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Abstract
We propose a methodological framework to extract spatial features in hyperspectral imaging 

data and establish a link between these features and the spectral regions, capturing the observed 

structural patterns. The proposed approach consists of five main steps: i) two dimensional 

Stationary Wavelet Transform (2D-SWT) is applied to a hyperspectral data cube, decomposing 

each single-channel image with a selected wavelet filter up to the maximum decomposition 

level; ii) a grey-level co-occurrence matrix is calculated for every 2D-SWT image resulting 

from stage i); iii) distinctive spatial features are determined by computing morphological 

descriptors from each grey-level co-occurrence matrix; iv) the morphological descriptors are 

rearranged in a two dimensional data array; v) this data matrix is subjected to Principal 

Component Analysis (PCA) for exploring the variability of the aforementioned descriptors 

across spectral channels. As a result, groups of spectral wavelengths associated to specific 

spatial features can be pointed out yielding a better understanding and interpretation of the data. 

In principle, this information can also be further exploited, e.g. to improve the separation of 

pure spectral profiles in a multivariate curve resolution context. 

Keywords: hyperspectral images; spatial features; wavelet transform; grey-level co-

occurrence matrix; multivariate image analysis.
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1. Introduction

Hyperspectral imaging (HSI) has numerous possible applications that, depending on the 

instrumentation and the spectral domain covered, can range from environmental surveillance 

to cellular monitoring [1-4]. HSI data consist of three-dimensional arrays with two spatial 

dimensions and one spectral dimension, providing an image for each scanned spectral channel. 

When HSI is concerned, one is usually interested in retrieving both the pure spectra of the 

individual components constituting the image and their respective spatial distribution. 

In chemistry, one of the most used approaches for achieving this aim is Multivariate Curve 

Resolution – Alternating Least Squares (MCR–ALS). With MCR–ALS, a hyperspectral image 

is first unfolded pixel-wise, and afterwards a bilinear model is fitted to the unfolded data using 

an ALS approach under appropriate constraints. This permits to unravel the distribution maps 

and the pure spectral signatures of the physico-chemically meaningful constituents of the image 

[5]. However, unfolding the data results in losing the information on the local spatial features 

within the dataset. A solution to this issue can be the implementation of spatial constraints as 

described in [6]. Nonetheless, if different constituents exhibit distinct spatial features (i.e., 

textural patterns), and/or two (or more) of these different constituents show a significant 

overlap along both the spectral and the spatial domain, this approach may not be actionable. 

Multivariate Image Analysis (MIA) is a very useful alternative to investigate spatial features 

in greyscale, RGB and, to a lesser extent, hyperspectral images [7-9]. The basic principle of 

MIA is to analyze the unfolded data by means of multivariate tools like Principal Component 

Analysis (PCA) or Partial Least Squares regression (PLS). Spatial features are captured 

considering the relationships between each pixel and its neighbors in the unfolding step (see 

references [7, 8] for details). MIA has also been coupled to Wavelet Transform (WT) 

multiresolution analysis [10] and this combination has been proven effective in resolving 

spatial features in multispectral [11] and Raman hyperspectral images [12]. In addition, other 
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strategies, like co-clustering [13] and grey-level co-occurrence matrices (GLCM) [14], have 

recently been applied to examine texture in HSI datasets. Textural features in HSI have also 

been explored by using three-dimensional discrete WT [15] or by fusion of the two-

dimensional discrete WT decomposition images obtained from each spectral channel [16]. All 

these approaches are capable of enhancing spatial features in HSI data and of establishing some 

link between these features and the spectral regions responsible for the observed textural 

patterns. However, their performance has not been satisfactory in situations where both 

textural/spatial and spectral information are highly mixed, i.e. when pure chemical components 

and/or distinct physical contributions are overlapped both in the investigated spectral range and 

in their distribution across the image [17]. 

Aiming at facing this issue, we propose in this short communication a methodological 

framework that relies on the capability of two-dimensional Stationary Wavelet Transform (2D-

SWT [18-19]) to capture distinct spatial features in disjoint subspaces (different wavelet 

images can be extracted for every spectral channel) and on the versatility of multivariate data 

analysis tools to explore the information these spatial features carry. The approach consists of 

five consecutive steps: i) 2D-SWT decomposition of the HSI data cube resulting in wavelet 

sub-images; ii) from these sub-images, computation of the GLCM; iii) calculation of 

morphological descriptors from each GLCM; iv) rearrangement of the obtained descriptors into 

a matrix; and v) PCA modelling of this matrix for the exploration of the variability of the 

morphological descriptors across spectral channels. 

Such a workflow would allow, for example, spectral wavelengths mostly capturing specific 

spatial features to be pointed out by the simultaneous investigation of PCA loadings and scores. 

PCA can also be coupled to other statistical approaches for addressing particular tasks 

depending on the study at hand. Here, for example, we used the k-means algorithm to cluster 

the loadings obtained from the PCA analysis of the descriptors matrix and determine the 
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spectral regions that show similar variation patterns in terms of spatial descriptors. These 

regions can be selective for different pure components underlying HSI data and highlighting 

them can help users to, e.g., improve the quality of MCR-ALS solutions.

2. Methods

The proposed methodology consists of five main steps which are illustrated in figure 1 and 

detailed below.

Step 1: 2D-SWT decomposition (figure 1.2)

A low-pass and a high-pass filter are applied to every spectral channel of the analyzed 

hyperspectral image (see figure 1.1) to obtain four distinct sets of wavelet coefficients, denoted 

H, V, D and A. Each set corresponds to a decomposition block and will be referred to as a 

wavelet sub-image. The horizontal set (H) corresponds to the application of both a low-pass 

filter, row-wise, and high-pass filter, column-wise; the vertical set (V) to the application of a 

high-pass filter, row-wise, and a low-pass filter, column-wise; the diagonal set (D) to the 

application of a high-pass filter, applied both row-wise and column-wise; and the 

approximation set (A) to the application of a low-pass filter, applied both row-wise and 

column-wise. This scheme is iterated on the approximation sub-image until a certain 

decomposition level has been reached (see figure 1.2). In 2D-SWT, at each iteration of the 

decomposition, the wavelet filter is up-sampled, contrary to standard Discrete Wavelet 

Transform (DWT) [20] where the wavelet coefficients are down-sampled. In this way, 

congruent wavelet sub-images are yielded and the position of the spatial patterns in the image 

is preserved. 

For the objective of this short communication, the decomposition level is set to the maximum 

compatible with the size of the original image. Furthermore, the Haar filter was utilized here 

even though different decomposition filters exist and can be exploited for the same purpose 
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[21]. To the best of our knowledge, this is the first attempt of extending wavelet transform 

multiresolution analysis to HSI datasets.

< figure 1 about here >

Step 2: GLCM calculation (figure 1.3)

A GLCM is computed for each slab corresponding to a specific wavelet sub-image i.e., for a 

given block of coefficients (H, V, D, A) associated to a specific decomposition level and to a 

specific spectral wavelength. A GLCM maps the local textures of a given image by counting 

how often pairs of pixels with certain normalized integer intensity values occur at a particular 

distance [22, 23]. The type of normalization, and the direction along which the distance is 

calculated, need to be set a priori. Here, we used a 64-integer intensity range and different 

directions for each wavelet sub-image, matching the spatial pattern every wavelet 

decomposition image highlights: vertical direction for the horizontal coefficients image (the 

information retained after the decomposition, in fact, reflects the local spatial changes in that 

direction); horizontal for the vertical coefficients image; top-left to bottom-right direction for 

the diagonal coefficients image and the summation of the previous directions for the 

approximation coefficients image. 

Step 3: Descriptors calculation (figure 1.4)

A set of eight descriptors (Energy, Contrast, Correlation, Variance, Inverse difference moment, 

Sum entropy, Information Measure of Correlation 1, and Maximal correlation coefficient [23]) 

is computed for each GLCM (see figure 1.4). A brief description of each of these features and 

their respective formulas are included as supplementary material (Table S1). These descriptors 

were chosen because they summarize most of the local spatial features one can find in an image. 

However, depending on the case-study, distinct descriptors can be selected based on prior 

knowledge or on the necessity of specific image features to be highlighted.
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Step 4: Descriptors matrix rearrangement (figure 1.5)

All the morphological descriptors values estimated for every spectral channel are organized 

into individual column vectors subsequently gathered in a single data matrix. Thus, the 

descriptors matrix (see figure 1.5) features a number of rows equal to the number of descriptors 

(8) times the number of decomposition levels (which depends on the size of the hyperspectral 

image) times the number of wavelet sub-images per decomposition level (4). The number of 

columns corresponds to the number of sampled spectral variables (wavelengths). From now on 

we will refer to this matrix as the descriptors matrix.

Step 5: Multivariate analysis

The descriptors matrix is subjected to PCA for the exploration of the information it carries and, 

more specifically, for establishing a link between the spatial and spectral information captured 

by the variation of the morphological descriptors within the investigated spectral range. In this 

work, a possible pathway to establishing this link in a more systematic way is also explored, 

i.e. the application of k-means clustering to the resulting PCA loadings to get an idea about the 

spectral channels associated to similar spatial features. 

3. Results and Discussion

The aim of this communication is to show how local spatial features extracted with the use of 

the procedure outlined in the previous section can provide valuable information for HSI data 

analysis and exploration. For this purpose, the results of two case-studies are presented.

Oil-in-water emulsion

The first case-study [24, 25] relates to a Raman HSI dataset of an oil-in-water emulsion, which 

illustrates a situation where the spatial and spectral information are both somehow selective in 

their respective domains, i.e. no severe overlap of the spatial and spectral features is observed. 

More specifically, the different individual chemical components of the image (featured in the 
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spectral domain) are associated to clearly distinguishable shapes/spatial structures. This dataset 

is relatively simple and will serve as a proof of concept for the proposed methodology. The 

Raman imaging system by which these data were collected has a spatial resolution of around 1 

µm and the image is 60×60 pixels. The spectral resolution is 3.6 cm-1 and the investigated 

spectral range goes from 953.6 to 1861 cm-1 (253 wavelengths). In figures 2a and 2b, the mean 

image, averaged over all the spectral channels, and the mean spectrum, averaged over all the 

pixels, are shown, respectively. 

< figure 2 about here>

We applied our approach considering eight descriptors (Section 2) and up to five 

decomposition levels. The outcomes resulting from the PCA modelling of the descriptors 

matrix are shown in figures 2c and 2d. They display the scores and loadings plots of the two 

first principal components, respectively. The scores plot provides a graphical representation of 

the variation of the morphological descriptors across the wavelet sub-images whereas the 

loadings plot accounts for their variation across the spectral channels. As it can be assumed 

that the most extreme score values are the most informative, as recently pointed out in MCR 

context [26] we will focus on the ten most extreme scores values along PC1 and PC2 in figure 

2c. The corresponding points are labelled according to their respective descriptor name and to 

the wavelet sub-image from which such a descriptor has been calculated. In figure 2d, the 

loadings lying in the same quadrant along the direction determined by each one of these points 

and the origin of the PCA subspace (± 9 degrees) are highlighted accordingly (same 

colors/symbols). This way, ten different groups of spectral channels were identified (loadings 

too close to the origin and, thus, contributing very little to the definition of PC1 and PC2 were 

excluded from this assessment). One wavelet sub-image can be associated to each group which 

corresponds to one of the labelled descriptors in the scores plot, as represented in figure 3 (a 

maximum number of three wavelengths per group is considered here).
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< figure 3 about here>

The comparative inspection of figures 2 and 3 enables the simultaneous exploration of the 

spatial and spectral characteristics of the investigated HSI data. The loadings plot gives insights 

into the spectral domain while the scores plot together with the wavelet sub-images does so for 

the spatial domain. 

From figure 3 overall, four main spatial contributions are discernible:

 two small droplets (see figures 3.1 and 3.4): the descriptors capturing these spatial 

features were Energy-A2 (i.e. energy calculated on the wavelet sub-image 

corresponding to the approximations coefficients at decomposition level two) and 

Variance-H3;

 a larger droplet-like structure (see figures 3.3 and 3.8), associated to descriptors 

Variance-A3 and Sum-Entropy-A2;

 a circular border around the larger droplet-like structure (see figures 3.2 and 3.5), 

associated to descriptors Energy-V2 and Variance-V3. It was expected that the vertical 

details would be able to capture the border shape;

 a background effect (see figures 3.7 and 3.10), associated to descriptors Variance-A5 

and Information Mean Correlation-V5. Actually, the deepest decomposition level 

typically captures very smooth textural features. Overall, we may regard the fifth level 

of decomposition as the one that captures background and/or illumination effects. 

On the other hand, figures 3.6 and 3.9 seem to result from the overlap of some of these 

contributions.

To summarize, the proposed approach enabled to identify and distinguish four different 

components within the oil-in-water scene, spatially unraveled in the wavelet sub-images (figure 

3) and spectrally identified in the loadings plot (figure 2d). These results are in good agreement 
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with previous findings [24, 25], which discussed the interior droplet as due to oil and the border 

structure being the oil/water interface, while matching the smaller droplet to oil with a different 

composition. However, to complement the results of this preliminary visual inspection the 

descriptors matrix was subjected to k-means clustering was exploited. For this purpose, the 

descriptors matrix was compressed by PCA (17 PCs, explaining 90.12 % variance) and 

clustering was applied on the estimated PCA loadings (4 clusters of wavelengths were 

retrieved). 

< figure 4 about here>

As highlighted in figure 4c, averaging the hyperspectral image across the four extracted clusters 

of spectral channels led to the isolation of the different structures previously unraveled. It is 

then clear that for the data at hand contributions showing a distinctive spatial distribution are 

also associated to rather selective spectral signatures within different wavelength ranges. These 

spectral signatures can be inspected in figure 4a:

 Cluster # 1, which is associated to the small droplets, coincides with the minor peaks 

at 1300, 1684 and 1789 cm-1;

 Cluster # 2, which is associated to the border structure, corresponds to three major 

peaks at 1044, 1126 and 1317 cm-1;

 Cluster # 3 mainly encompasses the peaks at 1483 and 1508 cm-1. It corresponds to the 

interior droplet; 

  Cluster # 4 corresponds to the baseline regions observed in the mean spectrum. 

A point to take note of is the overall correspondence of the spectral channels belonging to the 

groups identified by exploratory PCA of the descriptors matrix with the clusters found through 

k-means, as can be seen by comparing figures 2d and 4b. In addition, the spatial features 
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revealed by the wavelet sub-images in figure 3 mostly match those highlighted in the clustered 

mean images in figure 4c.

Due to the straightforward nature of the results, the dataset has been used to assess the 

relevance of each individual step of the proposed workflow (Figure 1). Analysis have been 

performed by removing some of these steps, i.e. applying k-means on the PCA of unfolded 

HSI data or excluding the Wavelet decomposition step and carrying out the GLCM and 

descriptors calculations directly on the raw images. The obtained results (Supplementary 

material, Figure S1) showed that the information obtained was less significant than when 

applying the full original workflow.

Semen droplet on cotton tissue

The second case-study regards a 222×220 pixels HSI-near infrared (NIR) image (acquired in 

the wavelength range 1268.8-2456.2 nm with a spectral resolution of 6.3 nm) of a semen 

droplet on a piece of white cotton. Further details on the data acquisition are given in [15]. The 

mean image is represented in figure 5a. A quite complex structure is observed which is 

characterized, at least at a first glance, by: i) a distinct horizontal pattern across the entire image 

that is due to the rough surface of the cotton fabric (texture); ii) an almost indiscernible shadow 

of the oval-shaped border of the semen droplet; and iii) a spurious fiber filament in the lower 

middle area of the image. 

It is worth noting that this case-study exhibits a much higher complexity than the previous one: 

the cotton contribution is present everywhere across the image, thus, there exists no spatial area 

selective for semen. In addition, the spectral profiles of the different constituents of the 

captured scene are severely overlapped and semen might be not homogeneously distributed 

over the cotton sample.

 In order to explore these data, we applied our approach as detailed in Section 2.
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< figure 5 about here>

The three first PCs of the descriptors matrix were inspected here. Figure 5 displays the resulting 

outcomes. Different clusters of wavelength channels were identified within both the PC1/PC2 

and PC2/PC3 subspaces. The ten most extreme score values in figures 5c and 5e were taken into 

consideration, following the same procedure outlined for the emulsion data set. For the sake of 

simplicity not all the corresponding points in the loadings plot (figure 5d) were considered to 

extract the related wavelet sub-images, but all were investigated. Among them, only those 

associated to the wavelet sub-images showing easily interpretable spatial patterns were 

isolated. These wavelet sub-images are shown in figure 6.

< figure 6 about here>

The images shown in figure 6 can be categorized into three groups, each showing one of the 

main spatial contributions underlying this dataset: 

 the semen stain associated to descriptors Energy-A1 (figure 6.1) and Variance-A4 

(figures 6.4 and 6.5). Two sub-groups seem to be present, as two spatially distinct forms 

of the stain seem to exist. In figure 6.5, for the images taken at 1700 and 1500 nm, the 

two forms are apparent. This is in good agreement with previous findings showing how 

the spatial distribution observed for such a cluster might be generated by 

complementary semen compounds exhibiting a distinct behavior during the drying 

process of the biological fluid on the cotton fabric [17]; 

 the background (figure 6.2) captured by the descriptor Contrast-H1. This textural 

pattern that is observed across the entire image is most likely caused by the reflection 

of light on the cotton fibers; 

The corresponding loadings (purple stars in figure 5d) are associated to wavelengths 

1287.5, 1306.2 and 1318.8 nm. These are located in the range where cotton absorbs 

Page 25 of 43

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

(1268.8 nm - 1362.5 nm) [27], and would most likely be related to the 2nd overtones 

and combination of C-H stretching and C-H deformation;

 the fiber filament (figures 6.1 and 6.3) captured by descriptor Contrast-V3. The 

associated spectral wavelengths are in the range between 2000 nm and 2243.8 nm, 

where O-H bending and C-O stretching contributions are expected from cotton. 

Notice that the fiber filament and the semen stain appear to be slightly overlapped in various 

wavelet sub-images. Another important point to consider is that the best separation of the two 

semen stain forms resulted from the A4 wavelet sub-image (figure 6.5). This highlights the fact 

that wavelet decompositions can provide a much greater spatial resolution, as they have the 

ability to unravel distinct spatial structures. This is observed in figure 6.2 and 6.4, where the 

separation between semen and the horizontal spatial interference is evident (such a separation 

cannot be visualized in any of the single channel images of the original HSI data, not shown). 

Considering the isolation of the horizontal details (figure 6.2), the different forms of the semen 

stain (figure 6.5), the fiber (figures 6.1 and 6.3) and the “mask” that excludes the semen stain 

(figure 6.5, see at 1875 nm), the wavelet sub-images feature a high potential for further 

investigation of the data. For example, considering methods such as MCR-ALS, on one hand 

these isolated images can furnish the number of components to use, on the other hand can serve 

as initial estimates and could, e.g., increase the spatial unmixing capability of the current 

methodology [28]. However, this could come with some ambiguity, as with higher 

decomposition levels, the wavelet sub-images will only retain low frequency signals. This has 

to be considered carefully and will be explored in a future publication. 

In order to corroborate the conclusion drawn after this visual inspection, k-means was applied, 

as previously explained (in this case the descriptor matrix was compressed to an 18 PCs model, 

explaining 90.61% variance). 
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< figure 7 about here>

Figure 7 represents the obtained results. A more ambiguous clustering was obtained here 

compared to the previous case-study, most likely due to the increased complexity and spatial 

overlap of the different components underlying the HSI dataset. Yet, the previously determined 

components are discernable in figure 7d. However, they are considerably more mixed. For 

example, ‘Cluster # 1’ encompasses both the fiber and (to a lesser extent) the semen stain. Also, 

in ‘Cluster # 3’ and ‘Cluster # 4’ the semen stain, the fiber and the background are not 

completely separated from one another. Nonetheless, despite being mixed with the textural 

background, the two different spatial forms of semen were isolated in Clusters # 2 and Cluster 

# 3. 

The spectral channels corresponding to Cluster # 2 and Cluster # 3 (figure 7a), include the 

wavelengths regions around 1700 nm, and in the range 1500 - 1575 nm, which are selective for 

the two forms of semen when wavelet sub-image A4 is considered (figure 6.4 and 6.5). It must 

be emphasized that compared to the emulsion dataset, the results of the clustering are not 

satisfactory in terms of isolation of the different components (figure 7d). However, it has been 

shown (in figure 6) that the wavelet sub-images estimated at specific spectral wavelengths and 

recovered by the PCA analysis of the descriptor matrix do have the ability to isolate the 

different components.

Concluding remarks

In this short communication a methodological framework based on combining both spatial 

features and spectral information for the analysis of HSI data is proposed. The method 

decomposes every single-wavelength image of a three-dimensional HSI array by 2D-SWT and 

computes individual GLCM for every resulting wavelet sub-image. Morphological descriptors 

are afterwards estimated from all the GLCMs. In this way, spatial and spectral information is 
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enhanced and conveyed in a single features matrix, which is finally processed by multivariate 

data analysis tools like PCA. Depending on the specific tasks the user must address, different 

multivariate statistical tools can be exploited at this point.

Although the proposed workflow combines different computational steps, which translates into 

higher complexity, every one of them is a necessary link in the chain. In fact, when some of 

these steps were skipped, the information obtained was insufficient to unravel all the distinct 

spatial features underlying the dataset under study and relate them to specific spectral regions.

According to the results obtained in two different case-studies, it can be concluded that the 

proposed strategy is capable of consistently recovering the main spatial features of a HSI 

dataset and of highlighting the distinctive spectral regions accounting for them. In particular, 

the outcomes related to the investigation of the semen droplet dataset were found to be 

particularly promising considering the extreme physico-chemical complexity of the examined 

image. In fact, even though the semen and cotton components show highly overlapped spectra, 

and cotton fabric is present everywhere in the sample, it was possible to highlight and localize 

the two different forms of the semen stain as well as the spectral wavelengths at which this 

spatial separation is effective.

Nonetheless, further developments can be foreseen. GLCM is just one of the possible ways to 

compress the spatial information encoded in wavelet sub-images, and others will be explored 

in future research. The possibility of utilizing other multivariate data analysis tools in the 

developed framework will also be assessed. Finally, the improved and at least preliminarily 

disentangled spatial/spectral information returned by the described approach might constitute 

a valuable starting point for the design of new constraints to be applied in the context of MCR-

ALS. Additional work is currently in progress towards this direction.
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Legend of figures

Figure 1. The methodological framework, the spectral dimension is colored after every step 
for the sake of a better and easier visualization. (1.1) a generic hyperspectral data cube; (1.2) 
the data structure obtained after the 2D-SWT decomposition; (1.3) GLCM obtained from each 
slab of the wavelet coefficient three-dimensional arrays depicted in 1.2; (1.4) the descriptors 
calculated from the GLCM; (1.5) rearrangement of the descriptors matrix.

Figure 2. Oil in water data set. (a) Mean hyperspectral image (mean taken across spectral 
dimension). (b) Mean spectrum (mean taken across pixels after unfolding). (c) PC1 vs. PC2 
scores plot (PCA of descriptors matrix). The most extreme values in the scores space are 
highlighted by different colored symbols and labelled. (d) PC1 vs PC2 loadings plot. The points 
in the loadings plot that correspond (i.e. are on the same direction with respect to origin) to the 
points highlighted in the scores plot are shown with the same symbols.

Figure 3. Oil in water data set. The wavelet sub-images, at decomposition block and level as 
reported in the points label in Figure 2c and at the spectral wavelengths corresponding to the 
ones showing the same symbols in Figure 2d, are shown in separate frames, numbered from 1 
to 10. In each frame is reported on top the name of the descriptor-block-level, e.g. in frame 1 
(named figure 3.1 in the text) are shown the Approximation images at the second 
decomposition level for the three wavenumbers 1695.2, 1760 and 1763.6 cm-1, and so on for 
3.2 to 3.10. Above each image is reported the corresponding wavenumber.

Figure 4. Oil in water data set. Results of the k-means clustering algorithm on the loadings 
matrix. (a) mean spectrum, with the point at each wavelength colored according to the cluster’s 
number they were assigned to; (b) PC1 vs. PC2 loadings plot, points colored according to 
clusters; (c) mean images for each cluster, mean taken across the spectral channels belonging 
to the same cluster.

Figure 5. Semen data set. (a) mean image; (b) mean spectrum; (c) PC1 vs PC2 scores plot 
resulting from the application of PCA on the descriptors matrix (the ten most extreme values 
are labelled with the descriptor’s name and the wavelet sub-image on which it has been 
calculated). (d) PC1 vs PC2 loadings plot. The points highlighted in the scores plot are shown 
with the same symbols; (e) PC2 vs PC3 score plot; (f) PC2 vs PC3 loadings plot.

Figure 6. Semen data set. The selected wavelet sub-images from PCA analysis of descriptors 
matrix, shown in separate frames labelled by their respective number, e.g. in frame 1 (named 
figure 6.1 in the text) are shown the Approximation images at the first decomposition level for 
the three wavelength 2256.2, 2262.5 and 1612.5 nm, and so on for 6.2 to 6.5. 
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Figure 7. Semen data set. Results of the k-means clustering algorithm on the loadings matrix. 
(a) mean spectrum, with clustering highlighted on the spectral channels; (b) PC1 vs. PC2 
loadings plot of, points colored according to clusters; (c) PC2 vs PC3 loadings plot; (d) mean 
image (across the spectral dimension) for each cluster.
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Supplementary material:

Comparative analysis of the different aspects within the workflow

Some minor investigations have been made to assess the need of the several steps of the 

procedure. In the first case (figure S1a), both the wavelet decomposition and GLCM steps are 

excluded. In the second case (figure S1b) only the wavelet decomposition step is excluded. The 

clustering of the spectral channels obtained by the analysis of the emulsion dataset (figure 4 in 

the paper) was taken as a reference, as it showed a clear result that is consistent with literature 

[refs. 24, 25 in the paper].

These results show mixed image maps and/or spectral regions. For example, on figure S1a in 

cluster #2 all components seem to be present and looking at the mean spectrum with the clusters 

highlighted, the background spectral channels are mixed with the main peaks. On the other 

hand, figure S1b shows that the big droplet and ring are not separated whatsoever.

Figure S1. Results obtained by clustering the PCA loadings for a) the original HSI; b) the 
descriptors matrix of the GLCM obtained excluding the wavelet decomposition step.
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Table S1: Definition of the Haralick features used in the paper. The GLCM is normalized and 
its elements, denoted as  , correspond to the probability estimate of a given pair of gray intensity 𝑝(𝑖,𝑗)
levels  to be observed in the image.(𝑖,𝑗)

Energy equals the squared sum of all the 

elements of the GLCM, giving a measure of 

uniformity of the original image. It reaches a 

maximum when the image is constant.

𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

𝑝(𝑖,𝑗) 
2

Where  is the number of distinct gray levels in the 𝑁𝑔

quantized image, and  is the  entry in the 𝑝(𝑖,𝑗) (𝑖,𝑗)𝑡ℎ

GLCM.

Contrast represents a measure of the intensity 

contrast between a pixel and its neighbor over the 

whole image. Its value is zero for a constant 

image and increases along with the intensity 

difference between neighboring pixels.

𝑁𝑔 ― 1

∑
𝑛 = 0

𝑛2{ 
𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 𝑗

𝑛 = |𝑖 ― 𝑗|

𝑝(𝑖,𝑗) }

Correlation is a measure of how correlated a 

pixel is to its neighbor over the whole image. 

Correlation is a measure of grey tone linear 

dependency in the image. It attains values of 1 or 

-1 for a perfectly positively or negatively 

correlated image, respectively. It is undefined for 

a constant image.

∑𝑁𝑔
𝑖 = 1

∑𝑁𝑔
𝑗 = 1(𝑖𝑗)𝑝(𝑖,𝑗) ― 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

 , and  are the means and standard 𝜇𝑥 𝜇𝑦 𝜎𝑥 ,  𝜎𝑦

deviations of  and   , respectively. Where:𝑝𝑥 𝑝𝑦

 ,  𝑝𝑥 =  ∑𝑁𝑔
𝑗 = 1𝑝(𝑖,𝑗)  𝑝𝑦 = ∑𝑁𝑔

𝑖 = 1𝑝(𝑖,𝑗)

 , 𝜇𝑥 = ∑𝑁𝑔
𝑖 = 1

∑𝑁𝑔
𝑗 = 1𝑖 ∙ 𝑝(𝑖,𝑗) 𝜇𝑦 = ∑𝑁𝑔

𝑗 = 1
∑𝑁𝑔

𝑖 = 1𝑗 ∙ 𝑝(𝑖,𝑗)

𝜎2
𝑥 = ∑𝑁𝑔

𝑖 = 1
∑𝑁𝑔

𝑗 = 1
(𝑖 ― 𝜇𝑥)2 ∙ 𝑝(𝑖,𝑗)

𝜎2
𝑦 = ∑𝑁𝑔

𝑗 = 1
∑𝑁𝑔

𝑖 = 1
(𝑗 ― 𝜇𝑦)2 ∙ 𝑝(𝑖,𝑗)
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Variance corresponds to the variance of the 

probability distribution . 𝑝 σ2 =  
𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

(𝑖 ― 𝜇)2𝑝(𝑖,𝑗)  

Where for a symmetric GLCM:    𝜇𝑥 = 𝜇𝑦 = 𝜇 

The inverse difference moment measures how 

similar the GLCM is to a diagonal matrix. It is 

also known as homogeneity and equals 1 for a 

diagonal GLCM.

𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

1
1 + (𝑖 ― 𝑗)2𝑝(𝑖,𝑗)

Sum Entropy uses the same formula as 

Entropy* but considers, instead of single 

elements of the GLCM, the sum of elements in 

its diagonals. 

Entropy ∗ (HXY) = ―
𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

𝑝(𝑖,𝑗)log (𝑝(𝑖,𝑗))

It represents a measure of disorder related to the 

grey-level distribution of the image and it is large 

when the image is not texturally uniform and 

many GLCM elements have very small values.

―
2𝑁𝑔

∑
𝑘 = 2

𝑝𝑥 + 𝑦(𝑘) 𝑙𝑜𝑔(𝑝𝑥 + 𝑦(𝑘))

Where:

𝑝𝑥 + 𝑦(𝑘) =
𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

𝑝(𝑖,𝑗)  

𝑘 = 𝑖 + 𝑗

The Information Measure of Correlation 1 

equals the ratio of the difference between overall 

entropy and joint entropy (across rows and 

columns) to the max entropy across 

rows/columns. It can be interpreted as a measure 

of texture complexity.

𝐻𝑋𝑌 ― 𝐻𝑋𝑌1
max (𝐻𝑋,𝐻𝑌)

HXY is Entropy. HX(HY) are rows (columns) Entropy, 

respectively, e.g.:

𝐻𝑋 =  ―
𝑁𝑔

∑
𝑗 = 1

𝑝𝑥(𝑖)log 𝑝𝑥(𝑖)

and: 

𝐻𝑋𝑌1 = ―
𝑁𝑔

∑
𝑖 = 1

𝑁𝑔

∑
𝑗 = 1

𝑝(𝑖,𝑗) {log 𝑝𝑥(𝑖)𝑝𝑦(𝑗)}
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The maximal correlation coefficient  is defined 

as the square root of the second largest 

eigenvalue of matrix Q.

Q is defined as:

𝑄(𝑖,𝑗) =  
 

∑
𝑚

𝑝(𝑖,𝑚)𝑝(𝑗,𝑚)
𝑝𝑥(𝑖)𝑝𝑦(𝑚)
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Figure 1. The methodological framework, the spectral dimension is colored after every step for the sake of a 
better and easier visualization. (1.1) a generic hyperspectral data cube; (1.2) the data structure obtained 

after the 2D-SWT decomposition; (1.3) GLCM obtained from each slab of the wavelet coefficient three-
dimensional arrays depicted in 1.2; (1.4) the descriptors calculated from the GLCM; (1.5) rearrangement of 

the descriptors matrix. 
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Figure 2. Oil in water data set. (a) Mean hyperspectral image (mean taken across spectral dimension). (b) 
Mean spectrum (mean taken across pixels after unfolding). (c) PC1 vs. PC2 scores plot (PCA of descriptors 

matrix). The most extreme values in the scores space are highlighted by different colored symbols and 
labelled. (d) PC1 vs PC2 loadings plot. The points in the loadings plot that correspond (i.e. are on the same 

direction with respect to origin) to the points highlighted in the scores plot are shown with the same 
symbols. 

251x190mm (149 x 149 DPI) 

Page 38 of 43

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 3. Oil in water data set. The wavelet sub-images, at decomposition block and level as reported in the 
points label in Figure 2c and at the spectral wavelengths corresponding to the ones showing the same 

symbols in Figure 2d, are shown in separate frames, numbered from 1 to 10. In each frame is reported on 
top the name of the descriptor-block-level, e.g. in frame 1 are shown the Approximation images at the 

second decomposition level for the three wavenumbers 1695.2, 1760 and 1763.6 cm-1. Above each image 
is reported the corresponding wavenumber. 
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Figure 4. Oil in water data set. Results of the k-means clustering algorithm on the loadings matrix. (a) mean 
spectrum, with the point at each wavelength colored according to the cluster’s number they were assigned 
to; (b) PC1 vs. PC2 loadings plot, points colored according to clusters; (c) mean images for each cluster, 

mean taken across the spectral channels belonging to the same cluster. 
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Figure 5. Semen data set. (a) mean image; (b) mean spectrum; (c) PC1 vs PC2 scores plot resulting from 
the application of PCA on the descriptors matrix (the ten most extreme values are labelled with the 

descriptor’s name and the wavelet sub-image on which it has been calculated). (d) PC1 vs PC2 loadings plot. 
The points highlighted in the scores plot are shown with the same symbols; (e) PC2 vs PC3 score plot; (f) 

PC2 vs PC3 loadings plot. 
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Figure 6. Semen data set. The selected wavelet sub-images from PCA analysis of descriptors matrix, shown 
in separate frames labelled by their respective number, i.e. in 6.1 are shown the Approximation images at 

the first decomposition level for the three wavelength 2256.2, 2262.5 and 1612.5 nm. 
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Figure 7. Semen data set. Results of the k-means clustering algorithm on the loadings matrix. (a) mean 
spectrum, with clustering highlighted on the spectral channels; (b) PC1 vs. PC2 loadings plot of, points 

colored according to clusters; (c) PC2 vs PC3 loadings plot; (d) mean image (across the spectral dimension) 
for each cluster. 
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