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Abstract. We investigate the problem that involves sequencing jobs
having multiple components. Each component of the job needs to be
processed independently on specified machine. We derive approximate
algorithms for the problem of scheduling such vector jobs to minimize
their total completion time in the deterministic as well as stochastic
setting. In particular, we propose an LP based and a greedy strategy. The
LP based approach is an extension of (Sivasubramanian, 2003) to adapt
Potts’ formulation (Potts, 1980; Hall et al., 1996) for single component
job scheduling. We propose bounds on the performance ratio of the two
approaches for deterministic and stochastic formulation of the problem.

1 Problem Description

The ideas for the approaches discussed in this paper arose during the inves-
tigation of a practical problem faced by a composite-bearings manufacturer.
Manufacturing a composite bearing initially requires the individual components
to be built. Such components include ball bearings, needle bearings and shaft
bearings. The components are typically processed independently on different
machines and then assembled together. Each machine requires to be configured
uniquely to make a given component. The machines may be regarded as suppli-
ers supplying basic commodities. The bearings-assembly process can similarly be
regarded as a manufacturer which “manufactures” end-products using the sup-
plied basic commodities. Such models of interaction have been studied recently
in (Chen and Hall, 2005; Potts et al., 1995). The results of (Chen and Hall, 2005)
throw light on the lower bound on the performance guarantees, whereas in this
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paper we study upper bounds on the worst case performance ratios. Potts’ ar-
ticle (Potts et al., 1995) investigate different objective criteria, e.g. minimizing
the makespan.

Each job corresponding to the manufacturing of a composite-bearing can be
looked upon as a vector. The completion time of a job is defined as the max-
imum time taken to complete its components. The problem is to schedule the
vectors of jobs such that the sum of the completion times of all the jobs is
minimised. We consider deterministic and stochastic formulation of the vector
job scheduling problem. In the stochastic formulation we assume that the com-
pletion time of the tasks on the machines are random variables. The results of
(Sivasubramanian, 2003; Hall, 1998) have already established the NP-hardness
of this problem. Therefore, it is justified to study the approximation algorithms
and general heuristic approaches to solve this problem. We discuss approximate
solutions using a greedy and an LP based method for the deterministic and
stochastic formulation of vector job scheduling problem.

1.1 Problem definition

INDICES
n = number of jobs,
m = number of machines,
i,j= indices over the number of jobs,
k= index over the number of machines,
DATA
pk

i = processing time taken to complete the kth component of ith job, pk
i ≥ 0.

Ji = the ith job, defined as (p1
i , p

2
i , . . . , p

m
i ),

J = set of jobs = {J1, J2, . . . Jn}
VARIABLES
Π = schedule for the vector jobs (described by a permutation of {1, 2, . . . n}),
Πi = the ith job of the schedule given by the permutation Π,
CΠi = time taken to complete the ith job in the schedule Π,
C = time taken to complete all the jobs.
OBJECTIVE
Minimise C.
CONSTRAINTS
kth machine can process only kth component of each job.

The value CΠi is equal to the sum of the completion time for all the jobs
preceeding and including over ith job,

CΠi =
m

max
k=1

{
i∑

j=1

pk
Πj
}. (1)

We wish to determine an optimal schedule, Π∗, which minimizes the total com-
pletion time,

C =
n∑

i=1

CΠi . (2)



1.2 Terms

We define the following terminologies:
performance ratio of an algorithm = ratio of the cost of the schedule obtained
using the algorithm to the cost of the optimal schedule.
k-approximate algorithm is an algorithm whose performance ratio is at most k,
An aligned schedule is one in which the ordering of jobs in the schedule is the
same on each machine. The following can be easily verified.

Claim. There exists an aligned schedule that minimises the sum of completion
times of all jobs.

Therefore our focus would be on aligned schedules.

2 Approximate solutions to the deterministic problem

In the deterministic version of the problem, the processing time of any job com-
ponent is a fixed value, known before computing the schedule.

2.1 Linear programming based analysis

In (Sivasubramanian, 2003) an Integer Linear Programming (ILP) formulation of
Potts ((Potts, 1980))) was extended to derive a 2-factor approximation algorithm
for vector job scheduling.

Potts’ formulation first appeared in (Potts, 1980) for the problem of single
machine job scheduling with precedence constraints to minimize total comple-
tion time. The ILP formulation was used derive a lower bound on the value of an
optimal solution, to be used in a branch and bound algorithm. The authors in
the paper (Hall et al., 1996) used Potts’ formulation to derive a 2-factor approx-
imate algorithm for single component job scheduling. The advantage of Potts’
formulation is that the number of variables as well as inequalities is bounded by
a polynomial in the input size. Moreover, as we later show, the special structure
of the coefficient matrix of the LP can be used to speed up the algorithm to solve
the LP using a sparse matrix implementation of the revised simplex algorithm
or column generation.

Formulation VARIABLES
δij = a binary variable denoting the order between the ith and the jth job,

δij =
{

1 if job i is scheduled before job j
0 otherwise.

Ci = completion time for the ith job. The complete ILP formulation can be
written as:



Minimize
n∑

i=1

Ci

Subject to
δij + δji = 1 ∀ {i, j = 1, . . . , n; i < j} (3a)

Ci ≥ pk
i +

∑

j 6=i

pk
j δji ∀ {i = 1, . . . , n; k = 1, . . . , m; pk

i > 0} (3b)

δij ∈ {0, 1} (3c)

The original formulation by Potts also had the inequalities

δij + δjk + δki ≤ 2 ∀ {i, j, k = 1, . . . , n; i < j < k or k < j < i} (4)

for ensuring that the ordering of jobs does not result in any cycles. However, for
a performance guarantee of factor 2, the algorithm of (Sivasubramanian, 2003)
does not require these constraints to be included in the formulation. The above
problem contains n(n−1)

2 constraints of type 3a and nm constraints of type 3b.
Define a variable δi. =

∑n
j=1 δij . This variable denotes the number of jobs

following the ith job. The schedule Π can be constructed using the equation 5,

Πi = k where δk. = n− i ∀i. (5)

Integrality for single machine case Consider an LP relaxation of the prob-
lem 3 in which we replace the constraint 3c with

0 ≤ δij ≤ 1.

Claim. An optimal solution to the LP relaxation of problem 3 for the single
machine case, is integral if pi 6= pj for all i and j.

Proof. Replace δji by 1−δij for all j > i. For the single machine case, inequalities
(3b) are satisfied exactly and hence the completion time of job i is:

Ci = pi +
∑

j<i

pjδji +
∑

j>i

pj(1− δij) =
∑

j≥i

pj +
∑

j<i

(pj − pi)δji (6)

Thus the objective function to be minimized is
∑n

i=1

∑
j<i(pj − pi)δji plus a

constant term. It is clear that the minimum value of this function is achieved
when δji = 0 for pj > pi and 1 for pj < pi. Thus, for the single machine case,
there always exist an optimal integral solution to the LP relaxation of Potts’
formulation and in particular, a unique optimal solution that is integral, when
all processing times are distinct.

Note that the above claim in section 2.1 is just a different way of deriving the
well known Smith’s rule for single processor scheduling.



Number of non-zero entries Consider a basic feasible solution of (3). The
rank of the coefficient matrix is at most the number of inequalities (n(n−1)/2+
nm). From a well known result of linear programming, the maximum number of
non-zero variables in any basic feasible solution (bfs) of an LP is the rank of the
coefficient matrix. Thus, the maximum number of non-zero variables in a bfs of
(3) is n(n−1)/2+nm. It follows that a maximum of n(n−1)/2+n(m−1) of the
δij ’s are non-zero. Equivalently, a maximum of n(m − 1) equations in (3a) can
have fractional δij values. It may be possible to use this observation to devise
efficient strategies to round-off the fractional optimal solution to get an integral
solution. However, we have not investigated this idea in full detail.

Speeding-up the algorithm In this section we show how the special structure
of the coefficient matrix can be used to speed up the algorithm to obtain an
optimal solution to the LP relaxation of Potts’ formulation. We first eliminate
constraints (3a) in the LP by replacing every δij for i > j by 1− δji. Note that
now we need to add the constraints δij ≤ 1 for all i < j to ensure that 1− δij is
positive. However, constraints corresponding to upper (or lower) bounds on the
variables can be handled more efficiently by the simplex algorithm than those
of the type (3a). Thus we have effectively reduced the number of variables to
n(n− 1)/2 + n and more importantly, the number of inequalities to nm (linear
in number of jobs). The modified LP can be rewritten after suitably rearranging
the terms as:

min

n∑

i=1

Ci (7a)

such that :

Ci +
∑

i<j

δijp
k
j −

∑

j<i

pk
i δji ≥

n∑

j=i

pk
j ∀ i = 1, . . . , n; k = 1, . . . ,m

(7b)

− δij ≥− 1 ∀ i < j; i, j ∈ {1, . . . , n} (7c)
δij ≥ 0 ∀ i < j; i, j ∈ {1, . . . , n}

(7d)

The coefficient matrix of the LP comprising of (7a-7b) is an (nm)× (n(n +
1)/2 + nm) matrix, in which the column for variable δij contains −pk

i in the
((k− 1)n+ i)th row, pk

j in the ((k− 1)n+ j)th row and 0 elsewhere. The column
for variable Ci contains a 1 in rows ((k− 1)n+ i) and 0 elsewhere while columns
corresponding to slack variables have a single non-zero entry 1.

It can be shown that the number of operations needed to compute the reduced
cost coefficient of any column is at most 2m, if carried out separately (without
applying direct matrix multiplication). Hence, computing the vector of reduced
cost coefficients separately requires O(mn2) operations per iteration in the sparse
matrix implementation of the revised simplex algorithm. (as opposed to O(mn3)
operations in a normal implementation). The same speed-up of factor n can



be achieved by introducing a separate subroutine of column generation in the
normal implementation of the simplex algorithm.

2.2 Greedy heuristic based analysis

We discuss a greedy strategy for the deterministic version of our problem, which
is based on intuitive extensions of the shortest job first rule for single component
job scheduling to minimize total completion time. This algorithm generalizes
those presented in (Sivasubramanian, 2003). We also derive bounds on its worst
case performance. In the following, the q-norm of a vector V = (v1, v2, . . . , vn),
denoted by ||V ||q, is the value (

∑n
i=1(vi)q)

1
q .

To find an aligned optimal schedule, we attempt to find an ordering of the
jobs, Π. Let’s suppose we already have computed the first i indices in Π (ie.
Π1, Π2, ..., Πi). Now to compute Πi+1, we consider the following function that
evaluates each choice for Πi+1.

For each l ∈ {1, 2, ..., n}−{Π1,Π2, ..., Πi}, we compute f(l,Π, i) that depends
upon the greedy choices already made, ie. Π1,Π2, ..., Πi and l ∈ {1, 2, ..., n} −
{Π1, Π2, ..., Πi}. We set Πi+1 to that l that minimizes the function f(l, Π, i)
over l ∈ {1, 2, ..., n} − {Π1,Π2, ..., Πi}.

Clearly, when we define

f(l, Π, i) =
∑

1≤k≤m

pk
l ,

we get the 1-norm based greedy ordering. Similarly, if we define

f(l, Π, i) = ||(
∑

1≤j≤i

JΠj ) + Jl||∞,

we get the max-norm based greedy ordering.
We analyze the performance of a class of greedy strategies based on various

norms, viz., q-norm (q = 1, 2, ...,∞). We call a permutation Π, a q-norm greedy
ordering if Πi+1 is chosen as l ∈ {1, 2, ..., n} − {Π1,Π2, ...,Πi} that minimizes

fq(l,Π, i) = ||
∑

1≤j≤i

JΠj + Jl||q.

Let l̂ denote the index l that minimizes the above. That is, Πi+1 = l̂.
Let l′ denote l ∈ {1, 2, ..., n} − {Π1,Π2, ..., Πi} that minimizes ||Jl||1.
Let

incrCosti+1(Π) = ||
∑

1≤j≤i+1

JΠj ||∞ − ||
∑

1≤j≤i

JΠj ||∞.

We shall show that
incrCosti+1(Π) ≤ ||Jl′ ||1.

Once we establish
incrCosti+1(Π) ≤ ||Jl′ ||1,



we obtain the following performance guarantee.

cost(Π) =
∑

1≤i≤n

∑

i≤j≤i

incrCostj(Π)

≤
∑

1≤i≤n

∑

1≤j≤i

||Jl′ ||1

≤ m ∗ cost(Πopt).

Suppose the contrary, that is,

incrCosti+1(Π) > ||Jl′ ||1.

We will now arrive at a contradiction that says, fq(l̂, Π, i) > fq(l′,Π, i). For
the sake of convenience, let X denote

∑
1≤j≤i JΠj

. By raising both sides to qth

power, the task reduces to establishing
∑

1≤k≤m

(Xk + pk
l̂
)q >

∑

1≤k≤m

(Xk + pk
l′)

q. (8)

Using the repeated application of the inequality

(u + β)q + (v + γ)q ≤ (u)q + (v + β + γ)q,

for q ≥ 1, u, v, β, γ ≥ 0 and u ≤ v, it is easy to see that,
∑

1≤k≤m

(Xk + pk
l′)

q ≤ (
∑

1≤k≤m,k 6=k

(Xk)q) + (Xk + ||Jl′ ||1)q, (9)

where k is k that maximizes Xk.
Also ∑

1≤k≤m

(Xk + pk
l̂
)q ≥ (

∑

1≤k≤m,k 6=k̄

(Xk)q) + (X k̄ + pk̄
l̂
)q, (10)

where k̄ is k that maximizes Xk + pk
l̂
.

To arrive at the required contradiction, it suffices to prove that

((X k̄ + pk̄
l̂
)q − (X k̄)q) > ((Xk + ||Jl′ ||1)q − (Xk)q). (11)

Note that, due to our assumption,

incrCosti+1(Π) > ||Jl′ ||1
that is,

||
∑

1≤j≤i+1

JΠi ||∞ − ||
∑

1≤j≤i

JΠi ||∞ = (X k̄ + pk̄
l̂
)−Xk > ||Jl′ ||1

we get,
(X k̄ + pk̄

l̂
) > (Xk + ||Jl′ ||1). (12)



This and
X k̄ < Xk,

together yield the following contradiction.

((X k̄ + pk̄
l̂
)q − (X k̄)q) > ((Xk + ||Jl′ ||1)q − (Xk)q). (13)

Indeed, the same performance guarantee holds even for the following “static”-
variant of q-norm based greedy orderings. We call a permutation Π, a q-norm
(static) greedy ordering if Πi+1 is chosen as l ∈ {1, 2, ..., n} − {Π1,Π2, ..., Πi}
that minimizes

f ′q(l, Π, i) = ||Jl||q.
Note that 1-norm based static greedy ordering is same as the 1-norm based
greedy ordering.

Theorem 1. For the problem of scheduling m-dimensional jobs to minimize
total completion time, the q-norm based greedy ordering strategy or its static
variant finds an aligned schedule whose cost is within m times the optimal.

The worst case examples we could construct had a performace ratio of factor
1.5 for m = 2 and

√
m for m > 2. Details of the example can be seen in (Patkar,

2004).

2.3 Combination-norm

Though the greedy strategies have a performance ratio between
√

m and m, the
examples on which the sum-norm and max-norm (dynamic or static) strategies
perform badly are of different nature. In fact, we have not been able to come
up with an example for which both the strategies give a schedule with cost
significantly more than the optimal. The manuscript (Patkar, 2004) describes
an example for which the sum-norm and max-norm strategies give identical but
not the optimal (though very close to optimal) schedules.

A strategy based on the previous greedy strategies is to order the jobs accord-
ing to a combination of their sum-norm and max-norm. Thus, jobs are scheduled
in order of their combination-norms α||Ji||1 + (1 − α)||Ji||∞, where 0 ≤ α ≤ 1
is a variable parameter. Details of the analysis of the strategy are described
in (Patkar, 2004). Though we have not been able to prove a guarantee better
than factor m on the performance ratio of the combination-norm strategy, ex-
periments conducted by B. Jothi (Jothi, 2005) show that this strategy performs
almost as good as an algorithm based on Potts’ LP formulation and two genetic
algorithms indicating that the combination norm strategy gives results very close
to optimal in practice.

Analyzing the combination norm strategy (and its extensions that include the
q-norms for arbitrary values of q) is an interesting problem. It is also interesting
to investigate if the strategy can actually be used to compute optimal schedules
for special cases of the problem. Though the Potts’ formulation can be used to
find a schedule with cost guaranteed to be less than twice the optimal, a greedy
strategy is much faster and hence, more practical than any LP based approach.



3 Approximate solutions to the stochastic problem

In the stochastic version of the problem, job completion times are random vari-
ables instead of fixed constants. Stochastic versions of various optimization prob-
lems including processor scheduling have been studied by many researchers in
the past. In particular, Mohring et al. extend Queyranne’s inequalities for de-
terministic job scheduling to the stochastic case in (Mohring et al., 1999). They
derive a 3 − (1/m) + max{1, ((m − 1)/m)∆} approximate algorithm for single
component stochastic job scheduling, where m is the number of identical paral-
lel machines and ∆ is an upper bound on the co-efficient of variation of the job
processing times.

In the general version of stochastic vector job scheduling, the processing times
of job components are independent random variables. There is no correlation be-
tween the processing time of various components of the same or different jobs.
We have not been able to extend the results of the deterministic case to the
general stochastic version of the vector job scheduling problem. The main diffi-
culty is that unlike for single component job scheduling, the linear programs for
vector job scheduling cannot be extended in any obvious way for the stochastic
case. This is because the expected completion time of a vector job is equal to
the expectation of the maximum of its completion time on all machines (and
not the maximum of the expectations of the completion times!). Expectations
of maximum of a set of random variables are difficult to analyze and in general,
cannot be expressed using linear inequalities. Moreover, even for special cases
of processing time distributions, the problem looks hard as we need to compute
not just the expectation of the maximum of a set of random variables, but the
expectation of the maximum of sums of random variables. Very little work on
computing the expectation of maximum of sums of random variables exactly or
approximately can be found in the literature and this is one possible direction
for further research.

3.1 LP-based Approximation in Stochastic Setting

In this section, we extend Potts’ LP formulation for the deterministic case to a
formulation for a special case of stochastic vector job scheduling. In this setting,
there are different possible scenarios, each of which can occur with a specified
probability. The processing time of all job components in each scenario is known.
For the sake of simplicity of discussion, we conside the special case of 2 machines
and 2 scenarios. Let p and q denote the probabilities of the 2 scenarios. Let a1

i

and a2
i denote the processing time requirements for ith job on the first machine

in the first and second scenario respectively. Similarly, let b1
i and b2

i denote the
processing time requirements for ith job on the second machine in the first and
second scenario respectively. We use C1

i and C2
i , respectively, to denote the

completion times of the ith job in the first and second scenarios. Let ai and bi

denote the expected processing time of ith job on the two machines. Consider
the following stochastic integer program that models our problem of minimizing



the expected total completion time.

min
∑n

i=1(pC1
i + qC2

i )
C1

i ≥ a1
i +

∑
j 6=i xjia

1
j ∀ i = 1, 2, . . . , n

C1
i ≥ b1

i +
∑

j 6=i xjib
1
j ∀ i = 1, 2, . . . , n

C2
i ≥ a2

i +
∑

j 6=i xjia
2
j ∀ i = 1, 2, . . . , n

C2
i ≥ b2

i +
∑

j 6=i xjib
2
j ∀ i = 1, 2, . . . , n

xij + xji = 1 ∀ i, j = 1, 2, . . . , n and i 6= j
xij + xjk + xki = 2 ∀ i, j, k = 1, 2, . . . , n and i 6= j 6= k

xij = 0 or 1 ∀ i 6= j

(14)

By aggregating corresponding inequalities using scale factors p and q, we get
the following relaxation of the above.

min
∑n

i=1(pC1
i + qC2

i )
pC1

i + qC2
i ≥ ai +

∑
j 6=i xjiaj ∀ i = 1, 2, . . . , n

pC1
i + qC2

i ≥ bi +
∑

j 6=i xjibj ∀ i = 1, 2, . . . , n

xij + xji = 1 ∀ i, j = 1, 2, . . . , n and i 6= j
xij + xjk + xki = 2 ∀ i, j, k = 1, 2, . . . , n and i 6= j 6= k

xij = 0 or 1 ∀ i 6= j

(15)

By introducing the variables Ci for pC1
i + qC2

i for i = 1, 2, . . . , n, we get the
following relaxation of our original stochastic integer program.

min
∑n

i=1 Ci

Ci ≥ ai +
∑

j 6=i xjiaj ∀ i = 1, 2, . . . , n

Ci ≥ bi +
∑

j 6=i xjibj ∀ i = 1, 2, . . . , n

xij + xji = 1 ∀ i, j = 1, 2, . . . , n and i 6= j

xij = 0 or 1 ∀ i 6= j

(16)

Now by solving the LP relaxation of the above and using it to sequence
the jobs, we would obtain a 4-factor approximation algorithm for our stochastic
scheduling problem as follows.

Let x∗ij , Ci
∗

for i, j = 1, 2, . . . , n and i 6= j denote an optimal solution to the
LP relaxation of the problem 16. Without loss of generality, we assume that the
jobs are numbered such that

C1
∗ ≤ C2

∗
. . . ≤ Cn

∗
. (17)

Therefore the completion time of ith job in the above ordering, denoted by Ĉi,
would be the random variable given by max

{∑i
j=1 aj ,

∑i
j=1 bj

}
.

We need to show that, the total expected completion time under the above
ordering induced by an optimal solution of the LP relaxation of the problem 16
is within a constant factor of the optimal solution to the expected completion



time problem. The total expected completion time under the above ordering is

n∑

i=1

E[max





i∑

j=1

aj ,

i∑

j=1

bj



]. (18)

Note that, for any two random variables, say X and Y , the following holds

E[max{X, Y }] ≤ E[X + Y ] = E[X] + E[Y ] ≤ 2×max(E[X], E[Y ]). (19)

Therefore,

n∑

i=1

E[max





i∑

j=1

aj ,

i∑

j=1

bj



] ≤

n∑

i=1

2×max





i∑

j=1

aj ,

i∑

j=1

bj



 . (20)

Next, we will show that

n∑

i=1

max





i∑

j=1

aj ,

i∑

j=1

bj



 ≤ 2× opt(LP relaxation of problem 16). (21)

That is,
n∑

i=1

max





i∑

j=1

aj ,

i∑

j=1

bj



 ≤ 2×

n∑

i=1

Ci
∗
. (22)

Therefore, it suffices to prove that

max





i∑

j=1

aj ,

i∑

j=1

bj



 ≤ 2× Ci

∗
. (23)

Fix an i. W.l.o.g. assume that
∑i

j=1 aj ≥
∑i

j=1 bj .

(
i∑

j=1

aj)]× Ci
∗ ≥

i∑

j=1

(aj × Cj
∗
)

≥
i∑

j=1

aj
2 +

∑

l 6=j,l,j=1,2,...,n

((x∗lj + x∗jl)alaj)

≥ 1
2

i∑

j=1

aj
2 +

1
2
(

i∑

j=1

aj)2

≥ 1
2
(

i∑

j=1

aj)2.

Therefore

max





i∑

j=1

aj ,

i∑

j=1

bj



 ≤ 2× Ci

∗
. (24)



Noting that the LP relaxation of the problem 16 is a relaxation of the problem
14, we get

n∑

i=1

E[max





i∑

j=1

aj ,

i∑

j=1

bj



] ≤ 4× opt(problem 14). (25)

Note that the above factor is influenced by the ratio of expectation of max-
imum of random variables to the maximum of their expectations. In the above
case it was pessimistically taken as 2. It may be lower in practice.

The above analysis can be extended to the general case, giving a performace
guarantee of 2×Γ for the case of m machines, where Γ (in the asymptotic sense)
equals the ratio of expectation of max of m normal random variables to that of
maximum of their expectations.

3.2 Greedy heuristic based analysis

Now we consider the problem of computing an optimum schedule among the
aligned schedules. Let’s consider the 2-machine problem only.

Let the job Jl be described by the 2-dimensional vector of its components,
ie. (al, bl).

Let ||Jl||q denote the q-norm of the vector Jl. Let ||Jl||∞ denote the max-
norm of the vector Jl.

Our task is to find a permutation Π of {1,2,...,n} such that

exp cost(Π) = E[
n∑

i=1

max





i∑

j=1

aΠj ,

i∑

j=1

bΠj



]

is minimum.
Let Copt denote the cost of such an optimum schedule, say Πopt (i.e., Copt =

exp cost(Πopt) )
Let Π∗ denote the permutation of jobs that orders jobs in the increasing

order of the expected value of their 1-norms. Clearly,

Copt = exp cost(Πopt) ≥
n∑

i=1

1
2
(

i∑

j=1

(aΠopt
j

+ bΠopt
j

)) ≥
n∑

i=1

1
2
(

i∑

j=1

(aΠ∗
j

+ bΠ∗
j
)).

(26)
Now let Π ′ be a permutation such that for each i=1,2,....,n

E[
n∑

i=1

max





i+1∑

j=1

aΠ
′
j
,

i+1∑

j=1

bΠ
′
j



] = min

l=i+1,....,n
{E[

n∑

i=1

max





i∑

j=1

aΠ
′
j
+ aΠ

′
l
,

i∑

j=1

bΠ
′
j
+ bΠ

′
l



]}

In other words, Π
′

is max-norm based greedy (aligned) schedule. (That is, at
every step we choose the next job as the one that along with the previously
chosen ones has smallest completion time).



We shall prove that

cost(Π
′
) ≤ 2× Copt,

that is,

cost(Π
′
) ≤ 2× cost(Πopt).

We will now show that

cost(Π
′
) ≤

n∑

i=1

i∑

j=1

(aΠ∗
j

+ bΠ∗
j
)

It suffices to show that

E[max





i∑

j=1

aΠ
′
j
,

i∑

j=1

bΠ
′
j



] ≤

i∑

j=1

(aΠ∗
j

+ bΠ∗
j
).

We shall prove this by induction on i. For i=1, it can be easily verified.

Now suppose

E[max





i∑

j=1

aΠ
′
j
,

i∑

j=1

bΠ
′
j



] ≤

i∑

j=1

(aΠ∗
j

+ bΠ∗
j
)

holds for i=1,2,...,p.

It remains to show that

E[max





p+1∑

j=1

aΠ
′
j
,

p+1∑

j=1

bΠ
′
j



] ≤

p∑

j=1

(aΠ∗
j

+ bΠ∗
j
).



LHS = min
l=p+1,....,n

{E[max





p∑

j=1

aΠ
′
j
+ aΠ

′
l
,

p∑

j=1

bΠ
′
j
+ bΠ

′
l



]}

≤ min
l=p+1,....,n

{E[max





p∑

j=1

aΠ
′
j
,

p∑

j=1

bΠ
′
j



] + E[max

{
aΠ

′
l
, bΠ

′
l

}
]}

≤ E[max





p∑

j=1

aΠ
′
j
,

p∑

j=1

bΠ
′
j



] + min

l=p+1,....,n
{E[max

{
aΠ

′
l
, bΠ

′
l

}
]}

≤ E[max





p∑

j=1

aΠ
′
j
,

p∑

j=1

bΠ
′
j



] + min

l=p+1,....,n
E[aΠ

′
l
+ bΠ

′
l
]

≤ E[max





p∑

j=1

aΠ
′
j
,

p∑

j=1

bΠ
′
j



] + min

l=p+1,....,n
(aΠ

′
l
+ bΠ

′
l
)

≤ E[max





p∑

j=1

aΠ
′
j
,

p∑

j=1

bΠ
′
j



] + (aΠ∗

p+1
+ bΠ∗

p+1
)

≤
p∑

j=1

(aΠ∗
j

+ bΠ∗
j
) + (aΠ∗

p+1
+ bΠ∗

p+1
)

≤
p+1∑

j=1

(aΠ∗
j

+ bΠ∗
j
)

Thus we have established

cost(Π
′
) ≤

n∑

i=1

i∑

j=1

(aΠ∗
j

+ bΠ∗
j
).

This along with the inequality 26 gives,

cost(Π
′
) ≤ 2× Copt.

4 Summary

The approaches for the vector job scheduling problem can be classified into two
types: greedy and LP based. Potts’ formulation is one such LP based approach,
which is an extension of a previous approach for single component job scheduling.
Potts’ formulation is a practical approach with a performance guarantee of factor
2. Morever, the LP involves a polynomial number of variables and inequalities
and the special structure of its coefficient matrix can be used to speed up the
algorithm to solve it.



The greedy approaches, which are much faster any LP based approach, have a
performance guarantee of factor m, the number of machines. However, the bound
may not be tight and the examples on which the greedy strategies perform badly
are sensitive to the input data. The combination-norm strategy gives solutions
as good as the approach based on Potts’ LP formulation or genetic algorithms
in practice. Further work on analyzing the performance of the greedy strategies,
especially the combination-norm strategy is of theoretical as well as practical
interest.

It is difficult to extend the LP based approaches to the general version of
stochastic vector job scheduling. However, Potts’ LP approach can be extended
to handle a special case of stochastic vector job scheduling to give a performance
guarantee of 2m, twice the number of machines. The greedy strategies on the
other hand can be used to solve the general version of stochastic vector job
scheduling with the same performance guarantee of m, the number of the ma-
chines, as for the deterministic case . Analyzing the applicability of the LP based
and other strategies to other special cases of stochastic vector job scheduling is
a possible area of future work in this area.
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