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Gluon two- and three-point Green Functions computed in Landau gauge from the lattice show the existence 

of power corrections to the purely perturbative expressions, that can be explained through an Operator Product 
Expansion as the influence of a non gauge invariant mass dimension two condensate. The relationship of this 

condensate with topological properties of &CD, namely instantons, will be studied, giving a first estimate of the 
contribution of instantons to this condensate based in the direct lattice measure, after a cooling process, of the 

instanton liquid properties. 

1. QCD coupling constant, O.P.E. and 
( A2) condensate. 

Lattice calculations of the QCD coupling con- 
stant and gluon propagator based in the Green 
Functions Method [l], suggest the necessity to 
add power corrections to the purely perturbative 
expressions to correctly describe their running [3]. 
An Operator Product Expansion (O.P.E.) analy- 
sis of the Green functions in Landau gauge’ re- 
lates this power corrections to the existence of 
a non-perturbative ( A2) condensate [4], through 
expressions: 

P”>R p 
G?P.E.(P~) = G!&.(P~) + CT, 

(A2), p cpyp2) = &+-t. (p2) + C’p2’ (1) 

‘In the lattice we will work in the minimum A2 Landau 

gauge, &A P = 0, so all gauge dependent quantities, will 
be expressed in this particular gauge. 

where perturbative expressions are developed at 
three loops, and the functions c and c’ include 
the Wilson coefficient of the expansion, and the 

anomalous dimension of the condensate at leading 
logarithm. 

By performing a combined fit of lattice re- 
sults to expressions in (l), in two different MOM 
schemes, a value of Am is extracted, in fairly 
good agreement with the one obtained by the AL- 
PHA collaboration [2], by a completely different 
method. A value of the condensate comes out 
from the analysis. The physical meaning of this 
condensate is still an open question, and a lot 
of work is being devoted to its study during last 
years, for example, in relation to confinement [5]. 
The aim in this work will be to study the possi- 
ble semiclassical contribution to this condensate 
coming from instantons, and whether they might 
explain the presence of power corrections in Green 
Functions. 
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2. The role of instantons. 

Instantons have been extensively studied as a 
possible description of the QCD vacuum (See [7] 

for a general overview), and so as a major source 
of QCD properties at low energies. In relation 
with the aim of this work, an ensemble of non- 

interacting instantons (I) and antiinstantons (I) 
in Landau gauge would give a contribution to the 
(A*) condensate: 

where A:(z) is the standard ‘t Hooft Polyakov 

instanton gauge field [6], p the average radius, 

and n = 
N, tN- 

I the density. 

If we accipt the phenomenological values as- 
signed to 11 and p by the Instanton Liquid Model 

[7] (71 - 0.5f,m-“ and p N 1/3fm), the instan- 
tonic contribution will be (A2)Inst, - 0.5GeV2. 
We will perform, however, our own analysis, thus 

testing the latter approach. 

2.1. Cooling. 
In principle, a direct measure of A2 in the lat- 

tice should be possible, but the presence of the 
UV divergent part is hardly separable from the 
soft, instantonic one. The other possibility is to 

perform a cooling procedure, that will allow us 
to compute the number and size of instantons, 
giving an indirect measure of the A2 through (2). 

We will use the traditional cooling method [8]. 
even if it introduces a number of known biases, as 
I - I annihilation, and a modification of instanton 

sizes and lattice spacing. The approach proposed 
here is to compute instanton properties for dif- 

ferent number of cooling sweeps, and extrapolate 
back to the thermalised situation in order to re- 

cover their physical meaning2. 

2.2. Shape Recognition. 
Instantons will be localised in cooled lattices 

via a geometrical method (Described in [lo].) 

2The use of improved cooling methods, as the one devel- 
oped in 191, could improve this approach, as radii evolution 
is minimised, but I - T annihilation is unavoidable, so the 
extrapolation will be anyway necessary. 

that accepts a topological charge lump as an iii- 

Stanton when the ratio of the integral over a given 

fraction of the topological charge at the maxi- 
mum, (I, and its theoretical counterpart. I is - 1~ 

for a range of values of (I: 

(Ii) 

Once the lump has been identified as a11 instan- 
ton, the radius will be computed from the size of 
the cluster where the integral has been tlevt~lopc~l. 

2.3. A naive model of annihilation. 
W?th the method outlined ahovc, we <.ompute 

the density and size of instantons in ii lattice. for 

different numbers of cooling sweeps. I),. obtain- 
ing values with a strong depenctrnce on 11~ (St 

figure). that avoids to obtain an!- phvsic;J infor- 

mation at fixed n,.. 
As a first approach to the understanding of this 

evolution, we will make a simple model, where 

instantons annihilate with antiinstantons (Being 
so a& = iV[ - N7 a constant) proportionally to 

their packing ratio, and to the number of antiin- 
stantons. so that the equation for the c,volution 
of X = :vr + ;vi is: 

If we assume p(n,) = cte, the solution of Eq. (4) 

will give N(n,,) N $$ ~ the expression used in , 

[lo], as a first order approach. but onr cooling 
procedure modifies instanton’s size (See figure). 
in a way thah we phenomenologically parametrise 
as: 

p(nc) = p(O)(l + aln(1 + n,)) (5) 

We will include (5) in equation (4), with p(O) the 

extrapolated radius at the t,hrrmalised situat,ion 

and a a constant to determine. 
After performing a combined fit of our lattice 

results to the expressions (5) and the one coming 
from the integration of (4): we can fix the initial 
values of the density, n(O) and the radius p(O), 
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and the two constants that govern the evolution, 

X and a. 
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Figure 1. Results of the combined fit for the instan- 

ton density and mdius as a function of the number of 
cooling sweeps for a 244 lattice at /3=6.0. 

3. Results and conclussion. 

The result of the combined fit gives a value 
of the instantonic contribution to (A;,,) - 
0.4GeV2, however the result of the extrapolation 

is highly dependent on the value of p, which due 
to the logarithmic behaviour is hardly reliable. 

We therefore prefer the value at the maximum, 
1.12(11) GeV2, as a crude estimation of (Ayns). 

This semiclassical evaluation of (A2), which 
does not run with the scale, is difficult to re- 
late to that appearing in the O.P.E. expansion, 
which does depend on the renormalisation scheme 

and scale. The typical scale of instantons is 

P 
-1 N 0.7GeV. Unluckly it is not possible to run 

the (Ag,P,E,) to such a low energy, where per- 
tubative QCD is not valid. The lowest reacheble 

energy scale is 2.6GeV [4,10]; 

(A&,p,E.(2.6GeV)) = 1.4(3)(3)GeV2, (6) 

the first error coming from the OPE determina- 
tion of the condensate renormalised at 10 GeV, 
and the second from higher orders in the running. 

Keeping in mind the level of uncertainty of 
these calculations, we can nevertheless claim a 
rather encouraging agreement between the in- 

stantonic contribution to the condensate and the 
one computed from the running of the Green 

Functions. 
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