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Some remarks on Calabi-Yau manifolds

GILBERTO BINI

Dedicated to Professor Marialuisa de Resmini

Abstract: Here we focus on the geometry of the “mirror quintic” Y and its
generalizations. In particular, we illustrate how to obtain new birational models of Y .

1 – Introduction

Let X be a complex, compact, connected Kähler manifold. X is said to
be a Calabi-Yau variety if i) the canonical bundle is trivial and ii) there are no
p-holomorphic forms for p �= 0, n, where n is the complex dimension of X. i)
implies that there is a unique (up to scalars) global top degree holomorphic form
and ii) can be rephrased in terms of Hodge numbers, that is to say, hp,0 �= 0
for p in the range above. We remark that h0,0 = 1 because X is connected and
hn,0 = 1 because the canonical bundle KX = Ωn

X is trivial.
For applications in Mathematics and Physics it is important to give a defini-

tion of singular Calabi-Yau varieties. These are normal compact manifolds with
Gorenstein canonical singularities such that the dualizing sheaf is trivial and the
Hodge numbers hp,0 �= 0 for p �= 0, n. In most of the applications we shall deal
with, X will be a global quotient, i.e., a smooth variety with an action of a finite
group G ⊂ SL(n, C).

It is easy to give examples of smooth Calabi-Yau manifold in low dimension.
Elliptic curves and K3 surfaces are the only examples of Calabi-Yau manifolds

Key Words and Phrases: Calabi-Yau Manifolds – Orbifold Cohomology
A.M.S. Classification: 14H10.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/333574304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


34 GILBERTO BINI [2]

in dimension one and two, respectively. Noticeably, in these cases the condition
of being Calabi-Yau uniquely determines the structure of the Hodge diamond.
This is no longer true for higher dimensional examples.

We start our talk by going over an intriguing example: a family of quintic
threefolds in P4. This family was introduced by Dwork in the sixties, and has
been extensively studied in connection with Number Theory [10] and Physics
(see, for instance, [5]). Clearly, a smooth quintic in P4 is Calabi-Yau by ad-
junction and the Lefschetz Theorem. Hence, the generic member of the Dwork
pencil is a Calabi-Yau manifold. Further, the five singular members are singular
Calabi-Yau manifolds according to the definition recalled above.

A group G ∼= (Z/125Z)
3

acts on the Dwork pencil Xt. Generically, the
quotient has a smooth resolution Yt, which is a Calabi-Yau manifold. There is
a strange duality - first pointed out in [7] - among the Hodge numbers of Xt

and those of Yt for generic t. More specifically, Xt and Yt are said to be mirror
symmetric.

Given a family of Calabi-Yau manifolds Ft, it is natural to ask whether Ft

is birational to Yt or not. In [2] we answer this question for six families. Some
of them are birational to Yt modulo a finite group. One of them is exactly the
family investigated in [8].

We finally remark that the Dwork pencil Xn+1
t can be generalized to any

degree. We investigate its properties in [3]. Here we show how the geometry
of Xn+1

t can be intricate by describing a special subvariety that exists in even
dimensional projective space.

2 – The mirror quintic

Let Xt → P1 be the Dwork pencil, where

(1) Xt :=
{
x5

1 + . . . + x5
5 − 5tx1 . . . x5 = 0

}
.

It is easy to check that for t5 �= 1, the fiber of the Dwork pencil is a smooth
Calabi-Yau manifold. For t = ∞ the fiber is a union of hyperplanes.

Proposition 2.1. For t5 = 1 Xt is a singular Calabi-Yau.

Proof. First, notice that the singularities are normal because the singular
set has codimension more than one: see [15], p. 76. Moreover, they are Goren-
stein by [13], p. 314. Furthermore, an ordinary double point is canonical: see,
for instance, [11]. Finally, it is an exercise to show that hi,0(Xt) = 0.
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Let us now compute the Hodge numbers of the general fiber of the Dwork
pencil. By definition of Calabi-Yau manifold, it suffices to compute h1,1 and h2,1.
The former equals the dimension of H2(Xt, C) by Lefschetz’s Theorem, which
is 1. The Euler characteristic of Xt is given by c3(Xt), which can be computed
by the Euler exact sequence and the exact sequence, which defines the tangent
space to X. More precisely, we have

c(Xt) =
(1 + u)5

(1 + 5u)
,

where c(Xt) is the total Chern polynomial. Hence we get c3(Xt) = −200. This
yields h2,1 = 101.

There is an abelian group that acts on Xt for all t. Set

G :=

{
(a1, . . . , a5) ∈ (Z/5Z)

5
:
∑

i

ai ≡ 0 mod 5

}
/ < (a, a, a, a, a) > .

The group G acts on the projective space P4 in the following way:

(a1, . . . , a5) · (x1 : . . . : x5) = (ζa1x1 : . . . : ζa5x5), ζ5 = 1, ζ �= 1,

where ζ is a primitive fifth root of unity. If the ai’s are equal to each other, the
action becomes trivial; hence we mod out by the subgroup of diagonal elements.
The condition

∑
i ai ≡ 0 mod 5 preserves the term x1 . . . x5; so the group G

acts on Xt for any t. Modding out by the subgroup of diagonal elements allows
one to set one of the coordinates equal to zero. Since the sum of the remaining
coordinates has to be congruent to zero mod 5, the group G depends on three
coordinates. Hence it is isomorphic to (Z/5Z)

3
, whose order is 125. As proved in

[17], the set of 125 nodes is transitive with respect to the action of G for t5 = 1.
The group G acts on Xt with nontrivial stabilizers. Suppose xj = xk = 0

for j, k ∈ {1, . . . , 5}. Then {xj = xk = 0} ∩ Xt is a plane quintic curve with
generic stabilizer isomorphic to Z/5Z. If three coordinates are equal to zero,

then the stabilizer is isomorphic to (Z/5Z)
2
.

A monomial xk1
1 . . . xk4

4 is invariant under G if and only if k1 ≡ k2 ≡ k3 ≡ k4

mod 5. Thus the quotient map p : Xt → Xt/G is given by

(x1 : . . . : x5) → (x1 . . . x5 : x5
1 : . . . : x5

5).

The quotient is thus a threefold in P5 which satisfies the following equations:

(2) z1 + z2 + . . . + z5 − 5tz0 = 0, z5
0 = z1z2z3z4z5,

where zi are a system of homogeneous coordinates in P5.
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The image of the curves {xj = xk = 0} ∩ Xt is given by z0 = zj = zk = 0
and z1 + . . . + z5 = 0, which is isomorphic to P1. The points with stabilizer
(Z/5Z)

2
satisfy the condition xi = xj = xk = 0 for distinct i, j, k ∈ {1, 2, 3, 4, 5}.

For each triple i, j, k they give a point in Xt/G.
The Calabi-Yau manifold Xt has a unique (up to scalars) top degree differ-

ential form. It can be written down explicitely as follows:

ω := ResXt

(∑n
i=1(−1)ixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dx5

Ft

)
,

where Ft := x5
1 + . . . + x5

5 − 5tx1 . . . x5.
This form is clearly invariant under the action of G. This means that

G ⊂ SL(3, C); hence the quotient has Gorenstein singularities. For these orb-
ifolds there exists a desingularization, which is a smooth Calabi-Yau threefold
Yt. Moreover, by [19] the Hodge structure of the cohomology of Yt is the same
as the Hodge structure of the orbifold cohomology of Xt/G. Let us briefly recall
the definition of these groups.

2.1 – The orbifold cohomology groups

We briefly summarize some facts on orbifold cohomology: for more details
the reader is referred to [4]. Let X be an n-dimensional complex orbifold. Define

X̃ to be the set of pairs (p, ((g))Gp
) for p ∈ X and (g) is the conjugacy class of

g in the local isotropy group Gp. It is known that X̃ is an orbifold called the
inertia orbifold. This orbifold admits a decomposition in connected components,
the nontwisted sector X and the twisted sectors X(g) for g �= 1.

Any g ∈ Gp acts on the tangent space TpX via a diagonal matrix

D = diag(e2πir1 , . . . , e2πirn),

where ri ∈ [0, 1). The degree shifting number i(g) is defined to be
∑

i ri. If
g ∈ SL(n, C), then i(g) is an integer. Moreover, we have

(3) i(g) + i(g−1) = n − dimCX(g).

The d-th orbifold group is defined to be

Hd
orb(X) :=

⊕

(g)

Hd−2i(g)(X).

In particular, if X = Y/G is a global quotient of a smooth variety Y by a finite
group G, then

Hd
orb(X) :=

⊕

(g)∈G∗

Hd−2i(g)(Y g/C(g)),
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where Y g is the fixed locus of g, C(g) is the centralizer in G, and G∗ is a set of
representatives of conjugacy classes in G.

Now, let us compute the Hodge numbers of Yt. As before, it suffices to
compute h1,1 and h2,1. The whole cohomology ring of the mirror quintic has
been computed in [12]. Here we obtain the numbers mentioned above via direct
methods.

Since Xt/G is Gorenstein, the degree shifting number is always an integer.
The twisted sectors coincide with Y g/C(g) for g �= 1. They are points or iso-
morphic to P1. By (3), the degree shifting number of g is 1 or 2, respectively.
Clearly, the degree shifting number of the identity is zero.

A direct computation of the elements of G shows that there are 24 elements
that do not fix anything, namely the S4-orbit of (1, 2, 3, 4, 0) ∈ G. If three of the
components of g := (a1, a2, a3, a4, 0) ∈ G are equal, then g fixes a quintic curve
whose image in Xt/G is a P1. If there are two pairs of the components of g that
are equal, then g fixes ten points, which become two points under the quotient
map p : Xt → Xt/G.

Lemma 2.2.
i) There are 40 elements g in G such that i(g) = 1 and i(g−1) = 1.
ii) There are 30 elements g in G such that i(g) = 1 and i(g−1) = 2.

Proof.
i) We need to count all elements g such that Y g/C(g) is isomorphic to P1. As

mentioned before, three components in g = (a1, a2, a3, a4, 0) must be equal.
This proves the claim.

ii) Since 24 elements do not move anything, we are left with 125−1−24−40 =
60 elements. These come in pairs (g, g−1). Therefore, ii) is completely
proved.

Proposition 2.3. The Hodge numbers h1,1(Yt) and h2,1(Yt) are equal to
101 and 1, respectively.

Proof. It suffices to compute h2
orb(Xt/G) and h3

orb(Xt/G). By definition,
we have

h2
orb(Xt/G) = h2(Xt)

G
⊕

g �=1

h0(Xg
t /G).

We have h2(Xt)
G = 1 since h2(Xt) is one-dimensional. By Lemma 2.2, we have

h0(Xg
t /G) = 100, since the elements in ii) yield two connected components in

Xg
t /G. Note that C(g) = G since the group is abelian.

As for h3
orb(Xt/G), we have

h3
orb(Xt/G) = h3(Xt)

G
⊕

g �=1

h1(Xg
t /G).
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For g �= 1 we have no contribution because Xg
t /G is either a point or a projective

line. This leaves us with the computation of h3(Xt)
G. The dimension of the space

of invariants can be expressed in terms of the Euler characteristics of the fixed
loci (Holomorphic Lefschetz Formula). In particular, we have

h3(Xt)
G =

1

|G|
∑

g

tr
(
g∗|H3(Xt)

)
,

where g∗ is the transformation induced by g on H3(Xt). Further, we have

χ(Xg
t ) =

∑

i

(−1)itr
(
g∗|Hi(Xt)

)
= 4 − tr

(
g∗|H3(Xt)

)
.

Hence we have

h3(Xt)
G = 4 − 1

|G|
∑

g

χ(Xg
t ).

On the other hand, Xg
t can be a plane quintic or 10 points. Therefore, we have

h3(Xt)
G = 4 − 1

|G| {−200 + 40(−10) + 60(10)} = 4.

Since h3,0(Yt) = 1, we have

h2,1(Yt) = h2,1
orb(Xt/G) =

1

2
(4 − 2) = 1.

2.2 – Generalizations

The Dwork pencil can be generalized to any degree n. More precisely, we
can consider the pencil Xn+1

t → P1, where Xn+1
t = Z(Fn+1

t ) ⊂ Pn and

Fn+1
t :=

n+1∑

i

xn+1
i − nt

n+1∏

i

xi.

In [3] we investigate the geometry of this generalized pencil and its quotients
by various automorphism groups. As n varies, the geometry might be rather
intricate as the following proposition shows.

Let us consider the following subvariety Z of Pn for n ≡ 0 mod 2, namely:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + . . . + xn+1 = 0

x2
1 + . . . + x2

n+1 = 0

. . . . . . . . .

x
n/2
1 + . . . + x

n/2
n+1 = 0
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Lemma 2.4. Let Q(λ) be an extension of the rational field. Choose n −
1 distinct non-zero rational numbers c1, . . . , cn−1. The determinant V of the
Vandermonde matrix V (λ, c1, . . . , cn−1) is not rational.

Proof. Suppose, on the contrary, that V is a rational number. If we expand
with respect to the column of the powers of λ, it is easy to see that λ satisfies
a polynomial with rational coefficients. Hence, the extension Q(λ) is algebraic
and the Galois group is finite. If V is rational, it is fixed by any element σ of
the Galois group. We thus have

det

⎛
⎜⎝

0 1 . . . 1
λ − σ(λ) c1 . . . cn−1

. . . . . . . . . . . .
λn−1 − σ(λn−1) c1 . . . cn−1

n−1

⎞
⎟⎠ = 0.

The determinant of the matrix

⎛
⎝

c1 . . . cn−1

. . . . . . . . .
cn−1
1 . . . cn−1

n−1

⎞
⎠ .

is given by

c1c2 . . . cn−1

∏

r<s

(cr − cs),

which is different from zero. This means that the first column of the matrix in
(4) is a linear combination with rational coefficients of the other columns, which
are rational numbers. Thus, we have (σ − I)(λ) = d ∈ Q. Suppose σm = I.
If we apply σm−1 + . . . + I to both members, we get 0 = md; hence λ = σ(λ)
for any σ in the Galois group. This would mean that λ is rational against the
assumptions.

Theorem 2.5. The subvariety Z is smooth and is contained in Xn+1
1 .

Proof. First of all, we notice that Z is defined by the equations p1 =
p2 = . . . = pn/2 = 0, where the pj ’s are the Newton symmetric functions. The
elementary symmetric functions ej can be written in terms of the pj . It is easy
to check that the subvariety Z can be defined via the equations e1 = e2 = . . . =
en/2 = 0. This said, we recall that Xn+1

1 is given by pn+1 − (n + 1)en+1 = 0.
Since n is even, this equation is equivalent to

(5)
n∑

j=1

(−1)n+1−jpjen+1−j = 0.
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If e1 = . . . = en/2 = 0, then equation (5) is satisfied.
Second, the jacobian J of the system of equations defining Z is given by

⎛
⎜⎝

1 . . . 1
2x1 . . . 2xn+1

. . . . . . . . .
n
2 x

n
2 −1
1 . . . n

2 x
n
2 −1
n+1

⎞
⎟⎠

If we choose any n/2 columns, we get a Vandermonde matrix. If a point of Z
has at least n/2 different coordinates, there exists a minor of J different from
zero. We need to show that a point with at most n/2 different coordinates does
not belong to Z. This implies that Z is smooth. Suppose, on the contrary, that
a point P := [λ0 : . . . : λ0 : . . . : λn

2 −2 : . . . : λn
2 −2] belongs to Z. We can

assume λi �= λj . Let ki be the number of times λi appears as a coordinate of P .
Notice that

∑
i ki = n + 1. The λi’s and the ki’s satisfy the following system of

equations:

(6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 + . . . + kn
2 −2 = n + 1

k0λ0 + . . . + kn
2 −2λn

2 −2 = 0

k0λ
2
0 + . . . + kn

2 −2λ
2
n
2 −2 = 0

. . . . . . . . . . . . . . .

k0λ
n/2
0 + . . . + kn

2 −2λ
n/2
n
2 −2 = 0

Let us consider the linear system ΛX = N , where Λ is the (n/2 + 1)× (n/2− 1)
matrix ⎛

⎜⎜⎝

1 . . . 1
λ0 . . . λn

2 −2

. . . . . . . . .
λ

n/2
0 . . . λ

n/2
n
2 −2

⎞
⎟⎟⎠ ,

X is the column of unknowns and N is the column vector (n+1, 0, . . . , 0)t. Since
λi �= λj , the matrix Λ contains a minor V of size (n/2− 1)× (n/2− 1) different
from zero, so the system has a unique solution, which is given by the integers ki

for any given P . By standard linear algebra, we have

(7) kl = (n + 1)(−1)l+1 Vl

det(V )
,

where Vl is the determinant of the matrix obtained from V by removing the l-th
column.
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Notice that if some of the λi’s coincide, the ki would be zero, so we would
get a smaller system and we could proceed as in the case where λi �= λj .

Third, we can assume that λi is in Z for any i. To do this, it suffices to
show that under our assumptions all λi’s are in the rational field. Suppose there
exist λi1 , . . . , λif

not in Q. If f ≥ 2, there exist λir
and λis

not in Q. Then,
there exists an element of the Galois group of the extension Q(λi1 , . . . , λif

) over
Q which exchanges λir and λis . It is easy to check that under this element kir

is mapped onto −kis
. Since kir

is an integer, we must have kir
+ kis

= 0. This
means that kir

= kis
= 0. In other words, we can disregard λir

and λis
. If

f is even, we can disregard all the λi’s not in Q. If f is odd, we are left with
the extension Q(λl) over Q. In other words, there is only one λl not rational
and the other ones are rational numbers. If we take into account kl, then Vl is
rational. Recall that the λj are all distinct. If none of them is zero, we reach
a contradiction by Lemma 2.4. If one of them is zero (this is the only possible
case because the λ’s are all distinct), we can cancel a column from the matrix Λ
and apply the result of Lemma 2.4.

Let us recap what we have proved so far. If P is a point in Z with at most
(n/2)−1 different entries, the coordinates of P are integer numbers given by the
formula (7). More explicitly, the solutions are given by

kl = (n + 1)(−1)l+1 λ0 . . . λ̂l . . . λt∏
r<l(λr − λl)

∏
s>l(λl − λs)

,

where t = (n/2) − 2 and l ∈ {0, . . . , (n/2) − 2}. Since the subvariety Z is
defined by symmetric equations, we can assume that the λi’s are ordered so that∏

r<l(λr − λl)
∏

s>l(λl − λs) is positive.
Since 0 ≤ kl ≤ n + 1, we should have

(−1)l+1λ0 . . . λ̂l . . . λt ≥ 0

for any l. If all the λi’s were positive, k0 would be negative against the assump-
tions. If the number of negative λi’s is odd, k0 would be negative. If the number
of positive λi’s is even, k1 would be negative. If all the λi’s are negative and t is
odd, k0 would be negative. If all the λi’s are negative and t is even, k1 would be
negative. In any case, there exists a ki which is negattive, whereas all the ki’s
are positive by assumption.

3 – Birational Models of the Mirror Quintic

It is important to understand whether a given Calabi-Yau is indeed new or
birational to an existing one. Let us consider the following families:
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Ft

1 x5
1 + x5

2 + . . . + x5
5 − 5tx1x2 · · ·x5

2 x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x4
5x1 − 5tx1x2 · · ·x5

3 x4
1x2 + x4

2x3 + x4
3x4 + x4

4x1 + x5
5 − 5tx1x2 · · ·x5

4 x4
1x2 + x4

2x3 + x4
3x1 + x5

4 + x5
5 − 5tx1x2 · · ·x5

5 x4
1x2 + x4

2x3 + x4
3x1 + x4

4x5 + x4
5x4 − 5tx1x2 · · ·x5

6 x4
1x2 + x4

2x1 + x5
3 + x5

4 + x5
5 − 5tx1x2 · · ·x5

Each of them can be rewritten in the form

FA,t :=

5∑

i=1

5∏

j=1

x
aij

j − 5tx1x2 · · ·x5,

where
ai1 + ai2 + . . . + ai5 = 5, a1j + a2j + . . . + a5j = 5.

If we set

zi :=

5∏

j=1

x
aij

j , z1z2 · · · z5 = (x1x2 · · ·x5)
5,

we get the equations (2). This means that there exists a non-constant rational
map

qA,t : XA,t −→ Xt/G, (x1 : . . . : x5) �−→ (z0 : z1 . . . : z5),

where z0 := x1x2 · · ·x5.

If we show that qA,t is birationally equivalent to a quotient map XA,t →
XA,t/HA for some group HA, then Yt is birational equivalent to XA,t/HA,
thereby yielding a birational model of Yt. In some cases, HA is the identity
group. We have shown that qA,t is birationally equivalent to a quotient map in
[2]. To state the theorem, we need to define the group HA.

Let d be the smallest positive integer such that B := dA−1 has integer
entries. Set

XdI,t := Z(FdI,t) ⊂ Pn−1, FdI,t =

n∑

j=1

yd
j − nt

⎛
⎝

n∏

j=1

yj

⎞
⎠

m

,

d = mn.

We introduce a map

φA : XdI,t −→ XA,t, (y1 : . . . : yn) �−→ (x1 : . . . : xn),
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xj =

n∏

k=1

y
bjk

k .

For a = (a1, . . . , an) ∈ (Z/dZ)n define the automorphism ga on Pn−1 in the
following way:

ga(y1 : . . . : yn) := (ζa1y1 : . . . : ζanyn).

Set

Γd := {ga : a = (a1, . . . , an), a1 + . . . + an ≡ 0 mod n }/〈g(1,1,... ,1)〉.

It is an easy exercise to show that

Γd
∼= Z/mZ × (Z/dZ)

n−2
.

Γd induces an action on XA,t. Indeed, we have:

φA(ga(y)) = (ζa′
1x1 : . . . : ζa′

nxn), a′
j =

n∑

k=1

akbjk;

so

(8) Γd −→ Aut(XA,t), ga �−→ gBa = ga′ .

Let ΓA and HA be the kernel and the image of the homomorphism (8). Then
the following holds ([2])

Theorem 3.1. Let A be an n×n matrix with non-negative integer entries
such that the sum of the entries in any row and column is equal to n and such
that XA,t is irreducible. Then:

φA,t : XdI,t −→ XA,t, is birational to the quotient map

XdI,t −→ XdI,t/ΓA,

qA,t : XA,t −→ M t, is birational to the quotient map

XA,t −→ XA,t/HA,

and thus qA,t ◦ φA,t : XdI,t −→ M t, is birational to the quotient map

XdI,t −→ XdI,t/Γd.
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Remark 3.2. If we consider the second family

St :=
{
x4

1x2 + x4
2x3 + . . . + x4

5x1 − 5tx1x2 . . . x5 = 0
}

,

the Theorem above and direct computation (with MAGMA) yield that St/Ht

is birational to Yt, where Ht is isomorphic to Z/41Z. This answers positively a
conjecture posed by Greene, Plesser and Roan [8].
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