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Abstract. In this paper, we study the boundary-driven ferromagnetic Ising
model in two dimensions. In this non-equilibrium setting, in the low temper-
ature region, the Ising model has phase separation in the presence of a cur-
rent. We investigate, by means of numerical simulations, Kawasaki dynamics
with magnetization reservoirs. The results show that, in the stationary non-
equilibrium state, the Ising model may have uphill diffusion and magnetization
profiles with three discontinuities. These results complement the results of a
previous paper by Colangeli, Giberti, Vernia and the present author [9]. They
also allow to state a full picture of the hydrodynamic limit.
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1. Introduction and outline

In this contribution we discuss the boundary driven Ising model in two di-
mensions. From the statistical physics perspective, it is very natural to con-
sider this system. Indeed, the closed Ising model (for instance with periodic
boundary conditions) is the main mathematical model to describe the phe-
nomenon of a second-order phase transition occurring at inverse critical tem-
perature 0 < βc < ∞ [23, 26]. In the equilibrium setting the two-dimensional
ferromagnetic Ising model turns out to be exactly solvable, with beautiful math-
ematical structures arising from integrability [2]. Here, we will be interested in
studying the open Ising model, driven into a non-equilibrium states by imposing
different magnetization values at two boundaries.

More precisely, we shall consider the following setting, which is schematically
depicted in Figure 1.
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Figure 1. Schematic picture of the boundary driven 2D Ising model.

In the bulk, the spins (that can also be read as particles via the standard
mapping to lattice gases) interact as in the nearest neighbors two-dimensional
ferromagnetic Ising model on a square lattice with L × L sites (L ∈ N) and
they evolve following a Kawasaki dynamics at inverse temperature 0 ≤ β <∞.
At the opposite boundaries in the horizontal direction, infinite reservoirs R−
and R+ fix the magnetizations to values −1 ≤ m− ≤ 1 and −1 ≤ m+ ≤ 1 by
means of two independent spin-flip dynamics with different parameters. This
set-up typically forces a magnetization current through the system and one is
interested in the structure of the stationary measure (as a function of the reser-
voirs magnetizations m±). The focus of this paper is on the low temperature
regime (i.e. the bulk Kawasaki dynamics occurs at inverse temperature β higher
that the critical value βc), where phase separation occurs for positive m+ and
negative m−. We shall especially be concerned with the expected value of the
current in the non-equilibrium steady state and the verification of Fick’s law
which, in our setting, states the proportionality between the average current
and the negative of the gradient of the magnetization. For the boundary driven
Ising model no closed form is known for the non-equilibrium invariant measure
(not even in one dimension).

The paper is organized as follows. In the next section we define the model via
its Markov generator. In Section 3 we state the conjectured hydrodynamic limit,
i.e. the diffusive scaling limit of empirical magnetization. Section 4 contains
the main results on the measurements of current and magnetization profiles,
whereas Section 5 is focused on the finite-size effects, that play a crucial role in
such measurements. Finally, in the last section we draw some conclusions.
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2. Set up: model definition

We consider a subset ΛL of the two-dimensional lattice: ΛL = [1, L]2 ∩ Z2.
Sites of this finite volume are denoted by the vector i = (x, y). To each site
i ∈ ΛL we associate a dichotomic spin variable σi ∈ {−1, 1}. We shall consider
the continuous time Markov process {σ(t) , t ≥ 0} with state space ΩL :=

{−1, 1}L2

, where the ith component σi(t) denotes the value of spin at site i ∈ Λ
at time t ≥ 0. The process is defined by its generator L, working on functions
f : ΩL → R, which is the sum of three terms:

Lf(σ) = L−f(σ) + Lbf(σ) + L
+
f(σ). (2.1)

We now describe the three contributions. The bulk term Lb reads

Lbf(σ) =
∑

i∼j∈ΛL

c(i, j;σ)[f(σi,j)− f(σ)], (2.2)

where i ∼ j denotes that the sites i and j are nearest neighbors and σi,j denotes
the spin configuration with components

σi,jk =


σk if k 6= i, j

σj if k = i

σi if k = j.

In words, the Markov process generated by Lb is described as follows: on the
2L2 edges of ΛL connecting nearest neighbors sites there are independent ex-
ponential clocks; if the clock of the bond (i, j) rings first, then the spins σi and
σj are exchanged. After the exchange the clocks are reset and the procedure is
repeated. The clock rates c(i, j;σ) are those of the Kawasaki dynamics

c(i, j;σ) = 1σi 6=σj ·

{
1 if ∆H(σ) = HL(σi,j)−HL(σ) ≤ 0

e−β∆H(σ) otherwise,
(2.3)

with HL the finite-volume Hamiltonian of the 2D nearest neighbors ferromag-
netic Ising model

HL(σ) = −
L∑
x=1

L∑
y=1

σ(x,y)σ(x,y+1) −
L∑
x=0

L∑
y=1

σ(x,y)σ(x+1,y). (2.4)

In the above formula, the first double sum is over vertical bonds, where we
assume periodic boundary conditions σ(x,L+1) = σ(x,1) for x = 1, . . . L; the
second double sum is over horizontal bonds, where we assume “L/4 boundary
conditions” [5], i.e. σ(0,y) = σ(1,y′) and σ(L+1,y) = σ(L,y′) where

y′ ≡ y −
⌊
L

4

⌋
(mod L),
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with y = 1, . . . L, and b·c denoting the integer part. Whereas the choice of
periodic boundary conditions in the transverse y-direction is the simplest choice
that guarantees zero average current in the transverse direction, other choice of
the boundary conditions in the x-direction are possible. We made the choice
of the “L/4 boundary conditions” because this is particularly convenient for
the implementation of the numerical simulations. Other choices are discussed
in [10], where it is provided convincing arguments that the results that we are
going to discuss essentially holds true for a wide class of choices that break
detailed balance at the boundaries.

The generators L± are given by

L±f(σ) =
∑
i∈Λ±

c±(i, σ)[f(σi)− f(σ)], (2.5)

where the boundaries Λ±,L are defined as

Λ−,L = {(1, y) ∈ Λ : y = 1, . . . , L},

Λ+,L = {(L, y) ∈ Λ : y = 1, . . . , L},

and σi denotes the spin configuration with components

σik =

{
σk if k 6= i

−σi if k = i.

Thus on the L bonds connecting the boundary Λ−,L to the left reservoir there
are independent exponential clocks; if the clock of the site (1, y) rings first then
the spin σ(1,y) is flipped. A similar process occurs on the right boundary Λ+,L

and the two processes are independent. The rates of these spin-flip dynamics

c±(i;σ) =
1− σim±

2

are such that on the sites of the left boundary, resp. right boundary, an average
magnetization m−, resp. m+, is fixed. In the following we will assume (unless
otherwise stated) that the boundary magnetizations are m− = −m+. This
implies that the stationary magnetization profile is symmetric with respect to
x = bL+ 1c/2. Without loss of generality we can also restrict to 0 ≤ m+ ≤ 1.

We recall that the equilibrium Ising model in two dimension with Hamil-
tonian (2.4) has, in the thermodynamic limit L → ∞, a second order phase
transition at inverse critical temperature

βc =
ln(1 +

√
2)

2
≈ 0.440686.
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The order parameter is provided by the spontaneous magnetization, which is

defined as

mβ = lim
B↘0

lim
L→∞

∑
σ∈ΩL

( 1

L2

∑
i∈ΛL

σi

)exp{−βHL(σ) +B
∑
i∈ΛL

σi}
ZL(β,B)

.

In the above formula it is understood that the Hamiltonian HL has periodic
boundary conditions in all directions and ZL is the normalizing partition func-
tion. The exact solution of the equilibrium 2D Ising model [23,26] gives

mβ =

{
0 if β ≤ βc[
1− sinh−4 (2β)

]1/8
if β > βc

and the spontaneous magntization is shown in Figure 2.
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Figure 2. Spontaneous magnetization mβ of the equilibrium 2D Ising model as
a function of the inverse temperature β (left panel), with a zoom around the
value β = 1 that is used in the numerical simulations (right panel).

We will be interested in studying the boundary driven Ising model in two
dimension as the following two parameters are varied:

• the bulk temperature 0 ≤ β <∞,

• the boundary magnetization 0 ≤ m+ ≤ 1.

For reasons that will become clear in the following sections we shall call stable
the region in the parameter space such that β ≥ βc and m+ > mβ and unstable
the region where β ≥ βc and m+ < mβ . Possibly, at finite volume, there will
also be a metastable region separating the stable and the unstable regions.

3. Hydrodynamics

A rigorous study of the hydrodynamics (large space-time scale) is currently
not available for the model described in the previous section. We discuss here the
heuristic guess of the hydrodynamic picture and mention some of the problems
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one has to solve (work in progress with A. De Masi and E. Presutti). We assume
that the starting configuration σ(0) is distributed according to a sequence of
initial measure µ(L) on ΩL such that

lim
L→∞

1

L2

∑
i∈ΛL

φ
( i
L

)
σi(0) =

∫
[0,1]2

φ(r)M0(r)dr

where φ : R2 → R is a test function and M0 : [0, 1]2 → [−1, 1] is the starting
macroscopic magnetization profile. This convergence has to be understood as
convergence in probability w.r.t the initial measure µ(L). We consider the dif-
fusive scaling of the the empirical magnetization field. Then the hydrodynamic
limit holds if

lim
L→∞

1

L2

∑
i∈ΛL

φ
( i
L

)
σi(L

2t) =

∫
[0,1]2

φ(r)M(r, t)dr

where M(·, t) : [0, 1]2 → [−1, 1] is the macroscopic magnetization profile at time
t > 0. Again the convergence is understood in probability, now with respect to

the law µ
(L)
t of the process at time L2t.

There are two regimes where one can state the conjectured evolution of
the magnetization profile: in the high temperature region it is the solution
of the non-linear heat equation with Dirichlet boundary condition; in the low-
temperature stable region it is associated to the solution of a free boundary
problem. More precisely one expects the following:

1. High temperature region: 0 ≤ β < βc. In this regime there is no
phase separation. By the the choice of periodic boundary conditions in
the vertical direction, we have that if we start from an initial macroscopic
profile that is a function of the sole horizontal macroscopic coordinate, i.e.
M0(r) = m0(r1) with r1 ∈ [0, 1], then M(r, t) = m(r1, t) is the unique
solution of:

∂m

∂t
=

∂

∂r1

(
D(m)

∂m

∂r1

)
, (3.1)

m(0, t) = −m+, m(1, t) = m+,

m(r1, 0) = m0(r1)

with D(m) > 0 the bulk diffusion coefficient calculated from the Green –
Kubo formula (see eq. (2.6) in [25]).

2. Low temperature regime: β > βc. In this regime we expect phase-
coexistence with regions (interfaces) where the magnetization profile is not
slowly varying. We further assume, besides the vertical symmetryM0(r) =
m0(r1), that the starting measure is such that the initial macroscopic
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profile has only one interface. Then at later time t > 0 there is also a
unique interface and, calling Rt ∈ [0, 1] its position, we have that the
couple (m(r1, t), Rt) is the unique solution of the free boundary problem:

∂m

∂t
=

∂

∂r1

(
D(m)

∂m

∂r1

)
, r1 ∈ [0, Rt) ∪ (Rt, 1], (3.2)

m(0, t) = −m+, m(R−t , t) = −mβ ,

m(R+
t , t) = mβ , m(1, t) = m+,

2mβ
dRt
dt

= −D(mβ)
∂m

∂r1
(R+

t , t) +D(−mβ)
∂m

∂r1
(R−t , t),

m(r1, 0) = m0(r1).

The following comments are in order:

i) At infinite temperature β = 0, the process with generator (2.1) degener-
ates to the symmetric exclusion process, with a constant bulk diffusivity
so that (3.1) becomes the linear heat equation with Dirichlet boundary
conditions [12].

ii) In the low temperature region β > βc, Spohn and Yau [25] have proved
that bulk diffusivity satisfies

D(m) > 0 if |m| ≥ mβ , D(m) = 0 otherwise.

iii) To prove (3.1) or (3.2), one needs substantial improvements of the stan-
dard approaches that are currently available to derive the hydrodynamic
limit. Indeed the duality method [12] does not apply to the hierarchy of
correlation functions, whereas the entropy method [15,27] needs to be ex-
tended to cover systems with phase transitions and reservoirs. Along these
lines, [16] considers discrete lattice gas models in a finite interval with re-
versible stochastic dynamics at the boundaries, however the assumption
on the jumps rates of the bulk stochastic dynamics exclude the possi-
bility of phase transitions; [22] studies a system of interacting diffusions
(Ginzburg-Landau with a potential) with periodic boundary conditions,
including the possibility of a phase transition. However the inclusion of
reservoirs in the context of unbounded state space is not straightforward
since one does not have a full control of entropy production at the bound-
aries.

iv) Both in the high temperature regime and in the low temperature stable
regime with m+ > mβ , we expect Fick’s law to be satisfied in the station-
ary state. The stationary magnetization profile m : [0, 1]→ [−1, 1] should
have the shape depicted in Figure 3 (left and central panels).
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Figure 3. Stationary macroscopic magnetization profile m(r1) in the high tem-
perature region (left panel) and in the low temperature stable regime with
m+ > mβ (central panel). The profile in the right panel is unstable in the
low temperature region with m+ < mβ and thus will never be reached by the
dynamics.

In the high temperature region (left panel) the stationary magnetization
profile continuously interpolate from −m+ and m+, whereas in the low
temperature stable regime with m+ > mβ (central panel) it has a jump
(of size 2mβ) at r1 = 1/2, which is the stationary location of the interface.
The current J = −D(m) dmdr1 is negative: the magnetization is transported
from the right boundary with higher magnetization to the left boundary
with lower magnetization.

A naive guess for the stationary solution in the low temperature regime
with m+ < mβ would be the one depicted on the right panel of Fig. 3.
However, a simple reasoning on the stability of this profile with respect to
small displacement of the interface, immediately entails that such profile
is unstable and thus will never be reached by the dynamics. We shall see
in Section 4.2 the actual shape of the magnetization profile in this regime,
and explain it on the base of finite size effects in Section 5.

4. Main results of numerical simulations

By means of Monte Carlo simulations, we first verify the hydrodynamic
picture in the low temperature stable region with m+ > mβ and then we inves-
tigate the behavior of the system in the low temperature unstable region with
m+ < mβ , for which it is hard to formulate a conjecture. For the sake of space
we do not show results in the high-temperature region.

As in [9], we focus on the current and the magnetization profile in the sta-
tionary state. In the numerical simulations these quantities can be estimated by
means of temporal averages. We thus simulated the Markov process with gen-
erator (2.1) generating long trajectories. We have fixed the inverse temperature
β = 1 and varied the system size L (up to L = 40) and the boundary mag-
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netizations m+ (around the spontaneous magnetization m|β=1
= 0.9992757).

We always used m− = −m+ and periodic boundary conditions in the vertical
direction and “L/4 boundary conditions” in the horizontal direction. We tried
several different initial conditions, for instance random, or instanton-like (i.e.,
σ(x,y) = −1 for x ∈ [1, L/2] and σ(x,y) = 1 for x ∈ (L/2, L]), checking that the
results do not depend on the choice of the starting spin configuration.

4.1. Current

The current in the stationary state can be estimated with the following
temporal average:

J = lim
T→∞

Jx,y(T )

T
∀ (x, y) ∈ Λ,

where Jx,y(T ) is the current up to time T between (x, y) and (x + 1, y), i.e.
the number of positive spins that, in the time interval [0, T ], have crossed an
horizontal bond from left to right minus the number of positive spins that have
crossed the bond in the opposite direction. We checked that, as it should be,
the current is the same – within numerical accuracy – on each horizontal bond.

The result for the stationary current is illustrated in Fig. 4.
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Figure 4. Current vs. reservoir magnetization for system size L = 40. Each
data point is the current J measured in the non-equilibrium stationary state
with a given value m+ on the right reservoir R+ and m− = −m+ on the left
reservoir R−. The inset shows the integrated current up to time T = 3 × 108

steps for m+ = 0.9995 (negative slope) and for m+ = 0.99910 (positive slope).

There it is plotted the current J as a function of the right reservoir mag-
netization m+, which varies in the interval [0.9975, 1] in steps of 10−4. Such a
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narrow interval is due to the value of the spontaneous magnetization at β = 1
(mβ=1 ≈ 0.99927) and finite size corrections that are of order L−2/5 [14]. The
current has to be measured over a sufficiently long time span to get rid of fluc-
tuations and to ensure the convergence to the stationary regime. This can be
tested by monitoring the running average of the current and looking at the scale
of its fluctuations. As a result, we have verified that 1012 spin exchanges are
needed to guarantee relative fluctuations of 1% in the worst cases. In Fig. 4
errors bars are smaller than the size of the points.

From Fig. 4 we see the existence of a critical value mcrit ≈ 0.99931 such
that:

• if m+ > mcrit then the current is negative,

• if m+ < mcrit the current is positive.

To let better appreciate the change of sign we plot in the inset the integrated
current up to time T = 3 × 108 steps. We see that for m+ = 0.99950 there is
a straight line with a negative slope, whereas for m+ = 0.99910 we measure a
positive slope.

Thus, numerical simulations verify the hydrodynamic prediction of a nega-
tive current in the low temperature stable regime with m+ > mβ . Surprisingly,
they yield instead a positive uphill current in the low temperature unstable
regime with m+ < mβ : magnetization flows from the left to the right reservoir.
Some theoretical evidence of this intriguing physical phenomenon was recently
reported in [6–8, 13] for 1D particle systems with Kac potentials (where phase
transitions are obtained in a mean-field limit).

We also remark that the critical value mcrit is very close to the spontaneous
magnetization (the difference being on the forth decimal digit). The dependence
of mcrit(L) from the linear system size L has been investigated in [9]. There
it has been found (using the argument that the zero of the current can be as-
sociated to the equilibrium setting) that mcrit(L) approaches mβ exponentially
fast.

4.2. Magnetization profile

The magnetization profile in the stationary state can be estimated with the
following temporal average:

mx = lim
T→∞

1

T

∫ T

0

(
1

L

L∑
y=1

σ(x,y)(t)

)
dt x = 1, . . . , L

We run a simulation with kinetic Monte Carlo method doing 1010 spin ex-
changes and plot in Fig. 5 the time averaged magnetization profiles for three
values of the boundary magnetizations.
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Figure 5. Time-averaged magnetization profiles for three values of the reser-
voir magnetization: m+ = −m− = 0.9995 stable phase (left column);
m+ = −m− = 0.9990 meta-stable phase (central column); m+ = −m− = 0.9980
unstable phase (right column). Bottom panels provide a zoom on the y-axis.
The continuous and dashed lines represent mβ and m+ respectively.

On the left column, we see that in the low temperature stable regime with
m+ > mβ the profile is the finite-volume approximation of the one predicted
by hydrodynamics, i.e. an instanton-like profile with a sharp interface at the
center. On the central and right columns we show the results for m+ < mβ . We
see two types of profile: for m+ slightly less than mβ we have a profile with a
bump on the left boundary; for lower m+ we have a profile with a double bump.
In both cases the magnetization at the bump is such that |mbump| > mβ .

Although surprising at first sight, the profiles that are observed for m+ < mβ

are consistent with the current measured in previous subsection. Indeed the
zoom in the bottom panels of Fig. 5 shows that the gradient of the magnetization
profile (possibly excluding few isolated points that have zero measure in the
hydrodynamic limit) has always the opposite sign of the current, in agreement
with Fick’s law J = −D(m) dmdr1 .

5. Finite-size effects

In this section we further discuss the results of the numerical simulations
described above. We shall specifically address the occurrence of the profile with
one bump. The aim is to provide quantitative estimates of the scaling towards
the infinite-volume.
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Figure 6. Schematic picture of the free energy as a function of the magnetization
m, in the infinite volume (f(m) left) and at finite volume (fL(m) right).

We claim that the central panel (with one bump) in Fig. 5 is a finite-size
effect and it is due to the finite-volume “metastability” of the Ising model in
two-dimensions. The key argument [4], from the equilibrium theory of the Ising
model in Zd, is that for finite volumes stable regions are larger: phase separation
occurs at a magnetization value m = m∗(L) < mβ .

The heuristic behind this argument is recalled in Fig 6 and is explained
below.

One assumes that the infinite volume free energy f(m) is a convex sym-
metric function of the magnetization m, with f(m) = 0 for m ∈ [−mβ ,mβ ]
(left panel Fig 6); one also assumes that the finite volume free energy fL(β) =
L−2 logZL(β) has two local minima at ±mβ with fL(±mβ) = 0 (right panel
Fig 6). Under this assumptions one compares the free-energy cost of an ho-
mogeneous profile to that of a spherical droplet of radius R. This yields the
equation

1

2
f ′′L(mβ)δ2Ld = τdR

d−1 (5.1)

with τd the surface tension. Indeed the free energy of a homogeneous profile with
magnetization m = mβ−δ for small δ > 0 is 1

2f
′′
L(mβ)δ2Ld, while the free energy

of a spherical droplet with magnetization −mβ in a sea of magnetization +mβ

is τdR
d−1. Furthermore, imposing the constraint of a specific magnetization

mβ − δ, one has

(mβ − δ)Ld = −mβγdR
d + (Ld − γdRd)mβ , (5.2)

where in the l.h.s. we wrote the total magnetization of a homogeneous profile
with magnetization mβ − δ, and in the r.h.s. we wrote the total magnetization
of a spherical droplet of radius R with magnetization −mβ in a sea of magne-
tization +mβ . In the above equation γdR

d with γd = πd/2/Γ(d/2 + 1) is the
volume of the d−dimensional sphere. Working out the algebra of (5.1) and (5.2)
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Figure 7. Stationary magnetization profiles for a sequence of increasing volumes
of linear size L = 10, 15, 20, 40 with boundary magnetization m+ = 0.9990.

one finds
δ = cdL

−d/(d+1), R = c′dL
d/(d+1)

for some constants cd, c
′
d > 0. Thus, in a finite volume, the homogeneous

profile corresponds to a lower free energy for magnetization m > m∗(L) =
mβ − cdL−d/(d+1), and the critical droplet at m = m∗(L) has radius c′dL

d/(d+1).

The previous argument can be turned into a rigorous theory by studying the
canonical Gibbs measure conditioned to a magnetizationm on the d-dimensional
torus (see [4]). In d = 2 it implies that

• If m ∈ (mβ − cL−2/3,mβ), with c > 0 small enough, then the canonical
Gibbs measure with magnetization m is supported by configurations with
“small” contours (of size ≤ logL).

• If m = mβ − cL−2/3 there is a droplet of size L2/3.

We now verify indirectly that the profile with one bump is due to the finite-
volume metastability. This is shown in Fig 7.

We fix the boundary magnetization to the value m+ = 0.9990 (< m|β=1
=

0.99927) and vary the system size. Fig 7 shows the stationary magnetization
profiles for a sequence of increasing volumes of linear size L = 10, 15, 20, 40. We
see that for L = 10 and L = 15 we observe the stationary profile with one bump,
either at the left boundary or at the right boundary (by symmetry they have
the same probability of being observed). For the larger volumes with L = 20
and L = 40 instead we observe the profile with a double bump.

Fig. 7 is explained by the finite-volume metastability: the value m+ = 0.9990
is included in the metastable region (mβ − cL−2/3,mβ) for L = 10, 15, whereas
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it is unstable for L = 20, 40. This sustains the claim that the profile with a
bump is a finite-size effect and it is due to the finite-volume “metastability” of
the Ising model in two-dimensions.

6. Perspectives

The results of the numerical simulations suggest to complete the hydrody-
namic picture in the low temperature regime as follows. In the unstable region
β > βc and m+ < mβ one has:

• the current J > 0 (uphill diffusion);

• the stationary magnetization profile has three discontinuities: two at the
boundaries (bumps) and one in the middle;

• Fick’s law is safisfied, except isolated points {0, 1/2, 1}.

These properties are expected to hold for boundary magnetization value m+

that are not too low when compared to the spontaneous magnetization mβ . For
boundary magnetization m+ substantially smaller than mβ other instabilities
develop and one needs a more refined analysis, see [10].

We provided a quantitative argument suggesting that the magnetization pro-
file with one bump are due to finite-size metastability. Thus, for m+ = mβ , one
can expect the following behavior as the system size is varied (see Figure 8):

• if one approaches the infinite volume limit by staying in the unstable
region, i.e. m+(L) ↗ mβ with m+(L) < mβ − cL−2/3, then one has a
profile with a double bump;

• if one approaches the infinite volume limit by staying inside the metastable
region, i.e. m+(L) ↗ mβ with m+(L) > mβ − cL−2/3, then one has a
profile with one bump;

• if one approaches the infinite volume limit from above, i.e. m+(L)↘ mβ

then one has the profile with one discontinuity at the middle.

It would be interesting to see if the phenomenology that has been found in
the numerical simulations can be observed in real experiments. Indeed uphill
diffusion is a well-known phenomenon in multi-component systems, very much
studied in engineering chemistry as a way to “purify” systems, see [19–21]. The
novelty predicted by our analysis is that, in the presence of a phase transition
and for boundary densities inside the spinodal region, the separation of species
could spontaneously occur. It is not clear however how to construct reservoirs
that keep the boundary magnetization in the region m+ < mβ .
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Figure 8. Stationary magnetization profile in the low temperature region for
m+ = mβ . We distinguish: m+(L) ↗ mβ with m+(L) < mβ − cL−2/3 (left
panel); m+(L)↗ mβ with m+(L) > mβ−cL−2/3 (central panel); m+(L)↘ mβ

(right panel).
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