p(Ω) is continuous and
bounded (in the sense that it maps bounded sets into bounded sets).

We shall also need the (negative) Dirichlet p-Laplacian, which is the operator −∆p : W1,p
0 (Ω)→

W−1,p′(Ω) = (W1,p
0 (Ω))∗ given by

〈−∆pu, v〉 =
∫

Ω
|∇u|p−2∇u · ∇vdx for all u, v ∈W1,p

0 (Ω).

It is well-known (see, e.g., ([1], Proposition 9.47)) that there exists a least positive number λ1 > 0
(called the first eigenvalue of −∆p) for which the Dirichlet problem{

−∆p ϕ1 = λ1|ϕ1|p−2 ϕ1 in Ω

ϕ1 = 0 on ∂Ω
(8)

has a nontrivial solution ϕ1 ∈W1,p
0 (Ω). By the regularity theory we have ϕ1 ∈ C1(Ω). Moreover, we

can choose ϕ1 to satisfy ϕ1 > 0 in Ω.
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Finally, we mention a few things about the pseudomonotone operators. Let X be a Banach space
with the norm ‖ · ‖ and its dual X∗. We denote by 〈·, ·〉 the duality pairing between X and X∗. A map
A : X → X∗ is called bounded if it maps bounded sets into bounded sets. The map A : X → X∗ is
said to be coercive if

lim
‖u‖→+∞

〈A(u), u〉
‖u‖ = +∞.

The map A : X → X∗ is called pseudomonotone if for each sequence (un) ⊂ X satisfying un ⇀ u
in X and lim supn→∞ 〈A(un), un − u〉 ≤ 0, it holds

〈A(v), u− v〉 ≤ lim inf
n→∞

〈A(un), un − v〉 for all v ∈ X.

The main theorem for pseudomonotone operators reads as follows (see, e.g., ([22], Theorem 2.99)).

Theorem 1. Let X be a reflexive Banach space. If A : X → X∗ is a pseudomonotone, bounded and coercive
map, then A is surjective.

3. The Associated Operator Equation

Assume that a subsolution u and a supersolution u for problem (1) with u ≤ u are given and that
f : Ω×R×RN → R satisfies the following growth condition adapted to the ordered interval [u, u]:

(H) There exist a function σ ∈ Lr′(Ω) with r ∈ (1, p∗) and constants a > 0 and r1 ∈ (0, p
(p∗)′ ) such that

| f (x, s, ξ)| ≤ σ(x) + a|ξ|r1 for a.e. x ∈ Ω, all s ∈ [u(x), u(x)], ξ ∈ RN .

We introduce the cut-off function π : Ω×R→ R defined by

π(x, s) =


−(u(x)− s)

r1
p−r1 if s < u(x),

0 if u(x) ≤ s ≤ u(x),

(s− u(x))
r1

p−r1 if s > u(x),

(9)

where r1 > 0 is the constant postulated in hypothesis (H). From (9) and the fact that u, u ∈ Lp∗(Ω) we
infer that π verifies the growth condition

|π(x, s)| ≤ c|s|
r1

p−r1 + $(x) for a.e. x ∈ Ω, all s ∈ R, (10)

with a constant c > 0 and a function $ ∈ L
p∗(p−r1)

r1 (Ω).
Now for every λ > 0 we define the nonlinear operator Aλ : W1,p(Ω)→ (W1,p(Ω))∗ by

〈Aλ(u), v〉 =
∫

Ω
A(x,∇u) · ∇v dx +

∫
Ω

α(x)|u|p−2uv dx +
∫

∂Ω
β(x)|u|p−2uv dσ (11)

+ λ
∫

Ω
π(x, u)v dx−

∫
Ω

f (x, Tu,∇Tu)v dx for all u, v ∈W1,p(Ω).

Hypothesis (H) guarantees that the operator Aλ in (11) is well defined.

Due to (10), we may consider the Nemytskij operator Π : Lp∗(Ω)→ L
p∗(p−r1)

r1 (Ω), associated to
the function π in (10), namely Π(u) = π(·, u(·)) for all u ∈ Lp∗(Ω). It is well defined, continuous
and bounded. The condition in (H) that r1 < p

(p∗)′ is equivalent to p∗(p−r1)
r1

> (p∗)′. Hence, by

the Rellich–Kondrachov compact embedding theorem, the Nemytskij operator Π : W1,p(Ω) →
(W1,p(Ω))∗ is completely continuous.
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Thanks to hypothesis (H) we also have the Nemytskij operator N f : [u, u]→ (W1,p(Ω))∗ on the
ordered interval [u, u] which is associated to the function f : Ω×R×RN → R, that is

〈N f (u), v〉 =
∫

Ω
f (x, u(x),∇u(x))v(x) dx

for all u ∈ [u, u] and v ∈ W1,p(Ω). Using (H) we see that f (·, u(·),∇u(·)) ∈ L
p

r1 (Ω). As v ∈
Lp∗(Ω) and p

r1
> (p∗)′, the above integral exists. By virtue of the strict inequality p

r1
> (p∗)′, the

Rellich–Kondrachov compact embedding theorem implies that the Nemytskij operator N f : [u, u]→
(W1,p(Ω))∗ is completely continuous.

Again through the Rellich–Kondrachov compact embedding theorem we can show that the
operator B : W1,p(Ω)→ (W1,p(Ω))∗ given by

〈B(u), v〉 =
∫

Ω
α(x)|u(x)|p−2u(x)v(x) dx

for all u, v ∈W1,p(Ω) is completely continuous.
Consider also the operator Γ : W1,p(Ω)→ (W1,p(Ω))∗ given by

〈Γ(u), v〉 =
∫

∂Ω
β(σ)|u(σ)|p−2u(σ)v(σ)dσ (12)

for all u, v ∈W1,p(Ω), where the integration is done with respect to the (N− 1)-dimensional Hausdorff
(surface) measure on ∂Ω.

Let us check that the map Γ : W1,p(Ω)→ (W1,p(Ω))∗ is completely continuous. To this end, let
un ⇀ u in W1,p(Ω). Then the compactness of the trace map γ : W1,p(Ω)→ Lp(∂Ω) ensures the strong
convergence un ≡ γ(un) → u ≡ γ(u) in Lp(∂Ω), thus the strong convergence |un|p−2un → |u|p−2u
in Lp′(∂Ω). Taking into account (12) we deduce that Γ(un)→ Γ(u) in (W1,p(Ω))∗, so Γ : W1,p(Ω)→
(W1,p(Ω))∗ is completely continuous.

For every λ > 0, the operator Aλ : W1,p(Ω)→ (W1,p(Ω))∗ in (11) has the expression

Aλ = Ã + B + Γ + λΠ− N f ◦ T. (13)

The composition N f ◦ T makes sense because T takes values in the ordered interval [u, u] as seen
from (7). The following theorem asserts the solvability of the equation

Aλ(u) = 0. (14)

Theorem 2. Assume that the conditions (A1), (A2) and (H) are satisfied. Then Equation (14) possesses at
least a solution u ∈W1,p(Ω) provided λ > 0 is sufficiently large.

Proof. In order to prove the solvability of operator Equation (14) we apply Theorem 1. We have
to prove that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ in (13) is bounded, pseudomonotone
and coercive.

By (3) and hypothesis (A1), in conjunction with Hölder’s inequality and the Sobolev embedding
theorem, we find that
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‖Ã(u)‖p
(W1,p(Ω))∗

= sup
‖v‖β,1,p≤1

|〈Ã(u), v〉|

= sup
‖v‖β,1,p≤1

∣∣∣∣∫Ω
A(x,∇u) · ∇vdx

∣∣∣∣
≤c2 sup

‖v‖β,1,p≤1

∫
Ω
(|∇u|p−1 + 1)|∇v|dx

≤C(‖u‖p−1
β,1,p + 1)

for all u ∈W1,p(Ω), with a constant C > 0. This shows that the operator Ã : W1,p(Ω)→ (W1,p(Ω))∗

is bounded.
The composed operator N f ◦ T is bounded because T is bounded and N f is completely continuous.

Since B, Π and Γ are completely continuous, it follows from (13) that Aλ : W1,p(Ω) → (W1,p(Ω))∗

is bounded.
We claim that Aλ : W1,p(Ω) → (W1,p(Ω))∗ is a pseudomonotone operator. Let a sequence

{un} ⊂W1,p(Ω) satisfy un ⇀ u in W1,p(Ω) and

lim sup
n→∞

〈Aλ(un), un − u〉 ≤ 0. (15)

The complete continuity of the operators B, Π and Γ yields the strong convergent sequences
B(un)→ B(u), Π(un)→ Π(u) and Γ(un)→ Γ(u) in (W1,p(Ω))∗. This results in

lim
n→∞
〈B(un), un − v〉 = 〈B(u), u− v〉, lim

n→∞
〈Π(un), un − v〉 = 〈Π(u), u− v〉,

lim
n→∞
〈Γ(un), un − u〉 = 〈Γ(u), u− v〉

(16)

for all v ∈W1,p(Ω). We infer that

lim
n→∞
〈B(un), un − u〉 = lim

n→∞
〈Π(un), un − u〉 = lim

n→∞
〈Γ(un), un − u〉 = 0,

so (15) reduces to
lim sup

n→∞
〈Ã(un), un − u〉 ≤ 0. (17)

Inequality (17) enables us to apply Proposition 1 ensuring that the strong convergence un → u in
W1,p(Ω) holds.

At this point, we know that the strong convergence ∇(un) → ∇(u) holds in (Lp(Ω))N , so the
second inequality in (A1) entails A(·,∇un(·)) → A(·,∇u(·)) strongly in (Lp′(Ω))N . Then for each
v ∈W1,p(Ω) one has

lim
n→∞
〈Ã(un), un − v〉 = lim

n→∞

∫
Ω

A(x,∇un) · ∇(un − v)dx

=
∫

Ω
A(x,∇u) · ∇(u− v)dx

=〈Ã(u), u− v〉.

(18)

Taking into account of (13), (16) and (18), we arrive at

lim
n→∞
〈Aλ(un), un − v〉 = 〈Aλ(u), u− v〉

for all v ∈ W1,p(Ω) and λ > 0. Therefore the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is
pseudomonotone.
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Next we show that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is coercive whenever λ > 0 is
sufficiently large.

Since α ∈ L∞(Ω), α ≥ 0, from (11) we note that

〈Aλ(u), u〉 ≥ 〈Ã(u), u〉+
∫

∂Ω
β(σ)|u(σ)|p dσ + λ

∫
Ω

π(x, u)u dx−
∫

Ω
f (x, Tu,∇(Tu))u dx (19)

for all u ∈ W1,p(Ω). We estimate from below the terms in the right-hand side of (19). Assumption
(A1) and (3) yield

〈Ãu, u〉 ≥ c1‖∇u‖p
Lp(Ω)

for all u ∈W1,p(Ω). (20)

From (9) we derive that

∫
Ω

π(x, u(x))u(x) dx ≥ b1‖u‖
p

p−r1

L
p

p−r1 (Ω)

− b2 for all u ∈W1,p(Ω), (21)

with positive constants b1 and b2 (see [3]).
In view of (7), we have that u ≤ Tu ≤ u a.e. in Ω whenever u ∈W1,p(Ω). Consequently, we may

set s = (Tu)(x) in the statement of hypothesis (H). Then, for each ε > 0, we obtain through Hölder’s
and Young’s inequalities and the Sobolev embedding theorem the estimate∣∣∣∣∫Ω

f (x, Tu,∇(Tu))u dx
∣∣∣∣ ≤ ∫Ω

(σ|u|+ a|∇(Tu)|r1 |u|) dx

≤ ε‖∇u‖p
Lp(Ω)

+ c(ε)‖u‖
p

p−r1

L
p

p−r1 (Ω)

+ d‖u‖β,1,p,
(22)

with positive constants c(ε) (depending on ε) and d.
Gathering (19)–(22) leads to

〈Aλ(u), u〉 ≥ (c1 − ε)‖∇u‖p
Lp(Ω)

+
∫

∂Ω β(σ)|u(σ)|p dσ + (λb1 − c(ε))‖u‖
p

p−r1

L
p

p−r1 (Ω)

− d‖u‖β,1,p − λb2 (23)

for all u ∈W1,p(Ω) and λ > 0. Now we fix ε and λ to verify ε ∈ (0, c1) and λ > c(ε)
b1

. From (2) and (23)
it is clear that

〈Aλ(u), u〉 ≥ c0‖u‖
p
β,1,p − d‖u‖β,1,p − λb2

for all u ∈W1,p(Ω), with a constant c0 > 0. Due to the fact that p > 1, it turns out

lim
‖u‖β,1,p→+∞

〈Aλ(u), u〉
‖u‖β,1,p

= +∞,

thereby the operator Aλ is coercive.
Summarizing, we have proved that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is bounded,

pseudomonotone and coercive. This allows us to apply Theorem 1 with A = Aλ for λ > 0 sufficiently
large. The surjectivity of Aλ implies the existence of a solution u ∈ W1,p(Ω) of Equation (14),
thus completing the proof.

Remark 1. As a consequence of (23), we can precisely determine the threshold of λ > 0 in the statement of
Theorem 2.

4. Main Abstract Result for Problem (1)

Our result regarding the method of sub-supersolution for problem (1) is stated as follows.
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Theorem 3. Assume that the conditions (A1), (A2) and (H) are satisfied. Then problem (P) possesses a
solution u ∈W1,p(Ω) satisfying u ≤ u ≤ u a.e. in Ω, where u and u are the subsolution and the supersolution
that are postulated in assumption (H).

Proof. According to Theorem 2 we can fix λ > 0 sufficiently large such that equation (14) admits a
solution u ∈W1,p(Ω). Explicitly, this reads as

〈Ã(u), v〉+
∫

Ω
α(x)|u|p−2uvdx + λ

∫
Ω

π(x, u)vdx +
∫

∂Ω
β(x)|u|p−2uvdσ

=
∫

Ω
f (x, Tu,∇(Tu))vdx for all v ∈W1,p(Ω).

(24)

Let us prove that u ≤ u a.e. in Ω. Inserting v = (u− u)+ ∈W1,p(Ω) in (6) and (24) renders

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx +

∫
∂Ω

β(x)|u|p−2u(u− u)+dσ

≥
∫

Ω
f (x, u,∇u)(u− u)+dx

(25)

and

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

+
∫

∂Ω
β(x)|u|p−2u(u− u)+dσ

=
∫

Ω
f (x, Tu,∇(Tu))(u− u)+dx.

(26)

Subtract (25) from (26) and use (3) and (7) to deduce that∫
Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx +

∫
∂Ω

β(x)(|u|p−2u− |u|p−2u)(u− u)+dσ

+
∫

Ω
α(x)(|u|p−2u− |u|p−2u)(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

≤
∫

Ω

(
f (x, Tu,∇(Tu))− f (x, u,∇u)

)
(u− u)+ dx

=
∫
{u>u}

(
f (x, Tu,∇(Tu))− f (x, u,∇u)

)
(u− u)dx = 0.

(27)

The monotonicity of A(x, ·), guaranteed by assumption (A2), and the monotonicity of the map
ξ 7→ |ξ|p−2ξ on RN give ∫

Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx

=
∫
{u>u}

(A(x,∇u)− A(x,∇u))(∇u−∇u)dx ≥ 0,

∫
Ω

α(x)(|u|p−2u− |u|p−2u)(u− u)+dx

=
∫
{u>u}

α(x)(|u|p−2u− |u|p−2u)(u− u)dx ≥ 0,

∫
∂Ω

β(σ)(|u|p−2u− |u|p−2u)(u− u)+dσ

=
∫
{σ∈∂Ω : u>u}

β(σ)(|u|p−2u− |u|p−2u)(u− u)dσ ≥ 0.
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From (27) and (9) we obtain∫
{u>u}

(u− u)
p

p−r1 dx =
∫

Ω
π(x, u)(u− u)+dx ≤ 0,

where u ≤ u a.e in Ω.
Next we show that u ≤ u a.e in Ω. Setting v = (u− u)+ ∈W1,p(Ω) in (5) and (24) produces

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx +

∫
∂Ω

β(x)|u|p−2u(u− u)+dσ

≤
∫

Ω
f (x, u,∇u)(u− u)+dx

(28)

and

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

+
∫

∂Ω
β(x)|u|p−2u(u− u)+dσ

=
∫

Ω
f (x, Tu,∇(Tu))(u− u)+dx.

(29)

By subtracting (29) from (28) and taking into account (3) we arrive at∫
Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx +

∫
∂Ω

β(x)(|u|p−2u− |u|p−2u)(u− u)+dσ

+
∫

Ω
α(x)(|u|p−2u− |u|p−2u)(u− u)+dx− λ

∫
Ω

π(x, u)(u− u)+dx

≤
∫

Ω

(
f (x, u,∇u)− f (x, Tu,∇(Tu)

)
(u− u)+dx

=
∫
{u>u}

(
f (x, u,∇u)− f (x, Tu,∇(Tu))

)
(u− u)+dx = 0.

(30)

Along (9) and proceeding as above, (30) results in

−
∫
{u>u}

−(u− u)
p

p−r1 dx = −
∫

Ω
π(x, u)(u− u)+dx ≤ 0,

which entails that u ≤ u a.e in Ω, thus proving the claim.
Therefore the solution u ∈W1,p(Ω) of the operator equation (14) verifies the enclosure property

u ≤ u ≤ u a.e. in Ω. Then we obtain from (7) and (9) that Tu = u and Π(u) = 0. Hence for our
function u the equalities (24) and (4) coincide. We see that u ∈ W1,p(Ω) is a solution of the original
problem (1) fulfilling in addition u ≤ u ≤ u a.e. in Ω. This completes the proof.

5. An Application

The aim of this section is to apply Theorem 3 to establish the existence of positive solutions of
Robin problem (1). The main point is to find appropriate ordered sub-supersolutions. The approach
can be used to get other types of solutions.

In order to simplify the presentation, we focus on problem (1) driven by the Robin p-Laplacian,
1 < p < +∞, and when α(x) ≡ 0 and the x-dependence in the convection term f (x, s, ξ) is dropped.
We emphasize that α ≡ 0 marks a sharp distinction in regard to the Neumann problem. Specifically,
we consider the (purely) Robin problem{

−∆pu = f (u,∇u) in Ω

|∇u|p−2∇u · ν(x) + β(x)|u|p−2u = 0 on ∂Ω,
(31)
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with β(x) ≥ 0 for a.e. x ∈ ∂Ω, β 6≡ 0.
We suppose that f : R×RN → R is a continuous function verifying the following assumption:

(H′) There exist constants a0 > 0, a1 > 0, b > 0 and r1 ∈ (0, p
(p∗)′ ) such that

| f (s, ξ)| ≤ a1(1 + |ξ|r1) for all s ∈ (0, b], ξ ∈ RN , (32)

λ1sp−1 ≤ f (s, ξ) for all s ∈ (0, a0), |ξ| < a0 (33)

and
f (b, 0) = 0. (34)

The condition (33) involves the first eigenvalue λ1 of the (negative) Dirichlet p-Laplacian as given
in (8). Let us note that u = b is not a solution to problem (31) because the boundary condition is not
verified. We formulate the following result concerning problem (31).

Theorem 4. Assume that the conditions (A1), (A2) and (H′) are satisfied. Then the Robin problem (31)
possesses a (positive) solution u ∈W1,p(Ω) satisfying 0 < u ≤ b a.e. in Ω.

Proof. Fix an eigenfunction ϕ1 of −∆p on W1,p
0 (Ω), with ϕ1 > 0 in Ω, corresponding to the first

eigenvalue λ1 (see (8) and the related comments). Since ϕ1 ∈ C1(Ω), we can choose an ε > 0 such that

εϕ1(x) < a0 and ε|∇ϕ1(x)| < a0 for all x ∈ Ω, (35)

where a0 is the positive constant prescribed in hypothesis (H′).
We note that u = εϕ1 is a subsolution in the sense of (5) for the Robin problem (31). Indeed, by (8),

(33) and (35) and since the trace of u on ∂Ω vanishes, we infer that∫
Ω
|∇u|p−2∇u · ∇vdx +

∫
∂Ω

β(x)|u|p−2uvdσ = εp−1
∫

Ω
|∇ϕ1(x)|p−2∇ϕ1(x) · ∇v(x)dx

= λ1

∫
Ω
(εϕ1(x))p−1v(x)dx

≤
∫

Ω
f (εϕ1(x), ε∇ϕ1(x))v(x)dx

=
∫

Ω
f (u(x),∇u(x))v(x)dx for all v ∈W1,p(Ω), v ≥ 0.

This proves that u = εϕ1 is a subsolution of problem (31).
Now we observe that the constant function u = b is a supersolution of problem (31). Indeed,

let us notice from assumption (34) that∫
Ω
|∇u|p−2∇u · ∇vdx +

∫
∂Ω

β(x)|u|p−2uvdσ =
∫

∂Ω
β(x)bp−1v(x)dσ

≥ 0 =
∫

Ω
f (b, 0)v(x)dx

=
∫

Ω
f (u(x),∇u(x))v(x)dx

for all v ∈ W1,p(Ω) with v ≥ 0, which confirms that u = b is a supersolution of problem (31) in the
sense of (6).

For a possibly smaller ε > 0 to be fulfilled εϕ1(x) ≤ b whenever x ∈ Ω, the inequality u ≤ u holds
true. The growth condition in (H) is satisfied due to (32) because the pointwise intervals [u(x), u(x)]
are all included in the bounded interval (0, b]. Altogether we are in a position to apply Theorem 3,
which yields the desired conclusion.

We provide a simple example illustrating the applicability of Theorem 4.
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Example 1. Let f : R×RN → R be defined by

f (s, ξ) = g(s) + h(ξ) for all (s, ξ) ∈ R×RN ,

with g : R→ R defined by

g(s) =


0 if s < 0 or s > 2

λ1sp−1 if 0 ≤ s ≤ 1

λ1(2− s)p−1 if 1 < s ≤ 2

and any continuous function h : RN → R satisfying h(ξ) ≥ 0, h(0) = 0 and

0 ≤ h(ξ) ≤ a2(1 + |ξ|r1) for all ξ ∈ RN ,

with constants a2 > 0 and r1 ∈ (0, p
(p∗)′ ). We note that f (2, 0) = 0 and

f (s, ξ) = g(s) + h(ξ) ≥ λ1sp−1 for all 0 ≤ s ≤ 1, ξ ∈ RN .

Hypothesis (H′) is verified taking a0 = 1 and b = 2. Theorem 4 can be applied to problem (31) with
f (s, ξ) given above.
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