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Abstract: Background: Seafood is an important source of omega-3 fatty acids, which have been
associated with improved oocyte quality and embryo morphology in some studies. However, seafood
is also a source of persistent organic pollutants and heavy metals, which may adversely affect
fecundity. Previous studies of seafood intake and fecundity have generated inconsistent results.
Methods: In two prospective cohort studies of 7836 female pregnancy planners from Denmark (Snart
Foraeldre, n = 2709) and North America (PRESTO, n = 5127), we evaluated the association of dietary
intake of total seafood and marine-sourced long-chain omega-3 fatty acids (eicosapentaenoic acid,
docosahexaenoic acid, and docosapentaenoic acid) with fecundability. Participants completed a
baseline questionnaire on sociodemographics, behavioral factors, anthropometrics, and medical
history, and a food frequency questionnaire. Pregnancy status was updated bimonthly for up to
12 months or until reported conception. We estimated fecundability ratios (FRs) and 95% confidence
intervals (CIs) using proportional probabilities regression models, adjusted for energy intake and
other potential confounders. We restricted analyses to women with ≤6 menstrual cycles of attempt
time at enrollment. Results: Intake of total seafood or marine-sourced long-chain omega-3 fatty acids
was not appreciably associated with fecundability in either cohort (≥200 vs. <50 g/week total seafood:
FR = 0.94, 95% CI: 0.79–1.10 in Snart Foraeldre; FR = 1.00, 95% CI: 0.90–1.13 in PRESTO; marine fatty
acids: ≥90th vs. <25th percentile: FR = 1.00, 95% CI: 0.85–1.18 in Snart Foraeldre; FR = 0.97, 95%
CI: 0.86–1.09 in PRESTO). In PRESTO, where we collected additional data on seafood preparation,
we observed an inverse association between fecundability and fried shellfish (≥10 g/week vs. none:
FR = 0.77, 95% CI: 0.61–0.98), but not unfried shellfish (≥20 g/week vs. none: FR = 0.98, 95% CI:
0.89–1.07); in Snart Foraeldre, there was no association with total shellfish intake. Conclusions: We
found little association between seafood intake and fecundability overall, but greater intake of fried
shellfish was associated with reduced fecundability among North American participants.
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1. Introduction

Roughly 10–15% of couples experience infertility, which is defined clinically as a lack of conception
after 12 months of unprotected intercourse [1]. Seafood is an important source of omega-3 fatty acids,
which are important for steroidogenesis [2] and have anti-inflammatory effects [3,4]. Greater intake
of omega-3 fatty acids via fish or dietary supplementation has been associated with enhanced
oocyte maturation and development [2], reduced probability of anovulation and higher progesterone
concentrations [5], and improved embryo morphology [6–8] in animal and human studies. Moreover,
some [9,10] but not all [11–13] prospective cohort studies of omega-3 fatty acids (measured via diet or
blood) have shown positive effects on fecundability. At the same time, seafood also contains persistent
organic pollutants and trace elements (e.g., heavy metals) [14], which may have adverse effects on
reproductive hormones and fecundity [15–19].

There have been three retrospective cohort studies [20–22] and one prospective cohort study [23] of
seafood intake and time-to-pregnancy (TTP), and one prospective cohort study of infertility treatment
outcomes [24], with inconsistent results. In a retrospective study of 3421 pregnant French women,
greater shellfish intake was associated with longer TTP (≥2 servings/week vs. <2 servings/month:
fecundability odds ratio = 0.71); there was little association with total fish consumption [20]. Among
1234 female participants from the New York State Angler Cohort, greater fish intake from the Great
Lakes (i.e., waters with suspected polychlorinated biphenyl contamination) was associated with
reduced fecundability (3–6 years of consumption vs. none: fecundability ratio (FR) = 0.75) [21]. In a
Swedish retrospective cohort study of fishermen’s sisters, greater consumption of locally-caught fatty
fish was associated with shorter TTP (greater fecundability) among women residing on the east coast, an
area with high levels of persistent organochlorine chemicals [22]. In that study, FRs comparing medium
(1–1.5 meals/month) and high (≥2 meals/month) consumption of fatty fish vs. low consumption (≤0.5
meals/month) were 1.16 and 1.27, respectively [22]. In a prospective preconception cohort study of
501 couples from Michigan and Texas, seafood intake was associated with shorter TTP (≥8 vs. ≤1
servings/month: FR = 1.44) [23]. Finally, in a 2018 study of 351 women receiving infertility treatment,
fish consumption was not appreciably associated with the probability of clinical pregnancy (quartile 4
vs. 1: 51.2% vs. 47.4%), but was positively associated with a higher probability of live birth (quartile 4
vs. 1: 47.7% vs. 34.2%) [24]. Thus, existing studies of seafood intake and TTP have generally been
small, retrospective or based in infertile populations, or have been limited in their exposure assessment.

We examined prospectively the association between seafood consumption and fecundability
in two preconception cohorts of women residing in Denmark and North America. Specifically, we
evaluated fecundability in relation to intake of total seafood and marine-sourced long-chain omega-3
fatty acids (i.e., eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid). Finally,
in our North American cohort, where we collected additional data on food preparation, we further
evaluated intake of fried vs. unfried seafood and fecundability.

2. Methods

2.1. Study Population

The present analysis is based on data from two web-based preconception cohort studies. Snart
Foraeldre (SF, “Soon Parents”) is a prospective cohort study of pregnancy planners in Denmark.
SF is an expansion of the Snart Gravid (“Soon Pregnant”) study [25,26]. SF recruitment began in
2011 with advertisements placed on Danish health-related websites. Beginning in 2018, potential
participants were invited via E-box, a Danish communication platform for Danish authorities and
citizens. Enrollment and data collection were carried out using online self-administered questionnaires.
Beginning in January 2013, ten days after cohort entry, participants were asked to complete a food
frequency questionnaire (FFQ) specifically designed for and validated within this study population [27].
Eligible women were aged 18–45 years, residents of Denmark, actively trying to conceive, and not
receiving fertility treatment. Baseline questionnaires included information on socio-demographics,
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behavioral factors, anthropometrics, and reproductive and medical history. To update pregnancy
status and changes in exposures, self-administered online follow-up questionnaires were completed
every 8 weeks for 12 months or until a reported conception. The SF protocol is registered at Aarhus
University in compliance with Danish law on data protection and approved by the Institutional Review
Board at Boston University Medical Campus. All participants provided online informed consent.

Pregnancy Study Online (PRESTO) is a North American prospective cohort study that was
modeled after SF and initiated in 2013 [28]. Eligible women were aged 21–45 years, residents of Canada
or the U.S., actively trying to conceive, and not receiving fertility treatment. Women completed baseline
and follow-up questionnaires similar to those administered in SF. Ten days after enrollment, PRESTO
participants were invited to complete the web-based version of the National Cancer Institute’s Diet
History Questionnaire (DHQ) II [29], a FFQ validated in a U.S. population. PRESTO was approved by
the Institutional Review Board of the Boston University Medical Campus. All participants provided
online informed consent (IRB protocol number: #H-31848). Both studies were designed according to
the STROBE Statement (https://strobe-statement.org/). Details regarding exclusions for the present
analysis are provided in Figure 1.
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Figure 1. Flowchart of participant exclusions, 2013–2018 (Snart Foraeldre) and 2013–2019 (PRESTO).

2.2. Assessment of Seafood and Marine Fatty Acid Intake

We estimated intake of seafood and fatty acids using the nutrient composition of all food items in
the FFQ. The FFQ was validated in each population against 24-h recalls or food records [27,29,30]. In SF,
we asked about intake of fish and seafood dishes (lean fish such as cod, pollock, plaice; oily fish such
as salmon, herring, or mackerel; seafood (e.g., shrimp, crayfish, lobster tails); other fish dishes, such as
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fish cakes or fish lasagna; and sushi), fish products on bread (pickled or smoked fish (e.g., herring,
salmon or mackerel in tomato sauce); fried fish (e.g., fish filet or fish ball); shrimp, mussels, crabs and
the like; tuna (e.g., tuna in water, oil, or tomato); mayonnaise salad (e.g., tuna, mackerel or shrimp
salad); or cod roe), food pie with or without meat or fish, other soups with or without meat or fish,
and green salad with fish. We also extracted seafood intake from mixed recipes. In PRESTO, we asked
about intake of fried shellfish; shellfish that were not fried; salmon, fresh tuna or trout; canned tuna
(including in salads, sandwiches, or casseroles); fish sticks or other fried fish (not including shellfish);
and other fish that was not fried (not including shellfish). We also extracted information on seafood
intake from mixed recipes. All questions in both cohorts were asked with respect to the previous
12 months (Supplemental Table S1).

We calculated total seafood intake by summing all servings of fish and other seafood from
individual foods and mixed recipes on the FFQ. In SF, we obtained information about the fatty acid
content of specific foods from the Danish Food Composition Databank revision 7. National Food
Institute, Technical University of Denmark, 2008 (www.foodcomp.dk). In PRESTO, we used the
National Cancer Institute’s DIET*CALC software (version 1.5.0, Rockville, MD, USA) [31] to estimate
fatty acid consumption. In both cohorts, we calculated total marine-sourced long-chain omega-3 fatty
acids (“marine fatty acids”) by summing intakes of eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and docosapentaenoic acid (DPA). The deattenuated correlation coefficient for fish intake was
0.75 comparing the SF FFQ to a 4-day food diary in the SF validation study [27], and 0.53 comparing
PRESTO’s DHQ II FFQ to four 24-h recalls in the National Cancer Institute’s validation study [29].

2.3. Assessment of Time to Pregnancy

On the baseline questionnaire, women reported the number of menstrual cycles in which they had
been trying to conceive. At baseline and during follow-up, we collected data on date of last menstrual
period (LMP) and cycle regularity (“Has your menstrual period been regular in a way that you could
usually predict about when the next period would start?”). Women with regular cycles were asked
about their typical cycle length; women with irregular cycles had their cycle length estimated based on
the number of menses in a year, the number of days until their next period was expected, and LMP
dates at baseline and follow-up.

On follow-up questionnaires administered every 8 weeks, women reported if they were currently
pregnant, if they had initiated fertility treatment, and if they had experienced any intervening pregnancy
losses since their previous questionnaire. Women who reported conception were asked for details
about how their conceptions were confirmed (e.g., home pregnancy test and/or blood test in doctor’s
office). Over 96% of participants reported using home pregnancy tests to confirm pregnancy [28].
Women who did not report conception were asked if they were still trying to conceive. Among PRESTO
participants who were lost to follow-up, we sought additional outcome information by contacting
participants directly via phone or email, searching for baby registries and birth announcements online,
and by linking with birth registries in selected states (CA, FL, MA, MI, OH, PA, and TX). When we
identified pregnancies without direct participant contact, we assumed that this was the woman’s first
pregnancy since she enrolled in the study. We estimated TTP in discrete menstrual cycles using the
following formula: [(reported menstrual cycles of pregnancy attempt time at baseline) + [(LMP date
from most recent follow-up questionnaire − date of baseline questionnaire)/cycle length] + 1].

2.4. Assessment of Covariates

On the baseline questionnaire, participants reported information on potential confounders,
including age, height, weight, physical activity, smoking, alcohol consumption, education, household
income, marital status, race/ethnicity (PRESTO only), last method of contraception, parity, and the use of
dietary supplements (including fish oil supplements). We calculated body mass index (BMI) as weight
(kg) divided by height squared (m2). In SF, total weekly metabolic equivalents (METs) were calculated
using the International Physical Activity Questionnaire short-form by summing the MET-hours from
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walking, moderate physical activity, and vigorous physical activity (hours/week × 3.3 METs, 4 METs,
and 8 METs, respectively) [32]. In PRESTO, total MET-hours per week were calculated by multiplying
the average number of hours per week spent engaging in various activities by metabolic equivalents
estimated from the Compendium of Physical Activities [33,34]. Based on the dietary questionnaires,
we estimated total energy intake and assessed overall diet quality (measured via the Nutrient Rich Diet
Score in SF and the Healthy Eating Index 2010 in PRESTO) [35,36]. The list of potential confounders
examined in the two cohorts was identical, except for race/ethnicity (ascertained in PRESTO only).

2.5. Data Analysis

We performed parallel analyses across the two cohorts. Seafood variables were categorized
according to their frequency distributions in the cohort. We analyzed omega-3 fatty acids in five
categories, with cut points at the 25th, 50th, 75th, and 90th percentiles, both individually and grouped
as marine fatty acids (EPA + DPA + DHA). Participants contributed menstrual cycles to the analysis
until they reported a conception or one of the following censoring events: cessation of pregnancy
attempts, initiation of fertility treatment, study withdrawal, loss to follow-up, or 12 cycles, whichever
came first. To account for variation in pregnancy attempt time at cohort entry (range: 0–6 cycles) and
to reduce bias from left truncation [37,38], we based risk sets on observed cycles at risk only using the
Andersen–Gill data structure [39]. We used life-table methods to calculate the percentage of couples
that conceived during 12 cycles of follow-up, accounting for censoring [40]. We used proportional
probabilities regression models [41,42] to estimate fecundability ratios (FRs), defined as the ratio of the
cycle-specific probability of conception among exposed compared with unexposed women. This model
controls for the expected decline in cohort fecundability over time by adjusting for binary indicators of
cycle number at risk.

Our selection of control variables was guided by the literature and by causal diagrams.
We considered known or suspected determinants of subfertility that were associated with total
seafood intake. Our final models adjusted for age (<25, 25–29, 30–34, 35–39, or ≥40 years), cigarette
smoking (never, former, current occasional, or current regular), alcohol use (drinks/week), BMI (<20,
20–24, 25–29, 30–34, or ≥35 kg/m2), intake of sugar-sweetened beverages (drinks/week), physical
activity (<10, 10–19, 20–39, or ≥40 MET-hours/week), last contraceptive method used (hormonal,
barrier, or natural methods), intercourse frequency (<1, 1, 2–3, or ≥4 times per week), parity history
(0 or ≥1 births), use of method(s) to improve pregnancy chances (yes/no), daily use of prenatal or
multivitamins (yes/no), fish oil supplement use (yes/no), and marital status (married/living as married
vs. not). In addition, PRESTO models controlled for education (≤high school, some college, college
degree, or graduate school), household income (<50,000, 50,000–99,999, 100,000–149,999, or ≥150,000
United States Dollars (USD)/year), race/ethnicity (non-Hispanic White: yes vs. no), and Healthy Eating
Index 2010 score (continuous) while SF models controlled for educational training duration (≤12,
13–15, 16, or ≥17 years), household income (<25,000, 25,000–39,999, 40,000–64,999, or ≥65,000 Danish
Kroners (DKK)/month), and Nutrient Rich Dietary Score (continuous). For foods, we adjusted for
total energy intake by including a continuous term for energy intake in the regression model, except
for fatty acids, where we used the nutrient residual method [43]. Additional sensitivity analyses
were restricted to non-users of fish oil supplements to better isolate the effect of seafood intake on
fecundability. Analyses were also performed with and without adjustment for intercourse frequency,
which we considered a potential confounder, but which others have treated as a potential mediator of
the seafood-fecundability association [23].

We performed secondary analyses that were stratified by pregnancy attempt time at cohort
entry (<3 vs. 3–6 cycles) to assess the degree to which reverse causation explained our associations
(e.g., if subfertility caused changes in seafood intake). We also stratified models by age, parity,
and BMI, given their strong relationship to fecundability and the fact that some chemicals in seafood
(e.g., polychlorinated biphenyls) are strongly correlated with adiposity (via storage in body fat) [44]
and parity (via excretion through pregnancy and lactation) [45]. Out of concern that controlling for
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parity might introduce bias due to overcontrol for underlying fecundity [46,47], models were fit with
and without adjustment for parity.

We used multiple imputation to impute missing covariate and outcome data [48,49]. We assigned
women with no follow-up data (SF: n = 177; PRESTO: n = 144) one cycle of follow-up and imputed
their pregnancy status at the end of that cycle. Covariate missingness in SF ranged from 0% (age, fish
intake, and energy intake) to 10% (household income). In PRESTO, covariate missingness ranged
from 0% (age, parity, marital status, education, fish intake, and energy intake) to 4% (household
income). Within each cohort, we created five imputed datasets and statistically combined coefficients
and standard errors across the five datasets using PROC MIANALYZE. We carried out all analyses
using SAS version 9.4 (Cary, NC, USA) [50].

3. Results

During 2013–2019, 2709 SF participants contributed 1818 pregnancies and 9609 menstrual cycles
of pregnancy attempt time and 5127 PRESTO participants contributed 3267 pregnancies and 21,076
menstrual cycles of pregnancy attempt time. Using life-table methods, the percentage of couples that
conceived during 12 cycles of follow-up after accounting for censoring was 82% in SF and 74% in
PRESTO. During follow-up in SF, 3% stopped trying to conceive, 6% initiated fertility treatment, 15%
were lost to follow-up, 8% were censored at 12 cycles, and 1% were still actively participating in the
study. During follow-up in PRESTO, 3% stopped trying to conceive, 11% initiated fertility treatment,
7% were lost to follow-up, 10% were censored at 12 cycles, and 4% were still actively participating in
the study. The distributions of total seafood intake differed across the two cohorts, with SF participants
reporting substantially higher intake of all types of seafood (SF: median = 142.3, interquartile range
(IQR) = 88.8–211 g/week; PRESTO: median = 55.6, IQR = 19.8–115 g/week).

Table 1 displays baseline characteristics of study participants by categories of total seafood intake.
In general, greater seafood intake was associated with higher socioeconomic status and healthier
diet and behaviors. Specifically, total seafood intake was positively associated with physical activity,
intercourse frequency, daily multivitamin use, fish oil supplementation, indices of healthy diet (Nutrient
Rich Diet Score and Healthy Eating Index score), education, and household income, and inversely
associated with BMI, parity, and cigarette smoking in both cohorts. While total seafood intake was
positively associated with alcohol intake in PRESTO, there was no appreciable association in SF. Finally,
in PRESTO, total seafood intake was lower among those who identified as non-Hispanic White as
compared with other racial/ethnic groups.

Total seafood intake was not appreciably associated with fecundability in either cohort (≥200
vs. <50 g/week total seafood: FR = 0.94, 95% CI: 0.79–1.10 in SF; FR = 1.00, 95% CI: 0.90–1.13
in PRESTO) (Table 2). Likewise, greater intake of shellfish overall was not materially associated
with fecundability in either cohort. However, in PRESTO, where we collected additional data on
seafood preparation, we observed an inverse association between fried shellfish (≥10 g/week vs.
none: FR = 0.77, 95% CI: 0.61–0.98) and fecundability, but there was no evidence of a dose-response
relation. We observed no association between unfried shellfish and fecundability (≥20 g/week vs.
none: FR = 0.98, 95% CI: 0.89–1.07). There was minimal evidence of confounding when comparing
unadjusted and adjusted associations.

Dietary intake of individual marine-sourced long-chain omega-3 fatty acids or their summation
showed little association with fecundability in either cohort (Table 3).
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Table 1. Baseline characteristics of participants by dietary intake of seafood, 2013–2018 (Snart Foraeldre) and 2013–2019 (PRESTO) a.

Total Seafood Intake (g/week)

Snart Foraeldre (n = 2709) PRESTO (n = 5127)

<50 50–99 100–199 ≥200 <50 50–99 100–199 ≥200

Number of women (n) 316 509 1117 767 2343 1257 1020 507
Age, mean (years) 28.4 28.8 28.9 29.4 29.6 30.3 30.5 30.7
Body mass index, mean (kg/m2) 25.0 24.0 24.0 23.8 27.9 26.8 26.5 26.6
Energy, mean (kcal/day) 1675 1714 1824 2097 1466 1572 1718 1842
Current smoker (%) 6.8 8.3 5.0 3.6 6.1 3.1 3.9 3.0
Parous (%) 32.0 32.0 33.2 31.1 34.8 30.8 28.2 21.3
Alcohol intake, mean (drinks/week) 2.6 2.8 2.7 2.8 2.7 3.5 3.6 4.0
Physical activity, mean (METs/week) 64.9 62.8 59.7 71.9 31.9 34.5 38.3 43.6
Last contraceptive: hormonal (%) 57.6 60.9 59.5 54.1 39.2 38.4 38.1 37.1
Intercourse (frequency/week) (%)
≤1 44.1 41.7 39.2 36.8 40.3 42.5 41.6 36.2
2–3 43.6 46.0 47.2 46.9 45.4 43.0 45.3 48.7
≥4 12.3 12.3 13.6 16.3 14.3 14.5 13.1 15.1

Daily multivitamin use (%) 65.3 66.7 70.0 75.5 81.4 84.7 86.6 87.4
Fish oil supplement intake (%) 17.6 19.7 17.9 21.2 16.4 21.2 20.3 24.8
Healthy diet indices, NRDS/HEI
(mean) 979 1015 1033 1062 63.1 67.1 69.0 71.0

Sugar-sweetened beverages/week
(mean) 1.3 0.9 0.8 0.6 2.8 2.2 2.1 1.9

White/non-Hispanic (%) 100 100 100 100 88.4 86.5 85.8 82.9
Education, years (%)
≤12 10.0 3.4 4.6 3.6 4.2 2.1 1.7 2.6
13–15 21.4 15.3 12.9 11.9 22.7 15.9 15.9 13.4
16 36.5 38.4 37.7 37.8 33.7 36.8 35.4 31.2
≥17 32.0 42.9 44.7 46.7 39.3 45.2 47.0 52.7

Income, DKK/month or USD/year (%)
<25,000/<50,000 16.1 12.8 12.1 12.5 18.8 16.1 13.3 15.1
25,000–39,999/50,000–99,999 24.3 22.2 21.2 22.8 42.2 37.6 36.7 32.7
40,000–64,999/100,000–149,999 39.6 45.6 43.3 41.8 24.4 31.0 28.8 24.4
≥65,000/≥150,000 20.0 19.3 23.4 23.0 14.6 15.4 21.3 27.8

Kcal = kilocalories, MET = metabolic equivalent of task, NRDS = Nutrient Rich Diet Score, HEI = Healthy Eating Index 2010, DKK = Danish Kroners, USD = United States dollars.
a All variables, except for age, are standardized to the age distribution of the study population at baseline.
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Table 2. Association between seafood intake and fecundability, Snart Foraeldre and PRESTO cohorts.

Snart Foraeldre PRESTO

No. of
Pregnancies

No. of
Cycles FR a 95% CI a FR b 95% CI b No. of

Pregnancies
No. of
Cycles FR a 95% CI a FR b 95% CI b

Total seafood, g/week
<50 201 1070 1.00 Ref 1.00 Ref 1425 9847 1.00 Ref 1.00 Ref

50–99 356 1844 1.02 0.87–1.20 0.97 0.82–1.14 830 5014 1.11 1.03–1.20 1.06 0.98–1.14
100–199 745 3980 1.00 0.87–1.15 0.94 0.81–1.08 688 4125 1.11 1.02–1.21 1.05 0.96–1.14
≥200 516 2715 1.03 0.88–1.20 0.94 0.79–1.10 324 2090 1.06 0.95–1.19 1.00 0.90–1.13

Total unfried seafood, g/week c

<20 978 6839 1.00 Ref 1.00 Ref
20–49 676 4440 1.05 0.96–1.15 1.04 0.95–1.13
50–99 748 4511 1.12 1.02–1.22 1.05 0.96–1.15

100–199 591 3557 1.11 1.01–1.22 1.04 0.95–1.15
≥200 274 1729 1.09 0.96–1.23 1.03 0.91–1.17

Total fried seafood, g/week c

None 1726 11,079 1.00 Ref 1.00 Ref
1–4 593 3615 1.01 0.93–1.10 1.02 0.94–1.11
5–19 676 4573 0.94 0.87–1.02 0.97 0.90–1.05
≥20 272 1809 0.97 0.86–1.09 0.97 0.86–1.09

Shellfish, g/week
None 107 655 1.00 Ref 1.00 Ref 1388 9347 1.00 Ref 1.00 Ref
1–9 880 4472 1.19 0.99–1.43 1.22 1.01–1.46 724 4471 1.06 0.98–1.15 1.01 0.93–1.10

10–49 768 4181 1.10 0.91–1.33 1.16 0.96–1.41 890 5501 1.07 0.99–1.16 1.02 0.94–1.10
≥50 63 301 1.23 0.93–1.63 1.21 0.91–1.61 265 1757 1.00 0.89–1.13 0.96 0.85–1.09

Unfried shellfish, g/week c

None 1494 10,052 1.00 Ref 1.00 Ref
1–9 881 5449 1.06 0.98–1.15 1.01 0.94–1.09

10–19 374 2246 1.10 0.99–1.22 1.05 0.95–1.16
≥20 518 3329 1.02 0.93–1.12 0.98 0.89–1.07

Fried shellfish, g/week c

None 2306 14,764 1.00 Ref 1.00 Ref
1–4 558 3548 0.98 0.91–1.07 0.98 0.90–1.06
5–9 341 2245 0.98 0.88–1.09 1.00 0.90–1.11
≥10 62 519 0.79 0.62–1.00 0.77 0.61–0.98

Fish oil supplementation
No 1480 7746 1.00 Ref 1.00 Ref 2622 17,134 1.00 Ref 1.00 Ref
Yes 338 1863 0.97 0.87–1.08 0.94 0.84–1.06 645 3942 1.04 0.96–1.13 0.98 0.91–1.06

Ref = reference group. a Adjusted for energy intake (kcal/day). b Additionally adjusted for age, female BMI, physical activity, smoking status, alcohol intake, last form of contraception,
intercourse frequency, parity, use of methods to improve pregnancy chances, daily multivitamin use, use of fish oil supplements, education, income, marital status, race/ethnicity (PRESTO
only), healthy diet indices, and sugar-sweetened beverage intake. c Variables not available in Snart Foraledre.
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Table 3. Associations between dietary intake of marine-sourced long-chain omega-3 fatty acids and fecundability.

Snart Foraeldre PRESTO

g/week No. of
Pregs

No. of
Cycles FR a 95% CI a FR b 95% CI b g/week No. of

Pregs
No. of
Cycles FR a 95% CI a FR b 95% CI b

Total marine fatty acids, percentile
<25th <1.00 448 2358 1.00 Ref 1.00 Ref <0.37 775 5293 1.00 Ref 1.00 Ref

25th–49th 1.00–1.83 458 2484 0.96 0.86–1.08 0.93 0.83–1.04 0.37–0.60 779 5595 0.96 0.87–1.05 0.93 0.85–1.02
50th–74th 1.84–2.91 469 2411 1.02 0.91–1.15 0.98 0.87–1.10 0.61–1.03 845 5116 1.08 0.99–1.18 1.02 0.93–1.11
75th–89th 2.92–4.30 266 1434 0.97 0.84–1.11 0.92 0.80–1.06 1.04–1.64 534 2977 1.16 1.05–1.28 1.07 0.97–1.19
≥90th ≥4.31 177 922 1.03 0.88–1.21 1.00 0.85–1.18 ≥1.65 334 2095 1.04 0.93–1.17 0.97 0.86–1.09

EPA percentile
<25th <0.29 448 2330 1.00 Ref 1.00 Ref <0.09 752 5401 1.00 Ref 1.00 Ref

25th–49th 0.29–0.52 455 2540 0.94 0.83–1.05 0.90 0.80–1.02 0.09–0.16 806 5453 1.05 0.96–1.15 1.03 0.94–1.13
50th–74th 0.53–0.82 467 2413 1.01 0.90–1.14 0.97 0.86–1.09 0.17–0.31 846 5195 1.12 1.03–1.23 1.07 0.98–1.17
75th–89th 0.83–1.19 267 1441 0.95 0.83–1.09 0.91 0.79–1.05 0.32–0.54 537 2923 1.22 1.11–1.35 1.13 1.02–1.26
≥90th ≥1.20 181 885 1.09 0.93–1.27 1.06 0.90–1.25 ≥0.55 326 2104 1.08 0.96–1.21 1.00 0.89–1.13

DPA percentile
<25th <0.07 457 2376 1.00 Ref 1.00 Ref <0.07 776 5407 1.00 Ref 1.00 Ref

25th–49th 0.07–1.13 446 2484 0.95 0.84–1.06 0.92 0.82–1.04 0.07 838 5226 1.08 0.98–1.17 1.08 0.98–1.19
50th–74th 1.14–0.21 468 2389 1.03 0.92–1.15 0.99 0.88–1.11 0.08–0.11 797 5328 1.02 0.93–1.12 1.05 0.93–1.18
75th–89th 0.22–0.33 266 1444 0.96 0.84–1.11 0.92 0.80–1.06 0.12–0.15 512 3101 1.10 0.99–1.21 1.07 0.97–1.19
≥90th ≥0.34 181 916 1.05 0.90–1.23 1.04 0.89–1.22 ≥0.16 344 2014 1.13 1.01–1.27 1.08 0.96–1.21

DHA percentile
<25th <0.64 450 2353 1.00 Ref 1.00 Ref <0.20 769 5306 1.00 Ref 1.00 Ref

25th–49th 0.64–1.17 458 2478 0.96 0.85–1.07 0.92 0.82–1.04 0.20–0.36 784 5570 0.96 0.88–1.06 0.94 0.86–1.03
50th–74th 1.18–1.86 468 2405 1.02 0.91–1.14 0.97 0.86–1.09 0.37–0.61 840 5159 1.08 0.99–1.18 1.01 0.92–1.11
75th–89th 1.87–2.78 264 1454 0.95 0.82–1.09 0.90 0.78–1.04 0.62–0.96 535 2947 1.18 1.07–1.30 1.09 0.98–1.21
≥90th ≥2.79 178 919 1.04 0.89–1.21 1.01 0.86–1.18 ≥0.97 339 2094 1.07 0.95–1.20 1.00 0.89–1.12

Ref = reference group. Total marine fatty acids = EPA + DHA + DPA. EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid, DPA = docosapentaenoic acid. a Adjusted for energy
intake (kcal/day). b Additionally adjusted for age, female BMI, smoking status, alcohol intake, physical activity, last form of contraception, intercourse frequency, parity, use of methods to
improve pregnancy chances, daily multivitamin use, use of fish oil supplements, education, income, marital status, race/ethnicity (PRESTO only), healthy diet indices, and sugar-sweetened
beverage intake.
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Restricted cubic spline curves were consistent with the categorical results (Figure 2).
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Figure 2. Association between marine fatty acid and fecundability among 2709 female Snart Foraeldre
participants (top) and 5127 female Pregnancy Study Online (PRESTO) participants (bottom), fitted by
restricted cubic splines. The reference level for the fecundability ratio is the lowest value in the data in
each cohort. The splines are trimmed at the 99th percentile and have 4 knot points at the 25th, 50th, 75th
and 90th percentiles. For Snart Foraeldre, knot points are at 1.00, 1.84, 2.90, and 4.30 and for PRESTO,
knot points are at 0.36, 0.59, 1.00, and 1.64. Both splines are adjusted for age, BMI, physical activity,
smoking status, alcohol intake, last form of contraception, intercourse frequency, parity, use of methods
to improve pregnancy chances, daily multivitamin use, use of fish oil supplements, education, income,
marital status, race/ethnicity (PRESTO only), healthy diet indices, and sugar-sweetened beverage intake.
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Associations were generally consistent across strata of age and BMI (Supplementary
Tables S2 and S3). Among PRESTO participants with shorter attempt times at cohort entry, among
whom diet was less likely to have changed in response to subfertility, the FRs for fried shellfish
persisted (≥10 g/week vs. none: FR = 0.74, 95% CI: 0.56–0.97) (Supplementary Table S4). All other
results were generally similar across strata. Stratifying by parity, or omitting parity altogether from the
multivariable models, resulted in little change in the FRs (data not shown).

Use of fish oil supplements was relatively common in both cohorts (18–20%) but was not materially
associated with fecundability in either cohort (Table 2). We observed similar associations for total
seafood intake and intake of marine fatty acids with fecundability among non-users of fish oil
supplements in PRESTO (Supplementary Table S5). Results were similar with and without control for
frequency of intercourse (data not shown).

4. Discussion

We found little evidence of an association between intake of total seafood or marine fatty acids
and fecundability. Results did not vary appreciably by BMI, age at cohort entry, or parity. Controlling
for several measures of socioeconomic status (e.g., education, household income, and marital status)
or indices of healthy diet did not materially change these associations. In PRESTO, where we had
additional data on fish preparation, there was some suggestion that greater intake of fried shellfish
was associated with reduced fecundability, but there was no dose-response relation.

Previous studies of the association between seafood intake and fecundability have produced
conflicting results [20,21,23]. Our finding regarding fried shellfish intake and reduced fecundability
is consistent with a retrospective TTP study of 3421 French pregnant women showing that greater
shellfish intake was associated with longer TTP (≥2 servings/week vs. <2 servings/month: fecundability
odds ratio = 0.71) [20]. However, French populations are more likely to eat pan-fried/sauteed or baked
shellfish [51] than deep-fried shellfish, which is more commonly consumed by North Americans.
Our results for total seafood intake did not agree with the positive findings observed for fish intake
and live birth rates in the EARTH study [24], but both studies observed nearly null associations
with fish oil supplementation. Though we did not confirm the overall positive results from the LIFE
study regarding total seafood intake and fecundability [23], we did observe a positive association
between greater seafood intake and intercourse frequency. However, additional control for intercourse
frequency, a potential confounder, made little difference in our associations between seafood intake
and fecundability. The inconsistent results across studies could be explained by possible opposing
effects of seafood intake on fecundability, including potentially beneficial (e.g., omega-3 fatty acids)
and harmful (e.g., chemical toxicants) effects. Ideally, studies would measure both fatty acids and
toxicants in the same individuals, and evaluate these exposures simultaneously to disentangle their
independent effects on fecundability.

The results for fried shellfish are not wholly surprising. Other studies have found associations
between fried seafood (shellfish or fish) intake and adverse health outcomes (e.g., diabetes [52],
cancer [53], all-cause and cardiovascular mortality [54,55]), even when overall associations with total
seafood intake showed no association [52,54] or non-fried seafood showed beneficial effects [56].
There is some evidence that the preparation of seafood influences the extent to which contaminants are
retained in the flesh of the seafood [57–61]. These studies suggest that frying seafood, particularly
fatty seafood harvested from contaminated waters, is potentially harmful because it can seal in
organochlorines and other chemical pollutants. There is also evidence that frying foods produces new
contaminants (heterocyclic amines [62,63], polycyclic aromatic hydrocarbons [64] and, to a smaller
extent, acrylamide [65]), and those who eat more fried seafood tend to eat other fried foods. If the
shellfish consumed by study participants contained more contaminants on average than other fish,
this could explain the stronger results for fried shellfish than fried seafood more generally [14].

Study strengths include the enrollment of participants during the preconception period, with more
than 65% enrolled within three cycles of discontinuing contraception. The assessment of diet and
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other covariates before pregnancy helped to avoid recall bias. Loss to follow-up was lower than 20%
in both cohorts during the study period. There were no appreciable differences in the proportion
lost-to-follow-up in the extreme quartiles of total seafood intake. Data were collected on several
potential confounders. FFQs were validated in each respective population, showing relatively high
agreement of the FFQ when compared with 24-h recalls and/or food diaries.

Several potential study weaknesses also must be considered. Although the FFQ is the most practical
and efficient method for measuring long-term diet in large epidemiologic studies [43,66,67], some
misclassification of diet is anticipated. Cohort-specific dietary databases were used in the two studies,
but many nutrients were based on laboratory analysis with extrapolation from similar foods. The FFQ
for SF contained many more seafood items (n = 14) than PRESTO (n = 6), including mixed recipes
(e.g., fish stew), and intake of seafood was much greater in Denmark than in North America, making
comparisons across cohorts difficult. Misclassification may have also arisen from differences in the types
of seafood, its fat content, preparation of the seafood (deep-fried, pan-fried/sauteed, grilled, or baked),
and contamination of waters from which the seafood was harvested. With prospective assessment
of dietary intake relative to pregnancy, we would expect misclassification to be non-differential,
which could have unpredictable effects on the inner categories of exposure but would generally bias
extreme exposure categories towards the null. Thus, non-differential misclassification could be an
explanation of our null findings for most seafood variables, though we note that previous studies with
positive results have also relied on FFQs.

Residual confounding may have also influenced our results. Consumption of foods containing
omega-3 fatty acids (e.g., unfried wild-caught fish) is associated with more healthful lifestyle practices.
We cannot rule out confounding by healthful lifestyle factors not captured by measured variables
such as SES, physical activity, or energy intake. For example, the inverse association for fried shellfish
could be explained by residual confounding if the healthiest women with high fecundability are
more likely to be classified in the lowest categories of exposure. Another limitation is the lack of
adjustment for male partners’ dietary intake, which is likely correlated with female partners’ intake.
Male seafood intake has been shown to influence reproduction in some studies (e.g., DHA deficiency
is associated with poor semen quality) [68–70]. Finally, there could be other factors that explain the
inconsistent results across cohorts, particularly for fried shellfish and seafood high in omega-3 fatty acids
(e.g., changes in contaminant levels over calendar time [71]; differences in pollution of the fish supply
in North America [72] vs. Denmark [73]).

Given the lack of effect measure modification by selected covariates (e.g., age, BMI, and parity),
our results may be generalizable to a broader population of reproductive-aged women. Internet-based
recruitment should not influence the validity of the measures of association unless the association
between diet and fertility differs markedly between internet users and nonusers, which seems
unlikely [74]. The same logic can be applied regarding differences between planners and non-planners
of pregnancy. Our study [75] and others [76,77] have shown that even when enrollment at study
entry is related to characteristics such as age, cigarette smoking, or parity measures of association are
not appreciably biased due to self-selection. Other potential biases, such as selection bias stemming
from length-biased recruitment of couples with longer TTP and reverse causation resulting from
subfertility-related changes in diet, were assessed empirically by stratifying on attempt time at
cohort entry. Selected results (e.g., fried shellfish) were slightly stronger among women with shorter
attempt times at cohort entry.

In conclusion, there was little evidence of an overall association between intake of total seafood or
marine fatty acids and fecundability in two prospective cohort studies of North American and Danish
pregnancy planners. We observed, however, an inverse association between fecundability and intake
of fried shellfish, but not unfried shellfish, among North American women.
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