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Abstract: We give a short overview on the decomposition property for integrable multifunctions, i.e.,
when an “integrable in a certain sense” multifunction can be represented as a sum of one of its integrable
selections and a multifunction integrable in a narrower sense. The decomposition theorems are important
tools of the theory of multivalued integration since they allow us to see an integrable multifunction as a
translation of a multifunction with better properties. Consequently, they provide better characterization
of integrable multifunctions under consideration. There is a large literature on it starting from the seminal
paper of the authors in 2006, where the property was proved for Henstock integrable multifunctions
taking compact convex values in a separable Banach space X. In this paper, we summarize the earlier
results, we prove further results and present tables which show the state of art in this topic.

Keywords: gauge multivalued integral; scalarly defined multivalued integral; decomposition
of a multifunction
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1. Introduction

Various investigations in mathematical economics, optimal control and multivalued image
reconstruction led to study of the integrability of multifunctions. In fact, the multivalued integration has
shown to be a useful tool when modeling theories in different fields [1–7]. Also, the study of multivalued
integrals arises in a natural way in connection with statistical problems (see, for example, [8–10]). But the
topic is interesting also from the point of view of measure and integration theory, as we can see in the
papers [1,7,11–38].

Here we examine two groups of the integrals: those functionally determined (we call them “scalarly
defined integrals”) (as Pettis, Henstock–Kurzweil–Pettis, Denjoy–Pettis integrals) and those identified
by gauges (we call them “gauge defined integrals”) as Henstock, McShane and Birkhoff integrals. The
last class also includes versions of Henstock and McShane integrals, when only measurable gauges are
allowed, and the variational Henstock and McShane integrals. We investigate only multifunctions with
weakly compact and convex values. More general theory of integration is not sufficiently developped until
now.

In particular, decomposition properties are considered both for scalarly defined integrals and for gauge
defined integrals. The results presented here are contained in some papers quoted in the bibliography or
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can be easily obtained. Only some results are discussed. The novelty of the present article relies in the fact
that we sumarize the results known until now in the field. Moreover, we compare them and in Tab 2A and
Tab 2B we provide a clear view of the state of art in the topic.

2. Preliminaries

Throughout the paper X is a Banach space with norm ‖ · ‖ and its dual X∗. The closed unit ball of
X is denoted BX. The symbol cwk(X) denotes the collection of all nonempty convex weakly compact
subsets of X. For every C ∈ cwk(X) the support function of C is denoted by s(·, C) and defined on X∗ by
s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗. We set ‖C‖h = dH(C, {0}) := sup{‖x‖ : x ∈ C}, where
dH is the Hausdorff metric on the hyperspace cwk(X). Let ([0, 1], λ,L) be the unit interval equipped with
Lebesgue measure λ and Lebesgue measurable sets L, while I is the collection of all closed subintervals
of [0, 1]. L0 is the collection of all strongly measurable X-valued functions defined on [0, 1]. Unless
otherwise noted, all investigated multifunctions are defined on [0, 1] and take values in cwk(X). A function
f : [0, 1]→ X is called a selection of a multifunction Γ if f (t) ∈ Γ(t), for almost every t ∈ [0, 1].

We recall that if Φ : L → Y is an additive vector measure with values in a normed space Y,
then the variation of Φ is the extended non negative function |Φ| whose value on a set E ∈ L is given by
|Φ|(E) = supπ ∑A∈π ‖Φ(A)‖, where the supremum is taken over all partitions π of E into a finite number
of pairwise disjoint members of L. If |Φ| < ∞, then Φ is called a measure of finite variation. If Φ is defined
only on I , the finite partitions considered in the definition of variation are composed by intervals. In this
case we will speak of finite interval variation and we will use the symbol Φ̃, namely:

Φ̃([0, 1]) = sup{∑
i
‖Φ(Ii)‖ : {I1, . . . , In} is a finite interval partition of [0, 1]}.

If {I1, . . . , Ip} is a partition in [0, 1] into intervals and tj ∈ [0, 1], j = 1, . . . , p, then {(Ij, tj)}
p
j=1 is

called an I-partition. If δ is a gauge (that is positive function) on [0, 1] and Ij ⊂ [tj − δ(tj), tj + δ(tj)], j =
1, . . . , p, p ∈ N, then the I-partition is called δ-fine.

Moreover a usefull tool in our investigation is the notion of variational measure generated by an
interval multimeasure. Given an interval multimeasure Φ : I → cwk(X), we call variational measure
VΦ : L → R generated by Φ, the measure whose value on a set E ∈ L is given by

VΦ(E) := inf
δ
{Var(Φ, δ, E) : δ is a gauge on E} ,

where

Var(Φ, δ, E) = sup

{
p

∑
j=1
‖Φ(Ij)‖h : {(I j, tj)}

p
j=1 is a δ−fine I−partition, with tj ∈ Ij ∩ E, j = 1, . . . , p

}
.

Now we recall here briefly the definitions of the integrals involved in this article. A scalarly integrable
multifunction Γ : [0, 1]→ cwk(X) is Pettis integrable (Pe) in cwk(X), if for every set A ∈ L there exists a set
MΓ(A) ∈ cwk(X) such that s(x∗, MΓ(A)) =

∫
A s(x∗, Γ) dλ for every x∗ ∈ X∗. We write it as (P)

∫
A Γ dλ

or MΓ(A). A multifunction Γ : [0, 1]→ cwk(X) is called Bochner integrable if it is Bochner measurable (i.e.,
there exists a sequence of simple multifunctions Γn : [0, 1]→ cwk(X) such that for almost all t ∈ [0, 1] one
has limn dH(Γn(t), Γ(t)) = 0) and integrably bounded. We will denote the family by L1.
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A multifunction Γ : [0, 1] → cwk(X) is said to be McShane (MS) (resp. Henstock (H)) integrable on
[0, 1], if there exists ΦΓ([0, 1]) ∈ cwk(X) with the property that for every ε > 0 there exists a gauge δ on
[0, 1] such that for each δ-fine I-partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] (with ti ∈ Ii for all i), we have

dH

(
ΦΓ([0, 1]),

p

∑
i=1

Γ(ti)λ(Ii)

)
< ε. (1)

If the gauges above are taken to be measurable, then we speak ofH (resp. Birkhoff)-integrability on
[0, 1]. If I ∈ I , then ΦΓ(I) := ΦΓχI [0, 1].

Finally if, instead of formula (1), we have

p

∑
i=1

dH (ΦΓ(Ii), Γ(ti)λ(Ii)) < ε, (2)

we speak about variational Henstock (vH) (resp. McShane (vMS)) integrability on [0, 1].
The definition of variational Henstock (resp. McShane) integral comes from the classical

Saks-Henstock Lemma for real valued functions. In case of Banach valued functions, they coincide
with the definitions of Henstock (resp. McShane) integral if and only if the Banach space is of finite
dimension. In the other cases, the variational integrals possesse better properties than Henstock or
McShane integrals. In particular, the notion of variational Henstock integrability is a usefull tool to study
the diferrentiability of Pettis integrals (cf. [13] (Corollary 4.1)). Formula (2) is the natural extension of such
integrals to the multivalued case.

Moreover by [18] (Thm. 6.6) vH-integrability and vH integrability coincide. In all the cases ΦΓ :
I → cwk(X) is an additive interval multimeasure. A multifunction Γ : [0, 1] → cwk(X) is said to be
Henstock-Kurzweil-Pettis (HKP) integrable in cwk(X) if it is scalarly Henstock-Kurzweil (HK)-integrable
and for each I ∈ I there exists a set NΓ(I) ∈ cwk(X) such that s(x∗, NΓ(I)) = (HK)

∫
I s(x∗, Γ(t))dt for

every x∗ ∈ X∗. If an HKP-integrable Γ is scalarly integrable, then it is called weakly McShane integrable
(wMS). We recall that a function f : [0, 1]→ R is Denjoy-Khintchine (DK) integrable ([39] (Definition 11)),
if there exists an ACG function (cf. [39]) F such that its approximate derivative is almost everywhere equal
to f .

A multifunction Γ : [0, 1] → cwk(X) is Denjoy-Khintchine-Pettis (DKP) integrable in cwk(X), if for
each x∗ ∈ X∗ the function s(x∗, Γ(·)) is Denjoy-Khintchine integrable and for every I ∈ I there exists
CI ∈ cwk(X) with (DK)

∫
I s(x∗, Γ(t))dt = s(x∗, CI), for every x∗ ∈ X∗.

A multifunction Γ : [0, 1]→ cwk(X) satisfies the Db-condition (resp. DL-condition) if

sup esst diam(Γ(t)) < ∞ ( resp.
∫ 1

0
diam(Γ(t))dt < +∞, where

∫
denotes the upper integral).

We say that a multifunction Γ : [0, 1] → cwk(X) is positive if s(x∗, Γ(·)) ≥ 0 a.e. for each x∗ ∈ X∗

separately. Of course, if 0 ∈ Γ(t) for almost every t ∈ [0, 1], then Γ is positive. As regards other definitions
of measurability and integrability that are treated here and are not explained and the known relations
among them, we refer to [3,15–20,26,36,38,40–42], in order not to burden the presentation.
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3. Intersections

In this section we are going to highlight some relations among gauge integrability and functionally
defined integrability for multifunctions in order to understand better the examples given before. Since we
have inclusions

DP ⊃ HKP ⊃ wMS ⊃ Pe and DP ⊃ HKP ⊃ H ⊃ H ⊃ vH = vH

only the pairs of different types of integrals are interesting. For what concernes the symbol subscript f v it
means that the corresponding integral is of finite variation.

In Table 1 Henstock,H and vH-integrable functions possessing integrals of finite variation, are not
taken into consideration. The reason is simple. In [21] (Theorem 4.5) it is proven that such multifunctions
are McShane and Birkhoff integrable, respectively. For a similar reason wMS-integrable multifunctions
with integrals of finite variation are omitted. Φ is the indefinite integral of G.

Table 1. Intersections. Arbitrary G.

GG vH H H

Pe f v L1 Remark 1.2 Bi f v [18] (Th.4.3) MS f v [18] (Th.3.3)

Pe Pe ∩ L0 + VΦ � λ Rem. 1.3 Bi [18] (Th.4.3) MS [18] (Th.3.3)

wMS Pe ∩ L0 + VΦ � λ if c0 6⊆ X Rem. 1.4 Bi if c0 6⊆ X Rem. 1.4 MS if c0 6⊆ X Rem. 1.4

Remark 1. Observe that, using the Rådström embedding: i : cwk(X)→ l∞(BX∗) (see for example [43] or
[19]) given by i(A) := s(·, A), we have that:

1. directly from the definitions and the Rådström embedding, a multifunction G : [0, 1] → cwk(X) is
Birkhoff (resp. Henstock, McShane, variationally Henstock) integrable if and only if i ◦ G is integrable
in the same sense. For the Pettis integrability this is not true. However, for Bochner measurable
multifunctions, we have that since {G(E) : E ∈ L} is separable for the Hausdorff distance and then G is
Pettis integrable if and only if i ◦G is Pettis integrable ([26] (Proposition 4.5)), so we have Pe = MS = Bi
( for strongly measurable vector valued functions, Pettis, McShane and Birkhoff integrability coincide
(see [44] (Corollary 4C) and [45] (Theorem 10)).

2. Pe f v ∩ vH = L1 in Table 1 solves the problem of [46], where the authors noticed that Pe ∩ vH 6= L1 in
case of functions. The inclusion Pe f v ∩ vH ⊃ L1 is clear. To prove the inclusion Pe f v ∩ vH ⊂ L1 take
G ∈ Pe f v ∩ vH. Then i ◦ G is strongly measurable ([17] (Prop. 2.8)) and vH-integrable.
If MG is the Pettis integral of G, then i ◦MG is a measure of finite variation and i ◦MG(I) = (vH)

∫
I i ◦G.

It follows that i ◦G is Pettis integrable and then Bochner integrable by [47] (Theorem 4.1) or [48] (Lemma
2). Now we may apply [17] (Proposition 3.6) to obtain variational McShane integrability of G.

3. The results for the Pe row and vH column follow from Remark 1.1, by [17] (Theorem 4.3, d)⇔ e)) and
[13] (Cor. 4.1), since G is vH integrable if and only if the variational measure VΦ of its multivalued
Pettis integral Φ is λ-continuous ([19] (Theorem 3.3)). Example 1 shows what can happen in the Pe \ vH
case.

4. The results given in wMS row follow from the Pe row and [49] (Theorem 18) or [50] (Theorem 4.4).

Example 1. There exists a Pettis integrable multifunction G : [0, 1]→ cwk(X) such that 0 ∈ G(t) for every
t ∈ [0, 1] and the variational measure associated to its Pettis integral VMG 6� λ.

Proof. Let g : [0, 1]→ X be a Pettis integrable function such that the variational measure associated to its
Pettis integral Vνg 6� λ, where νg(E) = (P)

∫
E g dλ, (for the existence see [13] (Corollary 4.2, Remark 4.3)),
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then we take G(t) := conv{0, g(t)}. The multifunction G is Pettis integrable and Vνg(E) ≤ VMG (E) ([17]
(Proposition 2.7)). It follows that VMG 6� λ.

4. Decompositions

The decomposition of a multifunction Γ integrable in a certain sense into a sum of one of its integrable
selections and a multifunction integrable in a narrower sense, relies essentially in the two facts:

1) Existence of a selection of Γ integrable in the same sense as Γ.
2) A particular behaviour with respect to the integration of a positive multifunction.

In particular, regarding the results on the existence of selections we can observe that:

Proposition 1. Let X be any Banach space and let Γ : [0, 1]→ cwk(X).

(i) If Γ is Pettis (resp. HKP, wMS or DKP) integrable in cwk(X), then each scalarly measurable selection of Γ is
Pettis (resp. HKP, wMS or DK) integrable (see [26] (Corollary 2.3, Theorem 2.5) and [31] (Proposition 3,
Remark 3)));

(ii) if Γ is Henstock (resp. McShane) integrable, then it possesses at least one Henstock (resp. McShane) integrable
selection (see [33] (Theorem 3.1) or [30] (Theorem 2) in case of a separable X and compact valued Γ);

(iii) if Γ isH (resp. Birkhoff) integrable, then it possesses at least oneH (resp. Birkhoff) integrable selection (see [30],
[17] (Theorem 3.4), [18] (Proposition 4.1));

(iv) if Γ is vH integrable, then there exists at least one vH integrable selection (see [18] (Theorem 5.1)); if Γ takes
convex compact values and is Bochner integrable, then it possesses at least one Bochner integrable selection (see
[17] (Theorem 3.9)).

While, for positive multifunctions, the following relations are known:

Proposition 2. Let X be any Banach space and let G : [0, 1]→ cwk(X). Then

(i) If G is Henstock integrable (resp. H-integrable) and positive, then it is also McShane (resp. Birkhoff) integrable
on [0, 1] (see [18, Proposition 3.1]);

(ii) If G is variationally Henstock integrable and positive, then G is Birkhoff integrable (see [17] (Proposition 4.1));
(iii) If G is HKP (resp. DKP) integrable and positive, then G is Pettis integrable (see [31] (Lemma 1)).

In general it is not possible to write Γ = G + f with the meaning explained before. We present below
a few examples.

Example 2. There exists a Pettis integrable multifunction G : [0, 1]→ cwk(X) such that 0 ∈ G(t) for every
t ∈ [0, 1], but G is not McShane integrable.

Proof. Let g : [0, 1] → X be Pettis but not McShane integrable and let G(t) := conv{0, g(t)} be the
multifunction determined by g. Then G is positive and Pettis integrable (see [20] (Proposition 2.3)). But
according to [20] (Theorem 2.7) G is not McShane integrable.

Example 3. Any multifunction G from Example 2 cannot be represented as G = H + h, where H is
McShane integrable and h is Pettis integrable.

Proof. If h is a Pettis integrable selection of G, then there exists a measurable function α : [0, 1] → [0, 1]
such that h(t) = α(t)g(t), for every t ∈ [0, 1].
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We have for H(t) := G(t)− h(t) = conv{−α(t)g(t), [1− α(t)]g(t)}

s(x∗, H(t)) = sup0≤a≤1〈x∗,−aα(t)g(t) + (1− a)[1− α(t)]g(t)〉 = sup0≤a≤1〈x∗, g(t)[1− a− α(t)]〉
= 〈x∗, g(t)[1− α(t)]〉+ sup0≤a≤1〈x∗,−ag(t)〉 = 〈x∗, g(t)[1− α(t)]〉 − inf0≤a≤1〈x∗, ag(t)〉
= 〈x∗, g(t)[1− α(t)]〉+ 〈x∗, g(t)〉−

(3)

If H would be McShane integrable then, the family

{〈x∗, [1− α(·)]g(·)〉+ 〈x∗, g(·)〉− : ‖x∗‖ ≤ 1}

would be McShane equiintegrable. But in such a case −H is also McShane integrable. Since

s(x∗,−H(t)) = sup0≤a≤1〈x∗, aα(t)g(t) + (1− a)[−1 + α(t)]g(t)〉
= −〈x∗, [1− α(t)]g(t)〉+ 〈x∗, g(t)〉+ (4)

the family {〈x∗, [−1 + α(·)]g(·)〉 + 〈x∗, g(·)〉+ : ‖x∗‖ ≤ 1} would be also McShane equiintegrable.
Substracting (3) and (4), we obtain McShane equiintegrability of the family

{[1− 2α(·)]〈x∗, g(·)〉 − 〈x∗, g(·)〉 : ‖x∗‖ ≤ 1} = {−2α(·)〈x∗, g(·)〉 : ‖x∗‖ ≤ 1}.

That means that if H is McShane integrable, then also h is McShane integrable. Consequently, G is
McShane integrable, contradicting our assumption.

Below, we make usage of multifunctions determined by functions, that is the multifunctions of the
shape G(t) = conv{0, g(t)}, where g is a Banach space valued function. We refere to [20], for the relations
of integrability between g and G. At this stage we recall only that Henstock integrability of g, in general,
does not imply Henstock integrability of G. In fact let g be a Henstock but non McShane integrable
function. If, by contradiction, G is Henstock integrable then, by [18] (proposition 3.1), G is McShane
integrable and then, by [20] (Theorem 2.7), g is McShane integrable. For the relations among different
types of integrability for vector valued functions we refer also to [51].

Remark 2. There is now an obvious question: Let Γ : [0, 1] → cwk(X) be a variationally Henstock
(Henstock,H) integrable multifunction. Does there exist a variationally Henstock (Henstock,H) integrable
selection f of Γ such that the integral of G := Γ− f is of finite variation?

Unfortunately, in general, the answer is negative. The argument is similar to that applied in [51].
Assume that X is separable and g is the X-valued function constructed in [46] that is vH-integrable (and
so it is strongly measurable by [52]) as well as Pettis but not Bochner integrable (see [46]). Let Γ(t) :=
conv{0, g(t)}. Then, Γ is vH-integrable (see [17] (Example 4.7)) but it is not Bochner integrable because
it possesses at least one vH-integrable selection that is not Bochner integrable (see [17] (Theorem 3.7).
Let now f ∈ SvH(Γ) and consider the multifunction G := Γ− f . Clearly G is vH-integrable (hence also
Henstock andH-integrable) and G(t) = conv{− f (t), g(t)− f (t)} for all t ∈ [0, 1].

If the integral of G were of finite variation, then G would be Bochner integrable. In fact by Proposition
2, G is Pettis integrable. Since G is compact valued and X is separable, an application of [25] (Proposition
3.5) gives that also i(G) (i is the Rådström embedding) is Pettis integrable. Moreover, since G is Bochner
measurable, i(G) is strongly measurable. Now the finite variation of i(G) yields Bochner integrability of
i(G). So since G is Bochner measurable it becomes Bochner integrable (an equivalent proof can be deduced
from Remark 1.2). Therefore, the selections − f , g− f would be Bochner integrable since they are strongly
measurable and dominated by ‖G‖h. But that would mean that g is Bochner integrable, contrary to the
assumption.
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The multifunction Γ is also an example of a strongly measurable and Birkhoff (McShane) integrable
multifunction (see [17] (Theorem 4.3)) that cannot be decomposed into Birkhoff (McShane) integrable
multifunction with integral of finite variation and a selection. 2

Example 4. There exists a McShane integrable multifunction G : [0, 1] → cwk(X) such that 0 ∈ G(t) for
every t ∈ [0, 1], but G is not Birkhoff integrable. Moreover, G cannot be represented as G = H + h, where
H : [0, 1]→ cwk(X) is Birkhoff integrable and h : [0, 1]→ X is McShane integrable. G may be chosen with
its integral of finite variation.

Proof. We take in Example 2 a function g that is McShane but not Birkhoff integrable and follow the same
calculations. The second assertion can be proved as that in Example 3. If g is bounded, then the variation
of the McShane integral of G is finite. Phillips’ function is an example of such a function. As proved in [53]
(Ex. 2.1) it is McShane integrable but not Birkhoff.

Example 5. Let X = `2[0, 1] and let {et : t ∈ (0, 1] be its orthonormal basis. Let G(t) := conv{0, et} , t ∈
(0, 1]. Then G is Birkhoff integrable and bounded (cf. [20] (Ex. 2.11)). G cannot be represented as
G = H + h, where h is a Birkhoff integrable selection of G and H is Bochner integrable.

Proof. Suppose that such a representation exists: G = H + h. Then there exists a measurable function
α : [0, 1] → [0, 1] such that h(t) = α(t)et for all t ∈ (0, 1]. We may assume that α is positive on a set of
positive Lebesgue measure. Then, H(t) = conv{α(t)et, (1− α(t))et}. Since H is - by definition - Bochner
measurable, there exists a set K ⊂ [0, 1] of full measure such that {H(t) : t ∈ K} is separable in dH . But if
t 6= t′, then

dH(H(t), H(t′)) ≥ max{α(t), α(t′)}.

Hence there is ε > 0 such that dH(H(t), H(t′)) ≥ ε > 0 on a set of positive measure. However, that
contradicts the separability.

Proposition 3. Let G : [0, 1]→ cwk(X) be McShane integrable (hence also Henstock) such that its integral
MG : L → cwk(X) is of finite variation. If G := H + h, where h is a McShane integrable selection of G, then
the variation of the multiiintegral MH of H is finite. Moreover H is Birkhoff and variationally Henstock
integrable.

Proof. Let G be McShane integrable and such that |MG| < ∞ (in [53] (Ex. 2.1) there is an example of
such a G that is also not Birkhoff integrable). Let νh be the McShane integral of h. Since h is a selection
of G, we have νh(E) ∈ MG(E) for every E ∈ L. Consequently |νh|[0, 1] ≤ |MG|[0, 1] < ∞ and then
|MH |[0, 1] ≤ |MG|[0, 1] + |νh|[0, 1] < ∞. Moeover by [19] (Cor. 3.7) we get that H is Birkhoff and
variationally Henstock integrable.

Now, to provide the reader with a quick overview of decomposition results which can be derived
from Propositions 1 and 2 and from the articles quoted in the list of references, we have collected the
results in Table 2.Part A, 2.Part B for gauge integrals and in Tables 3 and 4 for scalarly defines integrals.
In the left column of the subsequent tables there are multifunctions G of different type. In the first row
there are functions f with the corresponding properties. In the intersection of a row α and a column β one
finds a class V of multifunctions Γ together with equality or an inclusion.

• The notation = V means that each element of V can be represented as G + f , where f is a selection of
Γ belonging to the class β and G is a member of the class α. And conversely, if G ∈ α and f ∈ β, then
G + f ∈ V.



Mathematics 2020, 8, 863 8 of 13

• The inclusion ⊂ V means that if G ∈ α and f ∈ β, then G + f ∈ V. While ( V means that if G ∈ α

and f ∈ β, then G + f ∈ V but there are elements Γ of V that cannot be represented as Γ = G + f ,
where G ∈ α and f is a selection of Γ belonging to β. Clearly, one has always Γ = Γ + 0 but, if zero
function is not a selection of Γ then this is not what we are looking for.

• The inclusion ⊃ V means that each element of V can be represented as G + f , where f is a selection
of Γ belonging to the class β and G is a member of the class α. While ) V means additionally that
sometimes G + f /∈ V for properly chosen G and f .

• Question tag indicates that we do not know something.

In Table 2. Part A, 2. Part B we describe decomposition into gauge integrable multifunction and function.
Similarly as in case of Table 1 Henstock, H and vH-integrable functions possessing integrals of finite
variation, are not taken into consideration, because such functions are McShane and Birkhoff integrable,
respectively ([21] (Theorem 4.5)).

In the tables that follow the most significant results will be highlighted by a box.

Table 2. Part A: Decomposition : Γ = G + f , arbitrary gauge defined G and f .

G f L1 Bi f v Bi MS f v

L1 =L1
(Bi f v Ex. 5,

[54] (Prop. 4.7)
(Bi Ex. 5,

[54] (Prop. 4.7), [51] (Ex. 2)
(MS f v Prop. 3, Ex. 5,

[54] (Prop. 4.7)

Bi f v ⊂ Bi f v =Bi f v
(Bi Ex. 5,

[54] (Prop. 4.7), [51] (Ex. 2)
= MS f v Prop. 3, Ex. 5,

[54] (Prop. 4.7)

Bi (Bi Rem. 3.6 (Bi Rem. 3.6 =Bi (MS Ex. 4

Bi ∩ vH ⊂Bi∩ vH
6= Bi ∩ vH ?

(H
Rem. 3.6

⊂ Bi
6= Bi ? (MS Ex. 4

MS f v ⊂MS f v
⊂ MS f v
6= MS f v ?

⊂ MS
6= MS ? =MS f v

MS ⊂MS Rem. 3.5 ⊂MS Rem. 3.5 ⊂MS
6= MS? ⊂MS Rem. 3.5

Table 2. Part B: Decomposition: Γ = G + f , arbitrary gauge defined G and f .

G f MS H H vH = vH

L1

(MS Ex. 5
[54] (Prop. 4.7)

[51] (Ex. 2)

(H Ex. 5
[54] (Prop. 4.7)

( H Ex. 5
[54] (Prop. 4.7)

(vH
[18] (Rem. 5.4)

Bi f v
(MS Ex. 5,

[54] (Prop. 4.7), [51] (Ex. 2) ( H Rem. 2 ( H Rem. 2 ( H Rem. 2

Bi (MS Ex. 4 (H Rem. 3.1 = H
[18] (Thm. 4.2)

(H & ⊃vH
[19] (Cor. 3.7)

Bi ∩ vH (MS Prop. 3 (H Rem. 3.1 ( H Rem. 3.2
= vH

[18] (Thm. 5.3),
[19] (Cor. 3.7)

MS f v ( MS, [51] (Ex. 2) ( H Rem. 2 ( H Rem. 2 ( H Rem. 2

MS =MS = H [18] (Thm. 3.2) ) H [18] (Thm. 4.2) ⊂H

Remark 3. We observe that
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1. (Bi, H)-cell and (Bi ∩ vH, H)-cell: Multifunction Γ that is Henstock integrable but not H-integrable
cannot be decomposed as Γ = G + f with Birkhoff integrable G. G is only McShane integrable.

2. (Bi ∩ vH,H)-cell: Multifunction Γ that isH-integrable but not vH-integrable cannot be represented as
Γ = G + f with Birkhoff and vH-integrable G.

3. The Henstock (resp. H) integrability of G, together with 0 ∈ G(t) a.e. implies that G is McShane
integrable (resp. Bi) by [18] (Proposition 3.1) and then the characterization any class of Γ is contained
in the MS and Bi rows.

4. The vH integrability of G, together with 0 ∈ G(t) a.e. implies that G is Birkhoff integrable by [17]
(Theorem 4.1), in particular if the selection f is vH-integrable then we have vH 3 Γ = G + f by [18]
(Thm. 5.3), or [19] (Cor. 3.7).

5. (MS, MSv f )-cell: Let f be McShane integrable with |ν f |[0, 1] = +∞ . Define Γ by Γ(t) =

conv{ f (t)/2, f (t)}. The multifunction Γ is McShane integrable and the integral of each scalarly
measurable selection of Γ is of infinite variation.

6. (Bi, L1) and (Bi, Biv f )-cells: The same as in (5) but with a Birkhoff integrable function.

Now we are going to describe decompositions into scalarly integrable multifunctions and functions.
In Table 3 there are no multifunctions that are wMS, HKP or DP integrable and their integrals are of finite
variation. In virtue of [54] (Theorem 3.2) such multifunctions are Pettis integrable.

Table 3. Γ = G + f . G and f scalarly defined.

G f Pe Pe f v wMS HKP DP

Pe =Pe
(Pe

Rem. 3.5 =wMS =HKP, [31] (Thm. 1)
[51] (Thm. 1) (sep. case)

=DP
[21] (Thm. 3.5)

Pe f v ⊂Pe =Pe f v ⊂wMS ⊂HKP ⊂DP

wMS ( wMS
[21] (Thm. 3.7)

( wMS
[21] (Thm. 3.7) = wMS =HKP

[21] (Thm. 3.5)
=DP

[21] (Thm. 3.5)

HKP ( HKP
[21](Thm. 3.7)

( HKP
[21] (Thm. 3.7)

( HKP
[21] (Thm. 3.7) =HKP

=DP
[21] (Thm. 3.5)

DP ( DP
[21] (Thm. 3.7)

( DP
[21] (Thm. 3.7)

( DP
[21] (Thm. 3.7)

( DP
[21] (Thm. 3.7) =DP

If we assume in addition that G satisfies the Db-condition (resp. DL-condition) we are able to find the
relations below (cfr. [54] (Theorem 4.1)).

Table 4. Γ = G + f . Arbitrary G and f .

G f Pe wMS HKP DP

Pe + DL = Pe+ DL = wMS+ DL = HKP + DL = DP + DL

Pe + Db = Pe+ Db = wMS+ Db = HKP + Db = DP + Db

Remark 4. It seems that the decomposition Γ = G + f with G ∈ wMS ∪ HKP ∪ DP is useless if Γ is
Pettis or stronger integrable. If Γ Henstock,H or vH integrable, then Table 2.Part A, 2.Part B give better
decompositions. As an example in Table 5 we assume Pettis integrability of G.
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Table 5. Decomposition: Γ = G + f , scalarly def. G and gauge def. f

G f L1 Bi f v Bi MS f v MS H H vH = vH

Pe ) L1 ) Bi f v ) Bi ) MS f v ) MS ) MS ) Bi ) vH

Pe f v ) L1 ) Pe f v ) Bi f v ) MS f v ) MS f v ) MS f v ) Bi f v ) L1

Remark 5. One would like to have yet decompositions Γ = G + f with gauge defined G and scalarly
defined f . Unfortunately, the Pettis row in Table 3 seems to be top of what can be obtained. Pettis
integrability seems to be resistant to gauge integrable selections. If f is a Henstock integrable selection
of a Pettis integrable Γ : [0, 1]→ cwk(X), then Γ = G + f and f is Pettis integrable. Hence f is McShane
integrable and G is Pettis integrable. We are unable to conclude any stronger type integrability for G (see
Ex. 2 and 3). Therefore, we do not present the corresponding table.

One could expect that if we assume Bochner measurability of G and strong measurability of f in
the above tables, then we should get more information. Unfortunately, the answer is negative. The only
positive fact is the equality of Pettis, McShane and Birkhoff integrabilities for multifunctions and functions
and Bochner integrability in case of integrals of finite variation. Other interrelations remain exactly the
same as in the tables presented above.

Moreover, we want to recall that results on decompositions were also obtained for scalarly defined and
gauge integrals in the fuzzy setting, as generalization of the multivalued case, in the papers [55–57].

5. Conclusions

As we wrote in the introduction, a more general theory for the multivalued integration is not
sufficiently developped until now. In the particular case of closed convex sets, only some results are known
[21]. It should be interesting to also develop the theory in such a more general case.
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