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Abstract
In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human
transmission was assumed and a previously unrecognized entity, termed coronavirus disease-19 (COVID-19) due to a novel
coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first
European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It
has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for
cell surface binding and internalization. Thus, a predisposing genetic background can give reason for interindividual disease
susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome
sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of
variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.
(Asn720Asp), p.(Lys26Arg), and p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare
variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere
with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131
patients and 258 controls allowed identifying a statistically significant (P value < 0.029) higher allelic variability in controls
compared with patients. These findings suggest that a predisposing genetic background may contribute to the observed
interindividual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to
personalized preventive measures and therapeutic options.

Introduction

In December 2019, a new infectious respiratory disease
emerged in Wuhan, Hubei province, China [1–3]. An initial

cluster of infections likely due to animal-to-human trans-
mission was rapidly followed by a human-to-human trans-
mission [4]. The disease was recognized to be caused by a
novel coronavirus (SARS-CoV-2) and termed coronavirus
disease-19 (COVID-19). The infection spread within China
and all over the world, and it has been declared as pandemic
by the World Health Organization (WHO) on 2nd March
2020. The symptoms of COVID-19 range from fever, dry
cough, fatigue, congestion, sore throat, and diarrhea to
severe interstitial bilateral pneumonia with a ground-glass
image at the CT scan. While recent studies provide evidence
of a high number of asymptomatic or paucisymptomatic
patients who represent the main reservoir for the infection
progression, the severe cases can rapidly evolve towards a
respiratory distress syndrome which can be lethal [5].
Although age and comorbidity have been described as the
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main determinants of disease progression towards severe
respiratory distress, the high variation in clinical severity
among middle-age adults and children would likely suggest
a strong role of the host genetic asset.

A high sequence homology has been shown between
SARS-associated coronavirus (SARS-CoV) and SARS-
CoV-2 [6]. Recent studies modeled the spike protein to
identify the receptor for SARS-CoV-2 and indicated that
angiotensin converting enzyme 2 (ACE2) is the receptor for
this novel coronavirus [7, 8]. Zhou et al. conducted virus
infectivity studies and showed that ACE2 is essential for
SARS-CoV-2 to enter HeLa cells [9]. Although the binding
strength between SARS-CoV-2 and ACE2 is weaker than
that between SARS-CoV and ACE2, it is considered as
much high as threshold necessary for virus infection. The
spike glycoprotein (S-protein), a trimeric glycoprotein in the
virion surface (giving the name of crown -corona in latin-),
mediates receptor recognition throughout its receptor
binding domain (RBD) and membrane fusion [10, 11].
Based on recent reports, SARS-CoV-2 protein binds to
ACE2 through Leu455, Phe486, Gln493, Ala501, and
Tyr505. It has been postulated that residues 31, 41, 82, 353,
355, and 357 of the ACE2 receptor map to the surface of the
protein interacting with SARS-CoV-2 spike protein [12], as
previously documented for SARS-CoV. Following inter-
action, cleavage of the C-terminal segment of ACE2 by
proteases, such as transmembrane protease serine 2
(TMPRSS2), enhances the spike protein-driven viral entry
[13, 14]. Thus, it is possible, in principle, that genetic
variability of the ACE2 receptor is one of the elements
modulating virion intake and thus disease severity. ACE2 is
located on chromosome X. Although it is one of the genes
escaping X inactivation several lines of evidence suggest
that a different degree of X-chromosome inactivation (XCI)
is present in distinct tissues [15].

Taking advantage of the Network of Italian Genomes
(NIG), a consortium established to generate a public data-
base (NIG-db) containing aggregate variant frequencies
data for the Italian population (http://www.nig.cineca.it/),
here we describe the genetic variation of ACE2 in the Italian
population, one of the newly affected countries by the
SARS-CoV-2 outbreak causing COVID-19. Three common
c.2158A>G p.(Asn720Asp), c.77A>G p.(Lys26Arg), and
c.631G>A p.(Gly211Arg) variants and 27 rare missense
variants were identified, 9 of which had not previously been
reported in public databases. We show that p.(Asn720Asp),
which lies in a residue located close to the cleavage
sequence of TMPRSS2, likely affects the cleavage-
dependent virion intake. Along with the other two com-
mon variants, this substitution is represented in the Italian
and European populations but is extremely rare in the Asian
population. We also show that two rare variants, namely,
c.1051C>G p.(Leu351Val) and c.1166C>A p.(Pro389His)

are predicted to cause conformational changes impacting
RBD interaction. As the uncertainty regarding the trans-
missibility and severity of disease rise, we believe that a
deeper characterization of the host genetics and functional
characterization of variants may help not only in under-
standing the pathophysiology of the disease but also in
envisaging risk assessment.

Materials and methods

Italian population randomization

The work has been realized in the context of the NIG, with
the contribution of centers: Azienda Ospedaliera Uni-
versitaria Senese, Azienda Ospedaliera Universitaria Poli-
clinico Sant’Orsola-Malpighi di Bologna, Città della Salute
e della Scienza di Torino, Università della Campania “Luigi
Vanvitelli”, Ospedale Pediatrico Bambino Gesù. The NIG
(http://www.nig.cineca.it/) aim is to create a shared database
(NIG-db) containing data from nucleic acids sequencing of
Italian subjects. This database allows defining an Italian
Reference Genome for the identification of genes respon-
sible for genetic diseases or Italian population susceptibility
to complex disorders and for the detection of genetic var-
iants responsible for interindividual differences in disease
progression ad /or drug response among the Italian popu-
lation. Individuals coming to our centers were offered to
participate to the NIG study and blood withdrawal was
performed upon informed consent. Individuals provided
signed informed consents at each participating center for
whole-exome sequencing analysis (WES), and clinical and
molecular data storage and usage. All subjects were unre-
lated, healthy, and of Italian ancestry. Italian origin was
ascertained asking for parents and grandparents origin.
DNA has been stored in the Telethon Network of Genetic
Biobanks (project no. GTB12001), funded by
Telethon Italy.

COVID-19 patients enrollment

The study was consistent with Institutional guidelines and
approved by the University Hospital (Azienda Ospedaliera
Universitaria Senese) Ethical Committee, Siena, Italy (Prot
n. 16929, dated March 16, 2020). Written informed consent
was obtained from all patients and controls. Peripheral
blood samples in EDTA-containing tubes and detailed
clinical data were collected. All these data were inserted in a
section of the established and certified Biobank and Reg-
istry of the Medical Genetics Unit of the Hospital dedicated
to COVID-19. The cohort of COVID-19 patients consists of
131 individuals out of whom 34 females and 97 males
belonging to the GEN-COVID MULTICENTER STUDY
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([16], Late Breaking Abstract ESHG 2020.2 Virtual Con-
ference “WES profiling of COVID-19”). The cohort of
controls consists of 258 italian individuals (129 males and
129 females). All patients are of Italian ethnicity. The
median age is 64 years (range 31–98): median age for
women 66 years and for males 63 years. The population
was clustered into four qualitative severity groups depend-
ing on the respiratory impairment and the need for venti-
lation: high care intensity group (those requiring invasive
ventilation), intermediate care intensity group (those
requiring noninvasive ventilation i.e., CPAP and BiPAP,
and high-flows oxygen therapy), low care intensity group
(those requiring conventional oxygen therapy) and very low
care intensity group (those not requiring oxygen therapy).

Whole-exome sequencing

Targeted enrichment and massively parallel sequencing
were performed on genomic DNA extracted from circulat-
ing leukocytes of 6930 individuals. Genomic DNA was
extracted from peripheral blood samples using standard
procedures. Exome capture was carried out using Sur-
eSelect Human All Exon V4/V5/V6/V7 (Agilent Technol-
ogies, Santa Clara, CA), Clinical Research Exome V1/V2
(Agilent), Nextera Rapid Capture v.1.2 (Illumina, San
Diego, CA), TruSeq Exome Targeted Regions (Illumina,
San Diego, CA), TruSight One Expanded V2 (Illumina, San
Diego, CA), Sequencing-by-Synthesis Kit v3/v4 (Illumina,
San Diego, CA) or HiSeq 2000 v2 Sequencing-by-
Synthesis Kit (Illumina, San Diego, CA), and sequencing
was performed on Genome Analyzer (v3/v4)/HiSeq2000/
NextSeq550/NextSeq500/Novaseq6000 platforms (Illu-
mina, San Diego, CA). A subset of WES had been out-
sourced (BGI, Shenzhen, China; Mount Sinai, NY, USA;
Broad Institute, Harvard, USA). Alignment of raw reads
against reference genome Hg19, variant calling and anno-
tation were attained using in-house pipelines [17–19] which
take advantage of the GATK Best Practices workflow [20]
and of Annovar, VEP [21, 22]. The genome aggregation
database gnomAD (https://gnomad.broadinstitute.org/) was
used to assess allele frequency for each variant among
different populations. The mean depth of coverage of each
ACE2 exon in all participants was 55×. Variants with a
depth of coverage lower that 20× were filtered out accord-
ing to ASHG Guidelines for germline variants [23].

The identified variants have been submitted in LOVD
database:

Variant ID 0000667129 https://databases.lovd.nl/shared/
individuals/00302622;

Variant ID 0000667137 https://databases.lovd.nl/shared/
individuals/00302630;

Variant ID 0000667136 https://databases.lovd.nl/shared/
individuals/00302628;

Variant ID 0000667138 https://databases.lovd.nl/shared/
individuals/00302629;

Variant ID 0000667131 https://databases.lovd.nl/shared/
individuals/00302624;

Variant ID 0000667133 https://databases.lovd.nl/shared/
individuals/00302626;

Variant ID 0000667130 https://databases.lovd.nl/shared/
individuals/00302621;

Variant ID 0000667134 https://databases.lovd.nl/shared/
individuals/00302625;

Variant ID 0000667132 https://databases.lovd.nl/shared/
individuals/00302623;

Variant ID 0000667128 https://databases.lovd.nl/shared/
individuals/00302620;

Variant ID 0000667126 https://databases.lovd.nl/shared/
individuals/00302618;

Variant ID 0000667127 https://databases.lovd.nl/shared/
individuals/00302619;

Variant ID 0000667125 https://databases.lovd.nl/shared/
individuals/00302617;

Variant ID 0000667123 https://databases.lovd.nl/shared/
individuals/00302615;

Variant ID 0000667124 https://databases.lovd.nl/shared/
individuals/00302616;

Variant ID 0000667118 https://databases.lovd.nl/shared/
individuals/00302610;

Variant ID 0000667120 https://databases.lovd.nl/shared/
individuals/00302612;

Variant ID 0000667122 https://databases.lovd.nl/shared/
individuals/00302614;

Variant ID 0000667121 https://databases.lovd.nl/shared/
individuals/00302613;

Variant ID 0000667119 https://databases.lovd.nl/shared/
individuals/00302611;

Variant ID 0000667117 https://databases.lovd.nl/shared/
individuals/00302609.

Computational studies

The structure of native human angiotensin converting
enzyme-related carboxypeptidase (ACE2) was downloaded
from Protein Data Bank (https://www.rcsb.org/) (PDB ID
code 1R42) [24]. The DUET program [25] was used to
predict the possible effect of amino acids substitutions on
the protein structure and function, based on the use of
machine-learning algorithms exploiting the three-
dimensional structure to quantitatively predict the effects
of residue substitutions on protein functionality. Molecular
dynamics (MD) simulations of wild-type and variant ACE2
proteins were carried out in GROMACS 2019.3 [26] to
calculate root mean square deviation (RMSD) to define
structural stability. The graphs were plotted by the
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XMGrace software [27]. MD simulations were performed
using a high parallel computing infrastructure (HPCS) with
660 cpu within 21 different nodes, 190T of RAM, 30T hard
disk partition size, and six NVIDIA TESLA gpu with
CUDA support. PyMOL2.3 was used as a molecular gra-
phic interface. The protein structures were solvated in a
triclinic box filled with TIP3P water molecules and Na+/Cl−

ions were added to neutralize the system. The whole sys-
tems were then minimized with a maximal force tolerance
of 1000 kJ mol−1 nm−1 using the steepest descendent algo-
rithm. The optimized systems were gradually heated to 310
K in 1 ns in the NVT ensemble, followed by 10 ns equili-
bration in the NPT ensemble at 1 atm and 310 K, using the
V-Rescale thermostat and Berendsen barostat [28, 29].
Subsequently, a further 100 ns MD simulations were per-
formed for data analysis.

Results

ACE2 variants identification

The extent of variability along the entire ACE2 coding
sequence and flanking intronic stretches was assessed using
6930 Italian WES, out of which 4171 males and 2759
females which sum up to 9689 alleles. Identified variants
and predicted effects on protein stability are summarized in
Tables 1, 2, and Table S1, and represented in Fig. 1. Three
more common variants, c.2158A>G p.(Asn720Asp),
c.77A>G p.(Lys26Arg), c.631G>A p.(Gly211Arg), were
identified. The c.2158A>G p.(Asn720Asp) substitution was
estimated to have a frequency of 0.011 (103/9689 alleles),
which is in line with the frequency of the variant reported in
the gnomAD database (0.016), and is lower than the fre-
quency reported in gnomAD for the European non-Finnish
population (0.025, 2195/87966 analyzed alleles). Given the
ACE2 localization on X chromosome we focused our
attention on the females alleles. All analyzed females (2759
out of 6930) belonging to the Italian population, were het-
erozygotes for the variant. Notably, this variant has not been
reported in the Eastern Asia population (13,784 exomes).
The c.77A>G p.(Lys26Arg), c.631G>A p.(Gly211Arg)
variants were found with a frequency of 0.0011 (lower than
the frequency in the European non-Finnish population,
0.0058) and 0.0012 (European non-Finnish population fre-
quency, 0.0019), respectively. Out of ~92,708 analyzed
alleles in the European non-Finnish population, one
homozygous female has been reported for the c.77A>G p.
(Lys26Arg) while no homozygous females were reported
for the c.631G>A p.(Gly211Arg). According to gnomAD,
the allele frequency of the c.77A>G p.(Lys26Arg) variant in
the Eastern Asia population was 6 × 10−5, while the
c.631G>A p.(Gly211Arg) has not been reported in 14.822

exomes. In addition to these variants, 28 rare missense
variants were identified, out of which ten had not previously
been reported in GnomAD database and nine truncating
variants that had not been reported in gnomAD database
(Table 1 and Supplementary Table 1). Out of these variants,
two fall in the neck domain, which is essential for dimer-
ization and one in the intracellular domain. Many of them
truncate the protein in different positions of the Protease
domain embedded in the extracellular domain, which con-
tains the receptor binding site for SARS-CoV-2. Only three
truncating variants have been previously described for
ACE2 likely due to a low-tolerance for loss-of-function
variants. In line with this evidence, all these variants were
very rare and no homozygous females were detected for the
identified variants. Three missense changes c.1517T>C p.
(Val506Ala), c.626T>G p.(Val209Gly), and c.1129G>T p.
(Gly377Glu) were predicted to have destabilizing structural
consequences (Table 2); among these, c.1517T>C p.
(Val506Ala) is indeed the only amino acid change reported
in the European non-Finnish population (rs775181355;
allele frequency 1.40 × 10−5, CADD 27,2) and is predicted
as probably damaging for the protein structure by Polyphen
and deleterious by SIFT. Similarly, c.1051C>G p.
(Leu351Val) and c.1166C>A p.(Pro389His), which affect a
highly hydrophobic core, were predicted to induce con-
formational changes influencing the interaction with spike
protein. The amino acid substitution c.1166C>A p.
(Pro389His) (rs762890235, European non-Finnish popula-
tion allele frequency: 2.45 × 10−5, CADD 24,8) was pre-
dicted to be probably damaging by Polyphen and
deleterious by SIFT. Moreover, this rare variant has never
been reported in Asian populations.

ACE2 variants likely affect protein stability and
SARS-CoV-2 binding

MD analysis provides bona fide simulations of protein
structural changes caused by missense variants effects. Yet,
its computationally expensive procedure led us to perform
MD simulation for only a selection of representative can-
didate variants. Indeed, we selected the following five
variants and corresponding effects: c.1517T>C p.
(Val506Ala) which has the higher destabilizing effect,
c.77A>G p.(Lys26Arg) and c.631G>A p.(Gly211Arg) with
higher allele frequency along with c.1051C>G p.(Leu351-
Val) and the c.1166C>A p.(Pro389His) with a predicted
effect on spike protein interaction. To analyse differences in
protein structure between wild type and mutants, we per-
formed 100 ns MD simulations. The comparison was per-
formed by RMSD analysis. The global effects of the residue
substitutions on flexibility and global correlated motion of
ACE2 protein are represented in Fig. 2 and the simulation is
provided in Supplementary Video S1, S2, S3, S4, S5. While
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a similar trend for wild-type, c.77A>G p.(Lys26Arg) and
c.1517T>C p.(Val506Ala) was observed with a steady
course in the RMSD value, which stabilizes at an average of
0.2, 0.25, and 0.3 nm, respectively (Fig. 3a), the c.1166C>A
p.(Pro389His) and c.1051C>G p.(Leu351Val) variants
show a difference in comparison with the native protein
with a gradual increase in RMSD value, which stabilizes at
an average of 0.5 nm (Fig. 3a). Finally, the c.631G>A p.
(Gly211Arg) shows a bigger difference with a higher
increase in RMSD value, which stabilizes at an average of
0.6 nm (Fig. 3a). Structural analysis between WT and
mutant c.1517T>C p.(Val506Ala) MD simulations showed
that the c.1517T>C p.(Val506Ala) forms a hydrophobic
center together with Leu456, Leu503, and Phe516 with
minimum differences in protein rearrangements when the
residue is mutated in Ala as reported in Fig. 2 and Sup-
plementary Video S1. The c.77A>G p.(Lys26Arg) is loca-
ted at the N-terminus and the sidechain engages a hydrogen
bond with Asn90 thus determining a minimal destabilizing
predicted effect as shown in Table 2 and confirmed by
RMSD analysis. The c.1166C>A p.(Pro389His) and the
c.1051C>G p.(Leu351Val) variants, located in the region
for the spike protein interaction, are characterized by a
partially overlapping destabilizing effect. The c.1166C>A
p.(Pro389His) variant sidechain being more bulky causes
the shift of ACE2 (30–40) helix involved in spike protein
interaction which being freer to move engages an interac-
tion with Gln96 (Fig. 2 and Supplementary video S5). The
c.1051C>G p.(Leu351Val) shorter sidechain is enable to
interact with the hydrophobic core composed by Trp349
and Leu45 with a consequent rearrangement of the protein
conformation. Finally, while c.631G>A p.(Gly211Arg) has
theoretically a smaller destabilizing effect because of an
external sidechain which is not involved in particular
interaction network, as shown by MD simulation, it confers
a wide flexibility to this region because the polar sidechain
is able to engage different interactions with vicinal amino
acid residues (Fig. 2 and Supplementary Video S2). During
MD simulations, we have also investigated the surrounding
region of ACE2 WT and previously selected variants by
calculating change in solvent accessibility surface area
(SASA). Differences in average SASA value would suggest
for the native protein a wider surface exposed to solvent and
subsequently a different ability to interact with spike SARS-
CoV-2 in comparison with the studied variants (Fig. 3b).

Differences in ACE2 allelic variability in COVID-19
patients compared with controls

In order to shed light on the role of ACE2 variants on
interindividual variability and susceptibility to COVID-19
in Italian population we performed WES analysis on a
cohort of 131 patients and 258 controls who agreed inTa
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participating to the study (see “Materials and methods”).
Data analysis of ACE2 variants identified a different dis-
tribution of variants in controls compared with patients
(Fig. 4) with the c.2158A>G p.(Asn720Asp) variant being
present in two hemizygous male patients (allele frequency
0.012) compared with seven heterozygous female and four
hemizygous male controls (allele frequency 0.028). A silent
variant the c.2247G>A p.V749V, was also detected in 26
control individuals (allele frequency 0.069) compared with
five COVID-19 patients (allele frequency 0.030). Although
any single variant was not statistically significantly enriched
in one cohort compared to the other, a cumulative analysis
of the identified variants detected a statistically significant
higher ACE2 allelic variability (P value <0.029) in the
control group compared with the patient cohort.

Discussion

According to recent reports, ACE2 is essential for SARS-
CoV-2 to enter cells. Recent single-cell RNA studies have
also shown that ACE2 is expressed in human lung cells
[30]. The majority of ACE2-expressing cells are alveolar
type 2 cells. Other ACE2-expressing cells include alveolar
type 1 cells, airway epithelial cells, fibroblasts, endothelial
cells, and macrophages although their ACE2-expressing
cell ratio is low and variable among individuals. The
expression and distribution of the ACE2 receptor can thus
justify the route of infection and the main localization at the
alveolar level. Although the different density of ACE2
receptors in the upper respiratory tract among individuals
can partially give reason for the clinical variability, which

Table 2 Predicted changes in ACE2 protein stability as consequence of residues changes.

Wild 
Residue

Residue 
position

Mutant 
Residue

Predicted 
ΔΔG

V 506 A -2,456

V 209 G -2,353

G 377 E -2,231

A 264 G -1,555

C 498 R -1,539

A 246 T -1,454

G 377 W -1,318

L 351 V -1,173

P 389 H -1,161

T 55 A -0,948

D 206 G -0,87

K 26 R -0,79

N 580 D -0,629

S 547 C -0,611

A 65 V -0,423

H 505 R -0,345

T 92 V -0,322

E 329 G -0,302

G 211 R -0,283

T 92 I -0,155

D 494 V -0,041

Q 102 P 0,036

Interaction Network around (5 Å)

Y180, L456, R460, P500, A501, S502, L503, F504, H505, N506, S507

Y207, E208, V209, N210, G211, V212, Y215, D216, Y217, P565, T567

H373, H374, E375, M376, G377, H378, I379, A380, Y381, F315, H401, V404, G405, M408

L262, P263, A264, H265, L266, L267, W271, W478, V487, V488, E489, P490, W165

Y497, C498, D499, P500, A501, S502, G173, R177, L176, Y180, W459, W473, M474

A242, Y243, V244, R245, A246, K247, L248, M249

H373 , H374, E375, M376, G377, H378, I379, A380, Y381, F315, H401, V404, G405, M408

W349, D350, L351, G352 , D355, R357, Y41, S44, L45, W48

A387, Q388, P389, F390, L391, L392, N33, T92, Q96

N53, I54, T55, E56, E57, N58, V59

W203, G205, D206, Y207, A396, N397, E398, G399

E22, E23, Q24, A25, K26, T27, L29, N90, V93

M579, N580, V581, R582, P583, Q524

I544, S545 , N546, S547, T548, E549, A550, G551

N61, M62, N63, N64, A65, G66, D67, K68, Q42, S43, S44, A46

L503, F504, M505, F512, Y515, Y510, S511, R273

N90, L91, T92, V93, L95, Q96, P389, L392, S563, E564

Q325, G326, F327, W328, E329, N330, S331

V209, N210, G211, V212, D213, D216

N90, L91, T92, V93, L95, Q96, P389, L392, S563, E564

H493, D494, E495, T496, Y497

Q98, A99, Q102, N103, G104

Outcome

Highly Destabilizing

Highly Destabilizing

Highly Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

Destabilizing

(Stabilizing)

DUET program results that display predicted change in folding free energy upon ACE2 missense variant (ΔΔG in kcal/mol). In the first three
columns are reported single missense variants with specific position on ACE2 protein. The residues in the first column highlighted in gray are
involved in N-glycosylation pattern NxT/S, therefore those missense variants determine the loss glycosylation of Asparagine 53 and 90,
respectively. In the fourth column is reported ΔΔG analysis predict effects of missense variants on protein stability using an integrated
computational approach. The column “Interaction Network around (5 Å)” shows for each single missense variant the residues around 5 Å. In this
column, we highlight in green residues involved in spike SARS-CoV protein interaction, in yellow residues involved in Zinc coordination and
finally in magenta residues of Asn involved in N-glycosylation. The last column defines the outcome of protein stability for each single missense
variant. An increasing negative value for the ΔΔG is correlated with a higher destabilizing effect, while a positive value is associated with a variant
predicted as stabilizing.
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ranges from asymptomatic/paucisymptomatic patients to
severely affected ones, it could not be the only reason for
such variability. In addition, recent works did not observe
significantly different viral loads in nasal swabs between
symptomatic and asymptomatic patients [31]. Italy has been
the first European country that experienced the COVID-19
outbreak with a rapid increase in the positive cases in a very
short-time period and a morbidity and lethality (~10%)
definitely higher in comparison with Asian countries, such
as China (4%) and South Korea (1.2%) [32]. These con-
siderations raise the possibility of a predisposing genetic
background accounting for or contributing to the wide
interindividual clinical variability, as well for the differ-
ential morbidity and lethality observed among different
countries, population awareness, and constrictive
measures apart.

We integrated genomic WES data produced by five Ita-
lian centers (Siena, Naples, Turin, Bologna, and Rome)
interconnected by the NIG in the attempt to identify var-
iation encompassing the ACE2 gene, which could account
for a difference in SARS-CoV-2 spike binding affinity,
processing, or internalization. Previous studies showed that
the residues near lysine 31, and tyrosine 41, 82–84, and
353–357 in human ACE2 are important for the binding of

S-protein to coronavirus [12]. In line with previous reports
[33], we did not find polymorphism or rare variants in these
residues in the Italian population. However, we identified
three variants namely c.2158A>G p.(Asn720Asp),
c.1166C>A p.(Pro389His), and c.1051C>G p.(Leu351Val),
one of which polymorphic c.2158A>G p.(Asn720Asp),
moderately expressed in the Italian and European non-
Finnish populations and with a very low allele frequency or
not occurring in the Eastern Asia population. These variants
which surround residual essentials for the SARS-CoV-2
spike protein binding were predicted to likely affect the
cleavage-dependent virion intake, such as the polymorphic
c.2158A>G p.(Asn720Asp) (allele frequency 0.011) which
lies four amino acids from the cleavage sequence of
TMPRSS2 or to have a substantial impact on protein
structure and spike protein interaction by MD simulation
(Fig. 3a). The relatively frequent c.631G>A p.(Gly211Arg)
(allele frequency 0.0012, 12/6930 individuals) was pre-
dicted to confer a wide flexibility to the region because of
the ability to engage different interactions with the nearby
amino acid residues. Along with these more common
variants we also identified very rare variants such as
the c.1166C>A p.(Pro389His) and the c.1051C>G
p.(Leu351Val), some of which only described in the non-

Mutated posi�ons

ACE2 region aa (353-357)

ACE2 region aa (82-84)

ACE2 region aa (30-41)

Fig. 1 ACE2 crystal structure with PDB ID 1R42. Surface and
cartoon representations of protein in gray. In blue stick are represented
each single mutated positions, cartoon region in yellow represent
segment between amino acid 30–41, cartoon in green represent

segment between amino acid 353–357 and cartoon in red represent
segment between amino acid 82–84 that are protein regions respon-
sible of interaction with 2019-nCOv spike glycoprotein.
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Finnish European population, that could give reason for a
different affinity for the SARS-CoV-2 spike protein
(Figs. 2, 3a and Supplementary Video S4). Interestingly all

the studied variants affect residues highly conserved among
species (Supplementary Fig. S1). Given their rarity in other
populations, we cannot exclude that these variants can

Fig. 3 Structure superimposition snapshot between wild-type
protein and variant proteins. a Root mean square deviation
(RMSD) trends for the backbone of ACE2 WT (black line) and some
selected variants (colored lines, see legend) during 100 ns of simula-
tion. The molecular dynamics simulation shows a good stability for all
systems with exception of G211R mutants. RMSD is a parameter used

to define the stability of an element. Wild type shows a steady course
in the RMSD value, stabilizing at an average of 0.2 nm, while, the
G211R variant shows a gradual increase in RMSD value, stabilizing at
an average of 0.6 nm. b SASA graphical representation of ACE2 WT
(black line) and ACE2 variants (colored lines, see legend).

Fig. 2 ACE2 wild-type and variants superimposed structures after
100 ns MD simulation. Cartoon representation of ACE2 wild type
(orange) and variants (green) in blue sticks the wild-type residues

while in red the corresponding variants. In cyan and pink sticks resi-
dues interacting with each specific position.
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partially account for the clinical outcome observed in the
Italian population. WES data generated from a wide cohort
of COVID-19 Italian patients revealed a statistically sig-
nificant (P < 0,029) higher allelic heterogeneity for ACE2 in
controls compared with patients with a higher chance to find
at least one ACE2 variant in the cohort of controls compared
with the cohort of patients. Therefore, it is plausible to think
that the effect of allelic variability on ACE2 conformation
would at least partially account for the interindividual
clinical differences and likely modulate clinical severity.
This finding reinforces the hypothesis that at least some of
the identified variants or the cumulative effect of few of
them confer a different susceptibility to virus cell entry and
consequently to disease onset and progression. We cannot
exclude that also silent variants such as the c.2247G>A (p.
Val749Val) with no effect on the protein could play a role
because of an unpredictable impact at a posttranscriptional
level.

Notably, morbidity and lethality have been reported
definitely higher in men compared with women (~70% vs.
30%, 20th March 2020 ISS report). Although several
parameters have been brought to case to explain this dif-
ference, i.e., smoking, differences in ACE2 localization
and/or density in alveolar cells, hormonal asset, it is note-
worthy that ACE2 is located on chromosome X and that
given the low allele frequency of the identified variants the
rate of homozygous women is extremely low (see Results
section). The XCI is incomplete in humans and some genes
show a degree of XCI escape which vary between indivi-
duals and tissues [34]. ACE2 is one of the genes escaping X

inactivation, but it belongs to a subgroup of X-chromosome
genes showing a higher expression in men in several tissues
thus mostly suggesting that ACE2 gene XCI is present
although different in distinct tissues [15]. Therefore, the
impact of X inactivation on the alternate expression of the
two alleles would guarantee, in the affected tissues, a het-
erogeneous population of ACE2 molecules, some of which
protective towards the infection until the point of a complete
or almost complete protection in the case of a X inactivation
skewed towards the less SARS-CoV-2-binding prone allele.
This hypothesis would justify the high rate of asymptomatic
or paucisymptomatic patients. However, the presented data
does not allow to confirm a clear cause–effect relationship
and, since most of the identified variants have very low
frequencies, further functional studies are needed to validate
these results. ACE2 is definitely one of the main molecules
whose genetic heterogeneity can modulate infection and
disease progression; however, a deeper characterization of
the host genetics and functional variants in other pathway-
related genes may help in understanding the pathophysiol-
ogy of the disease opening up the way to a stratified risk
assessment and to tailored preventive measures and
treatments.
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