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a b s t r a c t 

In a sustainable management of logistics, transportation plays a crucial role. Traditionally, the main purpose was 
to solve the Vehicle Routing Problem minimizing the cost associated with the travelled distances. Nowadays, 
the economic profit cannot be the only driver for achieving sustainability and environmental issues have to 
be also considered. In this paper, to satisfy the intricate limits involved in real vehicle routing problem, the 
study has been structured considering different types of vehicles in terms of maximum capacity, velocity and 
emissions, asymmetric paths, vehicle-client constraints and delivery time windows. The firefly algorithm has 
been implemented to solve the vehicle routing problem and the TOPSIS technique has been applied to integrate 
economic and environmental factors. Finally, to prove the effectiveness of the proposed approach, a numerical 
example has been proposed using data provided by a logistic company located in Sicily. 
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. Introduction 

Transport causes a number of negative impacts that can affect sus-
ainability targets from an economic, social and environmental point
f view. Even if sustainable development is a major concern globally,
t should be solved mainly locally [1] . Much scientific literature ad-
ressed the problem of transports at the county (or city) level, proposing
easuring and monitoring systems for the three-dimensional aspects of

ransport sustainability [27 , 29] . 
Although some attempts have been made to develop indicators and

o compare transport sustainability among various cities [1 , 9] , only in
ecent years there has been a growing attention in the integration of
nvironmental goals into traditional logistics operations. 

The optimization of transport routes, based on algorithms can
mprove both economic and environmental performances [22,35–38] .
n particular, with stricter carbon polices and ever-increasing fuel
ost, many businesses focus on lowering the carbon emissions and
uel consumptions by improving vehicle routing choices. Vehicle
outing Problem (VRP) aims to find the optimal solution to satisfy

he requests of a set of clients in the area of the distribution centre,
owards a fleet of trucks with different volumes [2] . Green Vehicle
outing Problem (GVRP), is a recent alternative to standard traditional
ehicle routing models in which the minimizing of fuel consump-
ions [12] or the reducing of carbon emissions [23 , 33] , are also
onsidered. 
∗ Corresponding author. 
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Moreover, in the real word situations, the mandatory company’s re-
uests about the daily planning tasks of deliveries must be taken into
ccount in the formulation of the problem. For this purpose, the well-
nown conventional VRP [30] has been designed as a Rich Vehicle Rout-
ng Problem (R-VRP). Vidal et al. [31] and Lahyani et al. [20] , show that
-VRP with multiple constraints and complex formulations is an NP-
ard (Non-deterministic Polynomial-time) problem and it has a great

cientific interest because its solution represents a challenge. Moreover,
he applicability of R-VRP to true-life cases is wider than the classic
ersions of routing problems. Recently, de Armas et al. [4] proposed
he R-VRP with hard and soft time windows, heterogeneous fleet, cus-
omers’ priorities and vehicle-customer constraints. Meta-heuristics ap-
roaches are most favorable methods for solving these kinds of problems
re [3 , 14 , 28] . In order, to solve the R-VRP, in our study we have de-
eloped a method referring to a class of meta-heuristic methodologies
roposed by Yang (2008) few years ago. This technique is the Firefly
lgorithm (FA), a nature-inspired algorithm based on the conduct of
reflies. As recent surveys show [7 , 8] , since it was proposed, the FA
as been applied to many different optimization fields and problems
ith great success. Moreover, the current scientific community is still

nterested in it [18 , 21] ; Zouache et al. 2015. However, the FA has never
een employed in combination with a multi-criteria method to obtain
ustainable solution to the R-VRP. 

In this study we propose a Sustainable Vehicle Routing in which the
ptimal solution is selected, from a set of feasible solutions acquired by
ticle under the CC BY-NC-ND license. 
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ay of the FA, through the Technique for Order Performance by Simi-
arity to Ideal Solution (TOPSIS) methodology [19] . Recently, Ebrahimi
5] proposed a multi objective approach to solve location routing prob-
em for tire supply chain taking into consideration sustainability aspects.

The principal originalities and contributions of this paper can be syn-
hetized as follow: 

- the R-VRP proposed has been formulated selecting a combination of
vehicles from an initial fleet. 

- an elitist version of the FA has been presented to solve the proposed
R-VRP. The move approach adopted by the fireflies is based on an
additional elitism mechanism, which is described in following sec-
tions. 

- the TOPSIS multi criteria approach is implemented to select the most
suitable solution in terms od sustainability of vehicle routing deci-
sion. 

To show the procedure of the proposed approach, a numerical exam-
le of vehicle routing problem is presented. The rest of the paper is struc-
ured as follows. In Section 2 , the R-VRP proposed has been formulated.
n Section 3 , the developed FA is presented and in Section 4 the TOP-
IS methodology and the evaluation criteria are discussed. After that, a
umerical example is presented in Section 5 . Finally, in Section 6 con-
lusions and future developments of this study are discussed. 

. Problem description 

The proposed R-VRP refers to a medium distribution company in
hich several constraints have been taken into account with the objec-

ive of modelling the problem closer to true conditions: 

1. Asymmetry. The delivery paths in the proposed R-VRP are asymmet-
ric. This implies that the traveling distance from any i client to an-
other j client is not the same as the reverse trip path. Asymmetric
paths have been applied previously in the literature [11] . This char-
acteristic is very common in true-life applications. 

2. Time windows. The time window indicates to the range of time within
which one customer can be served. If a vehicle gets to the destination
before the start point of the customer’s time window, it must wait.
This characteristic has already been used in other contexts [25] . 

3. Variable delivery times. In true transportation, the trip between two
clients depends on the type of vehicle and road [10] . Often, this
time is subject to some external variables, such as the traffic or the
weather. Moreover, the time required to unload the pallets in each
distribution center has been also measured, considering an average
unloading time for a single pallet. In order to make the problem more
realistic, this time has been added in the delivery time formulated
in this research. 

4. Vehicle dimension. In the real world, it is not uncommon to find roads,
where vehicles of big dimensions cannot go through. Each client,
depending on its structural characteristics and on the position of the
road in which it is located, can receive vehicles up to a certain size.
This limit has not been used previously in the literature. 

.1. Mathematical formulation of the problem 

The mathematical model is described as follows: we assume
(v = 1,2,…,V) vehicles with q v (v = 1,2,…,V) capacity and D

i = 0,1,…,D) clients; i = 0 represents the distribution centre. The
elivery distance between two clients i and j is d ij . Due to the asymme-
ry property , d ij ≠ d ji . The delivery time t ij depends on the vehicle and
oad types and it can be computed on the basis of the distance and the
verage travel speed. This value takes into account also the unloading
ime. The eventual time window at client i is denotes as [l i , u i ] . Where
 i is the start point of the time window and u i is the end point. Besides
he following variables are defined: 

 𝑖𝑗𝑣 = 

{ 

1 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 𝑡𝑟𝑎𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖 𝑡𝑜 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 𝑖𝑣 = 

{ 

1 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑜𝑓 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 𝑖𝑣 = 

{ 

1 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖 𝑐𝑎𝑛 𝑏𝑒 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The main problem is to minimize: 

𝑖𝑛 

𝐷 ∑
𝑖 =0 

𝐷 ∑
𝑗=0 

𝑉 ∑
𝑣 =1 

𝑑 𝑖𝑗 ⋅ 𝑥 𝑖𝑗𝑣 (1)

This subject to the following constraints: 

𝐷 

𝑖 =1 
𝑔 𝑖 ⋅ 𝑦 𝑖𝑣 ≤ 𝑞 𝑣 ∀ 𝑣 ∈ 𝑉 (2)

𝐷 

𝑗=1 
𝑥 𝑖𝑗𝑣 ⋅ 𝑡 𝑖𝑗 ≤ 𝑙 𝑖 ∀ 𝑖 ∈ 𝐷, ∀ 𝑣 ∈ 𝑉 (3)

𝐷 

𝑗=1 
𝑥 𝑖𝑗𝑣 ⋅ 𝑡 𝑖𝑗 ≥ 𝑢 𝑖 ∀ 𝑖 ∈ 𝐷, ∀ 𝑣 ∈ 𝑉 (4)

 𝑖𝑣 , 𝑧 𝑖𝑣 ∈ ( 0 , 1 ) ∀ 𝑖 ∈ 𝐷, ∀ 𝑣 ∈ 𝑉 (5)

𝑉 

𝑣 =1 
𝑦 𝑖𝑣 ⋅ 𝑧 𝑖𝑣 = 1 ∀ 𝑖 ∈ 𝐷, 𝑖 ≠ 0 (6)

The constraint ( 2 ) ensures the capacity of each vehicle is sufficient
o satisfy the requests of the served clients and it assures that the total
apacity of the vehicles satisfies the total delivery demand. Constraints
 3 ) and ( 4 ) are about time window restrictions. Constraint ( 6 ) is related
o the vehicle dimension limits. 

. Firefly algorithm 

.1. Firefly encoding 

This study uses the real-coded schema, presented by Wu et al. [34] .
ecause there are V vehicles for distribution, at the most V routes can
e taken into consideration. Every vehicle begins and finishes at the
istribution centre. Considering D clients, the problem is coded in order
o obtain fireflies whose dimension is D + V-1 . For example, consider
here are 5 clients, and 3 vehicles. The request of each client and the
apacity of each vehicle are reported below: 

D = 5 V = 3 
g 1 = 60 pallet q 1 = 120 pallet 

g 2 = 30 pallet q 2 = 140 pallet 

g 3 = 40 pallet q 3 = 100 pallet 

g 4 = 40 pallet 

g 5 = 90 pallet 

tep 1 

Generate a vector 𝐴 = ( 𝑎 1 ... 𝑎 𝐷+ 𝑉 −1 ) of D + V -1 = 5 + 3–1 random
umber ∈ ]0,1[: 

 = 

[
0 . 56 0 . 10 0 . 6 0 . 13 0 . 41 0 . 43 0 . 12 

]
tep 2 

Create an ordered vector = ( 𝑏 1 ... 𝑏 𝐷+ 𝑉 −1 ) : 

 = 

[
0 . 10 0 . 12 0 . 13 0 . 41 0 . 43 0 . 56 0 . 6 

]
tep 3 

Create a 𝐶 = ( 𝑐 1 ... 𝑐 𝐷+ 𝑉 −1 ) vector substituting each element of the B
ector with a integer number ∈ [1, D + V -1]: 

 = 

[
1 2 3 4 5 6 7 

]
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Fig. 1. Flow chart of FA optimization procedure. 
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tep 4 

Insert these numbers in a 𝐷 = ( 𝑑 1 ... 𝑑 𝐷+ 𝑉 −1 ) vector in the same posi-
ion of the A vector: 

 = 

[
6 1 7 3 4 5 2 

]
tep 5 

Generate an 𝐸 = ( 𝑒 1 ... 𝑒 𝐷+ 𝑉 −1 ) vector in which each element is the
osition number in the D vector. For example in the D vector number 1
s in the second position then the first element of E will be 2: 

 = 

[
2 7 4 5 6 1 3 

]
tep 6 

Create a 𝐺 = ( 𝑔 1 ... 𝑔 𝐷+ 𝑉 −1 ) vector in which the elements from
 + 1are substituted with 0: 

 = 

[
2 0 4 5 0 1 3 

]
tep 7 

Create a 𝐹 = ( 𝑓 1 ... 𝑓 𝐷+ 𝑉 +1 ) vector (the firefly) in which in the G
ector one 0 is added at first and one 0 at the end: 

 = 

[
0 2 0 4 5 0 1 3 0 

]
In this example the F vector represents the following routes: 

• Vehicle 1 0 →2 →0 
• Vehicle 2 0 →4 →5 →0 
• Vehicle 3 0 →1 →3 →0 

In this approach we have considered adjacent zeros (i.e. the number
f routes can be less or equal to the number of vehicles). The code allows
o choice the best combination of vehicles from an initial fleet. 

.2. Firefly algorithm with elitism procedure 

In FA, variation of the light intensity and attractiveness are main
oncerns. This attractiveness is determined by brightness, which is as-
ociated with the objective function. After generating initial number of
reflies or solutions of the problem, the light intensity of firefly is up-
ated. Assuming the absorption coefficient 𝛾, the light intensity of the
refly varies with the square of the distance d , as in the following Eq. (7) :

 = 𝐿 0 𝑒 
− 𝛾𝑑 2 (7)

here L 0 denotes the light intensity of the source. The attractiveness of
he fireflies is proportional to their light intensities L . Thus, Eq. (8) is
iven, so as to describe the attractiveness. 

= 𝛽0 𝑒 
− 𝛾𝑑 2 (8) 

here, 𝛽0 is the attractiveness at d = 0 . The distance between any two
reflies p i and p j is taken as Euclidean distance. Considering each firefly
s a sequence of D + V-1 routes, the distance between two fireflies can
e formulated as follows: 

 𝑖𝑗 = 

‖‖‖𝑝 𝑖 − 𝑝 𝑗 
‖‖‖ = 

√ √ √ √ 

𝐷+ 𝑉 −1 ∑
𝑘 =1 

(
𝑝 𝑖,𝑘 − 𝑝 𝑗,𝑘 

)2 
(9)

he i th firefly is attracted to another brighter firefly j . The movement
f the firefly from one position to another is expressed by the following
quation: 

 𝑖𝑛𝑒𝑤 = 𝑝 𝑖𝑜𝑙𝑑 + 𝛽
(
𝑝 𝑗 − 𝑝 𝑖𝑜𝑙𝑑 

)
+ 𝛼𝜀 (10)

n which 𝛼= 0.2 and ɛ is a random number in the range [0,1]. 
The parameter 𝛾 has an essential effect on the convergence speed

f algorithm. The value of this parameter is based on the problem to be
ptimized. Normally, its value ranges from 0.1 to 10 [32] . Three param-
ters control the FA: the randomization parameter, the attractiveness,
nd the absorption coefficient. By adjusting these parameters we can
btain good results of an optimization problem. The flowchart of FA is
hown in Fig. 1: 

In the phase 1 the vectors 𝐹 = ( 𝑓 1 ... 𝑓 𝐷+ 𝑉 +1 ) corresponding to the
easible routes (fireflies) are sorted on the basis of the objective function

nd then matrix F’ = 

⎛ ⎜ ⎜ ⎝ 
𝑓 11 ⋯ 𝑓 1 𝑗 

⋮ ⋮ ⋮ 

𝑓 𝑧 1 … 𝑓 𝑧𝑗 

⎞ ⎟ ⎟ ⎠ is build. The first line corresponds

o the firefly with the best objective function and it is considered as a
Firefly Queen ” (FQ) of the initial population. 

In the phase 2 the distance of each firefly from the best (FQ) is cal-
ulated using Eq. (9) . 

In the phase 3 the position of the fireflies is updated by putting the
istance and intensity values in Eq. (10) . In this phase an elitism mech-
nism is introduced in order to avoid losing the FQ obtained in the first
hase and the eventual solutions near by the global optimum. This con-
ition is obtained considering 𝜀 = 0 and 𝜀 ≠0. 

In the phase 4 the software creates a matrix H = 

⎛ ⎜ ⎜ ⎝ 
𝑓 11 ⋯ 𝑓 1 𝑗 

⋮ ⋮ ⋮ 

ℎ 𝑧 ′1 … ℎ 𝑧 ′𝑗 

⎞ ⎟ ⎟ ⎠ ,
here 𝑧 ′ = 2 ⋅ 𝑧 , that memorizes the new values obtained applying twice
q. (10) with and without the last factor. 
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In the phase 5 the software creates a matrix L constituted by the
easible solutions of the H matrix. The maximum number of rows is set
qual to 20 fireflies. 

The phase 6 computes the objective function for each line of the H
atrix. 

Finally in the phase 7 a matrix I = 

⎛ ⎜ ⎜ ⎝ 
𝑖 11 ⋯ 𝑖 1 𝑗 

⋮ ⋮ ⋮ 

𝑖 2 𝑧 1 … 𝑖 2 𝑧𝑗 

⎞ ⎟ ⎟ ⎠ sorted on the basis

f the objective function, is created. The first line represents the new FQ
hat could (or not) coincide with the old one. 

The procedure is repeated from step 2 until the stop condition (max-
mum number of iteration) is reached. 

. TOPSIS methodology 

TOPSIS is among the most well-known classical Multi-Criteria De-
ision Making (MCDM) approaches, and was first presented by Hwang
nd Yoon [13] . The fundamental aim of the TOPSIS method is that the
est alternative should have both the shortest distance from the positive
deal solution and should also be the most distant from the negative one.
he TOPSIS method and its applications have often been used in litera-
ure, recently even to evaluate alternative vehicle technologies [24] . 

The use of this methodology involves the definition of a decision
atrix. The decision matrix is a chart in which the m rows represent the

outes and the n columns represent the selected criteria. A point found at
he junction of row and column in the table represents the performance
f a decision alternative according to a specific criterion. The first step
f the TOPSIS procedure consists of defining a set of criteria that take
nto account the different aspects of the problem. The criteria used in
his paper are reported below. 

.1. Evaluation criteria 

.1.1. Total distances 

This criterion coincides with the value of the Objective Function
FO). 

The same results, in terms of total distances can be obtained with
ifferent routes and considering diverse scenarios in terms of vehicle
eets engaged. 

.1.2. Utilization coefficient 

This criterion is one of the most significant parameters to define the
fficiency of a transportation system. Let q the capacity of a vehicle
nd defined k its space used, the utilization coefficient represents the
ercentage of vehicle space occupied by the items: 

 = 

𝑘 

𝑞 
(11)

Considering a fleet of V vehicles the average Utilization Coefficient
UC) can be calculated as: 

𝐶 = 

∑𝑉 

𝑣 =1 𝑈 𝑣 

𝑉 
(12)

.1.3. Carbon footprint 

The carbon footprint may be defined as, “the quantity of Greenhouse
ases (GHGs) expressed in terms of equivalent carbon dioxide, emitted

nto the atmosphere by an individual, organization, process, product, or
vent from within a specified boundary ”. The set of considered GHGs
nd boundaries are defined according to the adopted methods and the
cope of footprinting [26] . 

In the present study the emissions produced by the fleet of vehicles
ave been considered to evaluate the environmental impact. The Car-
on Footprint (CF) has been calculated according to the Guidelines e
ood Practice Guidance IPCC [15–17] in which the Emission (E) of CO 2 

quivalent (CO 2 eq) are: 

 

(
C O 2 eq 

)
= E 

(
C O 2 

)
+ E 

(
C O 2 eq 

)
f rom C H 4 + E 

(
C O 2 eq 

)
f rom N 2 O (13)
here 

 

(
C O 2 

)
= Distances ⋅ Emission factor 

(
C O 2 

)
⋅ GWP 

(
C O 2 

)
(14)

 

(
C O 2 eq 

)
f rom C H 4 = Distances ⋅ Emission factor 

(
C H 4 

)
⋅ GWP 

(
C H 4 

)
(15) 

 

(
C O 2 eq 

)
f rom N 2 O = Distances ⋅ Emission factor 

(
N 2 O 

)
⋅ GWP 

(
N 2 O 

)
(16) 

The emission factor [g/km] for each pollutant emission is a function
f route typology, the fuel and vehicle used. A different fleet with the
ame routes can produce different value of CO 2 eq. 

.1.4. Fuel consumption 

This is an economic criterion, which depends on the route and vehi-
le used. The cost of Fuel Consumption (FC) can be calculated with the
ollowing equation: 

 𝑪 = 𝑪 ⋅
𝑫 ∑
𝒊 =0 

𝑫 ∑
𝒋 =0 

𝑽 ∑
𝒗 =1 

𝒅 𝒊 𝒋 ⋅ 𝒙 𝒊 𝒋 𝒗 ⋅ 𝒇 𝒗 (17)

here 
C [ €/l] is the fuel cost while f v [l/km] is the average fuel consump-

ion of each vehicle. 

.2. Mathematical procedure 

Once the decision matrix is defined, the weighted normalized de-
ision matrix V , multiplying each element of the normalized decision
atrix R by the weights w j of the corresponding criteria, has to be built.
he generic element of the R matrix is obtained with the following equa-
ion: 

 𝑖𝑗 = 

𝑎 𝑖𝑗 √ ∑𝑚 

𝑖 =1 𝑎 
2 
𝑖𝑗 

, ∀𝑖 = 1 ..𝑚, ∀𝑗 = 1 ..𝑛 

here a ij is the score of the alternative i with respect to the j criterion.
he generic element of the V matrix is hence obtained by the following
quation: 

 𝑖𝑗 = 𝑤 𝑗 ⋅ 𝑟 𝑖𝑗 , ∀𝑖 = 1 ..𝑚, ∀𝑗 = 1 ..𝑛 (18)

nd 
𝑛 

𝑗=1 
𝑤 𝑗 = 1 . 

Afterward, on the basis of the TOPSIS methodology, the positive
deal solution Azimuth (A 

∗ ) and negative ideal solutions Nadir (A 

− ),
ave been found: 

 

∗ = 

{
𝑣 ∗ 1 , … ., 𝑣 ∗ 

𝑛 

}
= 

{ [ 

max 𝑣 𝑖𝑗 
∀𝑖 

||𝑗 ∈ 𝐼 ′

] } 

, 

{ [ 

min 𝑣 𝑖𝑗 
∀𝑖 

||𝑗 ∈ 𝐼 ′′

] } 

, (19)

 

− = 

{
𝑣 − 1 , … ., 𝑣 − 

𝑛 

}
= 

{ [ 

min 𝑣 𝑖𝑗 
∀𝑖 

||𝑗 ∈ 𝐼 ′

] } 

, 

{ [ 

max 𝑣 𝑖𝑗 
∀𝑖 

||𝑗 ∈ 𝐼 ′′

] } 

(20)

here I’ and I’’ are associated with benefit and cost criteria respectively.
The third step of the methodology is calculating the relative dis-

ances. 

 

∗ 
𝑖 
= 

√ √ √ √ 

𝑛 ∑
𝑗=1 

(
𝑣 𝑖𝑗 − 𝑣 ∗ 

𝑗 

)2 
, ∀𝑖 = 1 ..𝑚 (21)

 

− 
𝑖 
= 

√ √ √ √ 

𝑛 ∑
𝑗=1 

(
𝑣 𝑖𝑗 − 𝑣 − 

𝑗 

)2 
, ∀𝑖 = 1 ..𝑚 (22)

The final step combines the two distances so as to acquire the relative
oefficient nearness by the following equation: 

 

∗ 
𝑖 
= 𝑆 − 

𝑖 
∕ 
(
𝑆 − 
𝑖 
+ 𝑆 ∗ 

𝑖 

)
0 ≤ 𝐶 ∗ 

𝑖 
≤ 1 (23)

The alternatives are ranked according to C 

∗ in descending order. 
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Fig. 2. Location of the clients. 

Table 1 

Fleet composition. 

Vehicle Quantity Capacity (pallet) 

Truck 1 6 16 

Truck 2 2 18 

Truck 3 6 22 

Semitrailer 1 32 

Table 2 

Vehicle limit, TDA and clients’ demand. 

ID Vehicle limit (max) TDA Demand 

1 Semitrailer 8- 12 16 

2 Truck 3 8 - 13 6 

3 Semitrailer 8- 13 20 

4 Truck 3 8- 13 10 

5 Truck 3 8- 13 7 

6 Truck 3 8- 13 9 

7 Truck 3 8- 13 10 

8 Truck 3 8– 11/12–13 18 

9 Truck 2 8 - 13 11 

10 Truck 3 8- 13 5 112 
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. Numerical example 

A numerical example is given in this paper to show the proposed ap-
roach. More specifically, this study refers to a medium-sized distribu-
ion company located in Sicily. The company covers a provincial area,
Table 3 

Distances between clients [km]. 

0 1 2 3 4 5

0 – 88.3 83.8 89.9 93.6 9

1 90 – 27.5 81 2 2

2 83.8 28.5 – 33 31.6 3

3 92 76 33 – 84.8 8

4 93.6 7 31.6 84.8 – 0

5 97.6 4.5 35.6 92 0.6 –

6 89 2 29 27 1.6 3

7 75.9 23.2 13.6 72.5 24.4 2

8 125 30.2 37.8 38.8 32.6 2

9 79.7 25.6 5.2 45.1 28.1 2

10 66.6 29.9 9.2 36.9 35.8 3
hich means that the it serves a set of customers geographically dis-
ributed in various towns and cities. For instance, in Fig. 2 the location
f 10 clients served on a Monday morning is reported. 

The fleet composition of the company in terms of quantity and max-
mum capacity of each vehicle is reported in Table 1 . 

Vehicle limit dimension, Time Delivery Availability (TDA) and de-
and (pallet) of each customer are known values, as shown in Table 2 .

The distances between clients and the delivery times are reported in
ables 3 and 4 

Distances have been calculated by means of the Google map applica-
ion while the delivery time has been determined as sum of the travelling
ime, measured considering an average velocity for three different type
f road (city street, interstate and highway) and the unloading time. 

Five fleet configurations have been defined complying with the max-
mum daily request and the vehicle-client constraint. 

As reported in Table 5 , for each configuration the total capacity of
he fleet is grater than the clients’ total request (112 pallets). Moreover,
ll the scenarios include at least a truck 1 or 2, considering that the
lient 9 can be served only by this kind of trucks. 

.1. Results and discussion 

Computations have been performed using the Matlab software run-
ing under Intel core i7-3940XM 3.2 GHz CPU, 16GB Ram and Windows
0 operating system. The principal parameters of the Firefly algorithm
re set accordingly: 

• Initial population of fireflies: 5 
• Degree of light attenuation 𝛾= 1 
• Step factor 𝛼 = 0.2 
• Iteration times:500 

After the iterations of 500 times, FA converged for each configura-
ion to the optimal solutions reported in Table 6 . For each solution the
outes associated and the corresponding trucks are also evaluated. 

In Table 6 the other criteria (i.e. utilization coefficient, carbon foot-
rint and fuel consumption) have been also reported. In this paper the
eights of the criteria were assessed by means of the Delphi technique

6] . In particular, the panel of experts has been iteratively queried by
eans of questionnaires until the agreement was achieved. Table 7 re-
orts the weights obtained for each criterion. 

At this point the weighted normalized matrix was calculated and the
alues of Azimuth and Nadir were determined as reported in Tables 8 . 

Finally, the relative distances were calculated according with equa-
ions 24 and 25 so as find the coefficient closeness (eq.26). The final
anking is reported in Table 9 . 

Results show that the best configuration is the last one in which the
bjective function is comparable with the others but the values related
o the economic and environmental aspects (CF and FC) are significantly
etter than others. These results are strictly correlated with the initial
ehicles configuration in which there is a homogeneous vehicle distribu-
ion. Moreover, starting from a configuration of 9 vehicles, the proposed
 6 7 8 9 10 

7.6 89 75.9 120 79.7 66.6 

.1 0.75 19.7 30.2 23.5 29.9 

5.6 27.1 13.6 36.4 4.6 7.7 

8.8 80.3 67.2 20.3 45.1 36.9 

.6 1.6 24.4 29.5 28.1 34.6 

2.6 24.9 28.9 28.6 35 

.5 – 20.7 30.7 24.5 30.9 

4.9 23.7 – 49.9 9.6 16.1 

8.9 30.7 49.9 – 58.5 64.9 

9.6 24.5 11 58.5 – 9.3 

5 32.8 16.1 65.8 9.3 –
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Table 4 

Delivery time [minutes]. 

0 1 2 3 4 5 6 7 8 9 10 

0 – 111 81 125 100 91 95 83 142 96 75 

1 63 – 48 118 39 30 30 50 84 60 50 

2 63 78 – 100 65 56 62 50 94 43 31 

3 65 106 58 – 93 83.5 87 80 99 83 55 

4 70 53 57 123 – 24 33 55 81 68 55 

5 70 57 53 122.5 33 – 34 54 79 68 55 

6 68 51 53 120 36 28 – 52 82 62 50 

7 53 68 38 110 55 45 49 – 94 51 37 

8 88 78 58 105 57 46 55 70 – 88 75 

9 63 75 28 110 65 56 56 48 109 – 33 

10 60 85 34 100 70 61 62 52 114 51 –

Table 5 

Fleet configurations. 

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5 

3 Truck 1 2 Truck 1 5 Truck 1 1 Truck 1 2 Truck 1 

5 Truck 3 2 Truck 2 4 Truck 3 7 Truck 2 5 Truck 2 

1 Semitrailer 5 Truck 3 – 1 Semitrailer 2 Truck 3 

Total capacity 190 178 168 174 166 

Table 6 

Results obtained for the different fleet configurations. 

Con FO UC CF FC Fleet Routes 

1 1303.7 81.2% 678,263.1 505.2 3 Truck 1 

4 Truck 3 

0 = > 6 = > 0 
[T1] 

0 = > 7 = > 0 [T1] 0 = > 10 = > 9 = > 0 
[T1] 

0 = > 5 = > 4 = > 0 
[T3] 

0 = > 8 = > 0 
[T3] 

0 = > 3 = > 0 
[T3] 

0 = > 1 = > 2 = > 0 
[T3] 

2 1302.8 82.7% 479,992.0 357.5 2 Truck 1 

2 Truck 2 

3 Truck 3 

0 = > 10 = > 0 
[T1] 

0 = > 1 = > 0 [T1] 0 = > 2 = > 7 = > 0 
[T2] 

0 = > 9 = > 5 = > 0 
[T2] 

0 = > 8 = > 0 
[T3] 

0 = > 4 = > 6 = > 0 
[T3] 

0 = > 3 = > 0 
[T3] 

3 1303.9 86.6% 678,367.2 505.3 4 Truck 1 

3 Truck 3 

0 = > 6 = > 0 
[T1] 

0 = > 9 = > 10 = > 0 
[T1] 

0 = > 2 = > 7 = > 0 
[T1] 

0 = > 1 = > 0 
[T1] 

0 = > 5 = > 4 = > 0 
[T3] 

0 = > 8 = > 0 [T3] 0 = > 3 = > 0 
[T3] 

4 1303.9 82.8% 611,201.6 455.2 1 Truck 1 

5 Truck 2 

1 Semitrailer 

0 = > 6 = > 0 
[T1] 

0 = > 9 = > 10 = > 0 
[T2] 

0 = > 1 = > 0 
[T2] 

0 = > 7 = > 2 = > 0 
[T2] 

0 = > 5 = > 4 = > 0 
[T2] 

0 = > 8 = > 0 [T2] 0 = > 3 = > 0 
[S] 

5 1298.9 81.1% 368,084.0 274.2 2 Truck 1 

3 Truck 2 

2 Truck 3 

0 = > 6 = > 0 
[T1] 

0 = > 7 = > 0 [T1] 0 = > 1 = > 0 
[T2] 

0 = > 2 = > 9 = > 0 
[T2] 

0 = > 8 = > 0 
[T2] 

0 = > 3 = > 0[T3] 0 = > 4 = > 5 = > 10 

= > 0 [T3] 

Table 7 

Weights for each criterion. 

FO UC CF FC 

0.35 0.25 0.15 0.25 

Table 8 

Weighted normalized matrix and ideal solutions. 

FO UC CF FC 

1 0.1567 0.1095 0.0790 0.1316 

2 0.1565 0.1115 0.0559 0.0931 

3 0.1567 0.1168 0.0790 0.1316 

4 0.1567 0.1117 0.0712 0.1186 

5. 0.1561 0.1094 0.0429 0.0714 

A ∗ 0.1561 0.1168 0.0429 0.0714 

A- 0.1567 0.1094 0.0790 0.1316 

Table 9 

Final ranking. 

Ranking 

1 0.002 

2 0.635 

3 0.096 

4 0.218 

5 0.904 

a  

o

6
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D

pproach allows selecting a reduced fleet (i.e. 7 vehicles) through the
ptimization procedure. 

. Conclusions 

The vehicle routing problem is a main problem in logistics distri-
ution. In this work, a rich vehicle routing problem with simultaneous
conomic and environmental aspects has been tackled in order to ob-
ain a sustainable vehicle routing decision. To prove the effectiveness
f the proposed approach a numerical example has been also reported,
sing information provided by a medium size company. To deal with
uch a complex problem, a new approach based on the Firefly algorithm
nd the TOPSIS methodology has been developed. Results show that the
hoice of the best route is strictly related to the fleet of vehicles due to
heir economic and environmental impact. The minimization of the to-
al distance travelled cannot be the only target for solving this kind of
roblem. Further researches are needed to evaluate the economic sav-
ng, considering that the routes made by the same type of vehicle could
e travelled by a single vehicle if within the established working time.
oreover, future developments should also include in the TOPSIS set

f criteria different environmental/ecological variables, including wa-
er resources consumption and depletion, or loss of energy, to conduct
n optimization through an holistic approach to sustainability. 
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