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Abstract

In this paper we shall consider the potential effect of the magnetic dipole moment
of a neutron star (NS) in a binary NS-NS system.

We shall derive the Lagrangian of the binary system and show how to find
a Multipolar Post Minkowskian (MPM) solution to the linearized Einstein-
Maxwell system and the energy flux of the electromagnetic waves; we shall
calculate at the higher order the equations of motion and precession. At the
end, we will provide calculations proving that the effect of the magnetic moment
on the binary system is barely observable.
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The hypothesis of the existence of gravitational waves was put forward in the
early days of General Relativity. Indirect evidence of their existence came from
the study of the decay of the orbit of the Hulse-Taylor binary PSR 1913+16
[1, 2, 3, 4]: for this work, the authors were awarded with the Nobel prize in
1993.

2016 started with the announcement of the direct observation of gravita-
tional waves (GW) [5] by the advanced LIGO project [6]: the detector observed
the merging of two black holes of masses 36+5

−4M@ and 29+4
−4M@ at a distance

of 410+160
−180 Mpc and many other followed (see for example the catalogue of

the observed merging binaries [7] and references therein). These observations
marked the beginning of gravitational waves astronomy. The most important
observation is, however, the neutron star coalescence event GW170817 and the
associated gamma-ray-burst GRB170817, which confirmed with a photonic de-
tection the non-photonic detection of the GWs. Other observatories are the
ground based VIRGO [8, 9] and the upcoming cryogenic KAGRA [11] and the
space-borne LISA [10].
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The discovery was preceded by a long experimental and theoretical work.
The latter was aimed to the research of general solution to the Einstein equations
that could describe compact inspiraling binaries. Nowadays the dynamics of this
kind of systems and the gravitational waves energy flux are known up to 3.5
Post Newtonian order including Spin-Orbit (SO), Spin-Spin (SS) and Spin-Spin-
Spin (SSS) effects [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32,
33, 34, 35, 36, 38, 28, 37, 39, 40] (quadratic and cubic-in-spin effect are usually
neglected for a neutron stars binary system, since they are too small); see also
the review [41] and references therein.

Neutron stars, however, are known to have large magnetic fields up to 1013 G
(see [42] and references therein) (magnetars have even larger magnetic field
[44] but, so far, have never been found in binary systems [61])1 and magnetic
moments ≈ 1025 ÷ 1030 Gcm3:2 the aim of this work is to study the effect
of the magnetic dipole of neutron stars in binary systems on the generation of
gravitational waves.

Most neutron stars and pulsars in binary systems have a small magnetic
field 108 ÷ 1010 G [42]: these are called recycled pulsars and are thought to
be old stars that have been spun up by the accretion of material from a non
relativistic companion. Younger neutron stars have much larger magnetic fields
(1011÷ 1013 G) but are usually found isolated [42, 71]; however, there are some
known binary systems with an old, recycled star and a younger one such as the
double pulsar system PSR J0737-3039 (the only binary known with two pulsars
[67]) and the system of the pulsar PSR J1906+0746 [69].

In order to achieve our aim, we have to consider the linearized version of the
Einstein-Maxwell system and extend the Multipolar Post Minkowskian (MPM)
formalism developed in [48, 49, 41] to this case. We shall also calculate the
Post-Newtonian expansion of the gravitational and electromagnetic potentials
and study the effects of the electromagnetic field on the dynamics of the binary
at the higher order. We shall also write the explicit form of the equations of
motion and precession in the center of mass system and for circular orbits. At
the end, we shall calculate the effects our newly calculated electromagnetic terms
have on the accumulated number of gravitational waves cycles for a ground base
detector.

The plan for this paper is as follows.
In the first section we write down the Lagrangian of the system mostly

following [12] and we derive the equations of motion and precession, the stress-
energy tensors for matter and electromagnetic field; we shall then write the
expression of the 4-momentum in terms of the speed, spin and electromagnetic

1Even if magnetars have never been observed in a binary system, they might still be source
of gravitational radiation, see [62, 63, 64, 65, 66] for example.

2This can be calculated assuming a star with radius of 10 km [43] and using the relation
M = BR3, where B is the surface value of magnetic field of the neutron star.

2



potential and use it to find the conserved mass. In sections 4 and 5, we shall
present the linearized Einstein-Maxwell systems and calculate the energy and
angular momentum flux of electromagnetic waves. In section 6, we shall cal-
culate the electromagnetic potential and the dynamics of the binary system at
the Newtonian level. In section 7 we shall calculate the electromagnetic con-
tributions to the gravitational waves flux, while in section 8 we shall calculate
the electromagnetic waves flux. In section 9 we shall calculate the electromag-
netic contributions to the accumulated number of gravitational waves cycles.
In the conclusion we shall consider the case of the double pulsar system PSR
J0737-3039 [67] and numerically estimate the electromagnetic contribution to
the accumulated number of gravitational waves cycles.

As was pointed out in [41] and references therein, if we want to make all the
c factors in our equations explicit, we should define:

S = cSphysical = Gm2χ (1)

where χ is the dimensionless spin (≈ 0.1 for neutron stars, although the fastest
known millisecond pulsar has χ ≈ 0.4 [39, 45]).

We use the Gauss-cgs unit system and the metric signature (−,+,+,+).

1. The Lagrangian of the system and equations of motion

Following [12, 39], if x(τ) is the world-line of a particle and τ the proper
time, we define the velocity:

uµ =
dxµ

dτ

Given the metric gµν , we introduce the (body-fixed) orthonormal tetrad and

cotetrad e
(a)
µ (τ) and eµ(a)(τ), defined in the usual way (ηab is the Minkowski

metric):

eµ(a)e
ν
(b)gµν = η(a)(b) e(a)µ eµ(b) = δ

(a)
(b) (2)

With these, we can define the antisymmetric rotation coefficients for the tetrad:3

Ωµν = e(a) [µ u
ρ
(
e
(a)
ν]

)
;ρ

(3)

3In this paper, we use [. . . ] around indices to indicate anti symmetrization and (. . . ) for
symmetrization. Here we have:

e(a) [µ u
ρ
(
e
(a)
ν]

)
;ρ

=
1

2

(
e(a)µ a

(a)
ν;ρ − e(a)ν a

(a)
µ;ρ

)
uρ

and later in the stress-energy tensor:

p(µuν) =
1

2
(pµuν + pνuµ)
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Given the above definitions, we assume (see [12, 39]) that the Lagrangian
depends only on the speed uµ, the rotation coefficients Ωµν , the electromagnetic
potential Aµ and its derivatives (in fact only its antisymmetric part, the Faraday
tensor Fµν), on the metric gµν and the Riemann tensor Rµναβ and that it can
be separated into three contributions:

L = L (uµ,Ωµν , Aµ, Fµν , gµν , Rµναβ) =

= Lgr + Lelm(Aµ, Fµν , gµν) + Lmatt(gµν , Aµ, Fµν ,Ωµν , u
µ)

(4a)

where Lgr is the usual lagrangian for the gravitational field (defined, for exam-
ple, in [13, 14]), Lmatt is the lagrangian for the matter while the one for the free
electromagnetic field is given by

Lelm = − c

16π
Fµν F

µν (4b)

Following [12, 39], we can define the (free) current Jµ, the 4-momentum pµ,
the spin Sµν , and the quadrupole moment Jµνρσ:

Jµ =
δLmatt
δAµ

pµ =
δLmatt
δuµ

(4c)

Sµν =2
δLmatt
δΩµν

Jµνρσ = −6
δLmatt
δRµνρσ

(4d)

Since we want to study a binary system in which the components do not have
electric charge, but do have a magnetic dipole moment (in their rest frame), a
proper definition for the (free) 4-current in Gauss-cgs unit system is:

Jµ = −c ∇ν
(
Mνµδ3(x− xA(τ))

)
(5)

where Mνµ is the antisymmetric magnetic dipole moment and xA is the posi-
tion of the body A; our definition of the current guarantees that the magnetic
moment is conserved thanks to the antisymmetry of Mµν . Moreover, we do
not want our stars to have an electric dipole in their rest frame; we can achieve
that, if we impose that (see for example [75, 51]):

Mµν uν ≡ 0 (6)

Therefore, we have:

δLmatt = c pµδu
µ +

1

2 c
SµνΩµν −

c2

6
Jµνρσ δRµνρσ − JµδAµ +

δLmatt
δgµν

δgµν

Since coordinates have no physical meaning, we have to impose the invari-
ance of Lmatt with respect to transformations of coordinates such as xµ 7→
xµ + ξµ (in this way Lmatt will be a scalar under coordinates transformations)
and scaling of the time τ 7→ λτ . We can achieve this if:

2
δLmatt
δgµν

= c pµ uν +
1

c
SµρΩνρ + c2

2

3
RµλρσJ

νλρσ − JµAν (7)
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and if Lmatt has degree one in uµ and Ωµν (see [12, 39]).
As a consequence, the Lagrangian of the system becomes:

L = Lgr + c pµuµ +
1

2 c
SµνΩµν − JµAµ −

c

16π
FµνF

µν (8)

and the action is:

S =

∫
d4x
√
−g L[uν ,Ωµν , gµν , Rµνρσ, Aµ, Fµν ] (9)

Varying this action, we can write down the equations of motion and pre-
cession and the stress-energy tensors (see [12, 37]): the equation of precession
is found by varying the action with respect to tetrads and using the equation
(7), while the equations of motion arise by varying the action with respect to
world lines (see [12]); as a result, the equations are given by (see also [12] and
[40, 39, 73, 74] for the quadrupole part):

1

c

Dpµ
dτ

=
1

2

1

c
SαβRαβγµu

γ − c

3
J αβγ
δ Rδαβγ;µ +

1

2c
MρσFρσ;µ (10)

1

c2
1

2

DSµν

dτ
= p[µuν] − c3 2

3
R

[µ
λρσJ

ν]λρσ − 1

c2
F

[µ
ρM

ν]ρ (11)

where we have defined D/dτ = uµ∇µ (∇µ is the covariant derivative). In
addition to these, varying the action with respect to Aµ and ∂µAν , we get the
Maxwell’s equations:

Fµν;µ =
4π

c
Jν = − 4π∇ν

(
Mνµδ3(x− xA(τ))

)
(12)

F[µν,ρ] = 0 (13)

where in the first line we have used the definition of the current (5).
Finally, we have the evolution equation for the magnetic moment: two terms

will contribute: one is due to the rotation of the star and the other is due to
the precession and therefore has the same form of the spin precession equation;
therefore the evolution equation for the magnetic moment is given by:

DMµν

cdτ
= ω

[µ
αM

α|ν] + p[µuν] − c3 2

3
R

[µ
λρσJ

ν]λρσ − 1

c2
F

[µ
ρM

ν]ρ (14)

where ω is an antisymmetric tensor describing the rotation of the star. Given
the moment of inertia I of the star (supposed spherical) and its spin S, we have
that:

ω =
S

cI
=
ω′

c
=

5

2

Gm

cr2
χ. (15)

where r is the radius of the star and χ is the dimensionless spin (χ ≈ 0.1 for
NS).
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The matter stress-energy tensor is given by:

Tµν =
∑
A=1,2

[
nA

(
c p

(µ
A u

ν)
A +

1

3
R

(µ
λρσJ

ν)λρσ
A

)
+ J

(µ
A Aν)+

−∇ρ
(
nAS

ρ(µ
A u

ν)
A

)
− 2

3
∇ρ∇σ

(
nAc

2J
ρ(µν)σ
A

)] (16)

While the electromagnetic stress-energy tensor is:

T elmµν = − 1

4π

[
1

4
gµν FαβF

αβ − gαβ FµαFβν
]

(17)

2. Contravariant 4-momentum and conserved mass

In this section we shall find the expression of the covariant 4-momentum in
terms of uµ, Sµν , Rµνρσ and Fµν . This will allow us to find the conserved mass
at quadratic order in spin.

First of all, the spin tensor is an antisymmteric tensor, and has therefore six
independent components, but only three of them are physical (they are the spin
vector components), since the other can be eliminated by fixing the center of
body reference frame (see [28, 46]); following [12, 40, 28, 46, 47], we impose the
Supplementary Spin Condition (SSC):

Sµνpµ = 0 (18)

2.1. Contravariant 4-momentum

We start by differentiating the SSC equation (18) with respect to τ ; substi-
tuting the equation of motion (10) and precession (11) and remembering that
pµpµ = −m2c2, we find:4

DSµνpµ
dτ

=

(
1

c2
DSµν

dτ

)
c2 pµ + Sµν c

(
1

c

Dpµ
dτ

)
0 = −(uµpµ) pν c2 − uνm2 c4 − 4

3
c3R

[µ
λρσJ

ν]λρσ − F [µ
αMν]α pµ +

1

2
Sµν SαβRαβγµ u

γ +O(S3)

(19)

Since we already know that at the lowest order in spin pµ = mcuµ + O(S2),
we can substitute this back in (19) remembering that the speed of the bodies
uµ has norm uνu

ν = −1; in this way, we find the following expression of the
4-momentum in terms of u, the spin and the Faraday tensor at O(S3) (see also
[40] for the gravitational part of the equation):

pµ = mcuµ+
c

6
uµRρλαβJ

ρλαβ+
4c

3
uβ R

[µ
λρσJ

ν]λρσ−S
αβSµν

2mc3
uλRνλαβ+

1

c2
F [µ

αMν]α uν+O(S3)

(20)

4We remind that we only consider quadratic-in-spin terms.
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2.2. Conserved mass

Now that we have the expression for the contravariant 4-momentum, we can
calculate the conserved mass.

Following Bailey and Israel [12] (see also [40]), we contract (19) with (10)
and we arrive at:

pµ
Dpµ
c dτ

=
1

2

D(pµp
µ)

c dτ
= −mc2

Dm

cdτ
=

1

2

pµp
µ

pµuµ
D

cdτ

(
MαβFαβ

)
+

1

6

pµp
µ

pµuµ
D

cdτ

(
J βγδ
α Rαβγδ

)
+O(S3)

(21)
If we retain only quadratic-in-spin terms and if we consider only Newtonian
contributions, then the conserved mass m̃ is given by (see [40]):

m̃ = m+
1

2
MαβFαβ −

1

6
J βγδ
α Rαβγδ +O(S3) +O(c−2) (22)

3. Precession and magnetic moment evolution equations

We are now in a position to derive the evolution equation for the vector spin
and magnetic moment in the presence of both gravitational and electromagnetic
interactions.

First, we define the spin and magnetic dipole vectors (see [40, 39]):5

Sµ = −1

2

√
−g εµνρσ

pν

mc
Sρσ (23a)

Mµ = −1

2

√
−g εµνρσ uνMρσ (23b)

the inverses are:

Sµν = − 1√
−g

εµνρσ
pρ
mc

Sσ (23c)

Mµν = − 1√
−g

εµνρσ uρMσ (23d)

where pµ is given in equation (20). With these definitions, the spin vector
automatically respects condition SSC given in equation (18) and our stars will
not have an electric dipole in their rest frame as required by equation (6) because
of the antisymmetry of the Levi Civita symbol.

To obtain the vector spin evolution equation, we differentiate (23a) with
respect to τ and substitute equation (10) and (11) retaining only quadratic-in-

5The Levi Civita symbol is defined as usual: ε0123 = 1.
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spin terms; in this way, we obtain:6

DSµ
dt

= −1

2

1

u0
εµνρσ

1

mc

[
Dpν

dτ
Sρσ + pν

DSρσ

dτ

]
=

= −1

2

1

u0
εµνρσ

[
−1

2
SαβSρσRνγαβ

uγ

mc
− c3 4

3

pν

m
R

[ρ
λαβJ

σ]λαβ − 2
pν

mc
F [ρ|αMσ]

α

]
+O(S3)

(24)

For the gravitational sector of the equation (the first two terms on the right-
hand side), we can follow [40] introducing the spin-precession frequency (anti-
symmetric) tensor

Ωµν =
Sλ
mc

1

u0

[
u[αH

λ
β] − k εαβµνu

µGνλ
]

(25)

where Gµν and Hµν are respectively the mass-type quadrupole and the current-
type quadrupole and are given by:

Gµν = −Rµλνρuλuρ (26)

Hµν = ∗Rµκνλu
κuλ (27)

For the electromagnetic contributions to the spin evolution, we first notice
that:

FµαMν
α = gαβ F

µαMνβ

We now use the Schouten identity in the right hand side:

gκτ ε
µνρσ + δµκ gλτ ενσρτ + δνκ gλτ εσρτµ + δρκ gλτ εστµν + δστ gλτ ετµνρ ≡ 0

Remembering the condition (6) and the definition of the magnetic dipole vector,
equation (23a), we find, after some lengthy algebra:

DSµ
dt

∣∣∣∣∣
elm

=
1

u0
FµνMν

Moreover, as was found in [40], S0 = O(S3), so we can focus only on the space
components of the spin vector: Si.

Putting it all together, we finally find that the evolution equation for the
spin vector is:

DSAi
dt

= ΩAij S
j
A +

1

u0
FAijM

j
A +O(S3) A = {1, 2}

6We remind that
dt

dτ
= u0.

8



At O(S3), in Ωij there are two contributions: ΩNS , in which there are no spin
terms, whose expression is given in [37], one with spin-orbit (SO) interaction,
whose expression is given in [40]; we can separate these contributions and rewrite
the previous equation in this way:

DSAi
dt

=
[
ΩNSij + ΩSOij

]
A
SjA +

1

u0
FAijM

j
A +O(S3) A = {1, 2} (28)

In a similar way, for the magnetic moment, we find:

DMi
A

dt
= ω′ijM

j
A + ΩAijM

j
A +

1

c

1

u0
FAijM

j
A A = {1, 2} (29)

4. The Einstein-Maxwell system

We can now study the Einstein-Maxwell system and look for a Multipolar
Post Minkowskian (MPM) solution.

In section 5, we shall write the expression for the asymptotic wave form of
the electromagnetic fields and calculate the energy and angular momentum flux
carried away by the electromagnetic waves.

In this section and in the following, we deal with the general case, but in
what follows we will only consider the higher order part of the equations.

4.1. The system

The Einstein-Maxwell system is (see [13], for example):

Gµν =
8πG

c4
Tmµν +

8πG

c4
T emµν (30a)

F ν
µ ;ν =

4π

c
Jµ (30b)

where T elmµν is the electromagnetic stress-energy tensor defined in (17) and Tmµν
is the matter one defined in (16); Jµ is the (free) 4-current defined in (5). It is
convenient to expand the covariant derivative in equation (5) as follows (see for
example [13, 15]):

Jµ = −
∑
A

∂ν

(
Mν

Aµ δ
3(x− yA)

)
−
∑
A

(
Mν

Aµ δ
3(x− yA)

)(
∂ν ln (

√
−g)

)
(31)

where g is the determinant of the metric. Both the matter stress-energy tensor
Tmµν and the current Jµ have compact support.

To solve the system, we have to add contour conditions: we assume (see
[48, 41]) that in the far past the metric was asymptotically flat and stationary:

∂t gµν(t,x) = 0 lim
r→+∞

gµν(t,x) = ηµν ∀t ≤ T (32)

so that there is no incoming radiation at the source position.
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4.2. The linerized system

In order to linearize our system, we introduce the gothic metric (see [41, 48,
13, 14]):

gµν =
√
−g gµν = ηµν − hµν (33)

and divide Aµ into a background potential
0

Aµ and a perturbations potential

Ãµ:

Aµ =
0

Aµ + Ãµ. (34)

We also divide the Faraday tensor Fµν consistently:

Fµν =
0

Fµν + F̃µν = 2∂[µ
0

Aν] + 2∂[µÃν] (35)

We assume that electromagnetic perturbations are small, in the following
sense:

(ηµν ;
0

Aµ) = O(1) (hµν ; Ãµ) = O(G) (36)

We also assume that the magnetic moment Mµν is O(1). In this way we see
that our current (31) naturally divides into an O(1) part and an O(G) part:

Jµ =
0

Jµ + J̃µ (37a)

where:

0

Jµ = −c
∑

A={1,2}

∂ν

(
Mν

Aµ δ
3(x− yA)

)
(37b)

J̃µ = −c
∑

A={1,2}

(
Mν

Aµ δ
3(x− yA)

)(
∂ν ln (

√
−g)

)
(37c)

0

Jµ will be the source of the background field, while J̃µ will be a source for the
perturbation fields.

All the fields we have introduced must be transverse:

∂νhµν = 0 ∂µ
0

Aµ = 0 ∂µÃµ = 0 (38)

The first relation implies that we are using the De Donder or harmonic coordi-
nate system, the other two, that the we use Lorenz gauge. The above relation
do not, however, exploit the whole gauge freedom. If fµν respects the first of
(38) another f ′µν given by:

f ′µν = fµν + ∂µξν + ∂νξµ − ηµν ∂µξµ (39a)

will respect it too, if the vector ξµ respects the following (see [13, 41], for exam-
ple):

�ξµ = 0. (39b)

Analogously, if bµ respects the second (or the third) of (38), so will b′µ given by:

b′µ = bµ + ∂µ λ (40a)
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if the scalar λ respects the following (see [59] for example):

�λ = 0 (40b)

Substituting our definitions (33)-(37c) into the system (30) and using the
gauge given in (38), we find (mind the position of the indices in the magnetic
dipole):

�
0

Aα = −4π

c

0

Jα = − 4π
[
MAβ

α δ(x− xA)
]
,β

(41)

�hµν =
16πG

c4
|g|
[
T̃mµν

]
+

(
16πG

c4
|g|
[
T emµν

]
+ Λµν

)
(42a)

�Ãα = − 4π

c
J̃α +Rαβ

0

Aβ +Rαβ Ã
β =

= − 4π
∑
A

(
MAβ

α δ3(x− yA)
)(

∂ν ln (
√
−g)

)
+Rαβ

0

Aβ +Rαβ Ã
β

(42b)

where:

T̃ emµν =− ηµν
4

0

Fµν
0

Fµν + ηρσ
0

Fµρ
0

Fσν −
hµν
4

0

Fµν
0

Fµν + hρσ
0

Fµρ
0

Fσν+ (43)

− ηµν
2

0

Fµν F̃
µν + 2 ηρσ

0

Fµρ F̃σν + T2 + T3 + . . . (44)

Γµαµ = −1

2
h,α + γ2 + γ3 + . . . (45)

Γαµν =
ηαδ

2

[
hδµ,ν + hδν,µ − hµν,δ −

1

2

(
h,µ ηδν + h,ν ηδµ − h,δ ηµν

)]
+ Γ2 + Γ3 + . . .

(46)

where Tn, γn and Γn are terms of order O(Gn) and Λµν is defined in [41, 18].
The determinant of the metric, on the other hand, can be calculated using the
formula (valid for any matrix M, see for example [15]):

det(1−M) = 1− Tr (M) +
1

2
(Tr (M))2 − 1

3
(Tr (M))3 + . . .

where 1 is the identity matrix; from the above formula, we find:

−g = 1− h+
1

2
h2 − 1

3
h3 +O(h4) (47)

where h = hµµ = ηµν hµν .
The main difference between ours and the usual case is the presence of

the electromagnetic stress energy tensor: unlike Tmµν it cannot be enclosed in
a compact and its effects stretch throughout the whole spacetime, moreover

G
0

T elmµν = O(G) (see equations (17) and (36)), therefore it must be taken into
account already at linear order; this actually does not constitute a problem, in
fact it has to be treated as Λµν is treated in the usual case.
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5. The energy and angular momentum flux of the electromagnetic
field

In this section we will find the energy and angular momentum flux of the
electromagnetic waves. We shall focus on the background field, the calculations

for the perturbations being the same (one should just substitute
0

with a ˜).
In this section, we follow the usual notation and define (see [58, 48, 49, 50,

41]):

f (n)(u) =

(
d

du

)n
f(u)

where u is the retarded time u = t− 1
c r.

In our case, the energy is carried away from the binary not only through
gravitational waves (GW), but also through electromagnetic waves (EW) gen-

erated by the background potential
0

Aµ and by the perturbations potential Ãµ;
the energy balance equation is, therefore (see [13]):

dE

dt
= −FGW −

0

FEW − F̃GW (48)

where we have indicated the fluxes with F .
The energy flux per solid angle carried away by the electromagnetic waves

(EW) is:

d
0

FEW

dΩ
=
d2

0

EEW

dtdΩ
= c r2

0

T em00 . (49)

We have found it easier to first introduce the transverse electric and magnetic
fields (see for example [59]):

0

BTi = εilm ∂l
0

ATm = Pji
(
εjlm ∂l

0

Am

)
+O(r−2) (50)

0

ETi = εilmN
l

0

BTm (51)

where
0

ATi is the transverse asymptotic background electromagnetic potential
given by (using radiative coordinates (T,R) at null infinity):

0

ATi (u, ~x) =
1

R
Pji
∑
l≥1

1

cl

[
NL−1

0

OiL−1(u) +
1

c

l

l + 1
εiabNaL−1

0

SbL−1(u)

]
+O(R−2)

(52)

where Pji = δji − N iNj projects the fields on the plane orthogonal to N =
R
R , the direction of propagation of the fields. The multipoles

0

OL and
0

SL are
resummations of the multipoles at every order.

12



Using the formulas in [48, 58] for symmetric trace free (STF) tensors, we
obtain the following expressions for the fields:

0

ETi =
Pji
Rc

∑
l≥1

1

cl
1

l!

[
NL−1

0

O
(1)
L−1j +

1

c

l

l + 1
εjabNaL−1

0

S
(1)
bL−1

]
(53)

0

BTi =
Pji
Rc

∑
l≥1

1

cl
1

l!

[
1

c
NL−1

0

S
(1)
L−1j +

l

l + 1
εjabNaL−1

0

O
(1)
bL−1

]
(54)

With these definitions, we can rewrite the energy of the background field as:

0

T00 =
1

8π

(
0

ET ·
0

ET +
0

BT ·
0

BT
)

(55)

In order to ease the calculations, we follow [58], and rewrite the electric field
using vectorial spherical harmonics:

0

ETi =
1

Rc

∑
l≥1

l∑
m=−l

1

cl

[
E

(1)
lm Y E lmi +B

(1)
lm Y B lmi

]
(56)

where Y E lmi is the electric vectorial spherical harmonic and Y B lmi , the magnetic

one (see section 2.D in [58]). The scalars Elm and Blm are linked to
0

OL and
0

SL
by the relations:

0

OL = −l!
√

l

l + 1

l∑
m=−l

Elm y
lm
Al (57a)

0

SL = − (l + 1)!

l

√
l

l + 1

l∑
m=−l

Blm y
lm
Al (57b)

The inverse relations are:

Elm = − 4π

(2l + 1)!!

√
l + 1

l

0

OL y
lm ∗
Al (58a)

Blm = − 4π

(2l + 1)!!

√
l

l + 1

0

SL y
lm ∗
Al (58b)

The same relations are valid also for the magnetic field, but from equation (50)
it is easy to see that relations (57) are inverted and so are (58).

We can substitute (56) into equation (55) and use (49) (we suppress for the
moment the magnetic field since the calculations are similar; its contribution
will be added at the end):

d2E

dtdΩ
=

1

8π

∑
lm

1

c2l+1

[
E

(1)
lm E

(1)
l′m′ Y

E lm
i Y E l

′m′

i +B
(1)
lm B

(1)
l′m′ Y

B lm
i Y B l

′m′

i +

+B
(1)
lm E

(1)
l′m′ Y

B lm
i Y E l

′m′

i + E(1)
m B

(1)
l′m′ Y

E lm
i Y B l

′m′

i

]
(59)
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thanks to the orthonormality of the vectorial spherical harmonics (see [58]),
after an integration over the solid angle, we find:

dE

dt
=

1

8π

∑
lm

1

c2l+1

[
|Elm|

2
+ |Blm|2

]
; (60)

One can see that this formula correctly reproduces the one given by Jackson
[59].

Substituting (58) into the previous equation, we find:

dE

dt
=

1

2

∑
l≥1

1

c2l+1

[
l + 1

l

1

l! (2l + 1)!!

0

O
(1)
L

0

O
(1)
L +

1

c2
l

(l + 1)!(2l + 1)!!

0

S
(1)
L

0

S
(1)
L

]

Adding the magnetic field contributions, we find the formula for the flux of
the electromagnetic waves we were looking for:

d
0

EEW

dt
=

1

2

∑
l≥1

[
1

c2l+1

l + 1

l

1

l! (2l + 1)!!

(
0

O
(1)
L

0

O
(1)
L +

1

c2
0

S
(1)
L

0

S
(1)
L

)]
+

+
1

2

∑
l≥1

[
1

c2l+1

l

(l + 1)!(2l + 1)!!

(
0

O
(1)
L

0

O
(1)
L +

1

c2
0

S
(1)
L

0

S
(1)
L

)] (61)

As we said at the beginning of this section, the energy flux for the pertur-
bation field has the same form as (61), but with the tilde multipole moments,

ÕL and S̃L.
Since electromagnetic interactions are linear, there are no tails contributions

for the background electromagnetic field; therefore, we have:

0

OL ≡
0

QL
0

SL ≡
0

ML. (62)

where
0

Q and
0

M are the instantaneous contribution to the energy flux given by
(see [50]):

0

QL =

∫
d3x

∫ +1

−1
dz

[
δl(z) x̂L

0

J0 −
1

c2
2l + 1

(l + 1)(2l + 3)
δl+1 x̂aL

∂

∂u

0

Ji

]
l ≥ 1

(63a)

0

ML =

∫
d3x

∫ +1

−1
dzδl(z) εiab x̂aL−1

0

JbL l ≥ 1

(63b)

where
0

Jµ is given in (37b) and (see [41, 49, 50]):

δl(z) =
(2l + 1)!!

2l+1 l!
(1− z2)l
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On the other hand, tails effects for the electromagnetic perturbations do
exist as a consequence of the interaction with the gravitational field (see terms

Rαβ
0

Aβ +RαβÃ
β in the right hand side of (42b)).

The above calculations can be repeated for the angular momentum flux, but

one should consider term proportional to
1

R2
, since other terms vanish upon

integration over the solid angle (see also [58]). Considering only the electric
field (the contributions of the magnetic field being analogous), we find:

dJj
dt

=
i

4π

∑
l≥1

m=l∑
m=−l

[
ξ−1j√

2

√
(l −m+ 1)(l −m)

(
ElmE

∗
lm−1 +BlmB

∗
lm−1

)
+

−
ξ+1
j√
2

√
(l −m+ 1)(l +m)

(
ElmE

∗
lm+1 +BlmB

∗
lm+1

)
+

+ξ0j m
(
ElmE

∗
lm +BlmB

∗
lm

)]
+

(64)

Notice that the third component in the last line is proportional to the energy,
as it should (see [59, 60], for example).

If we add the magnetic field contributions and use equations (57) together
with equation (2.26) in [58], we find the angular momentum flux for the elec-
tromagnetic waves:

dJj
dt

= εjab
∑
l≥1

1

c2l+1

[
l + 1

l! (2l + 1)!!

(
QaL−1Q

(1)
aL−1 +

1

c2
MaL−1M

(1)
aL−1

)]
+

+ εjab
∑
l≥1

1

c2l+1

[
l2

(l + 1)! (2l + 1)!!

(
QaL−1Q

(1)
aL−1 +

1

c2
MaL−1M

(1)
aL−1

)]
(65)

6. Metric, electromagnetic potentials and dynamics at Newtonian
level

Now that we have the linearized version of the Einstein-Maxwell system and
we know (from the appendix) how to match the PN interior solution to the
MPM exterior, we can calculate the potentials and of the equations of motion.
From now on we shall work only at the higher order.

In what follows, we shall deal with functions of the type:

F (x,y1,y2) ∼
1

|x− yA|n
A = {1, 2} n ≥ 1

which are divergent when evaluated at the position of the particle A. To solve
this problem, we use Hadamard regularization procedure as described in [17, 41,
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54, 55, 56, 57]. In fact we don’t need the whole machinery here, what we actually
need is to assume that the function F (x,y1,y2) admits the series expansion:

F (x,y1,y2) =

k=0∑
k=−k0

rk1 fk(n1,y1,y2) +O(r1)

then, we can define the regularized function at point 1 to be the Hadamard
partie finie (see [17]):(

F
)
1

:= F (x,y1,y2) =

∫
dΩ(n1)

4π
f0(n1,y1,y2) (66)

6.1. The electromagnetic potential

The equation (41) for the background potential is a normal wave equation.
We can easily find the Post Newtonian expansion of the solution at every order
using the formula [17]:

�−1f(t, x) = − 1

4π

[∫
d3x′

f(t, x′)

|x− x′|
− 1

c

∫
d3x′f(t, x′) +

1

2c2

∫
d3x′ |x− x′| f(t, x′)

]
+ . . .

(67)

At the higher order and in terms of the magnetic dipole vector, we have:

0

Ai = εijkMk
1

nj1
r21

+ 1↔ 2
0

A0 =
1

c
εklmv

l
1Mm

1

nk1
r21

+ 1↔ 2 (68)

When evaluated at the position of the particle 1, these equations become:(
0

Ai

)
1

= εijkMk
1

nj12
r212

(
0

A0

)
1

=
1

c
εklmv

l
1Mm

1

nk12
r212

(69)

At the higher order, the Faraday tensor at the position of particle 1 is there-
fore given by:(

0

Fij

)
1

= 2
εijkMk

2

r312
− 3

εjskMk
2n

s
12 − εiskMk

2n
j
12

r312
ns12 +O(c−1) (70)(

0

F0i

)
1

=
1

c

εslmv
l
2Mm

2

r312

(
δks − 3nk12n

s
12

)
− 1

c

εkslMl
2

r312

(
vs2 − (n12v2)ns12

)
+O(c−2).

(71)

6.2. The metric and electromagnetic perturbation potentials

In analogy to [17, 41], we define the sources of the gravitational potentials
from the matter stress-energy tensor:

σ =
T00 + Tii

c2
σi =

T0i
c

σij = Tij (72)
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On the other hand, from the electromagnetic stress-energy tensor, we define

σelm = T elm00 + T elmii σelmi = T elm0i σelmij = T elmij (73)

Using the potentials defined in [17, 41, 18, 57], we see that the direct contribu-
tions from the electromagnetic stress-energy tensor start at the order O(c−2),
and the indirect contributions coming from the equations of motion start at
the order O(c−2): there are therefore no electromagnetic contributions at the
Newtonian level.

6.3. Equations of motion

From equation (10), and using equation (70), we find at Newtonian level
that the electromagnetic contributions to the acceleration of particle 1 is given
by:

(ai)
elm
1 =

1

2

(
0

Fij

)
1
Mj

1 =

= − 3

2m1

Mk
1Ms

2

r412

[(
δks − 5nk12n

s
12

)
− δikns12 + δisn

k
12

] (74)

In order to write down the equations of motion in the center of mass frame,
we define (see for example [41]):

m = m1 +m2
1

ν
= m

(
1

m1
+

1

m2

)
∆ =

m1 −m2

m

with this, we can rewrite (74) as:

(a1)
elm
1 − (ai)

elm
2 = aelmi = − 3

2mν

Mk
1Ms

2

r412

[(
δks − 5nk12n

s
12

)
− δikns12 + δisn

k
12

]
(75)

We can rewrite the previous equation introducing the orthonormal triad
~n, ~̀, ~λ (see [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41]); (75) becomes ~aelm =

an~n+ a`~̀+ aλ~λ, where:

an = ~a · ~n = −ω2r = −3

2

Mk
1Ms

2

r412

(
δks − 3nk12n

s
12

)
(76)

including the gravitational terms at Newtonian level, we read ω2 =
Gm

r12
+

3

2mν

(M1 · M2)− 3(M1n)(M2n)

r312
. We also have:

a` = ~a · ~̀= − 3

2mν

(M2n)(M1`) + (M1n)(M2`)

r412
. (77)

Finally, we can discard the third term, since aλ ≈ c−5 (see [41]).
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At Newtonian level, the electromagnetic energy of the particle 1 is given by:

(E)
elm
1 = −1

2
Mik

1

(
0

Fik

)
1

=

= −1

2

Mk
1Ms

2

r312

(
δks − 3nk12n

s
12

) (78)

In the center of mass frame, we have:

Eelm =
Mk

1Ms
2

r312

(
δks − 3nk12n

s
12

)
. (79)

6.4. Spin precession

From equation (11), we see that at Newtonian order only the electromagnetic
torque will act on the spin vector, therefore we have:

dSi1
dt

∣∣∣∣∣
elm

=
0

F ijM1j +O(c−2) =

= 2
εijkMj

1Mk
2

r312
− 3

εjskMk
2M

j
1n
i
12 − εiskMk

2(M1n)

r312
ns12

(80)

6.5. The magnetic moment evolution equation

At the higher order, only the star rotation is relevant so we have:

dMi
1

dt
= ωij1 M1j +O(c) (81)

.

7. Electromagnetic contribution to the energy flux of gravitational
waves

The general expressions for the gravitational waves flux and for the multi-
poles were given in [41, 58] and references therein. Since we are interested to
the expression at the higher order, we only need the mass quadrupole:

FGW =
G

c5

[
1

5
I
(3)
ij I

(3)
ij +O(c−2)

]
(82)

where at the relevant order, the quadrupole moment is given by:

Iij = σ x<ij> +O(c−2) (83)

At the higher order, we have σ = m1δ(x− x1(t)) +m2δ(x− x2(t)), where xi(t)
is the position of the body i at time t.
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We need the third time derivative of (83), which is given by:

I
(3)
ij =

(
6 v<i1 aj>1 + 2 y<i1 ȧj>1

)
m1 +

(
6 v<i2 aj>2 + 2 y<i2 ȧj>2

)
m2 (84)

One has now to substitute the equation (74) and the analogous expression for
the particle 2; it is also necessary to use the evolution equation for the magnetic

moment (81). In this way, using the dimensionless parameter x =

(
Gmω

c3

)2/3

(see for example [41]), at the higher order one gets:

FGW =
8c5x5

5G3m3

(
4G2m3+3(M2n)(vω1M1)ν+3(M1n)(vω2M2)ν+3(M2v)(nω1M1)ν+3(M1v)(nω2M2)ν

)
(85)

where, for example, (vω1M1) = viω
ij
1 M1j .

Now, imposing ~v = ŵ

√
Gm

r12
+

3

2mν

(M1 · M2)− 3(M1n)(M2n)

r312
, where ŵ

is the direction of the relative velocity vector, and Taylor expanding the square
root, we get, at the higher order:

FGW =
32

5

c5ν2x5

G
+

48c6ν

5G3m3

(
(M2w)(nω1M1)+(M1w)(nω2M2)+(M2n)(wω1M1)+(M1n)(wω2M2)

)
x11/2

(86)

8. Electromagnetic waves flux

In our case, part of the energy is radiated also through electromagnetic
waves. We have calculated the flux in section 5 equation (61); since we stop at

the higher order order, the only contributions come from
0

QL, in particular from

the dipole moment
0

Qi; using the magnetic moment vector, we have:

0

Qi = εikl
vK1
c
Ml

1 + εikl
vK2
c
Ml

2 (87)

With this, we find that the electromagnetic waves flux for circular orbit is given
by:

FEW =
5

24

x7c7

G4m4

[
(∆− 1)

(
M2

1 + (M1w)2
)

+ (∆ + 1)
(

(M2w)
2

+M2
2

)]
+

+
15

16

x9c11

G7m7

[
(∆− 1)

(
M2

1 + (M1w)2
)

+ (∆ + 1)
(

(M2w)
2

+M2
2

)](
(M1 · M2)− 3(M1n)(M2n)

)
(88)
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9. Orbital phase evolution and number of gravitational waves cycles

To illustrate the quantitative importance of the newly calculated electro-
magnetic terms in the flux of GW one can calculate the accumulated number
of gravitational waves cycles for a ground based detector.

As usual (see [41, 40, 37, 53, 39]), we start from the energy balance:

dE

dt
= −F (89)

where F is the flux. Defining φ̇ = ω (where φ is the orbital phase), after some
manipulations, we can rewrite the previous equation as:

dφ

dx
= −F

ω

(
dE

dx

)−1
(90)

where ω must be expressed in terms of x. The resulting right hand side must
be expanded in series and eventually integrated term by term.

In our case, on the right hand side of the energy balance (89) we have to
include both electromagnetic and gravitational waves energy flux; therefore, we
have two contributions to the phase evolution:

dφ

dt
=
dφGW

dt
+
dφEW

dt
= −F

GW + FEW

ω

(
dE

dx

)−1
(91)

where FGW is the total gravitational waves flux calculated in [41, 40, 37, 53, 39]
and in this paper and FEW is given in (88). φGW and φEW are those terms of
the phase evolution φ only contain contributions coming from the gravitational
and electromagnetic waves flux respectively. Detectors, however, can measure
directly only the former; the contributions due to the emission of electromagnetic
waves can only be inferred indirectly from the decay of the orbit.

After the integration of the first of (91), for the gravitational waves contri-
butions to the phase evolution, we find that electromagnetic corrections start
at relative order x2:

φGWelm = −c
5x−5/2

32ν

[
− 15

16ν

c

G3m3

(
(M2w)(nω1M1)+(M1w)(nω2M2)+(M2n)(wω1M1)+(M1n)(wω2M2)

)
x1/2

]
(92)

For the electromagnetic wave contribution, we find:

φEW = −c
5x−5/2

32ν

[
125

384

c2

G3m4

(
(∆−1)

(
M2

1−M1w)2
)

+(∆+1)
(
M2

2−M2w)2
))

x2

]
(93)

10. Conclusion

Motivated by the intense magnetic field of NS, we have studied the effect
of the star’s magnetic moment on the production of gravitational waves in a
NS-NS binary system.
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We have found the expression of the equations of motion and precession for a
system of point-like, uncharged, magnetized NS; with these equations, we have
found the covariant 4-momentum and the conserved mass. We have described
the Einstein-Maxwell system of equations, found the MPM solution and written
the energy and angular momentum for the electromagnetic field.

We have calculated the equations of motion and precession at Newtonian
order and with these we have calculated the higher order term for the gravita-
tional and electromagnetic waves flux and the electromagnetic contribution to
the accumulated number of cycles for a ground based detector.

Considering a system similar to the double pulsar system PSR J0737-3039
[67, 68] in which both stars have radius r ≈ 10 km and mass m1 = m2 = 1.4M@

and in which one NS has a magnetic field of about 1012G (magnetic dipoleM≈
1030 G cm−3) and the other has magnetic field of about 1010G (magnetic dipole
1028 G cm−3), remembering equation (15), we can see that the electromagnetic
contributions to gravitational waves cycle amounts to

−1.6
(

(M2w)(nω1M1)χ1+(M1w)(nω2M2)χ2+(M2n)(wω1M1)χ1+(M1n)(wω2M2)χ2

)
(94)

where we have defined (nω1M1) = ni12ω
1
ijM

j
1, (M1n) =Mi

1n
i
12 etc. For com-

parison, the purely gravitational contribution to the number of cycles is 15952.6
for a neutron satr binary system [41], therefore we can say that the effect of the
intense NS magnetic field on the production of gravitational waves is barely ob-
servable. The electromagnetic waves flux contribution amounts to about 10−32

and is, therefore, negligible.
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