
DEMB Working Paper Series 

N. 164 

Assessing skewness in financial markets 

Giovanni Campisi1, Luca La Rocca2, Silvia Muzzioli3 

January 2020 

1 University of Modena and Reggio Emilia, Department of Economics Marco Biagi 
Address: Viale Berengario 51, 41121, Modena, Italy  
E-mail: giovanni.campisi@unimore.it  

2 University of Modena and Reggio Emilia, Department of Physics, Informatics and Mathematics 
Address: Via Campi 213/B, 41125, Modena, Italy  
E-mail: luca.larocca@unimore.it 

3 University of Modena and Reggio Emilia, Department of Economics Marco Biagi and CEFIN 
Address: Viale Berengario 51, 41121, Modena, Italy  
E-mail: silvia.muzzioli@unimore.it 

ISSN: 2281-440X online 

Dipartimento di 
Economia Marco Biagi 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/333571709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:giovanni.campisi@unimore.it


Assessing skewness in financial markets

Giovanni Campisi1, Luca La Rocca2, and Silvia Muzzioli1

1Marco Biagi Department of Economics, University of Modena and Reggio Emilia, Via Jacopo Berengario 51,
41121 Modena, Italy (giovanni.campisi@unimore.it, silvia.muzzioli@unimore.it)

2Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/b,
41125 Modena, Italy (luca.larocca@unimore.it)

January 31, 2020

Abstract

It is common knowledge that investors like large gains and dislike large losses. This translates into a pref-
erence for right-skewed return distributions, with right tails heavier than left tails. Skewness is thus interesting
not only as a way to describe the shape of a distribution, but also for risk measurement. We review the statistical
literature on skewness and provide a comprehensive framework for its assessment. We present a new measure of
skewness, based on a relative comparison between above average and below average returns. We show that this
measure represents a valid complement to the state of the art.

Keywords: Asymmetry; Convex ordering; Unimodality; Volatility.

1 Introduction

In the financial literature there is a large variety of works dealing with the construction and implementation of
risk measures to allow investors to make informed trading decisions. In light of the recent financial crises, the
importance of these measures is increased in order to prevent tail risk events.

One of the most important risk measures is the VIX index introduced by the Chicago Board Options Exchange
(CBOE). It is a forward looking measure in the sense that it measures volatility that investors expect to see in the
next month (Whaley, 2009). Volatility indices are deemed by market operators to capture market fear: high index
values are associated with high uncertainty in the underlying market, low index values with stable conditions; see
Whaley (2000) and Muzzioli (2013b). Traditionally, financial returns are assumed to follow a normal distribution.
In this context, volatility is a good measure of risk based on the idea that investors dislike uncertainty. However,
a huge amount of works highlight that financial returns are non-normally distributed; see e.g. Fama (1965), Peiró
(1999), Lempérière et al. (2017) and Elyasiani et al. (2018). Specifically, financial returns are found to present
an empirical distribution with heavy tails and a negative skew. In other words, extreme and negative events are
more probable to arise than in the normal distribution. This has a consequence on the need to include higher order
moments as indicators of market risk.

One example is the CBOE SKEW index. The CBOE SKEW index has been listed on the CBOE since February
2011 to measure the tail risk not fully captured by the VIX index. While VIX measures the overall risk in the 30-
day S&P500 log-returns without disentangling the probabilities attached to positive and negative returns, the
skewness index (CBOE SKEW) is intended to measure the perceived tail risk, i.e., the probability that investors
attach to extreme negative returns. The CBOE SKEW index relies on Pearson’s (third order) moment coefficient
of skewness. It is well known that Pearson’s moment coefficient of skewness is not a robust measure of skewness.
In the statistical literature there are several examples in which Pearson’s moment coefficient of skewness leads to
controversial conclusions. From a financial point of view, this could have serious problems. Indeed, the role of
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the CBOE SKEW index as an indicator of market fear has been questioned since it moves frequently in the same
direction as returns.

We face the need to investigate other measures of skewness and apply them to measure risk in financial markets.
A problem to be overcome concerns the robustness of higher order moments since they may even be not well-
defined for distributions with polynomial tails (a significant fraction of heavy tailed distributions). An interesting
direction is to study the properties of skewness measures and apply them to financial markets. We contribute
to the ongoing debate in this area by studying a variety of skewness measures, grounding their relevance to risk
measurement on the simple observation that investors like large gains and dislike large losses.

There is a rich statistical literature on skewness, which we review in this paper to present a comprehensive
framework for its assessment. We find that only the most classical measures of skewness rely on higher-order
moments, while a number of other more recent measures do not. We also propose a new measure of skewness: the
Risk Asymmetry indeX (RAX) based on the same measure introduced by Elyasiani et al. (2018) in a model-free
set up with financial options. We contribute to the investigation of alternative skewness measures from a statistical
perspective, arguing that the notion of skewness can play an important role in risk measurement.

The paper proceeds as follows. In Section 2 we present our framework for the study of univariate skewness,
with a review of the tools available for both qualitative and quantitative assessments, identifying the statistical
properties that a valid measure of skewness should satisfy. In Section 3 we propose the new measure of skewness,
focussing on its statistical properties and interpretation. Section 4 contains an analysis of the performance of the
most relevant measures of skewness. Section 5 discusses our work in terms of limitations and directions for future
research.

2 Symmetry and asymmetry

Skewness is defined as a relaxation of symmetry to allow for asymmetry in a specific direction. We therefore start
our exposition by introducing the notion of symmetry, which is not at all controversial, at least in the univariate
case. A univariate random variable X is symmetric about the real value m when X − m and m − X have the
same distribution; see for instance Doksum (1975). This property of the distribution of X can be written as
P{X ≤ m − t} = P{X ≥ m + t} for all t > 0, which amounts to saying that all corresponding left and right
tails of X with respect to m have the same weight. Letting t→ 0, it is straightforward to see that m has to be the
median of X , uniquely defined as the midpoint of the interval formed by all ν such that P{X ≤ ν} ≥ 1/2 and
P{X ≥ ν} ≥ 1/2. It is also immediate to see that symmetry is location-scale invariant: if X is symmetric and
Y is a positive affine transformation of X , that is, Y = α + βX with β > 0, then Y is also symmetric. Further
considerations will be eased by the introduction of a suitable distributional framework.

Let F be the distribution function of X . We define the support interval of F as the open interval ]a, b[ with left
endpoint a = inf{x ∈ R | F (x) > 0} and right endpoint b = sup{x ∈ R | F (x) < 1}. Note that we can possibly
have a = −∞ or b = +∞. We assume that F is continuous on the real line and strictly increasing on its support
interval. More specifically, we assume that F is obtained from a probability density function f that is continuous
on ]a, b[ and such that f(x) > 0 for all x ∈ ]a, b[, while f(x) = 0 if x ≤ a or x ≥ b. Let F0 be the class of all such
distributions. Piecewise continuous density functions could be allowed to enlarge F0, but we here favor simplicity
over generality. Nonetheless, we point out that such an enlargement would provide scope for probability density
histograms (representing an important class of data based distributions). Interesting subclasses of F0 are obtained
by assuming that X has finite moments up to some order; let Fk = {F ∈ F0 | E |X|k < ∞}, k = 1, 2, . . . ,
be such classes. If F ∈ F1, we denote by µ = E(X) the mean of X . If F ∈ F2, we denote by σ2 = E(X − µ)2

the variance of X (with σ denoting the standard deviation of X); note that σ2 > 0 because F is continuous.
Assuming F ∈ F0, the condition for symmetry can be written as

F (m− t) + F (m+ t) = 1 for all t > 0, (1)

where m = F−1(1/2) with F−1 uniquely defined on the open interval ]0, 1[ as the inverse function of F . Note
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that F−1, called the quantile function of X , is also continuous and strictly increasing. Equivalently, condition (1)
can be rewritten as

f(m− t) = f(m+ t) for all t > 0; (2)

differentiating (1) with respect to t gives (2), while integrating (2) with respect to t gives (1). Note that symmetry
implies either a = −∞ and b = +∞ or a > −∞ and b =< +∞ with m = (a + b)/2. If F ∈ F1, it is apparent
from (2) that µ = m and µ can replace m in (1) as well as in (2).

A special case of interest is given by unimodal distributions. Following Dharmadhikari and Joag-Dev (1988,
p. 2), we say that X is unimodal at x? ∈ ]a, b[ if F is convex on ]a, x?[ and concave on ]x?, b[, which corresponds
to f increasing on ]a, x?[ and decreasing on ]x?, b[. We say that X is unimodal (tout court) if it is unimodal at
some x?. In this case, the mode ofX (denoted byM ) can be uniquely defined as the midpoint of the interval formed
by all x? such that X is unimodal at x?. For all k = 0, 1, 2, . . . , we define F?k = {F ∈ Fk | X is unimodal}. It is
apparent that (2) implies M = m, assuming F ∈ F?0 , and M can replace m in (1) as well as in (2). Hence, for all
symmetric X with F ∈ F?1 , we have M = m = µ and the three classical measures of central tendency coincide.

If X is not symmetric, we say that X is asymmetric. While all symmetric distributions are alike in symmetry,
each asymmetric distribution is asymmetric in its own way. Skewness relaxes symmetry to allow for a specific
type of asymmetry: a random variable is left-skewed when its left tails are heavier than its right tails, it is right-
skewed when its right tails are heavier than its left tails. A strictly skewed variable is a skewed variable that is not
symmetric and, as such, it represents a way of being asymmetric. We formalize these notions in the following:
Section 2.1 deals with assessing when a random variable is manifestly left-skewed or right-skewed; Section 2.2
deals with assessing how much of a skew a given random variable exhibits (to the left or to the right) even though
such a skew may not be manifest.

2.1 Qualitative assessment of skewness

We start with a simplifying remark: since the left-tails of a random variable X are the right tails of the opposite
random variable −X , and vice versa, it will be enough to assess when X is right-skewed; X will be left-skewed
when −X is right-skewed. We proceed with a quick presentation of the approach by Doksum (1975), which we
will not adopt, but which provides an interesting starting point for our discussion.

According to Doksum (1975), a random variableX is skew to the right when P{X ≤ m−t} ≤ P{X ≥ m+t}
for all t > 0, that is, when the right tails of X with respect to its median m are uniformly heavier than the
corresponding left tails. This condition is completely general, requiring no assumption onX , and easy to interpret,
because it is based on a specific comparison of tails. However, the latter feature is also its main limitation, in that
a specific measure of central tendency (the median) is used. If the mean or mode of X are also available, different
tails can be compared and, in general, they will lead to different assessments of skewness; see Sato (1997) for an
illustration of the different implications of different choices. We will eventually get to a definition of skewness that
does not rely on a specific measure of central tendency, but we first reformulate the definition of Doksum (1975)
in our distributional framework. If F ∈ F0, the condition for skewness to the right can be written as

F (m− t) + F (m+ t) ≤ 1 for all t > 0, (3)

which is known as van Zwet’s condition (Abadir, 2005) after van Zwet (1979) introduced it to prove the celebrated
mode-median-mean inequality. This inequality is usually considered a sign of right skewness and (3) will justify
this consideration, because we will eventually adopt a definition of right skewness that implies (3). Note that the
distribution function of −X is F̄ (x) = 1 − F (−x), x ∈ R, while the median of X is −m, so that the condition
for skewness to the left is obtained from (3) simply by changing the direction of the inequality; in this case the
mean-median-mode inequality holds for X .

We now consider the harder problem of assessing when a random variable Y is more right-skewed than another
random variable X . Then, as recommended by MacGillivray (1986), we will say that X is right-skewed when it
is more right-skewed than −X . Since the harder problem can be solved without relying on any specific measure
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of central tendency, this strategy overcomes the main limitation of the approach by Doksum (1975). Furthermore,
the harder problem is interesting in its own and its solution provides a useful formal notion of relative skewness.

Following van Zwet (1964), we compare X with Y by means of the function R(x) = G−1(F (x)), a < x < b,
where G is the distribution function of Y . We call R = G−1 ◦ F the quantile-quantile function of Y against X ,
because it is the function whose graph is represented in the Q-Q plot with X on the horizontal axis and Y on the
vertical axis. We say that X is less right-skewed than Y , or Y is more right-skewed than X , and write F - G,
or G % F , if R is convex, which indicates that the left tails of X are progressively heavier than the left tails of Y
and the right tails of Y are progressively heavier that the right tails of X . Note that R is strictly increasing (as well
as continuous) on ]a, b[ and R(m) is the median of Y . The quantile-quantile function of X against Y is given by
R−1(y) = F−1(G(y)), c < y < d, where ]c, d[ is the support interval of G. Since R−1 = F−1 ◦ G is convex if
and only if R is concave, we have F % G if and only if R is concave. An interesting characterization of this kind
of comparison is that F - G if and only if Y is equal in distribution to a strictly increasing convex transformation
of X: on the one hand, the variable R(X) has the same distribution as Y ; on the other hand, if Y = ϕ(X) with ϕ
strictly increasing and convex, then R = ϕ. If both F - G and F % G, we write F ∼ G. Clearly, this happens
whenR is a positive affine function, that is, when Y is equal in distribution to a positive affine transformation ofX .
This makes relative skewness a property of location-scale models rather than individual distributions. Finally, since
F - G if and only if F̄ % Ḡ, we find that X is less right-skewed than Y if and only if −X is more right-skewed
than −Y ; this means that we can safely interpret F � G as X being more left-skewed than Y , or Y being less
left-skewed than X .

It is straightforward to check that - is reflexive and transitive: F - F and F - G,G - H implies F - H ,
where H denotes the distribution function of a third variable Z. This means that the relationship - is a preorder
on F0, which justifies its common name of convex ordering of distributions and qualifies ∼ as the equivalence
relationship defined by -. Several other orderings of distributions have been proposed in the skewness literature
(Oja, 1981; MacGillivray, 1986; Arnold and Groeneveld, 1993) and it turns out that the convex ordering is the
strongest one. This is because it only looks at the convexity of the quantile-quantile function, without reference to
any measure of central tendency, and thus it only signals the most manifest cases of relative skewness.

As anticipated, we say that X is right-skewed when −X - X (and left-skewed when X - −X); note that
here, for the sake of expressiveness, we apply - to −X and X rather than to F̄ and F . Since the convex ordering
of distributions actually compares location-scale models, we can compare m − X with X − m instead of −X
with X , which we find convenient to investigate the connection to the approach by Doksum (1975). Indeed, the
quantile-quantile function of X −m against m−X is given by

R̄(x) = F−1(F̄ (x−m))−m, −(b−m) < x < m− a, (4)

because F̄ (x−m), x ∈ R, is the distribution function of m−X and F−1−m is the quantile function of X −m;
clearly R̄(0) = 0. At the same time, the slope of R̄ is given by

r̄(x) =
f(m− x)

f(F−1(F̄ (x−m)))
, −(b−m) < x < m− a, (5)

and clearly r̄(0) = 1. It then follows from the convexity of R̄ that x ≤ R̄(x) for all x between−(b−m) andm−a,
which in turn implies (3). Hence, if X is right-skewed according to our chosen definition, it is also skew to the
right in the sense of Doksum (1975). The converse is not true: convexity is clearly a stronger requirement than
asking for the graph of R̄ to lie entirely above the graph of the identity function; it is even stronger than requiring
r̄(x) ≥ 1 for all x between 0 andm−a, equivalently r̄(x) ≤ 1 for all x between−(b−m) and 0, which represents
the notion of strong skewness to the right given by Doksum (1975).

We conclude our discussion of qualitative skewness by remarking that a random variable X is symmetric if
and only if it is both right-skewed and left-skewed (−X ∼ X). A notion of strict skewness can then be defined by
excluding symmetric distributions (−X ≺ X or X ≺ −X). In this way, we are able to partition F0 in four groups
of distributions: symmetric distributions, strictly left-skewed distributions, strictly right-skewed distributions, and
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other asymmetric distributions. Note that, since symmetry and skewness are location-scale invariant, all F in a
given location-scale model will belong to the same group. We will see that the other asymmetric distributions in
the fourth group can be adjudicated as cases of negative (left) or positive (right) skewness through the choice of a
suitable measure of skewness, which is the topic of the next subsection.

2.2 Quantitative assessment of skewness

We here consider the more ambitious problem of measuring how much a given distribution is skewed. This means
associating to every distribution of interest a real number, whose sign captures the direction of skewness and whose
absolute value is larger when skewness is more pronounced. More formally, within our distributional framework,
for distributions with finite moments up to order k ∈ {0, 1, 2, . . . }, we aim at specifying a functional Sk : Fk → R,
which will be called a measure of skewness of order k and will be required to satisfy the following properties:

(P1) Sk(F̄ ) = −Sk(F ) for all F ∈ Fk;

(P2) Sk(F ) ≤ Sk(G) whenever F - G.

If we are only interested in unimodal distributions, we can replace Fk with F?k and specify a unimodal measure of
skewness of the same order. We will say that Sk is valid to stress that (P1) and (P2) hold.

The meaning of (P1) and (P2) is that we want our quantitative assessment to respect our qualitative assessment.
Indeed, it follows from (P1) and (P2) that Sk(F ) ≥ 0 if F is right-skewed, while Sk(F ) ≤ 0 if F is left-skewed,
so that Sk(F ) = 0 if F is symmetric. Furthermore, it follows from (P2) that Sk(F ) = Sk(G) if F ∼ G, that is,
we require any valid measure of skewness to be location-scale invariant. Hence, to all effects, we are making the
same assumptions as Groeneveld and Meeden (1984), which are rooted in the foundational work of Oja (1981) and
have been consistently used in later work (Groeneveld, 1991a,b; Arnold and Groeneveld, 1995; Tajuddin, 1996,
1999; Groeneveld and Meeden, 2009). If we define positive skewness as Sk(F ) ≥ 0 and negative skewness as
Sk(F ) ≤ 0, we are able to partition Fk (or F?k ) in three groups of distributions: distributions with strictly positive
skew, distributions with strictly negative skew, and distributions with null skew. Properties (P1) and (P2) guarantee
that such a partition does not contradict the partition obtained in the previous subsection in terms of left and right
skewness. We will call two measures equivalent when they give rise to the same partition.

In the following, we review the literature on measuring skewness with (P1) and (P2) in mind. We also care
about the values taken by Sk. Let s = infF Sk(F ) and s̄ = supF Sk(F ) be its extrema. Note that s = −s̄ by (P1).
If Sk is a valid measure of skewness and ϕ is an odd and (strictly) increasing real function defined on the image
of Sk, then ϕ◦Sk is another (equivalent) valid measure of skewness. This means that any measure of skewness can
be transformed so as to have −1 and +1 as extrema, if s̄ is known. However, this is not necessarily the case and,
even if it is, there is an interest for understanding whether the extrema can be attained or not and which distributions
get close to them. Finally, we pay attention to the estimation of Sk(F ) when a random sampleX1, . . . , Xn from F

is available. A general solution, in our distributional framework, is kernel density estimation on a suitable interval,
but it is typically sufficient (and easier) to estimate finite dimensional summaries of F (mean, variance, . . . ).

2.2.1 Higher-order measures

The study of skewness was pioneered by Pearson (1895, 1901, 1916). Indeed, the most classical measure of
skewness goes under the name of Pearson’s moment coefficient of skewness:

γj =
E(X − µ)2j+1

σ2j+1
, (6)

where typically j = 1, but possibly j = 2, 3, . . . ; since γj is well-defined when the distribution of X has finite
moments up to order 2j + 1, the choice j = 1 is the least demanding in terms of distributional assumptions. The
rationale behind (6) is to use higher order moments to gauge how much the right tails of X are heavier than its left
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tails. This strategy obtains a valid (2j + 1)th order measure of skewness: it is apparent that (6) satisfies (P1) and it
was shown by van Zwet (1964) that (6) satisfies (P2); see also Oja (1981) and MacGillivray (1986).

The third order measure of skewness γ1 (standardized third central moment ofX) is also called Fisher-Pearson
coefficient of skewness (Doane and Seward, 2011); see Arnold and Groeneveld (1995) for its historical attribution
and Holgersson (2010) for the link to Fisher (1929). As an aside, note that Karl Pearson was not interested in the
sign of skewness and used β1 = γ21 in place of γ1. In order to compute γ1, we can write

E(X − µ)3 = E(X3)− 3µE(X2) + 2µ3. (7)

As pointed out by Groeneveld and Meeden (1984), if X follows a Pareto distribution with unit scale and large
enough shape, that is, f(x) = θ/xθ+1 for x > 1 and f(x) = 0 for x ≤ 1, with θ > 3, then E(Xk) = θ/(θ − k),
for k = 1, 2, 3, and E(X3) is arbitrarily large for θ close to 3, while E(X2) tends to 3, µ tends to 3/2 and σ2 tends
to 3/4; it follows that γ1 is arbitrarily large for θ close to 3 and we conclude that s̄ = +∞.

In the right hand side of (7), for k = 1, 2, 3, we will estimate E(Xk) by 〈Xk〉 = n−1
∑n
i=1X

k
i (corresponding

sample moment) ifX1, . . . , Xn are observed; note that for k = 1 we will estimate µ by the sample mean µ̂ = 〈X〉.
Then, in (6), we will estimate σ by the square root σ̂ of the sample variance σ̂2 = 〈X2〉 − 〈X〉2. The value γ̂1
obtained in this way (sample moment coefficient of skweness) can be adjusted for sample size, but we are not
interested in such an adjustment here; see Doane and Seward (2011) for information and references on this topic.
Egon Sharpe Pearson, together with H. O. Hartley, provided tables to use γ̂1 as a test for departure from normality
(Doane and Seward, 2011); see also Holgersson (2010) on testing asymmetry. Finally, the sharp algebraic bound
|γ̂1| ≤ (n − 2)/(n − 1)1/2 holds for all samples of size n (Wilkins, 1944; Kirby, 1974; Cox, 2010) even though
we have seen that γ1 can take arbitrarily large values.

As illustrated by Li and Morris (1991), in some cases γ1 may not express asymmetry well. Furthermore, being
based on the third order moment, γ1 is strongly influenced by outliers; see for instance Groeneveld (1991a). This
lack of robustness, together with an appetite for broadening the domain of definition, motivates the investigation
of alternative measures of skewness.

2.2.2 Unimodal measures

A second measure of skewness that dates back to the pioneering work of Pearson (1895) is called Pearson’s mode
coefficient of skewness or Pearson’s first coefficient of skewness:

S′K =
µ−M
σ

, (8)

well-defined for F ∈ F?2 . For instance, if f(x) = xα−1e−x/Γ(α) for x > 0 and f(x) = 0 for x ≤ 0, with α > 1,
we find µ = α, M = α − 1 and σ =

√
α, so that S′K = 1/

√
α. Remarkably, in this case (gamma distribution

with unit scale), the equality S′K = γ1/2 holds (Arnold and Groeneveld, 1995). The quantity α1 = γ1/2 is called
coefficient of momental skewness (Zwillinger and Kokoska, 1999, p. 18) and is clearly equivalent to γ1. In general,
of course, α1 and γ1 are not equivalent to S′K . The rationale behind (8) is that, as discussed in Section 2.1, the
mode-median-mean inequality is a sign of right skewness. If −X � X , then S′K > 0 and (8) gauges the width of
inequality. It is immediate to see that S′K satisfies (P1). However, as illustrated by Arnold and Groeneveld (1995),
the coefficient S′K does not satisfy (P2): compatibility with right skewness does not extend to full compatibility
with the convex ordering of distributions. Hence, we cannot regard S′K as a valid measure of skewness.

Arnold and Groeneveld (1995) proposed to replace (8) by

γAG = P{X ≥M} − P{X ≤M} = 1− 2F (M), (9)

which we name Arnold-Groeneveld coefficient of skewness. The coefficient γAG is well-defined for all F ∈ F?0 ,
because it does not involve any moment of X , which is an improvement in itself. The rationale behind (9) is an
implicit comparison between M and m (in place of µ): if M ≤ m then F (M) ≤ 1/2 and γAG ≥ 0. In this way,
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like before, right skewness implies γAG ≥ 0 through the mode-median-mean inequality. In addition, differently
from before, property (P2) is satisfied. This was shown by Arnold and Groeneveld (1995) assuming differentiable
probability density functions, but it holds for all F,G ∈ F?0 with modes MX and MY , respectively, that F � G

implies F (MX) ≥ G(MY ); this follows from F = G ◦R, where R = G−1 ◦F , and the definition of unimodality.
As for property (P1), it follows from the equality F̄ (−M) = 1−F (M). We conclude that γAG is a valid unimodal
measure of skewness of order zero (best possible order).

The coefficient γAG takes values in [−1, 1] and the equality γAG = 1 is attained when M = a, which requires
a > −∞ in the support interval of F , while γAG = −1 when M = b, which requires b < +∞. It follows that
all decreasing densities exhibit maximal positive skewness, while all increasing densities exhibit maximal negative
skewness. This is clearly a limitation, because γAG cannot discriminate between monotone densities of the same
type. A sample version γ̂AG of (9) can be obtained from an estimator M̂ of the mode and an estimator F̂ of the
distribution function; the latter can be the empirical distribution function, for simplicity, while the former can be
one of the estimators of the mode implemented in package modeest (Poncet, 2019) for R (R Core Team, 2019);
references on these estimators for unimodal distributions can be found in the same package.

2.2.3 First order measures

A third classical measure of skewness is called Pearson’s median coefficient of skewness or Pearson’s second
coefficient of skewness:

S′′K = 3
µ−m
σ

, (10)

where the leading (arbitrary) multiplicative constant stems from an approximation of (8); see Yule (1911, p. 150).
Equation (10) is well-defined for F ∈ F2 and is based, like (8), on the mode-median-mean inequality. It is clear
that S′′K satisfies (P1), but like S′K , as shown by van Zwet (1964), S′′K does not satisfy (P2). We therefore cannot
consider S′′K a valid measure of skewness. However, a valid replacement for (10) is provided by Groeneveld and
Meeden (1984):

γGM =
µ−m

E |X −m|
, (11)

which is well-defined for all F ∈ F1 and we name Groeneveld-Meeden coefficient of skewness. The broader
domain of definition is an advantage in itself, property (P1) is clearly preserved and, moreover, γGM satisfies (P2),
as shown by Groeneveld and Meeden (1984). The coefficient γGM is thus a valid measure of skewness of order
one (best possible order using the mean). The mean absolute error turns out to be the right denominator for the
difference between the mean and the median, if this is to be used as a measure of skewness.

We know from Jensen’s inequality that |E(X −m)| ≤ E |X −m| with equality if and only if P{X ≥ m} = 1

or P{X ≤ m} = 1. It follows that −1 < γGM < 1 and the extrema of γGM are unattainable by continuous
distributions; see Groeneveld (1991b) for the case of discrete distributions. A sample version γ̂GM of (11) will be
obtained by replacing m with the sample median m̂ and E |X −m| with its sample counterpart 〈|X − m̂|〉, as well
as µ with µ̂. Finally, we point out an interesting interpretation of (11):

γGM =
E(X −m |X ≥ m)− E(m−X |X ≤ m)

E(X −m |X ≥ m) + E(m−X |X ≤ m)
; (12)

see Groeneveld and Meeden (1984). In words, assuming for simplicity m = 0, we can say that γGM is the
normalized difference between the mean gain conditional on a gain and the mean loss conditional on a loss.

A simple alternative first order measure of skewness was suggested by Tajuddin (1999) in parallel to γAG:

γT = P{X ≤ µ} − P{X ≥ µ} = 2F (µ)− 1. (13)

We call γT in (13) the Tajuddin coefficient of skewness, noting that Tajuddin (1996) had previously suggested the
equivalent measure log (F (µ)/{1− F (µ)}) = log(1 + γT )/(1 − γT ). Equation (13) is clearly well-defined for
all F ∈ F1, it satisfies (P1), because F̄ (−µ) = 1 − F (µ), and it satisfies (P2), because Jensen’s inequality gives
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E(Y ) = E(G−1(F (X))) ≥ G−1(F (µ)) if X � Y (F � G); see also Tajuddin (1996). It follows that γT is a
valid alternative to γGM .

The rationale behind (13) is again the mode-median-mean inequality for right-skewed distributions: if a return
is right-skewed, then it is probably below average. It may sound counterintuitive that investors like such returns,
but a different wording is possible: if a return is right-skewed, then on average it is in the right tail of its distribution.
This may sound more palatable, but neither formulation has any impact on the validity of γT . As for the values that
γT can take, it is immediate to see that −1 < γT < 1. The estrema cannot be attained, because F is continuous,
but we will present in Section 3 an example where γT = 1− 2λ→ 1 as λ ↓ 0. Finally, a sample version γ̂T of γT
can be obtained from (13) by estimating F with the empirical distribution function and µ with the µ̂ = 〈X〉.

2.2.4 Zeroth order measures

None of the measures of skewness presented until now is well-defined for all F ∈ F0. A possibility in this sense
is offered by the quantile coefficient of skewness

Bα =
{F−1(1− α)−m} − {m− F−1(α)}

F−1(1− α)− F−1(α)
=
{F−1(1− α) + F−1(α)}/2−m
{F−1(1− α)− F−1(α)}/2

, (14)

where α ∈ ]0, 1/2[ and a typical choice is α = 1/4. The quartile coefficient of skewness B1/4 dates back to
Bowley (1920, p. 116) and is called Bowley-Yule coefficient of skewness, because the coefficient 2B1/4 can be
traced back to Yule (1911, p. 150). Groeneveld and Meeden (1984) introduced Bα, inspired by Hinkley (1975),
and also let α ↓ 0 to obtain the coefficient B0 = (a + b − 2m)/(b − a) for distributions with bounded support
interval, that is, with a > −∞ and b < +∞. Remarkably, if both the numerator and denominator in (14) are
integrated with respect to α from 0 to 1/2, before taking their ratio, the coefficient γGM in (11) emerges (assuming
F ∈ F1). It was shown by Groeneveld and Meeden (1984) that Bα satisfies (P1) and (P2) for all α ∈ [0, 1/2[.
Hence, we have a family of valid measures of skewness that can be used without any assumption on the moments
of the distribution (zeroth order measures of skewness).

Groeneveld and Meeden (2009) suggest a variant of (14) that is appropriate when the direction of skewness is
known a priori, but we do not deal with this case here. Brys et al. (2003) argue that the octile coefficient B1/8 is
more appropriate to detect asymmetry than the quartile coefficient B1/4, because it uses more information from
the tails of the distribution, but they also note that B1/4 is less sensitive to outliers (more robust) than B1/8. In the
end, this tension between sensitivity and robustness is at the heart of the choice of α in (14) and, more generally,
of a measure of skewness or any other distributional summary.

It is easy to see that −1 < Bα < 1 for all α ∈ [0, 1/2[; the extreme values are unattainable by continuous
distributions, becauseBα = −1 would require F−1(1−α) = m andBα = 1 would require F−1(α) = m, but see
Groeneveld (1991b) for discrete distributions. A sample version of (14) will be obtained by replacing all quantiles
of F by their sample counterparts (quantiles of the empirical distribution function); in particular, of course, m̂ will
replace m. Finally, the coefficient B1/4 admits an interpretation analogous to that of γGM , but with conditional
medians in place of conditional means, while the coefficient B0 can be interpreted in terms of conditional ranges
(Groeneveld and Meeden, 1984).

The coefficient Bα defined by (14) features in an interesting decomposition of the quantile function:

F−1(α) = m− Sα(1−Bα)/2,

F−1(1/2) = m,

F−1(1− α) = m+ Sα(1 +Bα)/2,

(15)

where α varies in ]0, 1/2[ and Sα = F−1(1 − α) − F−1(α) is the αth inter-quantile range; see Benjamini and
Krieger (1996). The decomposition (15) links the measure of skewness Bα to the measure of scale Sα and the
measure of location m. These three measures, together, determine the quantile function (letting α vary in ]0, 1/2[).
Note that Bα > 0 implies (1 + Bα)/2 > 1/2 and (1− Bα)/2 < 1/2, while Bα < 0 implies (1 + Bα)/2 < 1/2
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and (1−Bα)/2 > 1/2. If Bα = 0, then F−1(1−α)−m = m−F−1(α) and (1) holds for their common value t
(a sign of symmetry). Indeed, setting Bα = 0 in (1) produces a symmetric distribution; see also Doksum (1975).

3 The risk asymmetry index

Let X be a random variable with mean µ and standard deviation σ. The centered variable X − µ can be written
as the sum of its positive part (X − µ)+ = max(0, X − µ) and its negative part (X − µ)− = max(0, µ − X).
Accordingly, the variance of X can be written as σ2 = σ2

U + σ2
D, where σ2

U = E(X − µ)2+ is called the upside
variance of X and σ2

D = E(X − µ)2− is called the downside variance of X; the quantities σU and σD are called
the upside standard deviation and downside standard deviation of X , respectively. From a financial viewpoint,
σU represents “good” volatility and σD represents “bad” volatility, while σ represents “total” volatility. The risk
asymmetry index (Elyasiani et al., 2018) is defined as RAX = (σU − σD)/σ and represents the relative excess
of “good” volatility (with respect to “bad” volatility) in the distribution of returns modeled by X . The rationale
behind this definition is to compare above average returns with below average returns in terms of their root mean
squared residuals. We show in the following that such a comparison results in a valid measure of skewness.

The risk asymmetry index can be rewritten as

RAX =

√
σ2
U

σ2
−
√

1−
σ2
U

σ2
=

√
1−

σ2
D

σ2
−

√
σ2
D

σ2
, (16)

that is, as a strictly increasing function of the relative upside variance σ2
U/σ

2 or, alternatively, as the opposite
function of the relative downside variance σ2

D/σ
2 = 1 − σ2

U/σ
2. This rewriting is useful to show that RAX is a

valid measure of skewness. Indeed, property (P1) follows directly from the fact that the upside variance of −X is
the downside variance of X . As for property (P2), we first note that (16) is location-scale invariant. This allows
us to focus on the standard case µ = 0 and σ = 1. In this case, we have σ2

U = EX2
+ and it follows from

Theorem 5.3 in Oja (1981) that X � Y implies EX2
+ ≤ EY 2

+. Then, by (16), the same inequality holds for RAX
and (P2) holds. We conclude that RAX is a valid measure of skewness and we point out that it is a second order
one, because (16) is well-defined for F ∈ F2. As such, RAX fills a gap in the literature reviewed in Section 2.2.

It is clear from the decomposition of variance in its upside and downside components that 0 < σ2
U/σ

2 < 1.
If X is symmetric, then σ2

U = σ2
D and σ2

U/σ
2 = 1/2, so that RAX = 0. The following example shows that the

relative upside variance can get arbitrarily close to 1 for a suitable choice of F in F2. Let X be a random variable
with probability density function defined by

f(x) = (1− λ)f−(x) + λf+(x),

f+(x) = λe−λx, x ≥ 0,

f−(x) = 2λ2

(1−λ)2 fu(x) + 1−2λ−λ2

(1−λ)2 ft(x),

ft(x) = (1− λ){1− |1 + (1− λ)x|}, − 2
(1−λ) < x < 0,

fu(x) = 1−λ
2 , − 2

(1−λ) < x < 0,

(17)

assuming f+(x) = 0 for x < 0 and ft(x) = fu(x) = 0 for x ≤ −2/(1−λ) or x ≥ 0, while λ ∈ ]0,
√

2− 1[; note
that f is continuous at 0 and therefore on its support interval ]a, b[ = ]− 2/(1− λ),+∞[. It can be seen from (17)
that E(X) = 0, E(X2

+) = 2/λ and E(X2
−) ≤ {2/(1− λ)}2(1− λ) = 4/(1− λ), so that σ2

D/σ
2
U ≤ 2λ/(1− λ).

It follows that σ2
U/σ

2 = 1/(1 + σ2
D/σ

2
U ) → 1, as λ ↓ 0, while σ2

D/σ
2 → 0 and thus the relative upside variance

of −X can get arbitrarily close to 0. As a consequence, we have RAX→ 1 for X and RAX→ −1 for −X . Note
that P{X ≤ 0} = 1− λ, while P{X ≥ 0} = λ, so that γT = 1− 2λ as anticipated in Section 2.2.

If a random sample X1, . . . , Xn from the distribution of X is available, a sample version of RAX can be
obtained from (16) by replacing σ2 with the sample variance σ̂2 = 〈X2〉 − 〈X〉2 and σ2

U with the sample upside
variance σ̂2

U = 〈(X−µ̂)2+〉 or σ2
D with the sample downside variance σ̂2

D = 〈(X−µ̂)2−〉, where of course µ̂ = 〈X〉
is the sample mean. An advantage of RAX is that risk-neutral versions of these quantities are easy to obtain from
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option data in a model-free setup (Bakshi et al., 2003; Muzzioli, 2013a,b); this was indeed the original setting of
Elyasiani et al. (2018). In this setting σU and σD represent the upside corridor implied volatility and the downside
corridor implied volatility, respectively (Carr and Madan, 1998; Muzzioli, 2013a,b). From an economic point of
view the upside corridor is associated to “good“ volatility, because it refers to the possibility of large gains. On the
other hand, the downside corridor is associated to “bad” volatility due to the chance of large losses for investors.
Note that, in principle, the whole risk-neutral distribution function of returns can be recovered from option data,
because it is the discounted first derivative of the European put price, but in practice it can be tricky to go beyond
the first moments; see Birru and Figlewski (2012) for an example of work in this direction.

4 Empirical findings

In this section we follow the approach of Brys et al. (2003) to examine the performance of RAX (introduced
in Section 3) together with other valid measures of skewness. In particular, we consider simulated data from a
gamma distribution and we test our measures for different degrees of the shape parameter α. Recall that a gamma
distribution has probability density function given by

fα,β(x) =
1

Γ(α)βα
xα−1e

−x
β , 0 < x <∞, (18)

where α > 0 determines the shape of the distribution, while β > 0 is a scale parameter and can therefore be ignored
since we are interested in skewness (β = 1 for concreteness). Arnold and Groeneveld (1995) highlight that the
parameterization of gamma distributions in terms of α respects the convex ordering of distributions. Indeed, the
Fisher-Pearson coefficient of skewness is straightforward to calculate: γ1 = 2/

√
α.

In Figure 1 several coefficients are presented for the gamma case. In detail, we generated 1000 samples, each of
n = 100 observation, from the gamma distribution with α ranging from 0 to 3, and we plot the average estimated
skewness versus the value of α. For our purposes, we take into consideration four measures of skewness: the
Groeneveld-Meeden (γGM ), the Bowley-Yule (B1/4), the Risk Asymmetry indeX (RAX) and the Tajuddin (γT )
coefficient of skewness. We expect that all four measures decrease monotonically in α and Figure 1 confirms this
expectation: each measure start from 1 when α is near to zero (indicating high skewness) and drop towards zero
as α grows (indicating low skewness). We see that B1/4 and γT attain the smallest values, while RAX maintains
between γGM (upper limit) and B1/4 or γT (lower limit) for every α. This means that RAX has an intermediate
sensitivity to changes in the shape of the gamma distribution. Table 1 reports the average estimates of the four
skewness measures (with their standard errors in parenthesis) for several values of α and for n = 30, 100, 1000.
We can see that the four measures of skewness behave more or less as in Figure 1 for all sample sizes.

As a further step, we analyze the robustness of the four measures upon varying the shape parameter of the
gamma distribution. Specifically, we compare their behavior under the influence of a few outliers. To this purpose,
in Figure 2(a) we propose the boxplots of the skewness estimates on 1000 random data sets for α = 1.5 and
considering n = 1000 observations, while Figure 2 (b) depicts the same boxplots where we replaced 15% of the
data with outliers distant 8 standard deviations to the right of the mean. It can be seen that the median values
increase for all skewness measures, bringing the boxes with them, but for RAX, which instead shows a decrease.
We deeper explore robustness in Figure 3, where further simulations are depicted. In particular, Figure 3(a) shows
for each measure and for several values of α the difference between the average estimated value at the contaminated
and at the original data sets. As in Figure 2(b), we replaced a percentage of the original data with outliers under
different contamination levels. In detail, we contaminated our data at 5% in Figure 3 (a) and at 15% in Figure 3 (b).
We see that a decrease in skewness upon contamination is also possible for γT , but not for B1/4 nor for γGM . This
aspect deserves, in our opinion, further investigations. Finally, focussing on the absolute skewness change upon
contamination, we note that B1/4 stands out for being rather insensitive to the presence of outliers, while the
performance of RAX is competitive with that of γT and γGM . We can conclude that RAX strikes a good balance
between robustness to outliers and sensitivity to changes in the shape of the distribution.



G. Campisi, L. La Rocca, and S. Muzzioli 11

Table 1: Average estimated skewness and standard error for 1000 samples of n = 30, 100, 1000 observations and
for α ranging from 0.01 to 3.

n γGM B1/4 RAX γT

α = 0.01 30 1.0000 1.0000 0.7663 0.8756
(0.0000) (0.0000) (0.0014) (0.0019)

100 1.0000 1.0000 0.8413 0.9109
(0.0000) (0.0000) (0.0011) (0.0007)

1000 1.0000 1.0000 0.8881 0.9197
(0.0000) (0.0000) (0.0005) (0.0002)

α = 0.2 30 0.8780 0.7185 0.5210 0.5105
(0.0030) (0.0058) (0.0030) (0.0035)

100 0.9027 0.7558 0.5704 0.5218
(0.0013) (0.0031) (0.0019) (0.0019)

1000 0.9116 0.7730 0.5928 0.5282
(0.0004) (0.0009) (0.0007) (0.0006)

α = 0.5 30 0.6121 0.4004 0.3925 0.3478
(0.0047) (0.0074) (0.0030) (0.0040)

100 0.6262 0.4119 0.4281 0.3623
(0.0026) (0.0041) (0.0019) (0.0021)

1000 0.6343 0.4198 0.4473 0.3651
(0.0009) (0.0013) (0.0007) (0.0007)

α = 1 30 0.4202 0.2430 0.3029 0.2530
(0.0051) (0.0075) (0.0030) (0.0041)

100 0.4365 0.2562 0.3308 0.2634
(0.0028) (0.0041) (0.0019) (0.0023)

1000 0.4413 0.2592 0.3423 0.2633
(0.0009) (0.0013) (0.0006) (0.0007)

α = 3 30 0.2382 0.1315 0.1860 0.1436
(0.0051) (0.0074) (0.0028) (0.0044)

100 0.2444 0.1341 0.2037 0.1512
(0.0029) (0.0040) (0.0016) (0.0024)

1000 0.2473 0.1372 0.2094 0.1545
(0.0009) (0.0014) (0.0005) (0.0008)
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Figure 1: Average of four skewness measures over 1000 samples of size n = 100 for several values of the shape
parameter α of the gamma distribution.
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Figure 2: Boxplots of skewness estimates on 1000 random samples of n = 1000 observations from a gamma
distribution with shape parameter α = 1.5 without contamination (a) and with 15% contamination (b).
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Figure 3: Difference between average skewness estimates at contaminated and at uncontaminated data for different
values of α and 5% (a) and 15% (b) contamination respectively.
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5 Discussion

We presented in this paper a comprehensive framework for the assessment of univariate skewness. We did not deal
with multivariate skewness; see for instance Khattree and Bahuguna (2019) or Franceschini and Loperfido (2019)
on this broader topic. We reviewed the statistical literature in search of principled and broadly applicable measures
of skewness, but there are of course further alternatives. For instance, if a parametric model is adopted, a skewness
parameter may be included in its parameterization. This is the case of the skew normal model that led Eling et al.
(2010) to suggest Azzalini’s skewness parameter as a measure of skewness; see Azzalini (2005) for a first-hand
review with discussion of the skew normal distribution. This is also the case of the stable model, which has the
advantage of allowing for very heavy tails; see e.g. Nolan (2003) for an introduction to stable distributions with
focus on financial data. Another alternative approach was taken by Kashlak (2018), who suggested to measure
distributional asymmetry with Wasserstein distance and Rademacher symmetrization.

We proposed a new measure of skewness, called RAX and based on work by Elyasiani et al. (2018), showing
that our proposal is a valid second order measure of skeweness. RAX is the relative difference between upside and
downside volatility. We used volatility, following Elyasiani et al. (2018), because of its high standing in finance.
In principle, we could also compare above average returns with below average returns in terms of their mean
absolute residuals, rather than root mean squared residuals, but we would still need volatility in the denominator
to satisfy (P2).

In Section 2.2, the presentation of first order measures of skewness led us to remark that the mean absolute
error was the right denominator to turn the difference between the mean and the median into a valid measure of
skewness; this turned (10) into (11). We wonder whether there is right denominator for the difference between the
mean and the mode to turn (8) into a valid measure of skewness.

Acknowledgements

The authors gratefully acknowledge financial support from the FAR2017 project “The role of Asymmetry and
Kolmogorov equations in financial Risk Modelling (ARM)”.

References

Abadir, K. M. (2005). The mean-median-mode inequality: counterexamples. Econometric Theory, 21(2), 477–
482.

Arnold, B. C. and Groeneveld, R. A. (1993). Skewness and kurtosis orderings: an introduction. In M. Shaked
and Y. L. Tong, editors, Stochastic Inequalities, volume 22 of Lecture Notes-Monograph Series, pages 17–24.
Institute of Mathematical Statistics, Hayward.

Arnold, B. C. and Groeneveld, R. A. (1995). Measuring skewness with respect to the mode. The American
Statistician, 49(1), 34–38.

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of
Statistics, 32(2), 159–200. With discussion.

Bakshi, G., Kapadia, N., and Madan, D. (2003). Stock return characteristics, skew laws, and the differential pricing
of individual equity options. Review of Financial Studies, 16(1), 101–143.

Benjamini, Y. and Krieger, A. M. (1996). Concepts and measures for skewness with data-analytic implications.
Canadian Journal of Statistics, 24(1), 131–140.

Birru, J. and Figlewski, S. (2012). Anatomy of a meltdown: the risk neutral density for the S&P 500 in the fall of
2008. Journal of Financial Markets, 15(2), 151–180.



G. Campisi, L. La Rocca, and S. Muzzioli 14

Bowley, A. L. (1920). Elements of Statistics. Scribner, New York, 4 edition.

Brys, G., Hubert, M., and Struyf, A. (2003). A comparison of some new measures of skewness. In R. Dutter,
P. Filzmoser, U. Gather, and P. J. Rousseeuw, editors, Developments in Robust Statistics, pages 98–113. Springer,
Berlin.

Carr, P. and Madan, D. (1998). Towards a theory of volatility trading. In R. A. Jarrow, editor, Volatility: New
Estimation Techniques for Pricing Derivatives, pages 417–427. Risk Books, London.

Cox, N. J. (2010). Speaking Stata: the limits of sample skewness and kurtosis. The Stata Journal, 10(3), 482–495.

Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press, San
Diego.

Doane, D. P. and Seward, L. E. (2011). Measuring skewness: a forgotten statistic? Journal of Statistics Education,
19(2), 1–18.

Doksum, K. A. (1975). Measures of location and asymmetry. Scandinavian Journal of Statistics, 2(1), 11–22.

Eling, M., Farinelli, S., Rossello, D., and Tibiletti, L. (2010). Skewness in hedge funds returns: classical skewness
coefficients vs Azzalini’s skewness parameter. International Journal of Managerial Finance, 6(4), 290–304.

Elyasiani, E., Gambarelli, L., and Muzzioli, S. (2018). The risk-asymmetry index as a new measure of risk.
Multinational Finance Journal, 22(3/4), 173–210.

Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105.

Fisher, R. A. (1929). Moments and product moments of sampling distributions. Proceedings of the London
Mathematical Society: Series 2, 30(1), 199–238. Corrigenda in 30(1), 552–552.

Franceschini, C. and Loperfido, N. (2019). MaxSkew and MultiSkew: two R packages for detecting, measuring
and removing multivariate skewness. Symmetry, 11(8), 970.

Groeneveld, R. A. (1991a). An influence function approach to describing the skewness of a distribution. The
American Statistician, 45(2), 97–102.

Groeneveld, R. A. (1991b). Sharp inequalities for skewness measures. Journal of the Royal Statistical Society:
Series D (The Statistician), 40(4), 387–392.

Groeneveld, R. A. and Meeden, G. (1984). Measuring skewness and kurtosis. Journal of the Royal Statistical
Society: Series D (The Statistician), 33(4), 391–399.

Groeneveld, R. A. and Meeden, G. (2009). An improved skewness measure. METRON, 67(3), 325–337.

Hinkley, D. V. (1975). On power transformations to symmetry. Biometrika, 62(1), 101–111.

Holgersson, T. H. E. (2010). A modified skewness measure for testing asymmetry. Communications in Statistics:
Simulation and Computation, 39(2), 335–346.

Kashlak, A. B. (2018). Measuring distributional asymmetry with Wasserstein distance and Rademacher sym-
metrization. Electronic Journal of Statistics, 12(2), 2091–2113.

Khattree, R. and Bahuguna, M. (2019). An alternative data analytic approach to measure the univariate and
multivariate skewness. International Journal of Data Science and Analytics, 7(1), 1–16.

Kirby, W. (1974). Algebraic boundedness of sample statistics. Water Resources Research, 10(2), 220–222.



G. Campisi, L. La Rocca, and S. Muzzioli 15

Lempérière, Y., Deremble, C., Nguyen, T.-T., Seager, P., Potters, M., and Bouchaud, J.-P. (2017). Risk premia:
asymmetric tail risks and excess returns. Quantitative Finance, 17(1), 1–14.

Li, X. and Morris, J. M. (1991). On measuring asymmetry and the reliability of the skewness measure. Statistics
& Probability Letters, 12(3), 267–271.

MacGillivray, H. L. (1986). Skewness and asymmetry: measures and orderings. The Annals of Statistics, 14(3),
994–1011. Correction in The Annals of Statistics 1987, Vol. 15, No. 2, 884.

Muzzioli, S. (2013a). The forecasting performance of corridor implied volatility in the italian market. Computa-
tional Economics, 41(3), 359–386.

Muzzioli, S. (2013b). The information content of option-based forecasts of volatility: evidence from the Italian
stock market. The Quarterly Journal of Finance, 3(01), 1350005.

Nolan, J. P. (2003). Modeling financial data with stable distributions. In S. T. Rachev, editor, Handbook of Heavy
Tailed Distributions in Finance, pages 105–130. Elsevier.

Oja, H. (1981). On location, scale, skewness and kurtosis of univariate distributions. Scandinavian Journal of
Statistics, 8(3), 154–168.

Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous
material. Philosophical Transactions of the Royal Society of London: Series A, 186, 343–414.

Pearson, K. (1901). Mathematical contributions to the theory of evolution. X. Supplement to a memoir on skew
variation. Philosophical Transactions of the Royal Society of London: Series A, 197, 443–459.

Pearson, K. (1916). Mathematical contributions to the theory of evolution. XIX. Second supplement to a memoir
on skew variation. Philosophical Transactions of the Royal Society of London: Series A, 216, 429–457.

Peiró, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23(6), 847 – 862.

Poncet, P. (2019). modeest: Mode Estimation. R package version 2.4.0.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna.

Sato, M. (1997). Some remarks on the mean, median, mode and skewness. Australian Journal of Statistics, 39(2),
219–224.

Tajuddin, I. (1996). A simple measure of skewness. Statistica Neerlandica, 50(3), 362–366.

Tajuddin, I. H. (1999). A comparison between two simple measures of skewness. Journal of Applied Statistics,
26(6), 767–774.

van Zwet, W. R. (1964). Convex transformations: a new approach to skewness and kurtosis. Statistica Neerlandica,
18(4), 433–441. Republished in S. van de Geer and M. Wegkamp, editors, Selected Works of Willem van Zwet,
pages 3-11. Springer, New York, 2012.

van Zwet, W. R. (1979). Mean, median, mode II. Statistica Neerlandica, 33(1), 1–5.

Whaley, R. E. (2000). The investor fear gauge. The Journal of Portfolio Management, 26(3), 12–17.

Whaley, R. E. (2009). Understanding the vix. The Journal of Portfolio Management, 35(3), 98–105.

Wilkins, J. E. (1944). A note on skewness and kurtosis. The Annals of Mathematical Statistics, 15(3), 333–335.

Yule, G. U. (1911). An Introduction to the Theory of Statistics. Griffin, London.

Zwillinger, D. and Kokoska, S. (1999). CRC Standard Probability and Statistics Tables and Formulae. CRC Press,
Boca Raton.


	ISSN: 2281-440X online

