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Abstract

One of the most important topics of the last decades has been finding energy sources
who can replace fossil fuels. Renewable energy is a good candidate, being virtually in-
exhaustible and more environment-friendly. In order to allow for this transition, electric
energy grids have evolved and have become new objects, called smart grids. However, the
complexity of this new type of grid brings new issues and challenges, which are currently
object of study for many researchers.

The purpose of this thesis is to showcase some of these problems, and to build math-
ematical models and algorithms in order to solve them, by leveraging a new property
relative to energy loads: flexibility. Since smart devices are becoming more common and
they can be remotely controlled, manipulation of energy profiles is possible, and this is a
powerful tool for the management of smart grids.

Going more into detail, a framework for managing demand response, peak shaving
and energy trading has been designed by the means of a combinatorial approach, and it
has been enhanced by exploitation of parallel computing. Moreover, an incentive mecha-
nism for usage of renewable energy has been analyzed and improved, by changing some
functions which define its behavior. This mechanism has also been examined from a
game-theoretic point of view, and it has been further improved in order to always guaran-
tee an agreement between users for flexibility usage. Finally, a decentralized, multi-agent
system approach has been used to solve the problems of cost optimization and congestion
management. Most of the content of this thesis derives from research works published in
journals and conferences.
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Chapter 1

Introduction

1.1 Context and contributions

In the last decades, the topic of energy is becoming more and more important. There
are serious problems related to fossil fuels, as they are destined to run out at some point
in future, and they are related to environmental issues such as climate change. For this
reason, more attention is being given to other energy sources, in particular renewable ones,
which address effectively these matters [5]. One key aspect of renewable energy is the fact
that its production does not need to be centralized anymore: medium private producers,
even single households, can become energy producers. This brought a significant change
in the organization of electric energy grids, and a new type of structure has been born as
a consequence of this, which has been named smart grid.

A smart grid is an electric energy grid which makes use of communication technology
for its functioning and management. This allows the grid to make use of smart devices,
and to collect and manage important data on consumption of the grid users. The most
remarkable feature of a smart grid is the fact that the energy does not need to flow one-
way anymore, from the energy provider to the grid users: this means that grid users have
the possibility to produce energy, for example with photovoltaic systems, and inject it into
the grid. For this reason, smart grids are extremely important in the context of renewable
energy: thanks to their characteristics, grid users have the possibility to produce renewable
energy for their own sustaining, and also to be rewarded for that, as they are paid for the
energy they inject into the grid [6, 7].

Being much more complex than ordinary energy grids, smart grids present new issues
that have to be taken into account. The introduction of decentralized production of re-
newable energy is problematic for grid stability, as energy production is not controllable
and variable, and predictive models always have some error margin [8]. Also, the fact
that some types of energy (such as solar) can only be produced at certain times of the
day means that production may be scarce at certain times, and excessive at others. In
addition to that, producing too much energy at the same time risks to create problems
to the grid: such an event is called a congestion. Furthermore, the fact that users can
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produce and sell energy can enable them to enter the local energy market [9]. Such a
market needs to be given precise rules, in order to avoid undesired behaviors which can
be beneficial to certain parties in economic terms, but may be harmful for other users or
for the well-functioning of the grid itself.

The technology exploited in smart grids permits a much more detailed and effective
management of the grid itself. In particular, smart meters and smart devices allow for i)
monitoring precisely consumption and production of energy through time, at device level;
and ii) allowing the energy profiles of these devices to be shifted, curtailed or changed in
time, according to the grid actors’ needs. This latter property for energy loads is called
flexibility [10], and plays a crucial role in the solution of the aforementioned issues for
smart grids. For this reason, an important part of research on smart grid is centered on
this theme.

This thesis shows how flexibility can be used to tackle several well-known questions
related to the smart grid environment. It shows how the properties of flexibility can be
exploited by means of mathematical models to maximise the profit for the multiple users,
the stability of the grid and/or the energy self-consumption. Among all the open issues
existing for smart grids, these are the ones that have been addressed in this work:

1. Managing demand response, enabling users to participate to the energy market and
to obtain profits by selling their flexibility to agents interested to buy it.

2. Identifying and addressing the potential limitations of a state-of-the-art renewable
energy incentive mechanism, such as the promotion of energy production curtail-
ment or the lack of self-consumption guarantee

3. Analyzing the behavior of the grid users in the context of a renewable energy in-
centive mechanism, and guaranteeing the existence of a scenario which is the most
profitable for all of them.

4. Optimizing the costs for the users of a local energy community, and using flexibility
to avoid congestions in the grid, both in the case of excessive production and in the
case of excessive consumption.

In order to face these problems, different models, strategies and algorithms have been
elaborated, and will be detailed in this thesis. To be more precise, this thesis makes the
following contributions to the state of the art:

1. Elaboration of a combinatorial optimization framework for smart grids, realized
with exploitation of CUDA architecture for parallel computing, with the purpose of
reducing costs and discomfort for grid users, managing the internal energy market
of the grid and processing requests for demand response.

2. Improvement of an incentive system for renewable energy based on a virtual cur-
rency, highlighting its weak points and designing for it new price functions in order
to overcome these weaknesses.
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3. Analysis of the aforementioned incentive system through a game theory perspec-
tive, with the purpose of analyzing the behavior of each user depending on the other
users’ actions, and designing new price functions which guarantee an agreement be-
tween the users.

4. Creation of a multiagent system framework for managing a smart grid, which has
the purpose of optimizing costs for grid users and managing congestions at local
grid level. We show how this approach scales very well with the size of the grid
thanks to its decentralized architecture.

1.2 Contents of the thesis
The rest of the thesis is organized as follows.

• Chapter 2 contains preliminary concepts related to the smart grid context and the
mathematical background used in the rest of this thesis.

• Chapter 3 presents the problems of demand response management, peak shaving,
cost optimization and management of the energy market in a grid, and showcases a
three-steps optimization algorithm which solves sequentially these problems. This
work has been done in cooperation with Professor Diego Reforgiato (University of
Cagliari), Professor Andrea Loi (University of Cagliari), Dr. Mario Sisinni (R2M
Solution s.r.l.) and Dr. Meritxell Vinyals (CEA - Commissariat à l’énergie atomique
et aux énergies alternatives). This work has been published in [1].

• Chapter 4 contains the description of an incentive system for renewable energy
called NRG-X-Change, an analysis of its weaknesses and the proposal of two new
pricing functions in order to make this system more robust. This work has been
done in cooperation with Professor Diego Reforgiato (University of Cagliari), Dr.
Roman Denysiuk (CEA - Commissariat à l’énergie atomique et aux énergies alter-
natives) and Dr. Meritxell Vinyals (CEA - Commissariat à l’énergie atomique et
aux énergies alternatives). This work has been published in [2].

• Chapter 5 focuses on the same incentive mechanism of the previous chapter, but
analyzes it from a game theory perspective. It shows some sufficient conditions
for reaching a Nash equilibrium, and creates some new pricing functions which
respect said conditions. This work has been done in cooperation with Dr. Roman
Denysiuk (CEA - Commissariat à l’énergie atomique et aux énergies alternatives),
Professor Diego Reforgiato (University of Cagliari) and Dr. Meritxell Vinyals (CEA
- Commissariat à l’énergie atomique et aux énergies alternatives). This work has
been published in [3].

• Chapter 6 proposes a multiagent system approach to manage a smart grid and solve
the problems of cost optimization and congestion management; the system is de-
centralized and is optimized with an algorithm named ADMM. This work has been
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done in cooperation with Dr. Roman Denysiuk (CEA - Commissariat à l’énergie
atomique et aux énergies alternatives), Professor Diego Reforgiato (University of
Cagliari) and Dr. Meritxell Vinyals (CEA - Commissariat à l’énergie atomique et
aux énergies alternatives). This work has been published in [4].

• Chapter 7 shows the conclusions reached for each of the analyzed problems, the
results obtained and the possible development of research in these fields.



Chapter 2

Preliminary concepts

2.1 Smart grids
Smart grids are much more complex structures compared to the pre-existing energy grids;
for this reason, new figures and concepts have been defined in this context. In this section,
we will describe some of the key terms that will be used in this thesis.

2.1.1 Smart Grid concepts
In this subsection we describe some of the most important concepts that will be utilized
in the following chapters. They refer to properties relative to actions that can be taken in
a smart grid environment, and have to be taken carefully into account when working in
this context.

• Flexibility. This term is the keystone concept of this thesis, and indicates the possi-
bility of a grid user to alter their energy profile. Different devices may offer different
types of flexibility: for example, an appliance such as a dishwasher or a washing
machine has a defined energy consumption profile which can be shifted in time,
while a heat pump may have its power output increased or decreased at certain
times, depending on the needs of the user.

• Congestion. A congestion happens when the grid is overloaded with energy: this is
a dangerous situation for the grid, and may lead to malfunctioning of the structure
and to lasting damage on it. There are two principal causes for congestion: excess
of consumption request from the users (overconsumption), and excess of energy
production through the grid (overproduction).

• Curtailment. An energy load is said to be curtailed if its amount is significantly re-
duced on purpose. This term may refer to consumption as well as production. Con-
sumption curtailment happens for example when the user decreases the power out-
put of a flexible device, while production curtailment happens when a user adopts
strategies to reduce their amount of produced energy.
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2.1.2 Smart Grid actors

Within the smart grid scenario there are several important figures, some adapted from the
old power grid environment, some completely new. In the following we will see what
they are and what their role is [11, 12].

• Prosumers. The term prosumer defines an energy grid consumer who can also
produce energy. However, in some contexts, this definition can be extended to
grid users who do not necessarily produce energy, but can provide flexibility by
manipulating their energy loads [11, 6, 12].

• Aggregators. An aggregator is an entity that mediates between prosumers and
entities external to the grid, such as balance and network operators. It refers to a
certain number of prosumers, usually in the same geographical location (in such
case, they are called Local Flexibility Aggregators, or LFA [13]), allowing them
to enter the energy market and to communicate with external entities. Also, it is
responsible for the negotiations among prosumers and external entities.

• Balance Responsible Party. A Balance Responsible Party (BRP) is in charge of
balancing energy supply and demand. It forecasts energy demand for prosumers
and suppliers, and looks for the best solution in economical terms for maintaining
the balance.

• Distribution System Operator. A Distribution System Operator (DSO) is respon-
sible for the transfer of energy in a given region to and from end users through the
medium and low voltage grid, and has to ensure the distribution system’s long-term
ability to meet electricity distribution demands.

2.2 Mathematical concepts
The work in this thesis is strongly based on mathematical construction and modelization.
Consequently, some preliminary concepts and results in mathematics will be introduced
in this section.

2.2.1 Known probability distributions

In Chapter 3 we will make use of some well-known probability distributions, and we
will perform some operations on them. In this subsection, we will describe how these
probability distributions are made, and how operations between them work.

A Gamma probability density function (PDF) is defined as

f (x) =
xk−1 · e− x

θ

θk ·Γ(k)
(2.1)
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where k and θ are two positive real numbers, named respectively shape and scale. The
function Γ is defined on positive real numbers as

Γ(k) =
∞∫

t=0

tk−1e−tdt. (2.2)

A Beta probability density function is defined as

f (x) =
xα−1(1− x)β−1

B(α,β)
(2.3)

where α and β are two real positive numbers, called shape parameters. The function B is
defined on real positive numbers as

B(α,β) =
Γ(α)Γ(β)

Γ(α+β)
(2.4)

where Γ is the function defined in Eq. 2.2.

2.2.2 Operations on probability distributions
We will now describe how operations between PDFs are defined. Let f and g be the PDFs
of two continuous, indipendent random variables. Then, the PDF of the sum of these
variables can be calculated as

( f +g)(t) =
+∞∫
−∞

f (x)g(t− x)dx (2.5)

and the PDF of their product, as

( f ·g)(t) =
+∞∫
−∞

f (x)g
( t

x

) 1
|x|

dx. (2.6)

When instead of f or g we have a number N, the PDFs become:

( f +N)(t) =
+∞∫
−∞

f (x)δN(t− x)dx (2.7)

(N · f )(t) =
+∞∫
−∞

f (x)δN

( t
x

) 1
|x|

dx (2.8)

where δN is the Dirac delta at N.
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A very important property of these operations regards their expected value. Recall
that, if a continuous random variable F has a function f as its PDF, the expected value of
this variable can be calculated as

E(F) =

+∞∫
−∞

x · f (x)dx. (2.9)

It follows that:

• The expected value of F +G is the sum of the expected value of F and the expected
value of G.

• The expected value of FG is the product of the expected value of F and the expected
value of G. This is only true if the two random variables are indipendent.

2.2.3 Game Theory
The core of game theory is the concept of game. A game (in normal form) is defined as a
triplet G = (U,S,Q), as follows.

• U = {U1, . . . ,UN} is the set of players. They are the entities which influence the
configuration of the game.

• S = {S1, . . . ,SN}. For any i∈ {1, . . . ,N}, Si is the set of player Ui’s strategies. Given
a player Ui, she1 has the power to take decisions which will alter the configuration
of the game; a strategy is one of these decisions.

• Q = {q1, . . . ,qN}. For any i ∈ {1, . . . ,N}, qi :
N
∏
j=1

S j→ R is the payoff function for

player Ui. They are functions which determine how much is the value of the current
configuration of the game for each player. This value can be quantified by either
something tangible like money, or abstract concepts like for example comfort.

All of the games that we will see in this thesis are pure strategy games: this means that,
when a player is allowed to choose a strategy, the choice of that strategy is completely
defined. However, there are also mixed strategy games where, when a player Ui is allowed
to choose a strategy, for every strategy in Si, she is assigned a certain probability to choose
it.

Another fundamental concept in game theory is Nash equilibrium. A Nash equilib-
rium is a configuration of the game where every player, making the assumption that other
players’ strategies will not change, does not benefit by choosing any other strategy. In
other words, this means that in a Nash Equilibrium every player is choosing the best
possible strategy in response to other players’ strategies. It is well-known that a mixed
strategy game always admits the existence of a Nash equilibrium; however, this is not true
for a pure strategy game, unless certain conditions are met, as we will see in Chapter 5.

1from now on in this thesis, this will be read as he/she



Chapter 3

Exploiting flexibility for
demand-response: a use case on a grid
in Cardiff.

3.1 Context
Since the last decades renewable energy is finding more and more place in our society and
not only in mass production. Nowadays, in fact, normal users can produce energy, and
devices such as photovoltaic panels are now affordable by families, so their use is rapidly
increasing. This brings important changes to electricity grids scenarios: electricity does
not necessarily travel one-way, and producers can decide to use their own energy instead
of taking it from the grid. Moreover, they can sell what they produce, implying also
important changes in the energy market. This has given birth to new figures in the energy
distribution environment, and also electricity grids evolved into what we call smart grids.

The possibility of using smart grids gives many advantages for both users and electric
energy providers [6, 7] in terms of costs, stability and environmental impact [5]. This
chapter is focused on how the aforementioned energy market may be locally affected by
this technology, how users and other external figures can maximize their revenues, how
system operators can control peak loads, saving on upkeep and grid reinforcement costs
and how these objectives can be pursued while minimizing discomfort for the users.

There have already been contributions on this aspect which will be shown within the
Section 3.2. In our case we analyze a situation where tariffs are fixed, and smart grid
users (in particular, prosumers [11, 6, 12]) have the possibility to produce electric energy1

(e.g. by using photovoltaic systems), which, depending on their settings, may enable load
flexibility to the energy market. The goal of this chapter is showing how to exploit such
a flexibility to minimize costs and discomfort for grid users, and giving external parties,
such as DSOs, the possibility to interact with them by buying flexibility and thus changing

1Definition of prosumer has been given in Chapter 2; in this chapter we will use the extended definition,
referring as prosumers also those grid users who cannot produce energy, but can use flexible loads.
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the total grid loads at a given time and at advantageous prices.
This work is focused on smart electricity grids. From now on, we will refer to the

term energy for electric energy.
Three levels of smart grid that we focus on are defined in the following and heavily

rely on the concept of flexibility [10], which we have defined in Chapter 2.

1. The first level is a scheduling problem: it leverages the flexibility to shift loads
depending on the energy cost, PV production and user comfort.

2. The second level includes the possibility for different users to buy and sell energy.

3. In the third level, entities external to the grid, such as DSOs, offer a reward for users
who shift their loads in order, for example, to avoid congestion at certain times: this
is similar to the peak shaving problem.

Algorithms have been developed for each level and tested on data related to consump-
tion, energy production, tariffs and smart settings in an existing grid in Cardiff, UK, and
obtained from real data by applying some transformations in order to preserve anonymity.
Moreover, data have been collected within the MAS2TERING project2, a three year
technology-driven and business-focused project, aimed at developing an innovative in-
formation and communication technology platform for the monitoring and optimal man-
agement of local communities of prosumers. The obtained results have been collected
at each level with our proposed approach and compared to the cost and comfort values
obtained by the naive algorithm applied on those data in the context the MAS2TERING
project. The results indicate that our approach highly outperforms the naive algorithm.

In order to run tests for our work, we have fixed the following hypothesis:

• Tariff plans are pre-determined and each user may choose one among six possible
tariff plans. We also show how our algorithm can be adapted to the case where real-
time tariffs are not known in advance but can be forecasted. However, forecasting
is out of the scope of this chapter.

• Consumption of grid users (without taking into account flexible loads) and photo-
voltaic (PV) generation [14, 15] can be considered known in advance. We also
consider the case where they are rather represented by random variables.

• Flexibility intervals are fixed and depend on which flexibility plan is chosen out of
nine options.

To sum up, the main contributions of the work of this chapter are:

• the algorithmic and mathematical formulation of the described concepts and levels
in order to achieve the cost and discomfort optimization for each of them;

2http://www.mas2tering.eu/

http://www.mas2tering.eu/
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• an optimization strategy which pursues cost and discomfort minimization by both
using classic demand side management techniques, such as flexible loads alloca-
tions and peak shaving, and energy market strategies which imply economic trans-
actions among prosumers within the same aggregator;

• the application of our methods on real data related to the energy grid of Cardiff,
UK;

• the performances of our algorithms compared to the results obtained by a naive
approach employed for the Cardiff energy data and the benefits we achieved with
the proposed solution;

• a framework which takes into account the discomfort that prosumers may experi-
ence due to the load shifting or interrupting, with the goal of minimizing it and
reducing their energy costs;

• a framework which takes into consideration uncertainty in load consumption, PV
generation and user preferences.

• the employment of CUDA parallel programming on top of NVidia GPUs to show
the reduced computational time of the parallel version of the brute-force algorithms
in real scenarios.

3.2 Background
Literature on smart grid is quite extensive in different aspects.

At general level, there are environmental problems targeted for example by authors
in [16] which analyze the impact of real-time pricing for electricity in terms of reduction
for variance of demand, and consequent reduction of sulfur dioxide, nitrogen oxides and
carbon dioxide emissions. Similarly, a survey published in 2016 [5] reported different
works focused on environmental issues on smart grids, finding out a significant reduc-
tion in greenhouse gases emission, although results heavily depend on the presence of
renewable energy sources.

At level of demand side management (DSM), there is a vast literature which covers
interactions on many of the involved actors. One example is [17], which is a detailed de-
scriptive work on the different types and aspects of DSM, and explains meticulously their
nature, their possible applications, and results that can be obtained with their employ-
ment. The work in [14] is another survey, more focused on the types of tariffs and load
forecasting. As far as the tariffs are concerned, various pricing schemes are described in
detail, listing their advantages for load control. The forecasting is addressed indicating
a number of statistical and AI-based methods showing how the latter achieve higher per-
formances than the former thanks to their ability to handle the non-linearity of the data.
One more work in [18] shows many of the aspects on which DSM problems may focus
and how they are tackled, detailing cost and discomfort minimization in a similar fashion
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to our presented work, and proposing many techniques to solve these problems. For the
scheduling problems, many works optimise with respect to a dynamic tariff. One example
is represented by [19], which is conceptually similar to our level 1 optimization but takes
into account the likeliness for a prosumer to pay more for a better time allocation, trying
to forecast energy prices due to the dynamic tariff. Other similar works [20, 21, 15] con-
sist of load commitment problems, although they put emphasis on the presence of plug-in
electric vehicles (PEV) and take into account the PV generation. Other ways to tackle
DSM problems are seen in [22, 23], which employ stochastic approaches. In particu-
lar [22] focuses on the economic aspects for the user and achieves relevant cost savings
through load scheduling. The work in [23], focused on the optimal charging plans for
PEV, shows advantages in both economic and peak demand aspects. Authors in [24]
describe an approach related to another scheduling optimization problem which focuses
more on users’ preferences, and, after having forecasted prices in a Real Time Pricing
(RTP) context, it allocates loads consequently using a shrinking horizon scheduling ap-
proach. This way, economic benefits for the users are obtained while load allocations
remain close to user’s preferences. Another different method is proposed in [25], where
the Monte Carlo Search Tree method is applied for the demand side management in pres-
ence of RTP. DSM techniques are also used for power stability: for example, in [26]
authors describe their usage for improving system security by using methods like load
shifting and tariff incentives, and find out that applications of those may give significant
results in terms of voltage stability and blackouts prevention. Several works also show
scheduling problem strategies used in specific cases: for example, work in [27] considers
the forecasting and load allocation problem regarding a water heater, whereas [28] shows
an example of demand side management on a real solar house.

Level 2 optimization happens purely at economic side, as energy is not actually trans-
ferred between prosumers. A work in this domain is [29], which describes the state of art
of actual peer-to-peer (P2P) energy trading, and the roles of distribution system operators
(DSOs) and aggregators on this matter. Authors in [30] describe a similar scenario on a
microgrid, where P2P energy transactions between prosumers are possible. In our level 2
optimization the aggregator plays a key role as it regulates the economic transactions be-
tween prosumers and manages their flexibility. On this matter, [9] describes an algorithm
for an aggregator to gather flexibility from prosumers, making them actors in the energy
market.

Our level 3 optimization problem is conceptually similar to the peak shaving problem,
which is tackled in [31, 32] and it aims at reducing the total load of a grid in certain
moments of the day. In fact, energy providers might encounter difficulties when the total
load of the grid is high, therefore reducing loads is critical for them. Our considered
level 3 optimization exploits the flexibility according to the offered reward and achieves
a reduction of the grid’s total load, effectively providing a way to perform peak shaving
using flexibility. Works in [33, 34] are also related, where both the cost minimization and
the peak avoiding problems are solved using a genetic algorithm.

When real time tariffs are present, level 1 and 3 optimizations are solved with a single
approach. In fact, real time tariffs encourage users to shift their flexible loads when the
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grid’s total load is not very high. This way, cost optimization (level 1) and peak shaving
(level 3) are achieved by moving flexible loads in periods of the day when total load
is lower. The reader notices that as real time tariffs are not given within our data, we
considered the two levels separated.

In the following we will report some works that tackle level 1 and level 3 with single
strategies. The work in [35] creates real time tariffs and their usage implies economical
benefits to prosumers and a better total load control to system operators. Another similar
work is [36] that uses RTP as an incentive to reduce maximum loads, and creates a multi-
objective framework on this principle. Other works related to RTP take into account
customers’ behaviour: as an example, work in [37] uses a game theory approach to create
a tariff. Regarding variable tariffs’ effectiveness, in [38] there is a study on customers
behavior with Critical Peak Pricing, showing an experiment involving 802 industrial and
commercial users in Korea, where the effects on peak load reduction are shown. The
work in [39] takes this concept further by examining customers’ reactions on price-based
and incentive-based demand response systems, and proposing a new model depending on
their behaviour.

3.3 Description of the problem
Our problem considers three levels within the smart grid, which correspond to three use
cases defined within the MAS2TERING project and described in detail in [7].

Level 1

This level is local, and involves the single prosumer. The simple fact that there are flexible
loads may offer a prosumer the possibility of saving money, for example by shifting the
load to the periods of the day when energy is cheaper. Moreover, if the prosumers can
also produce energy, it may be convenient to shift their loads when the production is at
its peak, so that they can first consume their own energy. However, load shifting may
be uncomfortable for the prosumers, since loads might be moved in time of the day not
comfortable for them. In this case, the goal is to find the best possible flexible loads
allocation in order to minimize costs and discomfort of the prosumer. In other words, this
is a local scheduling problem.

Example: Let us suppose a prosumer with the following settings.

• An appliance scheduled at 16:00, with a flexibility interval between 8:00 and 20:00
and that operates for 1 hour.

• A tariff which becomes cheaper after 18:30.

• PV generation, which has a peak at 12:00 and exceeds the prosumer’s consumption
between 10:30 and 13:30.

• A preferred started time for the appliance, 14:00.
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The goal is to minimize both the energy cost and the discomfort of the prosumer. As far as
the cost is concerned, the tariff suggests as a good strategy to move the load after 18:30.
However, as the prosumer produces more than what she consumes, it might be better to
move the load between 10:30 and 13:30. This way, the prosumer may use her own energy
instead of buying it from the market, and this solution is much more advantageous in
economic terms. Regarding the user discomfort, the further the load is moved from the
prosumer’s preferred time (14.00), the less comfortable it would be for her.

Thus, the best time for minimizing costs is different than the best time for minimizing
the discomfort. A good trade-off may be for example to start the load around 12:45; this
way the user can still save money thanks to the energy production, and the load is not too
far from her desired time. Depending on the priority that needs to be given to either the
cost or to the discomfort components, the best solution may be different. For example,
if the cost is the most important, the load may start at 12:30 in order to exploit more the
PV generation. Otherwise, the load may begin at, let us say 13:00, so that it is closer to
the user’s desired time preference and for half an hour the prosumer can use the produced
energy.

Level 2

This level regards prosumers linked by the same aggregator. After level 1 optimization,
let us assume a prosumer A still produces an amount of energy higher than what she
consumes at a certain time t of the day. Let us also consider another prosumer B which
consumes energy at t. It might be convenient for B to buy energy from A and for A to
sell her excess energy to B instead of interacting with the grid. The reason is that, in
our specific case, no matter which tariff a prosumer has, the cost of the energy she buys
from the supplier will always be higher than the cost of the energy she sells back to the
grid, thus if A sells energy to B at an intermediate price between A’s selling tariff and
B’s buying tariff, this can give a better economic return to both of them. In such a case,
the challenge is to find which users are better to connect and which price maximizes the
profit for both (buyer and seller). Also, prosumers may use flexibility to shift loads and
obtain higher profits. Although the algorithm we will propose in this section takes into
account flexibility, in our use case (Cardiff grid) this scenario does not exist as the overall
production of energy is always lower than the overall consumption. Let us observe that, in
such a scenario, transactions occur at economic level only through the coordination of an
aggregator. The reader notices that the aggregator should be paid from the involved users
for its crucial role. The amount and policies for its role are out of scope of this chapter
and have been discussed in several deliverables within the exploitation activities of the
MAS2TERING project.

Example: In our context, daily time is divided in 96 units of 15 minutes each, which
we will call Program Time Units (PTUs). Imagine that at PTU 49 (i.e. 12:00) prosumer
B consumes 0.92 kWh, and prosumer A produces 1.45 kWh. Normally B would just
buy energy from suppliers (for example at 0.24 £/kWh) and A would just sell it to the
grid (suppose at 0.06 £/kWh). However, if B could obtain energy directly from A at an
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intermediate price, e.g. 0.15 £/kWh (average between 0.06 £/kWh and 0.24 £/kWh), it
would be better for both of them in economical terms - so the best outcome would be with
A selling 0.92 kWh to B. After doing that, if there is a prosumer C which buys 1.5 kWh at
a price of 0.2 £/kWh, A could sell to C its remaining 0.53 kWh at an intermediate price of
0.13 £/kWh (average between 0.06 £/kWh and 0.2 £/kWh): this way each prosumer (A, B
and C) saves money.

Level 3

In this level, external actors such as BRPs and DSOs are involved. Here, one of them may
have specific needs for shaving loads or reducing them at a specific time of the day, and
the aggregator can provide enough flexibility to fulfill their needs. If this happens, the ex-
ternal actor may be willing to pay for the flexibility, and with that income the aggregator
can offer a reward to the prosumer who provides that flexibility. Of course, from the pro-
sumer’s point of view, the reward should be high enough to compensate the load shifting
to a non-optimal configuration in economic terms and the additional generated discom-
fort. In this level, the optimization generates the best load profiles for the prosumers, and
the best offer for the external actor. As discussed in Section 3.2, prosumers may employ
real-time tariffs and therefore, in such a case, there is no distinction between Level 1 and
Level 3 optimization, since tariffs have been planned in order to encourage load shifting
according to the third party’s policies.

Example: If at a certain PTU the DSO needs the total load to be lowered, flexibility
may be offered to reduce the load by a certain amount. For example, if the DSO wants
to reduce the total load at 12:00, there may be a prosumer who can move a flexible load,
for example, from 12:00 to 15:00. This will have a cost for the prosumer as loads are
moved from their optimal allocation; in this case, our prosumer would have its energy
cost increased by a certain amount, say 0.08 £, after this shifting. Furthermore, the new
allocation may be less comfortable to the prosumer, who might have preferred her load
to start at 12:00. The discomfort thus generated can be balanced with a certain amount of
money that will be calculated through defined policies or strategies. In our example, let
us say the discomfort can be quantified as 0.15£. Therefore, the DSO is likely to offer a
reward to the prosumer for the flexibility offered, which in this case may be 0.08+ 0.15
£, so the prosumer is refunded for both the increased cost and the potential discomfort.

Explanation of the levels hierarchy

In literature, the optimization levels mentioned above have been treated quite extensively,
and not always separately. It is indeed quite common to find works that tackle the prob-
lems in an aggregate manner, as shown in Section 3.2. The reason is that, usually, RTP
tariffs are used as a mean to achieve peak regulations by rewarding prosumers that con-
tributed: thus peak shaving (level 3) and user cost optimization (level 1) are achieved at
the same time.
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In our case, we have decided to run level 1 optimization before the other two, for four
main reasons:

• If level 1 is performed before level 2, the excess energy produced by the prosumer
is employed for self-consumption instead of being transferred. This reduces the
number of needed energy transactions, and is efficient for the prosumer in economic
terms, since self-consumption is more advantageous than energy trading.

• After level 1 optimization, it is still possible to perform the other two levels. If level
3 was performed first, then it would be impossible to perform level 1 optimization.
This is due because after level 3, flexibility usage is agreed with a third party, and
therefore it is not possible to change it anymore.

• Level 1 optimization allows to quantify the best possible gain of each prosumer in
terms of cost and comfort. This gives an advantage for the prosumers during the
negotiation with the aggregator. Furthermore, it is also possible to estimate how
much the potential discomfort is worth in economic terms. This allows calculating
a suitable reward for each prosumer.

• In terms of cost, for prosumers it is usually cheaper to use their produced energy,
rather than selling it to the grid or to other prosumers. This implies that the highest
savings in terms of costs are obtained by giving priority to level 1 over level 2.

The proposed scheme is not a joint optimization, but is divided into levels; however
this subdivision does not decrease the efficiency of the overall optimization. The reason
why savings are optimal when performing level 1 before level 2 is the following. Suppose
a prosumer has a flexible load at a certain PTU t which consumes a certain amount of
energy, and that the same prosumer produces the same amount of energy at other PTUs.
On the one hand, if the prosumer decides to sell her excess energy, the chosen tariff will
not compensate the cost of the load, since selling tariffs are lower than buying tariffs. On
the other hand, shifting the load allows the prosumer to consume the produced energy,
with no cost for the load. Furthermore, performing the first two levels before level 3
guarantees to the prosumers the highest possible return in economic and comfort terms.
This occurs because prosumers earn from level 1 and level 2, while from level 3 they
only get compensation for the loss of money or comfort caused by their agreement with
the external party. Therefore, if the economic/comfort position of the prosumers before
performing level 3 is profitable, the reward that they will obtain from that level will be
higher. Even in the case of a joint optimization (i.e. performing all the levels at the same
time), the profit obtained by the agreement with the external party is determined by how
the prosumers are using flexibility at the moment of the agreement. Since levels 1 and 2
give prosumers the most profitable flexibility profiles, they will be guaranteed the highest
possible return from the agreement.

Level 2 can still exploit flexibility and, therefore, in the general case it has to be
performed before level 3 (which assumes that flexible loads are fixed). This is due to
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the fact that in level 3 an external actor buys flexibility from the aggregator (indirectly,
from the prosumer), and, after that flexibility is agreed with the external party, flexible
load allocation cannot be changed anymore. This is also another reason for which level
1 optimization has to be performed before level 3. Only when level 2 does not need to
employ flexibility, it is not important which one is run first (level 2 or level 3).

3.4 Data Sets
In this section we describe the data set we have used to conduct our simulations. Refer-
ence data about a grid in Cardiff, UK, have been collected, diversified and projected in
future smart grid scenarios [40, 41] with different settings. In the following we will report
details of such data:

• Daily energy consumption of 184 grid users for the following five types of settings:

– High, medium and low smart technology use (3 options);

– 2020 and 2030 settings (2 options);

– Business As Usual (BAU) and Green settings (2 options);

– Day the week (Weekdays, Saturdays and Sundays) (3 options);

– Season (Autumn, Winter, Spring, Summer and High Summer) (5 options);

We call a scenario a combination of the above settings, obtained by choosing one
option for each of the five types of settings. Moreover, consumption is recorded for
each of the 96 PTUs (each PTU refers to a 15 minutes interval). The total number
of possible combinations of these settings, and therefore of possible scenarios, is
180. Hence, each grid user has a consumption vector for each of the 180 possible
scenarios and each vector consists of 96 consumption values. Table 3.1 shows the
number of prosumers with flexible loads, number of total flexible loads and number
of prosumers which can produce energy. These values may change depending on
the settings: scenarios with the 2030, such as Green or high settings, will have
more flexible loads (#loads), and prosumers with them (#pros.), than scenarios
with the 2020 (BAU or low settings). The first row of Table 3.1 (2030 - Green -
high) is the one with the highest values, in which 166 users out of 184 have at least
one flexible load, and 41 users out of 184 have a PV system. The 2020/2030 and
Green/BAU settings have been introduced in a report from UK National grid [41],
and describe how production/consumption would be if certain policies are adopted
for the grid. The high/medium/low settings indicate the grade of penetration of
some smart technologies inside the defined grid scenario.

• Descriptions of energy consumption for cycles of various appliances in different
period of the week (Weekdays, Saturdays, Sundays) and number of appliances in
each house and scenario. Available appliances are the following:
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Settings #pros. #loads PV users
2030 Green high 166 380 41
2030 BAU high 92 152 20
2020 Green high 101 190 25
2020 BAU high 55 76 15
2030 Green medium 101 190 41
2030 BAU medium 43 58 20
2020 Green medium 55 76 25
2020 BAU medium 29 38 15
2030 Green low 56 76 41
2030 BAU low 25 30 20
2020 Green low 29 38 25
2020 BAU low 10 10 15

Table 3.1: Number of prosumers per setting. The columns describe, respectively, settings,
number of prosumers with flexible loads, number of total flexible loads and number of
prosumers which can produce energy.

– Dishwasher

– Electric Oven

– Electric Vehicle

– Freezer

– Fridge

– Tumble dryer

– Washing machine

– Heat pump

• Energy production data for each prosumer with PV systems.

• User tariffs data, for selling and buying energy. The former includes only one
tariff shared by all the users, whereas the latter consists of 6 available tariffs, which
depend on the the users’ choices.

• Flexibility settings for each prosumer: times of the day where flexible loads may
be allocated for each smart appliance. They are pre-determined, but depend on
the habits and choices of the prosumers. According to these habits, prosumers are
assigned different profiles: some examples of these profiles may be worker, not
worker or always at home. In our case there are 9 pre-determined profiles, which
identify 9 different possibilities for flexibility settings. One of the 9 combinations
can be seen in Table 3.2 whereas the entire list is publicly available3.

3https://github.com/flilliu/UASmartGrid

https://github.com/flilliu/UASmartGrid
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The DSO of the aforementioned grid provided general data such as total year con-
sumption, number and typologies of users, and average values of energy consumption for
every user typology and period of the week/year. The data set we worked on has been
anonymized. The initial load allocation present in these data has been performed using a
naive algorithm which will be considered as the baseline we compare our results against.

Appliance ST FT ST FT
Washing Machine 09:00 14:00 17:00 22:00
Tumble Dryer 09:00 22:00
Dishwasher 13:00 17:00 20:00 00:00
Electric Oven 12:00 15:00 19:00 22:30
Electric Vehicle 00:00 05:00

Table 3.2: One of the 9 possibilities for flexibility settings. For each appliance, start time
(ST) and finish time (FT) of each flexibility interval is indicated, and in some cases there
can be more than one interval, like washing machines, dishwashers and electric oven.

A list of all the details on the data and the underlying grid, named Bologna, can be
found in some of the produced deliverables of the MAS2TERING project4 [11, 42, 7].

3.5 Methods and algorithms

In this section we discuss in details the algorithms we have introduced. Sections 3.5.1
and 3.5.2 describe, respectively, the algorithm of level 1 optimization when variables such
as power consumption, PV generation and user preferences (detailed in Section 3.5.1) are
known in advance, and its version which takes into account uncertainty. Section 3.5.3 de-
scribes the level 2 optimization algorithm whereas Section 3.5.4 shows a different version
of the same algorithm which exploits parallel computation. Section 3.5.5 describes the
level 3 optimization algorithm, that requires several external inputs. For this reason, an
automatic version of it that looks for the highest possible peak reduction has been devel-
oped as well, described in Section 3.5.6, and used for our experiments in Section 3.6.3.

3.5.1 Level 1 Optimization - Algorithm without Uncertainty

We recall that the level 1 is where prosumer’s flexible loads are moved so that energy costs
and user discomfort are minimized, without interacting with external actors or other grid
users. Let us choose a prosumer and a scenario, i.e. season, time of the week and smart
technology use. Let Z be the number of PTUs the day consists of: in our case, Z = 96.
Then the following data represent the input of the algorithm for the chosen two elements.

4To obtain the data please send an email to the MAS2TERING coordinator
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Input of the algorithm

• Daily net energy consumption of the prosumer. This is a vector N of length Z,
where the t-th component contains the net energy consumption at PTU t, which
corresponds to the difference between consumed and produced energy at t. It rep-
resents the energy consumed by interruptible loads (and not by shiftable loads).

• Shiftable loads. These are vectors of length Z (we will refer to those as vj, where
j goes from 1 to m, the number of smart appliances of the prosumer), where the
t-th component contains energy consumption at PTU t. There is a shiftable load for
each smart appliance of the prosumer. For example, fridges and freezers are always
active, but their consumption is not uniform and therefore their energy loads may
be shifted.

• Interruptible loads. These are vectors of length Z, where the t-th component con-
tains energy consumption at PTU t. We will refer to those as wj, where j goes from
1 to b, the number of interruptible appliances of the prosumer. There is an inter-
ruptible load for each device of the prosumer whose operation can be interrupted
and resumed, such as heat pumps. Moreover, the loads of these devices at a specific
time can be changed, but the total daily energy load must remain the same.

• Tariffs. These are two positive vectors of length Z. The first, T, contains the tariff at
which the prosumer buys energy from the grid at each PTU. The second, S, contains
the tariff at which the prosumer sells energy to the grid at each PTU.

• Maximum load. This is a number M, which determines the maximum energy
consumption the prosumer may have at any PTU.

• Flexibility settings. This determines how each shiftable load of the prosumer can
be allocated.

• User preferences. For each shiftable load, the most comfortable allocations for the
prosumer are known. Furthermore, for energy consumption relative to interruptible
loads, prosumers’ preferences are known too.

A shiftable load can be moved in time: in mathematical terms, moving a shiftable
load vj means rotating the components of the vector vj by a certain number of positions.
Pk(vj) will denote the vector obtained by rotating each component of vj by k positions
forward. Given an interruptible load wi, its t-component can become zero (which means
interrupting the device during the PTU t) as long as the overall sum of all the components
of wi does not change.

There might be some slots indicated within the flexibility settings at which a shiftable
load cannot be moved. The set of the allowed slots will be called I j.
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Objective, cost, discomfort functions

The objective of this optimization level is to minimize costs and discomfort of the pro-
sumer. In order to achieve this, we define two functions C and D, which describe, respec-
tively, the cost of the electricity for the prosumer and her discomfort. The discomfort will
be weighted using a parameter α ≥ 0. Therefore, the objective is to minimize the goal
function, which has been defined in [18] and that we introduce as:

G =C+α ·D. (3.1)

In particular, for α = 0 the problem becomes a cost minimization task.
We will now describe the cost and discomfort functions.
Let L be an energy consumption vector. Let us define L+ as L with each negative

component changed to zero, and L− as L with each positive component changed to zero.
A value is positive (negative) when the consumed energy is higher (lower) than the pro-
duced energy. The energy cost will be calculated as:

C(L) = L+ ·T+L− ·S (3.2)

User discomfort highly depends on each prosumer and cannot be described with an
exact formula. Several works in literature tackled the problem. The discomfort con-
cerning the shiftable loads is generated by the load shifting: a prosumer chooses when
to activate a certain device, and the discomfort increases by moving further and further
away the activation time. We have employed the same approach described in [18, 43]. In
particular, we adopted a variation of the formula suggested in [43]. Let us suppose vi is a
shiftable load, pri the PTU when the prosumer would like to begin the load, and aci the
PTU when the load actually starts. The discomfort relative to the load is then:

Dshi f t(vi) = ρ · |pri−aci|k (3.3)

where ρ and k ≥ 1 are two real numbers, and ρ acts as a factor of conversion in terms of
money. The total discomfort generated by the shiftable loads is then equal to

Dshi f t =
m

∑
i=1

Dshi f t(vi). (3.4)

The discomfort concerning the interruptible loads (which mostly involve temperature
related devices) depends on the difference between the generated and desired temperature.
We have employed the same approach described in [44, 45].

The formula we decided to adopt is an adaptation of that defined in [45]. For the load
wj, let twj be the vector of the temperatures desired by the prosumer at each time, and taj
the vector of the temperatures actually provided at each time. More in detail, let us fix a
time unit t, twj[t] is the temperature the prosumer desires at time t, and taj[t] the provided
temperature. The discomfort function is then defined as:

Dint(wj) = µ ·
Z

∑
t=1
|twj[t]− taj[t]|h
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where, as seen in the previous case, µ and h ≥ 1 are real numbers. As suggested
in [45], we set h = 2. It has to be noted that our data regard energy consumption and
not temperature; however temperature at a certain PTU depends on the quantity of used
energy. For this reason, calling wj[t] the t−th component of the vector wj and cwj the
vector describing the consumption desired by the prosumer, the discomfort function we
actually used is:

Dint(wj) = µ ·
Z

∑
t=1

∣∣∣∣∣ t

∑
u=1

wj[u]−
t

∑
u=1

cwj[u]

∣∣∣∣∣
h

(3.5)

The total discomfort function for interruptible loads is then

Dint =
b

∑
j=1

Dint(wj).

Therefore, if we combine what we have defined so far, the total discomfort function is
defined as:

D = Dshi f t +Dint .

Pseudocode of the Algorithm

The optimization works as it follows:

1. For each shiftable load vj, a permitted allocation is chosen. In other words, a num-
ber k j ∈ I j is chosen for each j.

2. Each vj thus allocated is added to the net energy consumption vector. That is, the
following vector is created:

Lk1,...,km = N+Pk1(v1)+ . . .+Pkm(vm)

3. For each combination of the ki, interruptible loads are modified depending on the
PTUs where tariff changes. Since the vectors wj are already considered in N, any
modification to them also changes the consumption vector Lk1,...,km . To be more
specific on how the wj are changed, let us consider the tariff vector T at time t.

• If T[t] = T[t +1], nothing changes.

• If T[t] > T[t +1], the value wj[t] is reduced by a certain quantity Q j, and the
value wj[t +1] is increased by the same quantity Q j.

• If T[t]< T[t +1], the value wj[t] is increased by a certain quantity Q j, and the
value wj[t +1] is reduced by the same quantity Q j.

The quantity Q j is determined as follows. Let Q1
j be the maximum quantity which

can be moved without unsatisfying the constraints of not exceeding the device’s
maximum energy output and the load limit for that PTU. Let Q2

j be the optimal
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value for minimizing the combined value of the cost and the discomfort function
for the interruptible load: it can be calculated by using derivatives, since this is a
convex function. More precisely, the part of this function relative to the interruptible
load is

G(x) = (|T[t +1]−T[t]|) · x+µ · xh

The minimum of such a function will be achieved when the derivative is equal to
zero. Therefore, the explicit formula for Q2

j becomes

Q2
j =

(
|T[t +1]−T[t]|

µ ·h

) 1
h−1

(3.6)

Then, Q j is chosen as the minimum between Q1
j and Q2

j .

4. Interruptible loads can be changed depending on L’s values. More in detail, let us
consider the L vector at PTU t.

• If L[t] and L[t +1] have the same sign, nothing happens.
• If L[t]> 0 and L[t +1]< 0, the value wj[t] is decreased by a certain quantity

Q j, and the value wj[t +1] is increased by Q j.
• If L[t] < 0 and L[t +1] > 0, the value wj[t] is increased by a certain quantity

Q j, and the value wj[t +1] is reduced by Q j.

The quantity Q j is calculated similarly to step 3.

5. The goal function relative to the total load with the chosen allocations is calculated.
We are calculating G(Lk1,...,km), by combining Eq. 3.1, 3.2 and 3.4.

6. The first five steps are repeated for every possible combination of k j ∈ I j. The

number of times this process is repeated is then
m
∏
j=1
|I j|. The results depend only on

the choice of the k j made at step 1: for this reason, the steps described so far can be
run in parallel for every possible choice of the indexes k j.

7. The allocations which achieved the lowest value for the goal function are chosen:
in other words, the k1, . . . ,km which minimize the goal function G(Lk1,...,km).

8. A check is performed in order to ensure that energy consumption with the cho-
sen allocation does not exceed the maximum load limit at any PTU. That is, the
inequality

Lk1,...,km[t]≤M (3.7)

has to hold for each t ∈ {1, . . . ,Z}. If this happens, k j are defined as optimal, and
the resulting consumption vector Lk1,...,km will be denoted by L. Otherwise, this
configuration is discarded and the algorithm goes back to step 7, taking the second
best choice of the k j.

9. The output of the algorithm are the optimal values for the k j, and the values of Q j.
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Example

Let us assume we have two appliances with shiftable loads and one with interruptible
loads. Moreover, let us assume 7 PTUs with the following parameters:

N = [1.0 0.3 −0.1 −0.7 −0.3 0.7 1.1]
v1 = [0.2 0.3 0.4 0.2 0.5 0.0 0.0]
v2 = [0.1 0.4 0.2 0.1 0.5 0.0 0.0]
w1 = [0.3 0.0 0.0 0.0 0.0 0.0 0.0]
T = [1.2 0.8 0.8 0.6 0.8 1.2 1.0]
S = [0.3 0.3 0.3 0.3 0.3 0.3 0.3]
M = 1.5

(3.8)

Where consumption data are expressed in kWh and tariffs in £/kWh. We recall that w1 is
already counted in N.

Also, let us suppose the parameters for discomfort are:

pr1 = 2
pr2 = 1
α = 0.25
ρ = 0.25
k = 1.5
µ = 0.3
h = 2

(3.9)

In this case, pr1, pr2, α, k and h are numbers, while ρ and µ are a factor of conversion be-
tween discomfort and money, and are therefore expressed, respectively, in £and £/(kWh)t ,
according to their respective formulas.

Suppose that flexibility settings allow us shifting v1 and v2 by 0, 1 or 2 places forward.
Thus, for example, only these three configurations for v1 are allowed:

P0(v1) = [0.2 0.3 0.4 0.2 0.5 0.0 0.0]
P1(v1) = [0.0 0.2 0.3 0.4 0.2 0.5 0.0]
P2(v1) = [0.0 0.0 0.2 0.3 0.4 0.2 0.5]

So, since |I1|= |I2|= 3, there are 9 possibilities to explore.
The procedure starts, calculating the Lk1,k2 vectors:

L0,0 = [1.3 1.0 0.5 −0.4 0.7 0.7 1.1]
L0,1 = [1.2 0.7 0.7 −0.3 0.3 1.2 1.1]
L1,0 = [1.1 0.9 0.4 −0.2 0.4 1.2 1.1]
L1,1 = [1.0 0.6 0.6 −0.1 0.0 1.7 1.1]
L2,0 = [1.1 0.7 0.3 −0.3 0.6 0.9 1.6]
L2,1 = [1.0 0.4 0.5 −0.2 0.2 1.4 1.6]
L0,2 = [1.2 0.6 0.4 −0.1 0.4 0.8 1.6]
L1,2 = [1.0 0.5 0.3 0.1 0.1 1.3 1.6]
L2,2 = [1.0 0.3 0.2 0.0 0.3 1.1 2.1]

(3.10)
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Since L1,1’s sixth component exceeds M, this case is discarded. Also, each of the five re-
maining vectors (that is, L2,0, L0,2, L2,1, L1,2, L2,2) has the seventh component exceeding
M, so they will not be considered.

The cost function is calculated on these vectors. For example, for L0,0, it results:

L+
0,0 = [1.3 1.0 0.5 0.0 0.7 0.7 1.1]

L−0,0 = [0.0 0.0 0.0 −0.4 0.0 0.0 0.0]

The cost function will be therefore:

C(L0,0) = L+
0,0 ·T+L−0,0 ·S = 5.26−0.12 = 5.14£

Using the same procedure, the cost in the other two cases is calculated, resulting
C(L0,1) = 5.25 £ and C(L1,0) = 5.16 £.

Now, let us calculate the discomfort. Regarding shiftable loads, the formula from
Eq.(5.3) becomes:

Dshi f t(vi) = 0.25£ · |pri−aci|1.5.

Applying on the valid configurations, it becomes:

Dshi f t(v1) = 0.25£ · |2−0|1.5 ≈ 0.71£ for k1 = 0

Dshi f t(v1) = 0.25£ · |2−1|1.5 = 0.25£ for k1 = 1

Dshi f t(v2) = 0.25£ · |1−0|1.5 = 0.25£ for k2 = 0

Dshi f t(v2) = 0.25£ · |1−1|1.5 = 0£ for k2 = 1

For the loads listed above, their discomfort becomes:

Dshi f t(L0,0) = 0.96£
Dshi f t(L0,1) = 0.71£
Dshi f t(L1,0) = 0.50£

The only thing left is Q1. The only interruptible load is at PTU 1, and is 0.3 kWh.
Since the tariff T at PTU 2 is lower than that at PTU 1, this load can be interrupted. Now,
Q1

1 = 0.3 kWh since at PTU 2 the power constraint would still hold. As for Q2
1, applying

Eq. (5.6), it can be calculated as it follows:

Q2
1 =

(
|0.8£/kWh−1.2£/kWh|

0.3£/(kWh)2

) 1
2−1

≈ 1.33kWh

Thus, since Q1
1 < Q2

1, Q1 will be 0.3 kWh.
The Q1 calculated this way holds for each of the L0,0, L0,1 and L1,0. The associ-

ated discomfort value is obtained using formula (5.5) Dint = 0.3£/(kWh)2 · (0.3kWh)2 ≈
0.03£.
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The goal function can now be calculated. We have:

G(L0,0) =C(L0,0)+α · (Dshi f t(L0,0)+Dshi f t(L0,0))

= 5.14£+0.25 · (0.96£+0.03£)≈ 5.39£
G(L0,1) =C(L0,1)+α · (Dshi f t(L0,1)+Dshi f t(L0,1))

= 5.25£+0.25 · (0.71£+0.03£)≈ 5.44£
G(L1,0) =C(L1,0)+α · (Dshi f t(L1,0)+Dshi f t(L1,0))

= 5.16£+0.25 · (0.50£+0.03£)≈ 5.30£

k1 = 1 and k2 = 0 represent the optimal configuration, and the output value for Q1 is 0.3
kWh.

3.5.2 Level 1 Optimization - Algorithm with Uncertainty
The algorithm shown in 3.5.1 works in an environment where the input is known in ad-
vance. However, in many cases, data is present with a certain level of uncertainty that
needs to be considered. For this reason, another version of the algorithm has been devel-
oped, taking into account such an aspect.

Data with Uncertainty

When uncertainty is present, forecasting can be performed with a certain degree of preci-
sion. However, forecasting is out of the scope of this work. In our work, we employ some
models present in literature to tackle uncertainty on the following factors.

• Energy consumption. The energy consumption of a prosumer can be predicted
from her historical consumption data and her behavior, or via more complex meth-
ods. When data is not enough to perform an efficient forecasting, energy consump-
tion can however still be modelized as a probability density function (PDF) of a
random variable. Some works attempted to do this, and the most efficient model
has been found as a Gamma random variable [46] (see Eq. 2.1), which is what we
have used in our work.

• PV generation. There have been several attempts to create a probability model
for electricity generation from PV panels. These had to take into account various
factors, such as season and weather. The work in [8] takes into account many of
these factors in order to create a model for solar irradiation, and another work [47]
concluded that PV generation is best modelized with a Beta random variable PDF
(see Eq. 2.3). We have therefore used the work in [47] for our model.

• User preferences. The work in [48] makes an attempt to predict user preferences
and the general algorithm might employ that schema. In our case users preferences
can be deduced from the available data, so creating a different model has not been
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necessary. In fact, it is enough to compare the average consumption data of a given
prosumer with the consumption of prosumers without flexible loads to easily de-
tect the PTUs with values higher than the average: those will correspond to the
prosumer’s favorite times for flexible loads.

Tariffs (RTP) might also not be given and methods to forecast them have been pro-
posed in literature [49]. In the specific case of the Cardiff smart grid, tariffs only depend
on the hour and the prosumer’s price plans: in other words, they are Time of Use (ToU)
tariffs, so RTP does not apply here. However, RTP tariffs can still be integrated in the
algorithm without much trouble, as it will be shown later.

Input of the Algorithm with Uncertainty

The input, output and functions that will be used for this algorithm are conceptually the
same of the algorithm defined in Section 3.5.1. The objective is also the same: find
the allocations of shiftable loads vj which are compatible with the prosumer’s flexibility
settings and minimize a combination of energy cost and discomfort for the user.

The input for the algorithm is constituted by the following variables.

• Daily net energy consumption of the prosumer. The concept is the same of Sec-
tion 3.5.1, but in this case uncertainty of load consumption is considered. For this
reason, this variable is represented by a vector N of length Z, where each of its com-
ponents corresponds to the PDF of a random variable. Net energy consumption at a
certain PTU is defined as the difference between energy consumed and energy pro-
duced at that time. For this reason, each component of N is obtained as difference
between two PDFs with distributions Gamma and Beta, respectively.

• Shiftable loads. As described in Section 3.5.1, they are vectors vj of length Z, with
j ranging from 1 to m.

• Interruptible loads. As described in Section 3.5.1, they are vectors wj of length Z,
with j ranging from 1 to b.

• Tariffs. Similarly to Section 3.5.1, since in the Cardiff grid the tariffs are ToU, they
are described as a couple of vectors T and S of length Z. In case of RTP tariffs,
however, they can be instead considered as two vectors T and S of length Z: in
each of them, every component is a PDF of a random variable which describes the
probability distribution of tariffs (for buying and selling energy, respectively) at the
chosen PTU.

• Maximum load. As described in Section 3.5.1, it is a number M.

• Flexibility settings. Same as described in Section 3.5.1. In particular, for each
shiftable load vj, flexibility settings are represented by the set I j.
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• User preferences. In this case, this is represented by some vectors pj, one for each
shiftable load and each one with length Z. Each component pj[t] represents the
probability for the prosumer to begin the load vj at PTU sj[t]. For this reason, the
constraints

Z

∑
t=1

pj[t] = 1

pj[t] = 0 ∀t /∈ I j

hold for each pj. In particular, if the preference of the user for a load vj is known to
be at a specific time t0, the vector pj becomes:

pj[t] =

{
1 if t = t0
0 otherwise

Objective, cost, discomfort functions

The objective of the optimization is still to minimize the combined cost and discomfort
for the prosumer; however, given the different nature of some of the input variables of
this algorithm, the key functions defined in Section 3.5.1 have to be defined in a different
way. In particular, the goal function is now defined as

G =C+α ·D (3.11)

where C and D are the new cost and discomfort functions, and α ≥ 0 is the parameter
which weights relative importance of cost and discomfort. In particular, these three func-
tions (G, C and D) are defined as PDFs of random variables, so our purpose is now to
minimize the expected value of G.

Let us define the new cost and discomfort functions. For the first, let L be an energy
consumption vector, where each of its components L[t] is a PDF. For each PTU t, we
define the function

C(L)[t](x) =
0∫

−∞

L[t](z) ·S[t]
(

x
z

)
1
|z|

dz+

+

+∞∫
0

L[t](z) ·T[t]
(

x
z

)
1
|z|

dz

(3.12)

It has to be noted that this is a generalization of the function defined in 3.2: if we
know the consumption L[t] beforehand at time t, the distribution L[t] is the Dirac delta
δL[t], and consequently L[t] is the Dirac delta distribution δL[t]·T[t]. Also, in the case of
ToU tariffs, S and T are represented by δS and δT respectively, in Eq. 3.12.

The new cost function C is then defined as

C(L) =
Z

∑
t=1

C(L)[t] (3.13)
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and in particular, it is a function that gives a PDF as an output, since each of the
components defined in 3.12 is a PDF.

In order to define the new discomfort function, similar changes have to be done. About
the discomfort generated by the moving of shiftable loads Dshi f t , consider a shiftable load
vi. If the load starts at the time t0, the generated discomfort will be:

Dshi f t(vi) = ρ ·
Z

∑
t=1

pi[t] · |t0− t|k (3.14)

where, as in Eq. 3.3, ρ and k≥ 1 are two real numbers. Thus, with the same operations of
Eq. 3.4, the total discomfort generated by the shiftable loads becomes:

Dshi f t =
m

∑
i=1

Dshi f t(vi). (3.15)

Regarding the discomfort generated by the interruptible loads, in our case it is a ther-
mal discomfort, and, as mentioned in Section 3.5.1, it depends on the difference between
the desired and the provided temperature. For this reason, given an interruptible load wi,
in order to determine the generated discomfort Dint(wi), the same formula seen in Eq. 3.5
is adopted, keeping in mind that each wj is now a PDF, and so is Dint(wj). With this
definition, following the operations of Section 3.5.1, it follows that:

Dint =
b

∑
j=1

Dint(wj)

and finally
D = Dshi f t +Dint .

Pseudocode of the Algorithm

In the following it is explained how the uncertainty-aware algorithm works.

1. For each shiftable load vj, a permitted allocation k ∈ I j is chosen.

2. Each vj thus allocated is added to the net energy consumption vector. In other
words, the following vector is created:

Lk1,...,km = N+Pk1(v1)+ . . .+Pkm(vm).

In this case, differently from the algorithm in Section 3.5.1, each of its components
is a PDF.

3. The goal function relative to the total load with the chosen allocations is calculated.
In this case, the vector of PDFs G(Lk1,...,km) is calculated by combining Eq. 3.11,
3.13 and 3.15.
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4. These three steps are repeated for every possible combination of each k j ∈ I j. The

number of times this process is repeated is
m
∏
j=1
|I j|. Similarly to the algorithm dis-

cussed in Section 3.5.1, it is possible to run the steps described so far in parallel for
each possible choice of the k j.

5. As in the algorithm in Section 3.5.1, the purpose is to choose the allocations that
achieve the lowest value for the goal function. In this case the goal function has not
a number as output, but a PDF: we chose the expected value. We then consider the
k1, . . . ,km which minimize the expected value of the goal function G(Lk1,...,km).

6. A check is performed in order to ensure that energy consumption with the chosen
allocation does not exceed the maximum load limit at any PTU. However, each
component of Lk1,...,km is a PDF and M is a number, so these inequalities have to be
defined in another way. The load limit might exceed with a certain probability. We
chose a number p ∈ (0,1), and defined the bounds as

M∫
−∞

Lk1,...,km [t]≤ p (3.16)

for each PTU t. In other words, at each PTU, the probability of the load not
exceeding the limit is at least p. If Lk1,...,km(t) satisfies this condition for every
t ∈ {1, . . . ,Z}, these values for k j are defined as optimal; otherwise this configura-
tion is discarded and the algorithm goes back to the previous step, taking the next
best choice of the k j.

7. Interruptible loads are modified depending on the PTUs where tariff changes, sim-
ilarly to the uncertainty-unaware algorithm. The only difference is that, with the
same notation, Q1

j is requested to satisfy the constraints of not exceeding the energy
output of the device and the load limit with a relatively high probability, in a way
similar to Eq. 3.16.

8. The output of the algorithm is represented by the optimal values for the k j, and the
values of Q j.

This algorithm takes into consideration many more factors than the one in Sec-
tion 3.5.1; for this reason, the computational complexity is higher. For this algorithm

and the one in Section 3.5.1 the number of times the goal function is calculated is
m
∏
j=1
|I j|,

and a check is performed afterwards to see that all the constraints are verified. How-
ever, all these operations are computationally more expensive for the uncertainty-aware
algorithm, since in this case operations are made on probability distributions instead of
vectors, and integrals have to be computed. More details about the parameters and settings
of this algorithm will be given in Section 3.6.
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Example

To explain the concept, imagine the data and flexibility settings are the same of the exam-
ple in Section 5.1, which are indicated in Eq. 3.8, except for N. The parameters are the
same of Eq. 3.9.

Let the preference probability vectors be, respectively for each smart device,

p1 = [0.4 0.4 0.2 0 0 0 0]
p2 = [0.2 0.3 0.5 0 0 0 0]

Let the consumption vector be N1, and defined as:

N1 =



Gamma(100,0.01)
Gamma(70,0.01)
Gamma(70,0.01)
Gamma(60,0.01)
Gamma(80,0.01)
Gamma(80,0.01)
Gamma(110,0.01)


Moreover, let the energy production vector be N2, and defined as:

N2 =
25
24
·Beta(24,1) ·



0.0
0.4
0.8
1.3
1.1
0.1
0.0


Therefore, N = N1−N2. Since the expected value of the sum of two variables is the

sum of the expected values, by calculating the expected values of the components of N1
and N2, it follows:

N = [1.0 0.3 −0.1 −0.7 −0.3 0.7 1.1]

where each value represents the expected value of each component of N.
In a similar fashion to the example in Section 5.1, the shifted loads are calculated.

In particular, the first Lk1,k2 vectors have the corresponding expected values Lk1,k2 as in
Eq. 3.10. For each of them, each component needs to check whether it exceeds the limit
M, by using Eq. (5.13). In our example, each of the components of Lk1,k2 satisfies the
limit, except for the sixth component of L1,1 and the seventh component of L2,0, L2,1,
L0,2, L1,2 and L2,2. Therefore these configurations are discarded, and L0,0, L0,1 and L1,0
are those remaining. For each of these vectors, the goal function has to be calculated.

First, the cost is calculated. By using Eq. (5.9), it results that:
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• C(L0,0) has an expected value close to 5.14£;

• C(L0,1) has an expected value close to 5.25£;

• C(L1,0) has an expected value close to 5.16£.

where the values reported above are the two-digits decimals closest to the actual expected
values.

For what the discomfort is concerned, interruptible loads behave as in the example of
Section 5.1, and, thus, the expected value of the discomfort generated is approximately
0.03£ for each of the three cases. Discomfort regarding shiftable loads, however, has to
be calculated again, using Eq. (5.11). It turns out:

Dshi f t(L0,0) =

= 0.25 ·

(
7

∑
t=0

p0[t] · |t−0|1.5 +
7

∑
t=0

p1[t] · |t−0|1.5
)

= 0.25 · (0.4 ·0+0.4 ·1+0.2 ·2.82)+
+0.25 · (0.2 ·0+0.3 ·1+0.5 ·2.82)
= 0.25 · (0.97+1.71)≈ 0.67£

Dshi f t(L0,1) =

= 0.25 ·

(
7

∑
t=0

p0[t] · |t−0|1.5 +
7

∑
t=0

p1[t] · |t−1|1.5
)

= 0.25 · (0.4 ·0+0.4 ·1+0.2 ·2.82)+
+0.25 · (0.2 ·1+0.3 ·0+0.5 ·1)
= 0.25 · (0.97+0.70)≈ 0.42£

Dshi f t(L1,0) =

= 0.25 ·

(
7

∑
t=0

p0[t] · |t−1|1.5 +
7

∑
t=0

p1[t] · |t−0|1.5
)

= 0.25 · (0.4 ·1+0.4 ·0+0.2 ·1)+
+0.25 · (0.2 ·0+0.3 ·1+0.5 ·2.82)
= 0.25 · (0.60+1.71)≈ 0.58£

We can now conclude the example. The goal function has now an expected value of:

• 5.14£+0.25 · (0.03£+0.67£) = 5.32£ for L0,0

• 5.25£+0.25 · (0.03£+0.42£) = 5.36£ for L0,1

• 5.16£+0.25 · (0.03£+0.58£) = 5.31£ for L1,0

Therefore, the optimal configuration turns out to be k1 = 1 and k2 = 0.



3.5. METHODS AND ALGORITHMS 39

3.5.3 Level 2 Optimization
As mentioned earlier in the chapter, in this level prosumers can buy/sell energy from/to
other prosumers. As already shown in literature [50], and, compliant to our Cardiff data,
the following assumption holds: the tariff at which prosumers without PV buy energy
from the grid (Time of Use import tariff) is always higher than the tariff at which pro-
sumers with PV sell energy to the grid (export tariff). When this happens, buying/selling
energy at an intermediate price between these two tariffs is favorable for both the buyer
and the seller. The optimization at this level can be generalized for RTP tariffs if the
following requirements are satisfied:

• The tariffs at which prosumers buy energy from the grid are always higher than the
tariffs at which they sell energy to the grid.

• There is a reliable way to predict the RTP tariffs.

Level 2 algorithm relies on the results found by level 1 algorithm. We presented two
versions of the level 1 algorithm though, one which does not consider uncertainty in the
data, and the other which does. For this reason, an uncertainty-aware version of the level
2 algorithm has been created as well; we decided to describe it in the same section though,
since these two versions differ only for a small part. In the description of the algorithm
we make the assumption of using the uncertainty-unaware version of level 1, i.e. the
algorithm in Section 3.5.1. We will also explain the process when using the uncertainty-
aware version of level 1 algorithm. Below it is reported the description of the related
optimization algorithm.

Input of the Algorithm

First, level 1 optimization is performed on each prosumer, obtaining the optimal allocation
of each shiftable load. Then, the energy consumption vector of each prosumer can be
calculated by adding each obtained shiftable load to the net consumption vector. Let
us call Nr the net consumption vector of the r−th prosumer and kr

1, . . . ,k
r
m the optimal

allocations of the r−th prosumer’s shiftable loads v1
r, . . . ,vm

r. The consumption vector
of that prosumer will then be:

Vr = Nr +Pkr
1
(v1

r)+ . . .+Pkr
m
(vm

r)

These vectors will be the input of the level 2 algorithm, along with the tariff vectors T and
S of each prosumer defined in the Section 3.5.1. In the case of RTP tariffs, T and S will
be the vectors of predicted tariffs for the day, for each prosumer.

Let N be the number of users in the grid: as already mentioned in Section 3.4, in
our case N is 184. From the consumption vectors, a N× (Z + 1) matrix R is built such
that each row of R contains a grid user’s name in the first column, and the user’s energy
consumption at PTU t in the t +1-th column. Basically, each row contains the name of a
grid user followed by its related energy consumption vector.
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Additionally, a vector named A of size N is created and that will be used to calculate
the costs at the end of the process. At the beginning, each of its components A[r] is zero.

Pseudocode of the Algorithm

Here we will show how the optimization work is performed.

1. First, we consider an index t which indicates the PTU the algorithm is currently
elaborating: when the algorithm begins, t = 1. A certain ordering of the rows of the
matrix R is established, from the prosumer with the lowest selling tariff at time t,
to the prosumer with the highest selling tariff at time t. The algorithm ends when
t = Z +1.

2. Following the order established in step 1, the values of R related to the time t (which
indicate the net consumption of the prosumers at time t) are checked. When a neg-
ative number is found, then the current operation ends and the algorithm proceeds
to the next step. Otherwise, t becomes t +1 and the algorithm goes back to step 1.

3. Let the found negative number be c1 and the prosumer related to that load be
Prosumer1. Now, the elements of R in that column are checked from the one cor-
responding to the grid user with the highest buying tariff at PTU t to the one with
the lowest, and the search stops when either all the values have been checked, or
a positive value c2 is found. In the first case, the algorithm returns to step 1 and t
becomes t +1; in the second case, where the grid user relative to this value will be
referred to as Prosumer2, the algorithm proceeds to step 4.

4. At PTU t, Prosumer1’s net consumption is negative and Prosumer2’s is positive.
Prosumer1 then produces excess energy, and sells it to Prosumer2: the amount
of energy sold is either the surplus energy of Prosumer1, or all the energy that
Prosumer2 needs at that time, depending on which is lower. In mathematical terms,
this means changing the values in R so that the smallest in absolute value between c1
and c2 becomes zero, and the other becomes c1 + c2. Let c be the smallest between
|c1| and |c2|: c is the amount of transferred energy. This operation will be referred
to as an energy transaction.

5. The price of the above transaction is calculated, using the formula

C = c ·T (3.17)

where C indicates the cost of the transaction and T the used tariff. Calling respec-
tively T1 and T2 as Prosumer1’s selling tariff and Prosumer2’s buying tariff, T is
defined as:

T =
T1 +T2

2
(3.18)

This way, both the buyer and the seller have the same profit from this process.
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6. After this cost is calculated, A[Prosumer1] changes into A[Prosumer1] +C, and
A[Prosumer2] becomes A[Prosumer2]−C. Next:

• If the new value of c1 is still negative, the procedure goes back to step 3.

• If the new value of c1 is zero, the procedure goes back to step 2.

After all the time units have been processed, this procedure stops. The algorithm’s
output are the matrix R and the new energy costs of all the grid users. For the r−th grid
user in R, let us call Rr the r−th row of R without the first column: her energy cost after
this process will be

C = R+
r ·Tr +R−r ·Sr−A[r]

where the + and − signs are similar to those in the Eq. 3.2, and Tr and Sr are the pur-
chasing and selling tariff for the r−th user. The components of A are the costs of internal
energy transactions.

The reason why the values of R were searched with the sorting we defined in step 1
and step 3 respectively is to guarantee to the prosumers the highest possible profit from
the performed transactions. In particular, in Eq. 3.18, it can be seen that the profit for the
seller depends on how high the tariff T2 for the buyer is, and the amount of money saved
for the buyer depends on how low the tariff T1 for the seller is. For these reasons, it is
more profitable for the seller to sell energy to the prosumers with the highest purchasing
tariffs, and for the buyer it is more profitable to buy energy from the sellers with the
lowest selling tariffs. This proves that the total amount of savings that prosumers obtain
from level 2 is maximized by operating in the order described by the algorithm.

When this phase ends, a check is performed on the consumption: for each PTU, the
sum of the power consumption relative to that time is checked in order to see if the max-
imum capacity of the grid is exceeded. In our tests the maximum of these values barely
exceeded 200kW , and only for the most critical settings it may go slightly over 300kW ,
while grid capacity is always higher than that.

Dealing with Uncertainty

In the case when uncertainty is considered, the steps of the algorithm remain very similar
but with a minor change: every component of the consumption vectors is represented as a
PDF, and so are the elements of R. Also, as additional input, the PV generation of all the
prosumers will be needed. Below we report a brief description of such an algorithm.

• The first and second steps proceed in a similar way: in the second step, at the
current PTU, the expected value of each grid user’s consumption is checked. In
other words, the numbers checked by the algorithm are the expected values of each
element of R (remind that, in this case, elements of R are PDFs): they are checked
in the same order as the optimal version algorithm. The algorithm proceeds to the
next step when a negative value is found.
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• In the third step, let p ∈ (0,1) be a real number, co be the negative value found in
step 2, Prosumer1 the prosumer relative to that value, and cm the highest number so
that the probability of Prosumer1 generating cm kWh energy or more at that PTU
is at least p. To give a better definition of cm, let Pv be the PDF representing PV
generation for Prosumer1: cm is then defined as the maximum number such that

+∞∫
cm

Pv(x)dx≥ p.

The third step of the optimization proceeds like the optimal version algorithm, with
c1 being the highest value between co and cm. This limitation has been included in
order to ensure that Prosumer1 has probability at least p to be able to generate the
energy that will be sold to the other grid users.

Every other step is identical to the optimization without uncertainty. The computational
complexity is calculated as follows. The number of checks for negative entries in step
1 is N · Z, and for each negative value, at most N − 1 values of the same column are
checked in step 2. For each of these cases, the operations performed in the next steps are
constant (one minimum evaluation between two values, four sums, one product and one
arithmetic mean between two values). In the uncertainty-aware algorithm, for each of the
cases detected in step 2, there is an additional check which requires the calculation of an
integral.

Example

Imagine that, after level 1 optimization, there are three prosumers with the following
consumption vectors:

v1 0.2 0.5 0.4 −0.1 0.3 0.7 1.0
v2 −0.3 0.0 0.1 1.1 0.2 1.0 0.0
v3 0.2 −0.4 0.3 0.3 0.0 0.5 1.1

where each energy value is expressed in kWh. Let us assume that the selling tariff is
0.3 £/kWh at each PTU for each prosumer: since the tariff is the same for every prosumer,
we can perform step 2 without having to establish a sorting in step 1. The buying tariff
vectors are the following, expressed in £/kWh:

T2 1.0 1.0 1.0 1.0 1.2 1.2 1.0
T3 0.8 0.8 0.8 0.8 1.1 1.1 0.8
T1 0.7 0.7 0.7 0.7 0.9 0.9 0.7

It can be noticed that the order of the selling tariffs, from the highest to the lowest, is the
same at each PTU. For this reason, at the third step, the first values to be analyzed will be
the ones relative to v2, then to v3 and finally to v1.
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When the algorithm starts, it first checks PTU 1 and detects that it has an energy
surplus for prosumer 2 since the net consumption is negative. For that PTU, a prosumer
that can buy that energy is searched.

First v3 is analyzed, and then v1, since v3’s tariff is higher at PTU 1. It turns out that
v3 consumes 0.2 kWh at PTU 1 and, since v2 is selling 0.3 kWh, v3 may buy all of the
energy she needs from v2.

The transaction takes place, using the tariff in Eq. (5.15): v2 sells 0.2 kWh with the
tariff 0.3+0.8

2 = 0.55 £/kWh to v3. The transaction cost is then the product of the energy
sold and the tariff as in Eq, (5.14): in this case, 0.2 ·0.55 = 0.11 £.

Also, since the transaction tariff is the arithmetic mean of the purchasing and selling
tariffs, the gain will be the same for both the prosumers. Using Eq. (5.14) it can be noticed
that if the buyer bought 0.2 kWh energy from the grid, it would have cost 0.2 ·0.8 = 0.16
£, since her tariff at PTU 1 is 0.8: so, buying energy from the other prosumer produces
a saving of 0.16− 0.11 = 0.05 £. Also, using (5.14), it results that the seller would
have sold energy at price 0.2 · 0.3 = 0.06 £, and the related revenue will increase by
0.11−0.06 = 0.05 £.

After this process, R has changed. The new R is:

v1 0.2 0.5 0.4 −0.1 0.3 0.7 1.0
v2 −0.1 0.0 0.1 1.1 0.2 1.0 0.0
v3 0.0 −0.4 0.3 0.3 0.0 0.5 1.1

Since the value of v2 at PTU 1 is still negative, the algorithm resumes from step 3.
Now v2 has still 0.1 kWh to sell, and v1 can buy up to 0.2 kWh. Therefore, v2 will sell
0.1 kWh to v1. After doing so, v2 will have no more energy to sell, and the algorithm will
go to step 2, and then to step 1 since there are no more energy sellers at PTU 1.

The algorithm then proceeds similarly for each PTU. The other transactions will occur
at PTU 2, where v3 will sell the excess energy, and at PTU 4, where the seller will be v1.
After all the calculations, the final configuration will be:

v1 0.1 0.1 0.4 0.0 0.3 0.7 1.0
v2 0.0 0.0 0.1 1.0 0.2 1.0 0.0
v3 0.0 0.0 0.3 0.3 0.0 0.5 1.1

It turns out that v1’s total energy cost is 2.245 £, with a saving of 0.095 £; v2’s total
cost is 2.445 £, with a saving of 0.105 £ and v3’s total cost is 1.86 £, with a saving of
0.09 £.

3.5.4 Level 2 Optimization - Parallel version
In the previous subsection, level 2 optimization has been formulated as a sequential pro-
cess: buyers and sellers are chosen one at a time, and their cooperation will influence
future interactions that will happen between other buyers and sellers. However, the ex-
ploitation of parallel calculation can greatly reduce the computational time. As such,
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we have invested efforts on this aspect by (i) identifying some parts of the previously
described level 2 optimization which can be executed in parallel, and (ii) formulating,
accordingly, a slightly different version of the level 2 algorithm.

Parallelizable sections of the serial algorithm

The following sections of the level 2 optimization described in Section 3.5.3 present some
aspects where parallel calculation can be employed.

• Preliminary level 1 optimization is executed separately for each grid user, and opti-
mizations for different users do not influence each other. Consequently, this process
can be run simultaneously for each user.

• Transactions which happen at a certain time unit do not influence transactions hap-
pening at other time units. For this reason, the algorithm described in Level 2
optimization can be executed separately for each time unit.

• Once each transaction has been defined in terms of which users are involved and
how much energy is being transferred, the calculation regarding payments and earn-
ings can be operated simultaneously for each couple of users.

With the employment of the CUDA programming it is possible to efficiently perform
these tasks, with significant reductions in computational time compared to the algorithm
described in Section 3.5.3.

Parallel version of the algorithm

In order to have a more favorable context for employing parallel computation in level 2
optimization, we designed a different version of the algorithm whose behavior is better
suited for this purpose. The input of this algorithm is the same of the one described in
Section 3.5.3 with the exception of A, the vector used for calculating the costs. For this
purpose we will use a N×Z matrix instead, which we will call A

′
for this subsection.

This is the pseudocode of the parallel version of level 2 algorithm.

1. First, we consider the index t which represents the PTU we are working on. Since
this algorithm can be run for each PTU independently, this and the following steps
are processed in parallel for each possible choice of t.

2. Let tc be the total consumption of energy through the grid at time t: in other words,
tc is the sum of all the positive components of R in its t−th column. Let tp be the
total production of energy through the grid at time t, that is, the sum of all negative
components of R in its t−th column changed by sign. Our goal is to create a vector
E of size N, such that the r−th component E[r] represents the amount of energy
that the r−th grid user will buy (if positive) or sell (if negative). Consequently, we
define E as it follows:
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• If tp > tc, users are considered from the one with the lowest selling tariff to
the one with the highest selling tariff. Let Sp be the sum of all the negative
components of E: Sp will change as E is updated. Considering users in the
order described above, and identifying by r the current user:

– if r is such that R[r, j] is negative and Sp + R[r, j] < −tc, then E[r] =
−tc−Sp;

– if r is such that R[r, j] is negative and Sp+R[r, j]≥−tc, then E[r] =R[r, j].

Afterwards, the users are considered from the one with the highest buying
tariff to the one with the lowest buying tariff. Following this order, if r is such
that R[r, j] is positive, we define E[r] = R[r, j].

• If tp < tc, users are considered from the one with the highest buying tariff to
the one with the lowest buying tariff. Let Sc be the sum of all the positive
components of E: Sc will change as E is updated. Considering users in the
order described above, and identifying by r the current user:

– if r is such that R[r, j] is positive and Sc +R[r, j]> tp, then E[r] = tp−Sc;
– if r is such that R[r, j] is positive and Sc +R[r, j]≤ tp, then E[r] = R[r, j].

Afterwards, the users are considered from the one with the lowest selling tariff
to the one with the highest selling tariff. Following this order, if r is such that
R[r, j] is negative, we define E[r] = R[r, j].

3. For the sake of notation, let T [r] and t[r] be, respectively, the buying and the selling
tariffs associated to the user with index r. Let us define the following quantities:

S0 = ∑
j:E[ j]>0

E[ j] ·T [ j]

S1 =− ∑
j:E[ j]<0

E[ j] · t[ j].

4. This step is run in parallel for each user. Let r be the index associated to the user
we are considering.

• If E[r]> 0, the cost for the user is determined by the formula

A
′
[r, j] = E[r] ·T [r] · S0 +S1

2 ·S0
. (3.19)

• If E[r]< 0, the profit for the user is determined by the formula

A
′
[r, j] = E[r] · t[r] · S0 +S1

2 ·S1
(3.20)

5. This step is run in parallel for each user. The matrix R has its values updated. Since
E[r] represents the amount of energy bought/sold by the user corresponding to the
index r, R will become:

R[r, j] = R[r, j]−E[r].
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The output of this algorithm are the two matrices R and A
′
. For each user, calling r

the corresponding index, their energy cost after this process will be

C = R+
r ·Tr +R−r ·Sr +

Z

∑
j=1

A
′
[r, j]

where the + and − signs and the vectors Tr and Sr are described in Section 3.5.3.
There are two reasons for this choice of the functions described in Eq. 3.19 and

Eq. 3.20. The first is that the total amount of saved money among the buyers and the
total amount of money gained among the sellers is the same as in the algorithm described
in Section 3.5.3. The second reason is that these tariffs allow the buyers to purchase en-
ergy at a lower tariff than that used to sell energy to the grid, and guarantee the sellers to
trade energy at a higher tariff than that used to buy energy from the grid.

3.5.5 Level 3 Optimization - External Input Algorithm
In the following we will describe the algorithm for the level 3, with the assumption that
level 2 is performed first so that shiftable loads are already in optimal positions for the
prosumers, and the energy produced internally to the grid is already exploited. Also
for this reason, this algorithm can have two versions, with and without uncertainty in
data. Both versions can greatly benefit from the parallel computation employed for the
preliminary level 1 and 2 optimizations. We start by describing the algorithm where
uncertainty is not considered.

Input of the Algorithm

The input for this optimization consists of:

• Consumption of all the users. More precisely, the matrix R described in Sec-
tion 3.5.3.

• Shiftable and interruptible loads. Since level 1 optimization has already been
performed, it is important to know how the shiftable load vectors are allocated for
each prosumer, and how and when interruptible loads are active.

• Tariffs, maximum load, flexibility settings and user preferences. These enti-
ties have already been described in Section 3.5.1. In the case of RTP tariffs this
algorithm is not necessary, since the needs of the External Party (EP) are already
fulfilled by the level 1 optimization.

Moreover, some other parameters have to be inserted manually by the EP, as shown later
in the section.

After the first two levels optimization has been performed, the EP may check the grid’s
total load at each PTU, and must choose the PTU t to shift loads from. Finally, the EP
must choose how much energy to move and which kind of load shifting to perform. There
are two choices.
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• In the first one, each shiftable load currently allocated with a consumption at t
different than zero, is reallocated in a position where its consumption at t is zero.
Among all the positions that satisfy this requirement, the one which minimizes
the prosumer’s daily energy cost is chosen. Moreover, each interruptible load is
decreased at time t and its energy output is increased in adjacent PTUs, provided it
does not fail the power limit constraints.

• In the second one, each shiftable load currently allocated with a consumption at t
different from zero is moved by a number of PTUs chosen by the EP and according
to the prosumers’ flexibility settings.

Pseudocode of the Algorithm

If the first type of load shifting is chosen:

1. Each shiftable load whose component at t is different than zero is shifted in every
possible position according to the flexibility settings of the related prosumer, as
described in Section 3.5.2. If either the shiftable load in the new position has the
component at t greater than zero, or the prosumer’s load exceeds the load limit at
any PTU after shifting the load in the new position, that position is discarded.

2. For each available position, the goal function obtained combining cost and discom-
fort as described in Eq. 3.1 is calculated: the new candidate position for the shiftable
load will be the one where the goal function reaches its minimum.

3. For each processed shiftable load, the algorithm calculates how much the value of
the goal function increases for the corresponding prosumer if it is moved in its can-
didate position: this increase will be called operation cost. Then, the shiftable loads
are moved, from the one with the lowest operation cost to the one with the highest,
until either all the load shifts have been made or enough energy has been moved
from the time t to fulfill EP’s request. Then, the sum of these shifts’ operation costs
is calculated.

4. For each interruptible load whose component at t is different from zero, its out-
put at t + 1 and t − 1 is increased by the maximum quantity, under the following
constraints:

• the load limit is not exceeded at t +1 and t−1;

• let P be the combined increase of power at times t + 1 and t− 1: P must not
be higher than the power output of the interruptible load at time t.

After doing so, the power output of the interruptible load at time t is reduced by P.
If the power output at t is zero, this procedure stops. Otherwise, the EP repeats the
procedure by moving the load at times t +2 and t−2 until it is no more convenient
or possible to move loads (e.g. the power output at t is zero).
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If the second type of load shifting is chosen:

1. Each shiftable load whose component at t is different from zero is shifted by a
certain number of PTUs, according to EP’s request. However, if either the pro-
sumer’s flexibility settings do not allow the shift or the prosumer’s maximum load
is exceeded at any PTU, that load cannot be moved.

2. For the loads that can be moved, the new combinations of cost and discomfort and
the related operation costs are calculated according to Eq. 3.1.

3. Again, the load shifts are performed, from the one with the lowest operation cost to
the one with the highest, until either all the load shifts have been made or enough
energy has been moved at time t to fulfill EP’s needs. The sum of all those shifts’
operation costs is calculated.

Once this process ends, the cost for the EP has to be calculated. It corresponds to
the operation cost for each involved prosumer, so that the prosumer is refunded for the
increase in cost or discomfort; however, different ways of refunding prosumers can be
used, as seen for example in [31]. Then, the EP decides whether to proceed with the
shifting or not. If yes, economic transactions occur and loads are shifted as requested. If
not, no transactions occur and the procedure starts again.

Dealing with Uncertainty

Regarding the version of the algorithm which uncertainty, the procedure is mostly the
same. The differences are relative to the fact that elements of R and the goal function are
PDFs, as for the uncertainty case of level 2 optimization described in Section 3.5.3. Thus,
the operation cost will be the increase for the expected value of the goal function. The
check for not exceeding the limit is performed in the usual way: fixed a number p∈ (0,1),
it is valid if the probability of the PDF not exceeding the limit is at least p, as in Eq. 3.16.

Example

As usual, energy will be expressed in kWh and tariffs in £/kWh. Suppose that after level
1 and level 2 optimizations there are two prosumers, with the following consumption
vectors:

v1 1.2 1.5 2.4 2.1 0.3 0.7 1.0
v2 1.1 2.0 2.1 2.5 0.8 0.4 0.7 (3.21)

Let us assume each of the two prosumers has a shiftable load:

f1 0.0 0.0 0.3 0.4 0.0 0.0 0.0
f2 0.0 0.0 0.1 0.3 0.1 0.0 0.0 (3.22)

Also, let us suppose the maximum energy consumption allowed is 3 kWh at each PTU for
both users, and that flexibility settings allow each shiftable load being moved up to two
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time units forward, or up to two time units backward. Finally, let us assume discomfort
settings are the same of Eq. 3.9.

The total load vector is then v = v1 +v2, that is:

v 2.3 3.5 4.5 4.6 1.1 1.1 1.7

Let us assume that the EP chooses the PTU 4, where the maximum total load occurs
with a load of 4.6 kWh. Therefore, it might want to use our level 3 optimization to shave
loads at PTU 4. Let us suppose it chooses to move the loads by a certain number of PTUs,
in this case two units forward. The new loads are, in terms of operations:

vr(new) = vr(old)− fr +Pk(fr) (3.23)

where Pk (in this case, k = 2) is the rotation defined in Section 5.1. In this case, the rotated
vectors are

P2(f1) 0.0 0.0 0.0 0.0 0.3 0.4 0.0
P2(f2) 0.0 0.0 0.0 0.0 0.1 0.3 0.1

And the new load vectors become:

v1 1.2 1.5 2.1 1.7 0.6 1.1 1.0
v2 1.1 2.0 2.0 2.2 0.8 0.7 0.8
v 2.3 3.5 4.1 3.9 1.4 1.8 1.8

and, as expected, this allowed us to reduce the maximum load at PTU 4. Also, since
requirements on flexibility settings and maximum loads are satisfied, these shiftings are
allowed.

Let us now consider the cost of this operation for the EP. Let us suppose both pro-
sumers have the same buying tariff, represented by the vector:

T 1.0 1.0 0.5 0.5 0.5 1.2 1.2 (3.24)

The selling tariff is not needed, since neither of the vectors v1 and v2 has negative com-
ponents. It can be easily calculated by Eq. (5.2) that energy cost was 7.14 £ for the first
prosumer and 7.12 £ for the second prosumer, but after our optimization it can be calcu-
lated, using the same formula, that they became 7.42 £ and 7.40 £ respectively. Thus,
since the prosumers would pay more (7.42−7.14 = 0.28 £ the first, 7.40−7.12 = 0.28
£ the second), they have to be refunded of their expenses in order to give the requested
flexibility.

However, energy cost is not the only thing that has to be refunded. The operation
requested by the EP may also cause an increase of their discomfort which should be
covered too. In order to quantify the increase of discomfort, we calculate it before and
after the requested load shifting. Using the formula in Eq. (5.3), the initial discomfort can
be expressed as:

Dshi f t(v1) = 0.25£ · |2−2|1.5 = 0£

Dshi f t(v2) = 0.25£ · |2−1|1.5 = 0.25£
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while after the requested load shifting, it becomes

Dshi f t(v1) = 0.25£ · |4−2|1.5 ≈ 0.71£

Dshi f t(v2) = 0.25£ · |4−1|1.5 ≈ 1.30£.

These values have to be rescaled to their relative importance in the optimization. To be
more precise, since the importance of discomfort compared to the cost is decided in the
goal function (defined in Eq. (5.1)) by the parameter α, these values have to be rescaled
by α. In other words, the economic value of the prosumers’ discomfort is 0.25 ·0.71£ ≈
0.18£ for the first prosumer, and 0.25 ·1.30£ ≈ 0.33£ for the second.

Hence, it is now possible to calculate the rewards the EP would need to pay to each of
them.

• For the first prosumer, the increase of cost is worth 0.28 £ and the discomfort would
be quantified to 0.18 £, which means she has to be refunded by 0.46 £ by the EP.

• For the second prosumer, the increase of cost is worth 0.28£, while the increase
of discomfort has been calculated to be the equivalent of 0.33£ which indicates a
reward of 0.61£ for the second prosumer.

3.5.6 Level 3 Optimization - Automatic Algorithm
As the EP actively provides input to the level 3 optimization algorithm, in this section we
discuss a version of it where the input is automatically chosen in order to minimize the
peak load. Similarly to the algorithm described in Section 3.5.5, the computational time
of this version can greatly benefit from the parallel computation when employed for the
preliminary level 1 and 2 optimization.

Input of the Algorithm

This algorithm has the same input of the one seen in Section 3.5.5, except for the param-
eters chosen by the EP which are automatically computed. Again, in case of RTP tariffs,
the whole algorithm is not used, since the purpose of peak shaving is already realized at
level 1. Below, this procedure is briefly described.

Pseudocode of the Algorithm

1. First, the total energy consumption of the grid at each PTU is computed. Let t be
the PTU with the highest energy consumption.

2. The shiftable loads of a random prosumer P1 are chosen to check if at least one
of their values at PTU t is different from zero. When this occurs, the algorithm
proceeds with step 3. Otherwise the algorithm ends: in this case, peak shaving by
using flexibility is not possible.
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3. For each possible allocation of P1’s shiftable loads, the total energy consumption
that the grid would have at each PTU and the cost-discomfort goal function are
calculated. Also, the load limit for the prosumer is checked, as in Eq. 3.7: if the
new allocation exceeds this limit, the allocation is discarded.

4. Among the tested positions not discarded, the load is reallocated in the combination
which minimizes the highest total load among all PTUs. If there is more than
one such a combination, the algorithm chooses that with the lowest value for the
prosumer’s goal function. The algorithm is repeated and eventually ends at step 2.

It should be noted that this algorithm is guaranteed to end, since at each iteration either
the maximum total load or the goal function of a prosumer becomes strictly lower than
their previous value.

Moreover, in this version of the algorithm, obtaining the highest load reduction has
priority over the costs. We will see in Section 3.6.3 its results in economical terms and in
terms of peak load reduction.

As far as the uncertainty is concerned, it can be applied similarly as seen in Sec-
tion 3.5.5. In terms of computational complexity, this algorithm requires at each iteration
one check for the PTU with the maximum consumption, the computation of the consump-
tion for each possible shifting of the flexible loads that can be moved from that PTU, and
for each of these loads, one more check for the shifting which guarantees the lowest peak.
The number of iterations is limited by the number of flexible loads in the grid multiplied
by Z, and at each iteration the number of consumption vectors that have to be calculated
is less or equal than the number of flexible loads in the grid multiplied by Z.

Example

Suppose the data are the same of the example in Section 5.4: that is the load vectors are
given in Eq. 3.21 and the shiftable loads in Eq. 3.22. Suppose the flexibility settings
are also the same: in other words, loads may be shifted up to two time units forward
or backward, and the tariff vector for both prosumers is the one in Eq. 3.24. Also, the
discomfort settings are the ones described in Eq. 3.9.

As seen before, our total load vector is:

v 2.3 3.5 4.5 4.6 1.1 1.1 1.7

It follows from the first step that t = 4. As shown in Eq. 3.22 the loads to be shifted
are f1 and f2.

The procedure starts with f1. Recall that if a shiftable load fr is moved, the formula to
determine the new load vr is obtained by Eq. 3.23. Thus, fixing r = 1 it results:

v1(−2) 1.5 1.9 2.1 1.7 0.3 0.7 1.0
v1(−1) 1.2 1.8 2.5 1.7 0.3 0.7 1.0
v1(0) 1.2 1.5 2.4 2.1 0.3 0.7 1.0
v1(1) 1.2 1.5 2.1 2.0 0.7 0.7 1.0
v1(2) 1.2 1.5 2.1 1.7 0.6 1.1 1.0
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which also changes the total load vector accordingly. It becomes

v(−2) 2.6 3.9 4.2 4.2 1.1 1.1 1.7
v(−1) 2.3 3.8 4.6 4.2 1.1 1.1 1.7
v(0) 2.3 3.5 4.5 4.6 1.1 1.1 1.7
v(1) 2.3 3.5 4.2 4.5 1.5 1.1 1.7
v(2) 2.3 3.5 4.2 4.2 1.4 1.5 1.7

The highest total load is 4.2 kWh for k =−2 and k = 2, 4.6 kWh for k =−1 and k = 0 and
4.5 kWh for k = 1. Among these, the lowest value is chosen, that is for k =−2 and k = 2.
It turns out that the lowest increase among k = −2 and k = 2 for the goal function takes
place for k = 2 with a 0.37 £ increase, so f1 will be rotated forward by two positions.

For f2 the same procedure is applied, taking into account that f1 has already been
moved. Thus v becomes:

v 2.3 3.5 4.2 4.2 1.4 1.5 1.7

As mentioned before, f2 can be moved up to two positions forward or backward. The total
load vector, obtained by Eq. 3.23, becomes the following:

v(−2) 2.4 3.8 4.2 3.9 1.3 1.5 1.7
v(−1) 2.3 3.6 4.4 4.0 1.3 1.5 1.7
v(0) 2.3 3.5 4.2 4.2 1.4 1.5 1.7
v(1) 2.3 3.5 4.1 4.0 1.6 1.6 1.7
v(2) 2.3 3.5 4.1 3.9 1.4 1.8 1.8

The highest total load is 4.1 kWh for k = 1 and k = 2, 4.2 kWh for k =−2 and k = 0, and
4.4 kWh for k = −1. The lowest value among these is obtained for k = 1 and k = 2 and
the lowest increase for the goal function among them is obtained with k = 1 and is equal
to 0.11 £, so f1 will be shifted forward by one position. Therefore, the only thing left is to
calculate the rewards for the prosumers. In this case the refund for the first prosumer will
be 0.37£, while for the second prosumer will be 0.11£.

Therefore, v becomes equal to v(1) which corresponds to

v 2.3 3.5 4.1 4.0 1.6 1.6 1.7

and the new shiftable loads are

f1 0.0 0.0 0.0 0.0 0.3 0.4 0.0
f2 0.0 0.0 0.0 0.1 0.3 0.1 0.0

The procedure for PTU 4 ends. The new maximum load becomes 4.1 kWh, at PTU 3,
and the procedure therefore starts over considering the shiftable loads f1 and f2 different
than zero at PTU 3. Since they are zero, the procedure ends.
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3.6 Results and Discussion
In this section we will show the results of our algorithms on the data described in
Section 3.4. In particular, Section 3.6.1 shows the results for the deterministic and
uncertainty-aware versions of the algorithm for level 1 optimization in terms of savings
and computational time with respect to the performed baseline algorithm Cardiff data
come along. Section 3.6.2 shows the impact of the level 2 optimization, whereas Sec-
tion 3.6.3 shows the automatic version of level 3 algorithm. Experiments have been run
on a x64-based PC with 16GB of RAM and a 4-core processor with 2.81GHz; scripts
have been written in Python language and their parallelized version run on a NVidia Ti-
tanX GPU5. The following libraries have been used: xlrd to extract data from Microsoft
Excel6, NumPy to operate with vectors7, SciPy8 and PaCAL9 for random variables manip-
ulation. Furthermore, the numba10 compiler has been used for CUDA11 programming.

3.6.1 Level 1 Optimization
A setup is a combination of one prosumer and five settings. For example, the following
three combinations define three different setups:

• HOUSE A4, 2020, Green, high, spring, sunday

• HOUSE A5, 2020, Green, high, spring, sunday

• HOUSE A4, 2020, BAU, high, winter, sunday

The first element indicates the prosumer, the others indicate the five types of settings
already defined within Section 3.4.

Level 1 algorithms have been tested on all the prosumers for a total of 11415 different
setups where each prosumer had at least one shiftable load.

Deterministic Algorithm

The deterministic algorithm generates savings for 5680 setups (49.76% of the total num-
ber of setups). Table 3.3 shows the details of the corresponding results. In particular, the
columns indicate the number of shiftable loads.

In the following we will explain what each row in the table indicates:

1. Number of setups tested. Overall number of prosumers with one (two and three)
shiftable load(s) only for each different combination of setups.

5Please contact the author to obtain the developed scripts and the used data.
6https://pypi.python.org/pypi/xlrd/
7https://pypi.org/project/numpy/
8https://pypi.org/project/scipy/
9https://pypi.org/project/PaCal/

10https://numba.pydata.org/
11https://developer.nvidia.com/cuda-zone

https://pypi.python.org/pypi/xlrd/
https://pypi.org/project/numpy/
https://pypi.org/project/scipy/
https://pypi.org/project/PaCal/
https://numba.pydata.org/
https://developer.nvidia.com/cuda-zone
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2. Average value of the goal function with the naive algorithm.

3. Average value of the goal function after level 1 optimization.

4. Average reduction of the goal function when the level 1 optimization has been per-
formed.

5. Average reduction in % of the goal function when the level 1 optimization has been
performed.

6. Average computational time for the non-parallel version of the algorithm.

7. Average computational time for the parallel version of the algorithm.

1 Load 2 Loads 3 Loads
1 Setups 6194 2924 1829
2 AvgCost Naive 0.57£ 2.00£ 3.59£
3 AvgCost Opt 0.45£ 1.62£ 2.60£
4 Avg Savings 0.12£ 0.38£ 0.99£
5 Avg %Savings 21.05% 19.00% 27.58%
6 Non-CUDA Time 0.14s 0.53s 8.90s
7 CUDA Time 0.15s 0.16s 0.18s

Table 3.3: Results of level 1 optimization in terms of cost-discomfort saving, and compu-
tational time. Costs are calculated on a 24 hours time interval.

Uncertainty-aware Algorithm

The uncertainty-aware algorithm generates savings for 9945 setups (87.12% of the total
number of setups). This result is higher than the one obtained with the deterministic
algorithm. This happens because in the deterministic case the preference of the prosumer
is a specific PTU, thus if the optimization matches this preference there is no saving.
On the other hand, in the uncertainty-aware algorithm user preferences are defined by a
probability for each PTU, and for this reason expected value of savings is usually positive.

Detailed results on this algorithm are described in Table 3.4. In particular, each row
of the table has the same description of Table 3.3.

The reader notices that only a few setups included four or more loads: that is why we
have not included them in the results. Anyway, behaviors of four or more loads and three
loads are comparable.
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1 Load 2 Loads 3 Loads
1 Setups 6194 2924 1829
2 AvgCost Naive 2.26£ 2.66£ 4.51£
3 AvgCost Opt 1.75£ 1.98£ 3.20£
4 Avg Savings 0.51£ 0.68£ 1.31£
5 Avg %Savings 22.57% 25.56% 29.05%
6 Non-CUDA Time 2.86s 4.50s 10.77s
7 CUDA Time 0.20s 0.22s 0.25s

Table 3.4: Results of level 1 - uncertainty optimization in terms of cost-discomfort saving,
and computational time. Costs are calculated on a 24 hours time interval.

3.6.2 Level 2 Optimization
We recall that, while level 1 optimization is related to a single prosumer, level 2 opti-
mization is related to all the users in the grid. In this case, we have run our experiments
for each possible settings configuration, for a total of 180 combinations as reported in
Section 3.4.

We have collected results on the number of transactions between prosumers, average
savings and computational time, and reported the average on the 180 combinations on
Table 3.5. In particular, each row describes the following metric:

1. Avg Trans: Describes the average number of energy transactions among prosumers
in a 24h time interval.

2. Avg # Prosum: Describes the average number of prosumers involved within energy
transactions.

3. Avg Savings: Describes the average savings for each prosumer.

4. Avg Savings (Prod): Describes the average savings for prosumers who are energy
producers.

5. Avg Savings (NProd): Describes the average savings for prosumers who are not
energy producers.

6. CUDA Time lev 1: Describes the average computational time when CUDA opti-
mization is used only for each preliminary level 1 computation.

7. CUDA Time lev 1-2: Describes the average computational time when CUDA op-
timization is used for both level 1 and level 2 optimizations, as described in Sec-
tion 3.5.4.

Results depend heavily on PV production in the grid because the greater the produc-
tion of energy, the higher the number of transactions. Therefore, settings allowing a better
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Results
1 Avg Trans 1115.63
2 Avg # Prosum 48.97
3 Avg Savings 1.31£
4 Avg Savings (Prod) 1.80£
5 Avg Savings (NProd) 0.99£
6 CUDA Time lev 1 15.88s
7 CUDA Time lev 1-2 3.18s

Table 3.5: Results of level 2 optimization. Rows indicate the average number of trans-
actions for each setting, the average number of involved prosumers, the average savings,
the average savings for energy producers, the average savings for non-producers and the
average computational time (respectively without and with the parallel optimization for
level 2).

energy production (for example during the summer) are those with the highest number of
transactions, involved prosumers and savings. The reader notices that prosumers produc-
ing energy will be those benefiting more from level 2 optimization, for which the savings
(Avg Savings (Prod)) are higher than the average value reported in Table 3.5 for non-
producers (Avg Savings (NProd)). The reason is that energy transactions need at least
an energy producer. Therefore, a producer will usually be involved in a large number
of transactions and will therefore save more money, while a non-producer will be, on
average, involved in less transactions, if any at all, and will be able to save less money.
Furthermore, since in the considered grid the number of energy producers varies between
15 and 41 in a grid with 184 users, this value would be higher if there were more producers
involved.

We have also collected results on the relationship between some of the quantities
indicated in Table 3.5. In particular, Figure 3.1 describes how the computational time
varies depending on the number of transactions occurring in the grid through a 24 hours
time interval. Moreover, Figure 3.2 shows how much money is saved through the entire
grid in a 24 hours time interval depending on the number of energy transactions occurring
within the same time interval. Finally, Figure 3.3 describes how the number of total energy
transactions through the grid changes depending on the number of prosumers involved in
energy transactions.

Finally, another important result regards the computational time. If parallel optimiza-
tion is used only for each instance of level 1 optimization preliminary to level 2, the
computational time (CUDA time lev 1) is on average 15.88s. However, the exploitation
of the parallel calculation also for level 2 reduces the computational time (CUDA time
lev 1-2) by almost five times (3.18s). The reader notices that in configurations where the
number of flexible loads and energy producers is higher, the computational time reduction
obtained by using parallel calculation for level 2 becomes even higher.
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Figure 3.1: Computational time depending on the number of transactions of level 2 opti-
mization. The x axis indicates the number of transactions through a 24 hours interval, the
y axis indicates the computational time of the algorithm expressed in seconds.

Figure 3.2: Saved money depending on the number of transactions of level 2 optimization.
The x axis indicates the number of transactions through a 24 hours interval, the y axis
indicates the amount of saved money among all the users expressed in pounds(£).
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Figure 3.3: Number of transactions in level 2 optimization depending on the number of
users involved. The x axis indicates the number of users involved in at least one transac-
tion through a 24 hours interval, the y axis indicates the number of transactions through
the grid.

3.6.3 Level 3 Optimization - Automatic
We have run our experiments on all the 180 settings combinations reported in Section 3.4
and the results are shown in Table 3.6. Each row of the table describes:

1. the average peak load after the optimization;

2. the average peak load reduction after to the optimization;

3. the average refund for prosumers in level 3 optimization;

4. the average number of refunded prosumers in level 3 optimization.

5. the average computational time using parallel optimization only for level 1.

6. the average computational time using parallel optimization for levels 1 and 2.

The reader notices that if parallel computation is employed only for level 1, the com-
putational time is on average 23.40s, although this varies depending on the settings such
as Green/BAU or 2020/2030. If parallel computation is employed also for level 2, the
average computation time is 11.45s. For comparison, in [51], heuristic algorithms for a
problem equivalent to the combination of our level 1 and level 3 were employed for a
50 users grid, and their computation time was 60s or higher. Even with a larger grid,
computation time of our algorithm is small enough to make its implementation effective.
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Results
1 Average peak 150.09 kW
2 Peak reduction 18.98 kW
3 Level 3 refund 1.54 £
4 Refunded prosumers 35.92
5 CUDA time lev 1 23.40s
6 CUDA time lev 1-2 11.45s

Table 3.6: Results of level 3 optimization. Refund costs are calculated on a 24 hours time
interval.
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Chapter 4

Pricing systems: the NRG-X-Change
mechanism.

4.1 Context

Nowadays, climate-energy targets and energy policies are pushing global energy systems
to undergo a profound energy transformation, namely from fossil and nuclear energy
sources to renewables (e.g. wind and solar). On this matter, an important role has been
played by the renewable energy support policies implemented in many countries with the
aim to promote the installation of renewable energy sources (RES). Such support policies
consist on offering long-term contracts to RES producers that compensate the excess of
energy that these export to the grid (e.g. by cash payments for unit exported in feed-in
tariffs or by free energy in net metering tariffs) in order to make them recover the cost of
RES investment. Although such traditional policies have been successful in increasing the
penetration of RES (i.e. the share of energy generated from RES is continuously growing,
representing 30% in Europe already in 20161), their effect seems to have reached a limit
since they are not able to provide any solution to the stability problems that an increment
on RES produces to the grid [52, 53]. In more detail, since renewable production is not
controllable it can not follow consumption as more traditional energy sources resulting in
a mismatch between electricity generation and consumption.

In order to mitigate these issues and increase the renewable hosting capacity of the
grid, new incentive mechanisms have been proposed recently in the literature [54, 55, 56,
57]. All of these mechanisms share a common feature: they consider the relation between
consumption and production in a given time to set up the incentives and in addition of
a payment support function for the producer they also have a second one to incentivise
consumers.

Some of these works opted for using a market-based approach [54, 56] in which con-

1http://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-2/
assessment

http://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-2/assessment
http://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-2/assessment
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sumers and prosumers2 in a neighbourhood bid in a local market for selling/buying local
RES production. Instead, in [55] Mihaylov et al. propose NRG-X-change, a mechanism
that combines the advantages of traditional support policies and market-based mecha-
nisms. Similarly to traditional renewable support policies, NRG-X-change does not rely
on an energy market - locally produced renewable energy is simply fed into the grid, and
is withdrawn by consumers without the need of any complex bidding process. However,
unlike traditional support policies, the mechanism offers incentives for both, producers
and consumers, linking their incentives at each time slot to a local market-signal - the
local energy balance. Flexible loads are the mean through which local energy balance is
achieved: therefore, flexibility is what makes this incentive mechanism effective.

The key feature of the NRG-X-Change mechanism is exploiting a virtual currency,
called NRGcoin. The use of this currency can offer some important benefits to energy
trading although it does not address some relevant points, such as the local energy trading
and the management of congestion. This work aims at exposing how the NRG-X-Change
mechanism works relatively to certain aspects, and how it can be modified and improved
in order to face the issues we have identified, maintaining the employment of the NRGcoin
currency. More in detail, the contributions of this work are:

• We analyzed the NRG-X-Change project and identified its main issues (import and
export price functions) and the situations where they appear;

• We designed new import and export price functions that can work better within the
NRG-X-Change mechanism and provided theoretical background on those;

• We demonstrated the validity of our proposed functions through mathematical
proof, and carried out an experimental evaluation on real data from a grid in Cardiff
that measured the efficiency of our proposed functions.

4.2 Background
The NRG-X-Change mechanism has not yet been implemented in actual grids although
it has been exhaustively described in different works. In [55] a detailed description of
NRG-X-Change has been reported, where authors explained the advantages of using a
digital currency and the interactions between grid users, with or without outside parties.
Moreover, in [58] a scenario simulating a local grid has been created, showing how NRG-
X-Change performs in a realistic environment.

The work in [52] discusses how the usual tariff systems like feed-in tariffs and net me-
tering tariffs present important issues: overconsumption in some periods of the year, over-
payment for the energy provider, and underpayment to energy producers. Authors com-
pare a set of state of art support mechanisms in order to solve the above problems. One
example of such mechanisms is represented by the auction-based mechanism Nobel [54],

2The term has been defined in Chapter 2. In this chapter, and from now on, we will use the definition
strictly for energy producers.
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which trades energy at a local level based on the stock exchange model. Another one
is PowerMatcher [56], based on a market structure regulated by SD-matchers, software
agents that balance demand and supply in a tree-shaped hierarchical structure. One more
work is represented by the negotiation-based mechanism proposed by Capodieci [57],
where prosumers are in competition with energy generating companies (Gencos) for sell-
ing energy, and they negotiate the price with buyers. It is then shown how this mechanism
affects the energy price, and also what happens with the implementation of a learning
strategy for the buyers. However, all these above-cited works focus on market mecha-
nisms which require final prosumers to get involved into complex bidding processes.

Other works have proposed new tariff schemes, with the main purpose of ensuring
grid stability and encouraging active participation of grid users to the energy market. For
example, several of these works [59, 60, 61] study from a game-theoretic perspective a
type of two-step tariff in which, first, the customer commits to a baseline consumption,
and then it is charged based on both their actual consumption and the deviation from the
anticipated baseline. In particular, [60, 61] study the properties of this tariff as well as
a cooperative game that forms when customers are allowed to aggregate under a group-
buying scheme (i.e. behaving like a single, cluster consumer) to collectively reduce their
potential deviation. [59] formalized the interaction between the retailer and the customer
in such tariffs as a two-player game, studying the optimal strategies for both players as
well as the existence of Nash Equilibria. However, notice that the aim of this type of tariff
schemes is to make prosumers more predictable to avoid later exchanges in the balancing
market. Instead in this work we focus on a renewable support tariff scheme that links the
incentives to a local market signal - the local energy balance and/or the local congestion.

Finally, other works focused on mechanisms and contracts for explicit demand re-
sponse in which a subset of consumers is selected and incentivised to reduce their power
consumption. [62] formalised and solved this problem as a mechanism design problem
while [63] extended this work to include uncertainty about costs. [64] generalises current
DR contacts to allow agents to bid how much they want to get paid on for accepting each
contract. The mechanism then selects a subset of contracts that minimise the sum of bids,
and applies Vickrey-Clarke-Groves prices to pay the agents. Our work takes a different
approach focusing instead on implicit demand response.

4.3 Background: the NRG-X-Change incentive mecha-
nism

NRG-X-Change is a promising market-based mechanism for trading locally produced re-
newable energy. It was originally suggested and described in [55]. The mechanism relies
on a virtual currency, called NRGcoin. This section outlines the NRG-X-Change mecha-
nism along with its major advantages, providing the definitions of import and export price
functions there employed.
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4.3.1 NRG-X-Change mechanism

The NRG-X-Change mechanism regulates the payments between the energy producing
and consuming agents. It works in time slots of a certain length. In every time slot,
the energy production and consumption within the neighborhood is communicated to the
local substation. The received information serves as the basis for computing rewards and
payments for the corresponding agents. At each time slot, the following steps are applied
to each prosumer P and consumer C, agents in the local grid, with the functions f , g and
h being always positive for x,y > 0.

• A prosumer agent P generates energy E, and, after consuming y of its own energy,
feeds the remainder x = E− y to the grid. This information is transmitted to all the
nodes in the network, and P generates f (x) NRGcoins, which are awarded to her.

• The substation, which receives the injected energy, transfers g(x, tp, tc) NRGcoins
to P, where tp and tc are, respectively, the total energy produced and the total energy
consumed in the community, respectively, at that time slot.

• A consumer agent C pays h(y, tp, tc) NRGcoins to the substation for her consump-
tion, where y is the amount of the consumed energy.

Additionally, the NRG-X-Change project considers a local exchange market, where the
agents can sell and buy their NRGcoins for the fiat currency3. However, the exchange
market is outside the scope of our work.

4.3.2 Import and export price functions

The functions f , g and h presented in the Section 4.3.1 regulate the NRGcoin generation
and transaction. They were designed to achieve certain objectives. The most important is
the balance between tc and tp which has to be as close as possible for each time unit in
order to give the highest stability to the system. This has to be achieved by encouraging
consumers to move their consumption to the time units where energy production is higher.

For these reasons, the functions have been formulated as follows.

• The function f is defined as
f (x) = b · x (4.1)

where b is a constant defined by the NRGcoin protocol, determining the number
of minted NRGcoins for unit of energy injected into the grid. The generation of
NRGcoin has to be small compared to the quantity involved in the transactions:
this is achieved by choosing b small enough so that f � g. The function f is linear,
so that the more energy is produced, the more NRGcoins are minted.

3legal currency, e.g. Euro, Dollar, etc.



4.3. BACKGROUND: THE NRG-X-CHANGE INCENTIVE MECHANISM 65

Export unit price Import unit price
Underproduction
(Overconsump-
tion)

tends to 0 tends to r

Balance (tp =
tc)

q r
2

Overproduction
(Undercon-
sumption)

tends to 0 tends to 0

Table 4.1: Unit prices for exporting (e.g. injecting to the grid) and importing (e.g. con-
suming from the grid) energy in the NRG-X-Change mechanism.

• The function g is defined as

g(x, tp, tc) = x · q

e
(tp−tc)2

a

(4.2)

where:

– q is a constant representing the maximum price per unit at which producers
are rewarded for their injected energy x (which occurs when the total energy
supply matches the total demand); and

– a is a constant representing the scaling factor for the case when there is no
energy balance (tp 6= tc).

This function is shaped as a bell curve. In [55] the authors described the function
similarly so that the maximum payment for the producers is obtained when tp = tc.
Table 4.1 specifies the price ranges in which producers are paid depending on situ-
ations of under or over production. Let us observe that as a bell curve the function
is symmetrical, meaning that its behavior will be the same if consumption is much
higher than the production, and vice-versa. The value of the function ranges from
being very close to zero if the difference between tp and tc is very high, to q if
tp = tc. From the point of view of the producer this has a bigger impact than the
NRGcoin generation, since f � g.

• The function h is defined as

h(y, tp, tc) = y · r · tc
tc + tp

(4.3)

where r is a constant representing the maximum price per unit of consumed en-
ergy. As shown in Table 4.1 in the case of overconsumption (i.e. underproduction)
this function fixes a unit price which goes from r to r

2 , where r is achieved in the
case of no local production (total overconsumption) and r

2 is achieved in the case
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of local balance. On the other hand, in the case of underconsumption (i.e. over-
production) the unit price goes from r

2 to 0, so that the unit price for consumption
tends to zero in presence of overproduction. Figure 4.1 shows the energy cost for a
consumer, depending on the amount of consumed energy x and considering that the
consumer belongs to a local community so that the value of tc changes according
to x. From the point of view of the consumer Eq. 4.3 behaves asymptotically as a
linear function, whose angular coefficient goes from 0 to r depending on how high
the local consumption is compared to the local production. Note that local con-
sumption depends on y, so the function described in Eq. 4.3 is not actually linear
for the consumer.

Figure 4.1: The NRG-X-Change cost function: the consumed energy is depicted on the x
axis whereas the total cost in NRGcoins is depicted on the y axis. The r parameter is set
as 0.2. The different coloured functions correspond to different values of tc for x = 0: the
value of tp is 10 at all times, while the value of tc for x = 0 is 0 for the green function, 10
for the red function and 20 for the blue function.

4.4 Drawbacks of NRG-X-Change mechanism
Although the NRG-X-Change represents an interesting idea, the integration into the real
grid calls for a rigorous examination of its properties. In this section, we analyze the
NRG-X-Change mechanism identifying potential issues.

One observation relates to the fact that in the original proposal [55] g and h are the-
oretically defined by the Distribution System Operators (DSO). However, this is in con-
tradiction with the existing legislation because DSO is a public entity responsible for the
operation and the maintenance of the distribution system which cannot define the tariffs
[65].

Although the original payment functions serve the purpose for many scenarios, several
problems can arise when certain conditions occur in the grid. This depends on the specific
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choices that have been made when formulating these functions.
In fact, in the NRG-X-Change project, the highest priority has been given to the bal-

ance between tp and tc. As such, the functions regulating NRGcoins transactions between
the users and the grid have been defined accordingly.

This brings important consequences. The most important is related to the g function
defined as in Eq. 4.2. If a prosumer produces a certain amount of energy, surpassing a
certain threshold, it may happen that the more she produces, the less she will receive in
return. The reason is that her production breaks the balance between tp and tc implying
that the prosumer may consider the idea of limiting her own energy production. However,
having producers limiting their own energy generation is not something we want from an
incentive mechanism.

This is illustrated in Figure 4.2 where the amount of NRGcoins obtained by a pro-
sumer are shown. Parameters of the function have been chosen arbitrarily, but for each
choice of them the shape of the function remains unchanged. We can see that the more
energy is produced, the more prosumer’s revenue increases, until eventually reaching a
peak. After that the more energy she injects in the grid, the less profit she will make out
of it. Consequently, if her production is too high, it may be more profitable for her to cut
it down intentionally.

Figure 4.2: Example of a prosumer’s revenue for energy produced, with the original g
function. The x axis is the amount of energy generated by the prosumer, the y axis is the
total amount of NRGcoins gained for her production. The parameters are set as q = 0.1,
a = 20. The different coloured functions correspond to different values of tc: the value of
tp is 10 for x = 0 for each of the functions represented, while the value of tc is 5 for the
green function, 10 for the red function and 15 for the blue function.

Some explanations about the roles of the players involved in the process need to be
done. The most important is related to the fact that the DSO cannot impose tariffs [65].
Prices and tariffs are agreed between the users and their suppliers; there is also the ag-
gregator agent, which may let the users interact with the DSO for trading flexibility in
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exchange of a reward, and allows local grid users to interact for buying or selling energy.
Another important aspect which has to be considered is that the DSO, as operator

of the distribution networks, is responsible for the cost-effective and secure transfer of
energy over its distribution grid (to and from end users and for the connections to and
from the transmission grid) and for ensuring the distribution system’s long-term ability to
meet electricity distribution demands. In particular, it may happen that the local energy
consumption or production exceeds the grid capacity. This condition is referred to as
congestion (see also Chapter 2) and it may be harmful for the stability of the grid. For
this reason, it is important to discourage local users from consuming too much energy at
a given time - or from producing too much energy.

One more important matter which has to be addressed is the fact that prosumers are
expected to consume their own energy first, before selling their excess energy. In order
for prosumers to consume their own energy first, the buying function h has to always
be higher than the selling function g. If this does not happen, a prosumer may actually
choose to sell all of her produced energy and buy the energy she needs from another
source, since she would have a higher profit. This is something we want to avoid, since it
creates unnecessary stress on the grid. In formal terms, the constraint

g(x, tp, tc)≤ h(x, tp, tc) (4.4)

has to hold for every value of x, tp and tc, taking into account that tp and tc depend on
x. Thus, when defining the parameters of g and h, they have to be chosen so that Eq. 4.4
is verified. However, this creates a further issue for the functions defined in Eq. 4.2 and
Eq. 4.3: for tc and x very close to zero, it does not exist any combination of the parameters
that can satisfy the constraint, as proved in the following proposition.

Proposition 1. For each possible choice of parameters in Eq. 4.2 and Eq. 4.3, there are
values of x, tp and tc for which the constraint in Eq. 4.4 does not hold.

Proof. The constraint, writing explicitly the two functions, becomes:

g(x, tp, tc) =
q

e
(tp−tc)2

a

· x < r · tc
tc + tp

· x = h(x, tp, tc). (4.5)

Now, we have to take into account that both tp and tc depend on x. More precisely, let tp
be the value of tp for x = 0, and tc be the value of tc for x = 0. Then,

tp = tp + x
tc = tc + x.

Substituting in Eq. 4.5, it becomes

q

e
(tp−tc)2

a

<
r · (tc + x)

tc + tp +2x
. (4.6)
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Now, suppose there is a choice for parameters q, a and r for which Eq. 4.6 holds for each
possible value of x, tp and tc. Let these parameters be q, a and r, respectively.

We claim that if
tp = 1

x+ tc <
q
r
· 1

e
1
a

(4.7)

Eq. 4.6 does not hold. By substituting in the right hand side member, we obtain

r
tc + tp +2x

· (tc + x)<
r

1+ tc +2x
· q

r
· 1

e
1
a

=
1

1+ tc +2x
· q

e
1
a

<
q

e
(1−tc)2

a

(4.8)

But the last term of the inequality is the left hand side member of Eq. 4.6 after sub-
stituting variables according to Eq. 4.7, so we have a contradiction. This means that no
matter how we chose the parameters, there are values of x and tc small enough for which
the constraint does not hold.

However, with an appropriate choice of the parameters, the constraint might be satis-
fied for all the possible values of the variables, except for small values of x and tc. That
is, given a number ε, it is possible to arrange the parameters so that the constraint holds
for every value of tp, and for each x and tc so that x+ tc > ε, as shown in the following
proposition.

Proposition 2. Let d be the minimum of the function ex2 − x in R. Let g and h be the
functions defined in Eq. 4.2 and Eq. 4.3 respectively, and suppose that, given a number
ε < d

2 , the hypothesis

x+ tc > ε

holds. Then, it is possible to choose the parameters a, q and r in the definitions of g and
h so that the constraint defined in Eq. 4.4 holds.

Proof. As shown in the first part of the proof of Proposition 1, it is possible to rewrite the
constraint in the form of Eq. 4.6. When tc > tp the inequality is easy to prove (looking at
Table 4.1, it is enough to impose q < 2r), so from now on we will assume tp > tc

Now, our claim is that if q < ε · r, the inequality holds. Substituting it in Eq. 4.6, the
constraint becomes

ε · r

e
(tp−tc)2

a

<
r · (tc + x)

tc + tp +2x
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Which can be strengthened to

e
(tp−tc)2

a > ε ·
(tc + tp +2x

tc + x

)
= ε ·

(
2+

tp− tc
tc + x

)
> ε ·

(
2+

tp− tc
ε

)
= 2 · ε+ tp− tc.

We now assume a = 1. Calling u = tp− tc, the above chain of inequalities reduces to
prove

eu2
−u > 2 · ε

But the left hand side function is always greater than d, so the inequality holds. Thus, if
parameters are chosen as

a = 1
q < ε · r

the constraint in Eq.4.4 holds.

It may be of interest to report that the number d defined above is a transcendental
number, which can be approximated to 0.7729.

4.5 Proposed payment scheme

This section presents the proposed payment scheme to tackle potential issues identified
above.

The first one is the energy production curtailment issue, which is related to the shape
of the g function, defined by Eq. 4.2. As shown in Figure 4.2, it may induce prosumers
to limit their own energy production, which is something to avoid, except for the specific
case where the amount of produced energy causes damage to the grid. In order to avoid
curtailment, g(x, tp, tc) has to be a monotonic increasing function in x for each possible
value of tp and tc. This way, the more energy the user produces, the higher her reward will
be, encouraging the production of energy.

Also, it has to be considered that, from the prosumer’s point of view, tp depends
on x too. This means that, if a prosumer wants to determine her revenue from energy
production by using a certain function g(x, tp, tc), she must consider that tp also includes
the energy she produces, and tp will change accordingly to her energy production.

We propose the following formulation of the function g:

g(x, tp, tc) =Pmax ·
(
g1(t(x, tp(x), tc))−

g1(t(0, tp(0), tc))
)
−P(x, tp, tc)

(4.9)
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where P(x, tp, tc) is a penalty term, which is positive if tp and tc are such that a congestion
will occur (i.e. |tp− tc| > T ), and zero otherwise, and Pmax is a scaling factor used to
determine the tariff. In this definition, g1 is a function defined as

g1(t) =


0 i f t ≤ 0

1

1+e
2t−1
t2−t

i f t ∈ (0,1)

1 i f t ≥ 1

(4.10)

which determines the shape, and t is a function defined as

t(x, tp, tc) =
tp(x)− tc

2T
+

1
2

(4.11)

where T is a constant, depending on the maximum difference between tp and tc which
will not correspond to a congestion. Note that we wrote tp(x) since the local production
tp varies as x varies: for this reason, tp(0) indicates the value of the local production if the
prosumer produces 0.

The formulation of the above function is motivated by the following considerations:

• It is a monotonically increasing function, and as such, it encourages prosumers to
produce all the energy they can, avoiding the need for curtailment.

• Its derivative is higher when the difference between tp and tc is small, lower when
it is large. This means that the balance between consumed and produced energy is
encouraged, since the closer tp and tc are, the more prosumers will earn in relation
to their produced energy.

• Contrarily to other possible functions which address these issues and have these
properties, e.g. cumulative distribution functions of continuous random variables,
this function does not rely on computation of integrals, which may cause problems
in terms of approximation.

• We chose g1 as a function which is constant outside the (0,1) interval. As a result,
our g will not reward prosumers for producing energy in case of congestion; they
will instead be penalized by the P(x, tp, tc) term in Eq. 4.9. This also encourages
curtailment for prosumers if and only if overproduction causes a congestion. Thus,
the prosumers, besides being discouraged from producing energy when it is needed
less, will actually pay for the energy they inject if it is harmful for the stability of
the grid.

• It is possible to prove that the derivative of this function is very low when tc� tp.
For this reason, it is also possible to find values for the parameters such that the
constraint in Eq. 4.4 is satisfied as shown later on in this section.
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Figure 4.3: Example of a prosumer’s revenue for energy produced, with the proposed g
function. The x axis represents the amount of energy generated by the prosumer, the y
axis represents the total amount of NRGcoins gained for her production. For x = 0 we
have tp = tc, while congestion threshold is reached at x = 10. Note that for x > 7 the tariff
is very close to y = 8, although this value is only reached for x = 10: this can be changed
by using different parameters.

In Figure 4.3 we can see the behavior of the proposed function. In particular, when the
production gets closer to the congestion threshold, it can be seen that the reward increases
much more slowly, but never decreases. This eliminates the need for curtailment for the
prosumer.

Example. Let us suppose, at a certain time unit, the prosumer P produces more energy
than she consumes, and the local consumption and production of all the grid users (except
her) are perfectly balanced: with the notation we are using, this can be written as tp(0) =
tc = 10 kWh. Now, say the parameters are set for example as Pmax = 16 NRGcoins and
T = 10 kWh. If at this time unit the prosumer P consumes 2 kWh, the value tp will
become tp(2) = 12 kWh. The considered prosumer revenue in NRGcoins, according to
the proposed tariff, will be, by Eq. 4.9:

g(2,12,10) = 16 · (g1(t(2,12,10))−g1(t(0,10,10))) (4.12)

From Eq. 4.11

t(2,12,10) =
2

20
+

1
2

=
3
5

t(0,10,10) =
0

20
+

1
2

=
1
2
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So, substituting in Eq. 4.10, it becomes

g1(t(2,12,10)) =
1

1+ e
2· 35−1

( 3
5 )

2− 3
5

=
1

1+ e

1
5
− 6

25

=
1

1+ e−
5
6
≈ 0.697

g1(t(0,10,10)) =
1

1+ e
2· 12−1

( 1
2 )

2− 1
2

=
1

1+ e
0
− 1

4

=
1

1+ e0 = 0.5

Now, substituting this in Eq. 4.12 we have:

g(2,12,10) = 16 · (0.697−0.5) = 16 ·0.197 ≈ 3.152 NRGcoins.

In Figure 4.3 the parameters are set as we just described, and from the graph it can be
seen that for x = 2 kWh, the value of y is indeed the one we found.

Regarding the function h defined in Eq. 4.3, it does not present particular issues, but
some of its aspects can be improved. For example, a function which grows more rapidly
when a congestion is about to occur will discourage more easily consumers from using
energy in that situation.

A possible function with such a behavior can be defined as

h(y, tc, tp) = Qmax ·h1(
tc(y)− t p

T
+1) · y+P(y, tc, tp). (4.13)

Qmax is a parameter used in order to determine the tariff value, corresponding to the max-
imum cost per unit of energy; T is a parameter corresponding to the congestion threshold
like in the definition of Eq. 4.11, and P(x, tc, tp) is a penalty factor which is zero for
tc− tp < T and positive otherwise. Note that we are using the notation tc(y) because, as it
has been pointed out in the definition of g, the value tc depends on y.

In the above definition, the function h1 is defined as:

h1(t) =


0 if t ≤ 0√

t if t ∈ (0,1]
2−
√

2− t if t ∈ [1,2)
2 if t ≥ 2.

(4.14)

This h function works in a similar way to Eq. 4.3, but has a higher derivative when the
local grid is close to the congestion. This means that consumers will be more encouraged
to consume energy in case of overproduction since the tariff goes to zero quicker, and,
on the other hand, they will be more dissuaded from consuming energy in the case of
overconsumption, since the tariff increases much faster when a congestion is close.

In Figure 4.4 this is clearly illustrated. It shows an example of a consumer in a grid
context with the following assumptions: for x= 0 we have tp = tc, while the threshold T is
equal to 10 kWh, so for x = 10 kWh the consumption causes a congestion. In particular, it
can be seen that as consumption approaches the congestion, the cost of energy rises faster.
This even discourages further grid users from consuming energy at that time, which may
lead to a congestion.
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Figure 4.4: Our proposed cost function. On the x axis is the energy consumed, on the y
axis is the total cost in NRGcoins; for x = 0 we have balance between tp and tc, while for
x = 10 excessive consumption causes a congestion.

Example. Let C be a consumer which at a certain time unit is about to consume energy
without producing any. At that time unit, the total production in the local community is
equal to the total consumption of all the users except C. In other words, tp = tc(0) =
10 kWh. Let us suppose also that the parameters are set as T = 10 kWh, Qmax = 0.7
NRGcoins/kWh. Now, if for example C wants to consume 6 kWh in that time unit, tc will
become tc(6) = 16 kWh. We calculate the energy cost by using the formula in Eq. 4.13.
By substituting the parameters, it will become:

h(6,16,10) = 0.7 ·h1(
16−10

10
+1) ·6 (4.15)

By using the Eq. 4.14 we obtain:

h1(
8
5
) = 2−

√
2− 3

5
= 2−

√
2
5
≈ 1.367

Thus, substituting in Eq. 4.15, we obtain:

h(6,16,10) = 0.7 ·1.367 ·6 ≈ 5.743 NRGcoins.

In Figure 4.4 the parameters are set as described in this example, and for a consumption
of 6 kWh it can be seen that the cost in NRGcoins is approximately 5.743.

Furthermore it is possible to verify that the constraint in Eq. 4.4 is verified for the
functions g and h we are proposing, as proven in the following proposition.

Proposition 3. For the functions g and h defined in Eq. 4.9 and Eq. 4.13, it is possible to
find values for the parameters such that the constraint defined in Eq. 4.4 holds for every
possible value of x, tp and tc.



4.5. PROPOSED PAYMENT SCHEME 75

Proof. We first observe that if there is a congestion, the prosumer will have to pay a
penalty coming from both functions, and will not receive any income from her selling
function. For this reason, we can consider only the cases where |tp− tc|< T .

Next, we have to take into account the cases when tp and tc depend on x. If this occurs,
let tp be the value of tp for x = 0, and tc be the value of tc for x = 0. Then,

tp = tp + x
tc = tc + x.

From now on, we will call

u =
T + tc− tp

2 ·T
. (4.16)

We now consider two different cases.
Case 1: u ∈ [0.1,1). Within this hypothesis, from the definition of h in Eq. 4.13, it

results that
h(x, tc(x), tp)≥ Qmax ·h1(2 ·u) · x≥ Qmax ·

√
0.2 · x. (4.17)

On the other hand, it is not difficult to see that the derivative of g1 has an upper bound of
2: from the definition of g (Eq. 4.9), it follows that

g(x, tp(x), tc)≤ 2 ·Pmax · x. (4.18)

Putting Eq. 4.17 and Eq. 4.18 together, we obtain that a sufficient condition for the con-
straint in Eq. 4.4 to hold is

2 ·Pmax · x < Qmax ·
√

0.2 · x

Which is true if and only if
Pmax <

√
0.2 ·Qmax (4.19)

So, for this choice of the parameters Pmax and Qmax, the constraint holds in this case.
Case 2: u ∈ (0,0.1). Within this hypothesis, along with Eq. 4.16, we can write h as

h(x, tc(x), tp) = Qmax ·
√

2 ·u+ x
T
· x

from which we can deduce

h(x, tc(x), tp)≥ Qmax ·
√

2 ·u · x. (4.20)

Now we focus on g. Looking back at its definition in Eq. 4.9, and noticing that the t
defined in Eq. 4.11 has the following properties:

t(x) = 1−ut(0) = 1−u− x

we can rewrite the equation of g as

g(x, tp(x), tc) = Pmax ·

(
1

1+ e
1−2u
u2−u

− 1

1+ e
1−2u−2x

(u−x)2−(u−x)

)
. (4.21)
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Taking the derivative of the g1 function defined in Eq. 4.10, this implies

g(x, tp(x), tc)≤ Pmax ·
e

1−2u
u2−u(

1+ e
1−2u
u2−u
)2
· 2u2−2u+1

u2 · (u−1)2 · x (4.22)

So, putting Eq. 4.20 and Eq. 4.22 together, this implies that a sufficient condition for the
constraint in Eq. 4.4 to hold is

Pmax ·
e

1−2u
u2−u(

1+ e
1−2u
u2−u
)2
· 2u2−2u+1

u2 · (u−1)2 < Qmax ·
√

2 ·u.

Even with Pmax = Qmax, for u ∈ (0,0.2) the inequality holds. This implies that the condi-
tion in Eq. 4.19 is sufficient also in this case, and this concludes the proof.

The parameters settings satisfying Eq. 4.19 will also satisfy constraint Eq. 4.4 for
every possible choice of x, tp and tc.

An important remark has to be made. We divided the two cases by imposing

u≥ u0

for the first case, and chose u0 = 0.1. The same proof of Proposition 3 can be applied
with values of u0 greater than 0.1. This will give a less strict limitation on the parameters
than the one in Eq. 4.19, which becomes

Pmax < M ·Qmax

where M can go up to
√

0.4. However, for the proof to be still valid, the value u0 has to
be chosen so that the inequality in Eq. 4.22 holds for every u ∈ (0,u0).

4.6 Simulation Results

In this section we will show how the functions g and h defined by NRG-X-Change and
the functions we proposed behave using different combinations of their parameters (Sec-
tion 4.6.1). We will also experimentally show how much energy is curtailed with the
NRG-X-Change g function (Eq. 4.2) depending on the parameter a, while with our g
function (Eq. 4.9) there is not such a curtailment (Section 4.6.2). Finally, we will show
experimentally how much energy is unnecessarily taken/injected from/into the grid with
the NRG-X-Change functions when self-consumption is not adequately encouraged (Sec-
tion 4.6.3).
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Figure 4.5: Behavior of the NRG-X-Change function g depending on the parameter a. In
the x axis there is the value tp− tc, on the y axis there is the unitary reward in NRGcoins
for energy generated. q has been set equal to 0.7 for each example, while a is equal to 5
(blue), 50 (red) and 500 (green), respectively.

4.6.1 Parameter settings

NRG-X-Change

In the original NRG-X-Change mechanism, the function g (defined in Eq. 4.2) depends
on two parameters, q and a. The former determines the maximum value of the tariff for
unit of produced energy, while the latter determines how quickly the reward decreases as
the difference between tp and tc increases. This is illustrated in Figure 4.5 where it can be
seen that the unitary reward is higher when tp = tc, and it decreases when tp and tc become
different at a rate depending on a. The h function, on the other hand, scales linearly with
the parameter r.

Proposed functions

Our proposal for the function g (defined in Eq. 4.9) depends on two parameters, T and
Pmax. The behavior of Pmax is similar to q in the function defined in the NRG-X-Change
project, and defines the magnitude of the unitary reward. T is the threshold of the dif-
ference between tp and tc at which congestion occurs, and depending on it the maximum
reward can increase and the accepted difference between tp and tc can decrease, or vice-
versa, as shown in Figure 4.6. For this reason, the maximum reward is not determined
by the parameter Pmax alone, but also by the choice of T . The function h depends on the
parameters Qmax, which behaves exactly like Pmax in g, and T ; its dependence on these
parameters is the same as g. To note that g is the function defined in Eq. 4.9 whereas h is
defined in Eq. 4.13.
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Figure 4.6: Behavior of our proposed function g depending on the parameter T . In the x
axis there is the value tp− tc, on the y axis there is the unitary reward in NRGcoins for
energy generated. Pmax has been set equal to 16 for each example, while T is equal to 25
(blue), 50 (red) and 100 (green) respectively.

4.6.2 Energy production curtailment
Simulations have been run to measure the amount of energy curtailment with the NRG-
X-Change selling function. For the simulation, real data from a grid in Cardiff have been
used: more precisely, the data described in Section 3.4, with the Green, 2030 and High
settings. The grid contains 184 users, 41 of which are prosumers.

For the simulations, scenarios of local grids have been created. From now on, in this
section, we will refer to a local grid as a grid made of 40 users, chosen randomly from
the 184 users of Cardiff, so that 10 of them are prosumers. We simulated the behavior of
the users in real settings where they choose the actions that will maximize their economic
profit: they will curtail energy if and only if it would be profitable for them, and the
amount of energy curtailed will be chosen in order to get the highest possible profit for
them. We simulated 400 different local grids, and measured:

• the number of times producers curtail energy production, during 24 hours, consid-
ering time intervals of 15 minutes (# Curtailments);

• how much energy has been curtailed among all the prosumers during a 24 hours
time interval (Energy curtailed);

• the average quantity of energy production reduction for each production curtail-
ment. In other words, the ratio between the second and the first quantities above
measured. (Ratio)

This process has been carried out employing the selling function of the NRG-X-
Change mechanism (the one in Eq. 4.2). In Table 4.2 the results relative to the NRG-
X-Change selling functions are reported.
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Value of a # Curtailments Energy curtailed Ratio
1 71.02 3.74 kWh 0.053
2 78.99 3.83 kWh 0.049
3 80.09 3.73 kWh 0.047
5 74.09 3.06 kWh 0.041

10 42.06 1.24 kWh 0.029
15 17.99 0.41 kWh 0.023
20 5.98 0.12 kWh 0.02
25 0.26 0.005 kWh 0.019
30 0.03 ¡0.025 kWh 0.016

Table 4.2: Curtailment in a local grid with 40 users, 10 of which are prosumers. The
columns indicate, in order: value of parameter a in Eq. 4.2, instances of energy production
curtailment in a 24 hours time interval, total curtailment in the local grid in a 24 hours
time interval, and the quantity of energy curtailed for each instance of energy production
curtailment.

The amount of curtailed energy depends on the parameter a in Eq. 4.2. From Table 4.2,
it can be seen that for relatively low values of a there is an energy curtailment on average
around 3.8 kWh, while without curtailment the average production in 24 hours is 89.75
kWh. Also, for low values of a, the number of times a producer applies curtailment
goes up to 80. The reader notices that the average daily electricity consumption for the
Cardiff grid users is around 14.11 KWh. As the parameter a becomes higher, the number
of instances of curtailment becomes larger on average, although in several scenarios this
does not occur. The amount of curtailed energy for each instance, on the other hand,
becomes smaller when a becomes larger.

The same simulation has been run with the function we proposed in Eq. 4.9. Unlike
the NRG-X-Change mechanism, no prosumer was encouraged to curtail their production.
This is because our proposed scheme is designed to promote energy balance without cur-
tailment. Curtailment is only considered in the extreme case of a congestion caused by
overproduction. These results show that the proposed scheme allows to avoid significantly
the curtailment of energy, which is working towards the energy policy targets to increase
the renewable hosting capacity of the grid.

4.6.3 Self-consumption

As stated in Proposition 1 that, once the parameters for the selling function g and for the
buying function h proposed by NRG-X-Change have been chosen, there are always values
for x, tp and tc such that the equation

g(x, tp, tc)< h(x, tp, tc)
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does not hold. For this reason, prosumers may be in some cases encouraged to buy energy
from the utility to satisfy their own consumption while injecting the produced energy
into the grid. This situation contradicts to the fact that the produced energy should be
consumed locally thereby reducing stress on the grid and losses due to transmission.

It can be easily deduced by looking at the functions that the likelihood of an intention-
ally reduction of the self-consumption depends mainly on the choice of parameters for g
and h, and on the number of users/prosumers of the grid, since the higher the number of
prosumers/consumers, the higher tp and tc. More in detail, from the definitions of g and
h, it can be seen that an intentionally reduction of the self-consumption is more likely to
occur with higher values of q and a, and with lower values of r. However, q and r directly
determine the maximum value for the tariffs, so once they are chosen, the chance of a
reduction on the self-consumption depends mainly on the parameter a, as we have shown
in Proposition 2. In fact, lowering this parameter makes this situation less likely to occur,
and it can be avoided if a certain value for x+ tc is guaranteed at any time; however, if
the grid is smaller (and in particular, in the case with only one producer) there may be the
chance of a reduction of the self-consumption. Also, a low value for a reduces the reward
for the produced energy when tp and tc do not match perfectly, so there is a limit on how
much it can be reduced.

In order to illustrate this issue we carried out an analysis defining and running simula-
tions on local grids, defined as in Section 4.6.2. Users of the grid had the possibility to see
their costs/revenues for energy in case of self-consumption (of all their needed energy),
and to reduce this amount (therefore buying additional energy from the grid, and sell-
ing more energy) if it was economically more profitable. We simulated 500 small local
grids: they have been built from the Cardiff grid data using a similar procedure already
introduced in Section 4.6.2. For each small local grid we considered a period of 24 hours
(00:00 - 23:45) and time intervals of 15 minutes, and measured the following quantities:

• The number of times an intentional reduction of the self-consumption occurred in
the local grid through the 24 hours period, considering time intervals of 15 minutes.
It corresponds to the number of time slots in which some reduction in the self-
consumption occurs (# Self-consumption reductions).

• The total amount of energy which has not been self-consumed in all the grids during
24 hours (Energy not self-consumed).

The Cardiff grid we have used for simulations had ToU tariffs: we chose the parameters
for g and h such that their values in NRGcoin are as close as possible to the values of the
ToU tariffs in fiat currency: since the NRG-X-Change tariffs depend on various factors
while ToU tariffs are fixed, we chose the parameters so that, on average, the values of
g and h are as close as possible to the Cardiff grid ToU tariffs. In our case, with the
appropriate unit of measurement, q may range between 0.06 and 0.1, and r between 0.2
and 0.3. We run simulations with different values of a, ranging between 100 and 200:
reductions on the self-consumption occurred only when q = 0.1,r = 0.2. Results can be
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Value of a # Self-consumption Energy not
reductions self-consumed

100 0.004 0.0009 kWh
125 0.454 0.1186 kWh
150 2.634 0.701 kWh
175 5.504 1.5279 kWh
200 7.118 2.1149 kWh

Table 4.3: Reduction of the self-consumption in a local grid with 40 users, 10 of which are
prosumers. The columns indicate, in order: value of parameter a in Eq. 4.2, instances of
reduction on the self-consumption in a 24 hours time interval, and total amount of energy
unnecessarily taken from/injected into the grid.

seen in Table 4.3. In particular, with these settings, it can be seen that the average number
of intentional reductions of the self-consumption in a local grid can go up to 7.118 kWh.
Also, we recall that a reduction on the self-consumption occurs when a prosumer does
not self-consume all of her produced energy: as a result, a certain amount of energy is
unnecessarily withdrawn from the grid and injected into the grid. In our simulations,
the total energy through the grid goes up to 2.1149 kWh in a 24 hours time interval.
This causes additional stress to the grid and potential additional problems for the DSO,
and can be avoided by ensuring the existence of a set of parameters that prevents such
reductions on the self-consumption to occur. In Proposition 3 we defined conditions for
the parameters to ensure this.
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Chapter 5

A Game Theory focus on the
NRG-X-Change mechanism

5.1 Context

The work described in this chapter is a direct consequence of what has been done in
Chapter 4. The context in which we are working in, from a smart grid perspective, is the
exact same that has been described in Section 4.1. In particular, this part starts again from
the idea of the mechanism NRG-X-Change, which has been described exhaustively in [55]
and in Section 4.3. The purpose of this chapter is to create a new incentive mechanism
based on NRG-X-Change and the use of NRGcoin using as a baseline the works in [55]
and Chapter 4 [2], but further improving the critical points of the mechanism and studying
its behavior in a context with selfish agents. The contributions of the work this chapter
are therefore the following:

• We analyze the NRG-X-Change project and identify its main issues (import and
export price functions) and the situations where they appear;

• We design new import and export price functions that can work better within the
NRG-X-Change mechanism by exploiting known results in game theory about
Nash equilibria, and provide theoretical background on those;

• We demonstrate the validity of our proposed functions through mathematical proof,
and carry out an experimental evaluation on real data from a grid in Cardiff that
measured the efficiency of our proposed functions.

Flexibility is a key concept for the work in this chapter too. Like in the previous chap-
ter, its usage is what allows local energy balance to be realized, and therefore is what
motivates the existence itself of the selling and buying functions. However, in this case,
flexibility is also necessary for defining the game theory context, which is the primary
focus of this work.
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5.2 Background
For what incentive mechanisms are concerned, literature is quite extensive, and it has
been described exhaustively in Section 4.2. In particular, several mechanisms similar to
NRG-X-Change [52, 54, 56, 57] have been described and reported in that section.

Literature on employment of game theory for the smart grid context is extensive. [66]
present a survey which describes comprehensively how game theory methods have been
used for smart grid. The work done by [67] is probably one of the closest to the work we
propose here in terms of employment of game theory, although its focus is mainly devoted
to manage demand response whereas ours is on the incentive mechanism. The game
theory usage done by [68] and [69] has also been of inspiration for us, since the model we
will propose in this chapter has been heavily influenced by their game theory modeling in
the smart grid context. The work from [70] contains another survey describing the use of
game theory for smart grid, although it focuses on collaborative games, whereas our work
describes mainly a situation where each agent is selfish.

5.3 Modelization of the problem
In this section the modelization of the problem will be discussed. We built a model from
a game theory perspective in order to explain the effect of the incentive mechanism on the
agents. Our construction was inspired by [68] and [69].

5.3.1 Game Theory approach to our Smart Grid problems
First, we introduce our notation for game theory, following what has been defined in
Chapter 2. We define a game G = (U,S,Q) in the following way:

• U = {U1, . . . ,UN} is the set of players.

• S = {S1, . . . ,SN}, where for any i ∈ {1, . . . ,N}, Si is the set of player Ui’s strategies.

• Q= {q1, . . . ,qN}, where for any i∈{1, . . . ,N}, qi :
N
∏
j=1

S j→R is the payoff function

for player Ui.

Let us consider a grid with N users: we will now define a game on it. The players are
the grid users, which will thus be denoted as Ui, for i ∈ {1, . . . ,N}. In what follows we
describe the users’ payoff functions and the strategies they are allowed to choose.

For each user Ui, we define a vector ci which indicates the energy consumption of Ui,
and a vector pi which indicates the energy production of Ui. The size of these vectors is
the number of intervals in which the considered time horizon is divided: for example, in
a scenario with a 24 hour time horizon with 15 minutes intervals, the size of ci and pi is
96. Each component of both ci and pi is a non-negative real number. We will denote this
number of time intervals as T .
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One important consideration has to be made about the values of ci and pi: in this
chapter we assume that each user self-consumes all the energy she needs before exporting
it or imports the extra energy she needs, and the values of ci and pi are considered after
self-consumption is taken into account. This, in formal terms, denoting as ci(t) the t−th
element of ci, is written as

ci(t) ·pi(t) = 0 ∀t ∈ 1, . . . ,T (5.1)

for each i ∈ {1, . . . ,N}. Of course, if Ui is a consumer which does not produce energy, pi
is the zero vector. Later in this chapter, we will ensure that all the payment functions we
propose actively encourage energy producers to self-consume their produced energy.

Now, we can define the utility function qi for each grid user as the sum of the utility
in the different time intervals, namely:

qi =
T

∑
t=1

qi(t) (5.2)

where the utility of a user Ui at time interval t is defined as:

qi(t) = g(pi(t), tp, tc)−h(ci(t), tp, tc). (5.3)

where g and h, with the notation of Chapter 4, represent respectively the reward for the
energy produced and the cost for the energy consumed are two pre-determined functions,
and have the property that g(0,a,b) = h(0,a,b) = 0 for every a,b ∈ R. Fixed a time unit
t, the aforementioned quantities tp and tc are defined as

tp =
N

∑
i=1

pi(t)

tc =
N

∑
i=1

ci(t)

(5.4)

and represent the total production and the total consumption through the grid at that given
time. In particular, at a given time t, tp depends on every pi(t) and tc on every ci(t).

Next, we show the possible strategies for the players. More precisely, how the loads
can be modeled in our scheme. An example of this has been seen in the work from [69].
In the following we will indicate the loads that we have taken into consideration for our
work.

• Production: This is pi. It represents the energy production of the user Ui, and it
is a fixed vector unless the energy production is somehow modulable, which is not
our case.

• Fixed consumption: This is a fixed vector fi. It represents the fixed part of the en-
ergy consumption of the user Ui. In this chapter it will be treated as a known vector,
although it has to be forecast and may present uncertainty: a possible approach to
this issue can be the one shown in Section 3.5.2, which treat the components of the
vector as probability distributions.
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• Shiftable load: This is a vector hi
j, which represents a consumption load of user Ui

which can be shifted in time. The user can control how many time units this vector
can be shifted by, although sometimes they have restrictions on this. Given the
vector hi

j, the notation rk(hi
j) will indicate that vector shifted by k places. In other

words, rk indicates the rotation by k places: if k = 0 there is no rotation, therefore
r0(hi

j) = hi
j.

Thus, if a user has n shiftable loads {hi
1, . . . ,hi

n}, and decides to shift each hi
j by a

quantity k j, we have

ci = fi +
n

∑
j=1

rk j(hi
j). (5.5)

The set of possible strategies of Ui is then the set of all her possible vectors pi and ci,
depending on how the loads are shifted.

5.4 Peer-to-peer market design

This section presents the proposed peer-to-peer market for energy trading.

5.4.1 Purpose

The goal of this chapter is to modelize an incentive mechanism for renewable energy,
using as a baseline the NRG-X-Change [55] mechanism, but improving some of its critical
points. More precisely, these points are:

1. Ensuring that prosumers are not incentivized to curtail their own energy production,
unless this is necessary for the grid stability.

2. Taking into account the possibility of a congestion, and actively attempting to pre-
vent it.

3. Encouraging prosumers to self-consume the energy they produce before selling, or
before buying from the grid the excess energy they need.

4. Analyzing the behavior of the users if they modulate selfishly their production and
consumption, and ensure that they reach an equilibrium.

The first three points have been addressed in Chapter 4, by creating functions which
describe rewards for energy production and costs for energy consumption respectively.
The scope of this chapter is to create new functions which address all of the four points
mentioned above.
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5.4.2 The NRG-X-Change Incentive Mechanism
The NRG-X-Change mechanism has already been described within detail in Section 4.3.
In particular, the mechanism’s functioning is determined mainly on two functions: one,
named g, which describes the reward for the energy injected into the grid by prosumers,
and the other, named h, which describes the cost for the energy taken from the grid by
consumers. The original NRG-X-Change reward and cost functions have been described
in Eq. 4.2 and Eq. 4.3 respectively.

In order to face the first three aforementioned issues, in Chapter 4 we created one
new reward function and one new cost function, which have been defined respectively in
Eq. 4.9 and Eq. 4.13. These new functions solve many of the issues of the original NRG-
X-Change work, but still have to be analyzed from a game theoretical perspective. In
order to do so, we have to use the model defined in Section 5.3 and analyze the behavior
of the players with the payoff functions relative to each system.

For the original NRG-X-Change system, it is not difficult to write qi(t): using Eq. 5.3,
it can be written as

qi(t) = x · q

e
(tp−tc)2

a

if y = 0

qi(t) =−y · r · tc
tc + tp

if x = 0
(5.6)

keeping in mind that either x or y is equal to zero, as seen in Eq. 5.1.
For the system realized in Chapter 4 the expression for qi is more complicated to write,

although it may be simplified if we consider different cases. Since at least one between
x and y is equal to zero, substituting Eq. (4.10) and (4.11) in Eq. (4.9) and Eq. (4.14) in
Eq. (4.13):

• If y = 0, i.e. the user’s production is greater than the user’s consumption, we have

qi(t) =
Pmax

1+ e

2
t−i
p +x−t−i

c
B(

t−i
p +x−t−i

c
B

)2
− 1

4

− Pmax

1+ e

2
t−i
p −t−i

c
B(

t−i
p −t−i

c
B

)2
− 1

4

(5.7)

• If x = 0, i.e. the user’s consumption is greater than the user’s production, we have

– If t−i
p > t−i

c ,

qi(t) =−y ·Qmax ·

√
t−i
c + y− t−i

p

B
+1 (5.8)

– If t−i
p < t−i

c + y,

qi(t) =−y ·Qmax ·
(

2−

√
1− t−i

c + y− t−i
p

B

)
(5.9)
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An important remark has to be made: since the production suffers from no curtailment,
but x is the value of production minus consumption, a prosumer may change this value by
changing her consumption.

5.4.3 New proposals
Among the points listed in Section 5.4.1, the fourth is the one which still has to be solved.
Basically we want to check whether a Nash equilibrium (NE) exists for the previously
defined incentive systems, and in case it does not, to create new possible selling and
buying functions which guarantee the existence of a NE while fulfilling the first three
points listed in Section 5.4.1. The concept of Nash equilibrium has been described in
Chapter 2.

For the first two systems, our strategy has been the following: first, create a simulation
of the described game in order to see empirically whether a NE exists or not, and if
the answer was positive, find a mathematical proof of its existence. As we will see in
Section 5.5, these functions do not guarantee the existence of a NE.

We wanted to create selling and buying functions which guarantee the existence of
a NE in the game we described. For this, we exploited a well-known result: a game
with a concave payoff function admits a pure NE [68]. So, if we can create a concave
selling function and a convex buying function, the utility function defined in Eq. 5.3 will
be concave and the theorem proven by [71] will guarantee the existence of a pure NE.

However, this may create conflicts with the other points, in particular with the con-
dition for avoiding curtailment and the self-consumption condition. For the former, it is
enough to ensure that the selling function g is a monotonic function with respect to x. In
order to check the latter, however, we want to check that the condition described in Eq. 4.4
holds for each x > 0 and for each tp, tc ≥ 0.

Some ideas for functions that respect the above constraints may be the following. We
will denote

Z = t−i
p − t−i

c +B. (5.10)

• For the selling function g:

– [Logarithm] One idea may be to base the function on logarithm. In this case,
the function can be

g(x, tp, tc) = k1 ·
(

ln
x+Z +a1

Z +a1

)
(5.11)

where a1 and k1 are parameters, and a1 > 0.

– [Square root] Another idea may be to use the square root function as a base.
In this case, a possible candidate is

g(x, tp, tc) = k1 · (
√

x+Z +a1−
√

Z +a1) (5.12)

where a1 and k1 are parameters, and a1 > 0.
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• For the buying function h:

– [Quadratic] One possibility is to use the quadratic function. In this case, a
candidate may be

h(y, tp, tc) = k2 · ((y−Z +a2)
2− (a2−Z)2) (5.13)

where a2 and k2 are parameters, and a2 > 2B.

– [Square root] Another possibility for this may be the negative square root
function. In this case, our function may have the following form:

h(y, tp, tc) = k2 · (
√

Z +a2−
√

Z +a2− y) (5.14)

where a2 and k2 are parameters, and a2 > 0.

To each of the proposed functions a term P has to be added. For selling functions, P is
a function determined by x, tp and tc such that its value is zero unless tp− tc > B, in which
case it is negative. For buying functions, P depends on y, tp and tc and its value is zero
unless tc− tp > B, in which case it is positive. In other words, P is a penalty term which
punishes overproduction/overconsumption when it causes a congestion. Notice that, with
the used notation, a congestion occurs if and only if Z /∈ (0,2B).

These functions have been designed to have a certain behavior in relation to the vari-
able Z. When local energy consumption is higher than local energy production, the energy
generated by producers is valuable since it helps covering the consumption needs of the
community: in this case the selling functions assume higher values, and consequently pro-
ducers are paid more for the energy they produce. On the other hand, when local energy
production is higher than local energy consumption, the surplus energy injected by the
producers is not needed by the consumers, so the selling functions assume lower values
and energy producers are paid less. As far as the buying functions are concerned, when
local energy consumption is higher than local energy production we want to discourage
consumers from consuming energy, since energy has to be bought from outside the com-
munity: for this reason, buying functions assume higher values and the price for buying
energy is higher for consumers. Conversely, when local energy consumption is lower
than local energy production, we want to encourage consumers to consume energy, since
they would use the energy generated by the producers: for this reason, buying functions
assume lower values and consequently energy costs less for the consumers.

It is not difficult to check that the proposed selling functions are monotonic: the more
energy a user produces, the more she is paid for. For this reason the user is discouraged
from curtailing her own energy production, since curtailment would decrease her prof-
its. The only exception is the case of congestion for overproduction, where the penalty
term discourages producers from generating energy by lowering their profits. This is the
first condition described at the beginning of Section 5.4.1, which is then respected by our
functions: we want to ensure that the functions we create satisfy all of them. The second
condition that has to be fulfilled is the fact that both selling and buying functions actively
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consider the possibility of congestion: since the functions we are creating have a penalty
term for congestion, they fulfill this condition. We will prove in Section 5.5.1 that the pro-
posed functions respect also the third condition, while the last condition holds because of
the theorem proven in [71]. This theorem implies that our game guarantees the existence
of a Nash equilibrium if the payoff functions are concave; it is easy to check that this
is true from Eq. 5.3, since the proposed selling functions are concave and the proposed
buying functions are convex.

5.5 Simulations and results

This section is divided in two parts. In Section 5.5.1 the constraint for encouraging self-
consumption due to pricing is proven to hold for the newly proposed functions, while in
Section 5.5.2 it is proven that the baseline functions do not guarantee the existence of a
NE, while the new proposed functions always reach a NE as expected from the theoretical
results.

5.5.1 Parameter settings

The goal of this section is to verify that the functions proposed in this work respect the
self-consumption condition, which is expressed in Eq. 4.4. We will analyze the behavior
of the functions, and check if there is a choice for the parameters such that the condition
is fulfilled.

Candidate 1: logarithm selling, quadratic buying

This is the case where the selling function g is the one described in Eq. 5.11, while the
proposed buying function h is the one described in Eq. 5.13.

We want to check that Eq. 4.4 holds for some choice of the parameters of these two
functions. By rewriting this condition with the two functions, we want to prove that there
is a choice for the parameters k1, a1, k2 and a2 such that

k1 ·
(

ln
x+Z +a1

Z +a1

)
< k2 ·

(
(x−Z +a2)

2− (a2−Z)2
)

holds for each x > 0 and Z ∈ (0,2B).

Lemma 1. For each x > 0, Z > 0, a1 ≥ 1 and a2 ≥ 2B+1, and choosing k1 = k2 > 0, the
inequality

ln
(

1+
x

Z +a1

)k1
< k2 · x · (x−2Z +2a2) (5.15)

holds.
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Proof. Considering the exponent, Eq. 5.15 becomes(
1+

x
Z +a1

)k1
< ek2·x·(x−2Z+2a2)

Since k1 = k2, we can remove the equal exponents and the inequality that we want to
prove becomes

1+
x

Z +a1
< ex·(x−2Z+2a2)

Thus, exploiting the properties a1 ≥ 1 and a2 ≥ 2B+1, the chain of inequalities

1+
x

Z +a1
≤ 1+

x
Z +1

< 1+ x < ex2+x ≤ ex·(x−2Z+2a2)

completes the proof, since it holds for every value of x > 0 and Z ∈ (0,2B).

Proposition 4. The function defined in Eq. 5.11 with a1 = 1, together with the function
defined in Eq. 5.13 with a2 = 2B+ 1, satisfies the self-consumption condition defined in
Eq. 4.4 if k1 = k2 > 0.

Proof. Thanks to Lemma 1, with the aforementioned choice of parameters, the chain of
inequalities

k1 · ln
(x+Z +a1

Z +a1

)
= ln

(x+Z +a1

Z +a1

)k1
=

= ln
(

1+
x

Z +a1

)k1
< k2 · x · (x−2Z +2a2) =

k2 ·
(
(x−Z +a2)

2− (a2−Z)2
)
.

holds for each x > 0, Z ∈ (0,2B).

Candidate 2: square root selling, negative square root buying.

This is the case where the selling function g is the one described in Eq. 5.12, while the
proposed buying function h is the one described in Eq. 5.14.

Proposition 5. There is a choice for the parameters k1 and a1 for the selling function
defined in Eq. 5.12, and for the parameters k2 and a2 for the buying function defined
in Eq. 5.14, such that these two functions fulfill the condition defined in Eq. 4.4. More
specifically, this happens if k1 = k2 > 0 and if a1 ≥ a2 +2B.

Proof. The self-consumption condition can be written as

k1 ·
(√

x+Z +a1−
√

Z +a1

)
<

k2 ·
(√

Z +a2−
√

Z +a2− x
)
.
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Substituting k1 = k2 and canceling them out, it becomes
√

x+Z +a1−
√

Z +a1 <
√

Z +a2−
√

Z +a2− x.

Rationalizing the denominators, this holds if and only if

x√
x+Z +a1 +

√
Z +a1

<
x√

Z +a2 +
√

Z +a2− x

and considering denominators, since we want to prove it for x > 0, this is true if and only
if √

x+Z +a1 +
√

Z +a1 >
√

Z +a2 +
√

Z +a2− x.

Now, if a1 ≥ 2B+a2, we have the chain of inequalities
√

x+Z +a1 +
√

Z +a1 > 2
√

a1 ≥
2
√

2B+a2 >
√

Z +a2 +
√

Z +a2− x

which holds for every x > 0, Z ∈ (0,2B), and this completes the proof.

5.5.2 Results
A script in Python language has been created in order to simulate this framework. For
this, real data relative to a Cardiff grid with 184 users, 41 of which are prosumers, have
been used. Data have already been described exhaustively in Section 3.4.

In this section, we show two important facts. First, the NRG-X-Change incentive
system and the one described in Chapter 4 do not guarantee the existence of a NE in the
game described in Section 5.3. Second, we will see that a NE always exists with the
functions we have defined in the end of Section 5.4, as expected by the known theoretical
results.This is how the game has been simulated:

1. A set of N users, U1, . . . ,UN , is randomly chosen from the 184 Cardiff users: de-
pending on the scenario that we want to simulate, N is pre-determined, and the
number of users that are prosumers is pre-determined as well. The predicted con-
sumption and production of each user Ui is known. Each user has exactly one
shiftable load, which is randomly allocated at the beginning.

2. This step is repeated sequentially for each user Ui, i.e. starting from U1, then U2,
and arriving to UN . Each user considers that the values of tp and tc may have been
modified by the actions of previous users. The user Ui now has the possibility to
choose where to allocate her shiftable load. For each possibility, her payoff function
is calculated, taking into account the total production and consumption through the
grid at each time unit. After this, Ui allocates her shiftable load in the time unit
which maximizes her payoff function qi. Performing this step on all the users of the
considered set is called an iteration.
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3. For each user, a check is performed in order to see if any user has changed the
allocation of her shiftable load compared to the previous iteration. If none has, the
simulation ends. If at least one user has changed it, the game goes back to step 2
with the current allocations.

4. After a certain maximum number of iterations, or if the configuration of the
shiftable loads is identical to the one reached in a previous iteration, the game ends.

If the game ends at step 3, the configuration of shiftable loads has reached a Nash equilib-
rium, since the most profitable strategy for each user is to leave the load in the allocation
where it already was. If the game ends at step 4 for finding a configuration already known
in the past, the game will never reach a Nash equilibrium, since it will go on a loop. It is
not necessary to establish a maximum number of iterations, as the number of configura-
tions is finite and therefore the game will eventually end in one of the two ways that have
been just described. However, if computational time gets too high, it may be convenient
to choose a limit for those.

These are the cases that have been simulated in order to see whether the algorithm just
described converges or not.

• Payoff functions are determined by the original NRG-X-Change selling and buying
functions. (Original)

• Payoff functions are determined by the selling and buying functions defined in
Chapter 4. (Improved)

• Payoff functions are determined by the selling function in Eq. 5.11 and the buying
function in Eq. 5.13. (Log/Sq)

• Payoff functions are determined by the selling function in Eq. 5.12 and the buying
function in Eq. 5.14. (SqRs)

Since the functions’ parameters are arbitrary, they have been chosen so that for tp =
tc all the selling functions have the same value, and all the buying functions have the
same value , which roughly correspond to the average selling/buying (respectively) tariffs
already existing for the Cardiff grid. In Table 5.1 we report the number of times the game
converges to a NE depending on the percentage of energy producers through the grid.
Table 5.2 describes the average number of iterations needed to obtain convergence with
each couple of functions (Iterations), and the average increase of self-consumed energy
through the grid after performing the game (SelfCons).

From these results, these considerations follow.

• The functions labeled as Original and Improved do not guarantee that the algo-
rithm converges to a NE. On the other hand, as expected from the theoretical results,
the new proposed functions always converge to a Nash equilibrium.
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% Original Improved Log/Sq SqRs
10% 20 203 245 245
30% 114 232 245 245
50% 242 245 245 245

Table 5.1: Number of cases in which Nash equilibrium is reached depending on the used
selling/buying functions. The number of simulations carried out is 245 for each case and
couple of functions; the size of the grid varies, ranging from 10 to 70 users. The leftmost
column indicates the percentage of grid users who produce energy. The functions are, in
order from left to right: the original NRG-X-Change functions, the functions proposed in
Chapter 4, the logarithm selling and square buying functions, and the square root selling
and negative square root buying functions.

Functions Iterations SelfCons
Original 4.7255 15.7248
Improved 4.8554 20.2876
Log/Sq 4.0370 23.2854
SqRs 3.8872 23.3021

Table 5.2: Results of the simulations in terms of convergence and self-consumption. The
first column describes the functions, the second column indicates the average number of
iterations for reaching a NE, and the third column reports how much, on average, the
amount of self-consumed energy increases with our optimization.

• The Improved functions perform better than the Original functions in terms of
convergence, for every considered grid size and percentage of prosumers. They
also provide better results in terms of increase of self-consumption, although the
average number of iterations required for convergence is slightly higher.

• The new proposed functions (SqRs and Log/Sq) outperform the old functions
(Original and Improved) on all the considered aspects. They always guarantee
convergence to a NE, need less iterations to converge compared to the old func-
tions, and also improve self-consumption through the grid.

• Among the new proposed functions, the SqRs functions seems to perform better
than the Log/Sq functions in terms of convergence speed. Also, the amount of self-
consumed energy is, on average, slightly higher.

Finally, we report in graphical form the consequences of the game to the daily net
consumption through the grid, which achieves an effect of peak-shaving/valley-filling. We
took as example the case with 4 prosumers and 36 consumers, although all cases present
the same behavior. In Figure 5.1 the difference between production and consumption of
energy is shown at each time unit, before and after optimization.



5.5. SIMULATIONS AND RESULTS 95

Figure 5.1: Graph of net consumption of energy before and after the optimization. The
x axis indicates the time units through the day, while on the y axis is indicated the differ-
ence between total consumption and production through the grid. We have depicted the
values before the optimization (in red) and after the optimization (in green). It has to be
remarked that the shiftable loads were randomly allocated through the day in the initial
configuration.
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Chapter 6

Multiagent Systems for cost and
congestion management: the Woerden
scenario.

6.1 Context

Local energy communities (LECs) are considered a promising way to integrate distributed
energy resources and to engage end-users in sustainable energy practices. In LECs, par-
ticipants can locally buy and sell their energy. When production inside the community is
not sufficient to meet local demand, the electricity shortage is covered by import from the
main grid. On the other hand, the surplus energy can be exported to the grid. By acting
together, community members have a stronger negotiation power when interacting with
other energy market participants. The trade inside the community is encouraged by the
difference between local and retail prices. Trading locally is beneficial because it allows
funds remain within local economy. This also reduces losses that occur when the energy
is transmitted over long distances.

The recent interest in LECs contributed to a growing number of industrial projects
and research publications [72]. Some focus on the design of a peer-to-peer (P2P) market
with necessary functions where peers can buy and sell their energy. Thus, [55] proposed
a virtual currency to regulate energy exchange between peers, via the NRG-X-Change
mechanism, which we have seen in the previous chapters. The payment functions for
those supplying and consuming energy were developed to encourage the energy balance.
The approach is dependent on function settings [2] and does not account for a strategic
behavior of peers. The latter is often addressed using a game theory. [73] proposed price-
based schemes and a game-theoretical framework to coordinate flexible demand. Though,
distributed generation and energy storage systems were not taken into consideration. [74]
suggested an auction-based market mechanism, where each household provides bids or
offers of their demand or generation. These offers and bids are collected to allocate energy
and determine prices. In the auction based market, accurate estimates of energy and prices
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are needed to get better tariffs. This can be disadvantageous to inexperienced participants.
A major advantage of P2P schemes is that they are able to preserve privacy as there is no
central supervisory entity.

A more structured market design enables a cost sharing mechanism where community
members pay in the form of a share of a single electricity bill of the overall community.
This design assumes the coordination of actions towards the common goal. Thus, [75]
proposed a two stage aggregated control to realize a P2P energy sharing where an energy
sharing coordinator controls flexible devices. An interior-point method was used to mini-
mize the energy costs of the community. A centralized in nature is its major disadvantage
that is also common to many existing approaches based on energy sharing. The central-
ization limits scalability and rises concerns about privacy. Multiagent systems (MAS) are
promising alternative to decentralize computations. [76] surveyed MAS applications for
microgrid control. Energy trading in the community using MAS was recently addressed
by [77]. Although this approach presented an agent-based model of the community, a
limited number of flexible devices and only the flow of electricity were considered.

This study presents a multiagent system developed to manage a community of house-
holds located in the central Netherlands. Our approach is close to cost sharing ones. We
describe the developed agent-based model of the community energy network. This model
accounts for the flows of electrical and heat energy. The model conveniently decomposes
the underlying optimization problem so that each agent is assigned with a specific task
that can be solved efficiently. In particular, we present an agent-based decomposition
for addressing the model of battery with losses. This contrasts with existing approaches.
For example, [78] addressed the problem directly introducing additional parameter for
optimization. Furthermore, the presented MAS approach is not limited to the considered
community and can be adapted to other real-world scenarios.

6.2 Case study
The present study has been carried out in the scope of a European project whose aim
is to unlock a demand response potential in the distribution grid. The addressed case
study involves a community of households located in the central Netherlands. Figure 6.1
depicts the architecture of community and aggregator platform. This figure presents a
logical architecture rather than the physical one. This view is applicable to manage: (i)
households located in a close neighborhood sharing a common point of connection with
the main grid, as shown in Figure 6.1 and (ii) households that are geographically distant
and have no physical common point coupling.

The considered community consists of 16 households and a district battery with the
capacity of 220 kWh. Each house has a heat pump of 2 kW combined with a hot water
buffer of 200L. The heat pump is used for heating both domestic hot water and spatial
heating. Each house has solar photovoltaics (PV) capable of producing up to 7kW. Addi-
tionally, there is one in-home battery with the capacity of 7.8 kWh.

The given community is managed by an energy service providing company know as
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Figure 6.1: Architecture of the energy community.
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aggregator. The aggregator manages flexible assets in the community aiming to maximize
the value of flexibility. The aggregator platform facilitates the interaction with external
parties and provides an infrastructure for executing MAS. It relies on information and
communications technology and consists of different communication devices, software
applications and protocols. Each house is equipped with a local energy gateway (LEG)
that is connected with flexible devices and is able to communicate with the backend run
on a cloud. Thus, LEGs are used to control flexible devices and to communicate sensory
data. The Advanced Message Queuing Protocol is used for communication.

6.3 Multiagent system

Figure 6.2: Multiagent model of the community energy network.

The community energy network is modeled as a multiagent system where agents are
nodes and the environment is everything outside the agent. The state of the environment
is represented by sensory data including the charge levels of batteries, indoor and outdoor
temperatures, temperature limits for comfort, the prices of energy and possible limits for
energy flows. The actions of agents are the amount of energy pulled from or injected to
the grid.

6.3.1 Multiagent model
Figure 6.2 shows the multiagent model of the community energy network. The energy
network is represented by a bipartite graph having two set of nodes. This suggests two
types of agents, shown by circles and rectangles. Circles depict device agents (D). The
device can refer to an abstract or physical device. Rectangles show net agents (N). The
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Table 6.1: Agent types and their roles

Notation Description Role
AGRNet Aggregator Net AGRNet represents a local energy market. It aggregates dif-

ferent assets and ensures the energy balance at the community
level.

ENet Electrical Net ENet represents the electrical network in the house energy sys-
tem. It ensures the balance of electrical energy.

HNet Heating Net HNet represents the heating network in the house energy sys-
tem. It ensures the balance of heat energy.

BNet Battery Net BNet ensures the energy balance in the decomposed model of
battery.

ET External Tie ET represents a connection to an external source of power.
This can be viewed as a connection between the community
and the main grid.

C Connector C connects two nets modelling the transmission of energy. The
transmission can be associated with losses. There are no losses
between AGRNet and ENet. The transmission loss from ENet
to BNet models a charging efficiency. The transmission loss
from BNet to ENet models a discharging efficiency.

B Battery B represents an electrical storage that can take in or deliver
energy.

PV Photovoltaic PV represents solar panels that generate electricity from ab-
sorbing sunlight.

FL Fixed Load FL represents an inflexible energy consumption that must be
satisfied.

HP Heat Pump HP transforms electricity to heat energy with some conversion
coefficient.

SH Space Heating SH represents indoor air temperature that must be kept within
limits for comfort.

HWS Hot Water Storage HWS represents the tank with hot water and the consumption
of domestic hot water.

net represents a virtual zone where the energy exchange between the devices takes place.
Edges in the graph indicate interaction between agents. Table 6.1 lists different types of
agents and explains their roles.

The model represents a structure of agent interactions. It extends a multiagent model
of a building by aggregating different buildings and district battery using AGRNet. This
net can be viewed as a local energy market where district actors negotiate their energy
exchange. AGRNet is also connected to an external source of power that represents a
connection point between the community and the main grid. Inside a building, there
are electrical (shown in blue) and heating (shown in red) networks that account for the
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flows of electricity and heat. Net agents ensure the balance of corresponding energies.
Connector agents that connect houses to the AGRNet represent prosumers in the local en-
ergy market. They communicate schedules for houses while keeping energy flows inside
houses hidden at the community level. The battery with losses is represented by con-
nector, net and battery agents. The agent that connects to the battery net models losses
associated with charging and discharging. The battery agent models linear constraint as-
sociated with its capacity.

This problem decomposition has been performed to obtain an adequate representa-
tion of the energy network such that individual subproblems are easy to solve and yield
meaningful solutions.

6.3.2 Optimization problem

MAS addresses the problem of minimizing the energy bill at the connection point while
satisfying energy balance constraints, physical constrains of devices and comfort prefer-
ences. Using a splitting technique for the variables associated with net and device agents
the following multiagent optimization problem is formulated

minimize
xi∈Ωi,zi∈Θi

∑
i∈D

fi(xi)+ ∑
i∈N

gi(zi)

subject to xi = zi, ∀i ∈ N
(6.1)

where fi is a real valued objective function associated with the i-th device and defined in
the feasible region Ωi, gi is a real valued objective function associated with the i-th net
and defined in the feasible region Θi, xi and zi are the decision variables associated with
the i-th devices and net, respectively. The constraints account for the fact that respective
device and net agents should agree upon the values of shared variables.

Finding the minimizer to an equality constrained optimization problem is equivalent
to identifying the saddle point of the associated Lagrangian function. This gives the fol-
lowing augmented Lagrangian function

L(x,z,λ) = ∑
i∈D

fi(xi)+ ∑
i∈N

gi(zi)+
ρ

2 ∑
i∈N
‖xi− zi +ui‖2

2 (6.2)

where ui = λi/ρ is the scaled dual variable (for Lagrange multipliers λT
i ) , xi and zi are

primal variables.

6.3.3 Agent coordination

Agents solve their local problems in a coordination with their neighbors. The coordination
mechanism is based on the alternating direction method of multipliers (ADMM). ADMM
iteratively minimizes the augmented Lagrangian function (6.2) with respect to primal and
dual variables. Each iteration involves the following steps.
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Step 1. Device agents compute in parallel their optimal variables by solving

x(k+1)
i∈D = argmin

xi∈Ωi

fi(xi)+
ρ

2
‖xi− (zk

i −uk
i )‖2

2 (6.3)

The corresponding values are communicated to neighboring nets.
Step 2. Net agents compute in parallel their optimal variables by solving

z(k+1)
i∈N = argmin

zi∈Θi

gi(zi)+
ρ

2
‖zi− (x(k+1)

i +uk
i )‖2

2 (6.4)

Step 3. Net agents in parallel update their dual variables.

u(k+1)
i∈N = uk

i +(x(k+1)
i − z(k+1)

i ) (6.5)

The corresponding primal and dual variables are sent to neighboring devices.
The above steps are repeated until convergence criteria are met. The convergence

criteria are defined locally for primal and dual residuals as

rprimal < ε
primal

rdual < ε
dual (6.6)

where εprimal,εdual are small positive numbers representing primal and dual tolerances,
respectively. The primal and dual residuals are computed as

rprimal = ‖xk
i − zk

i ‖2

rdual = ‖ρ(zk
i − zk−1

i )‖2
(6.7)

If the device and net functions f (x) and g(z) are convex, the constraint residual under
ADMM is guaranteed to converge to zero and the objective value to the minimum of the
dual problem, see [79].

6.3.4 Agent models

Nets

The net agents (AGRNet, ENet, HNet and BNet) ensure the energy balance treating the
constraints

∑
i∈D

zi(τ) = 0, τ = 1, . . . ,H.

The problem (6.4) is solved by projecting the variables received from neighboring devices
onto the feasible region as in [80].
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Devices

The C agent connects two nets. In each time step τ, there two possible cases:
(i) the energy flows from net 1 to net 2, then

0≤ x1(τ)≤ xmax
1 (τ) and η1 · x1(τ) =−x2(τ)

(ii) the energy flows from net 2 to net 1, then

0≤ x2(τ)≤ xmax
2 (τ) and − x1(τ) = η2 · x2(τ)

where η1,η2 ∈ (0,1] are transmission efficiencies. The problem (6.3) is solved by finding
critical points for two cases and selecting the one with a lower value of (6.3) in each time
step τ. HP represents a particular case when the energy flows only from ENet to HNet.

The ET agent is associated with the following objective function

f (x) =
H

∑
τ=1

pbuying(τ) · x+(τ)+
H

∑
τ=1

pselling(τ) · x−(τ)

where pbuying(τ) and pselling(τ) are respectively the price of imported and exported energy,
x+(τ) is the energy with the positive sign (imported), and x−(τ) is the energy with the
negative sign (exported). The set of constraints restrict the energy coming from and into
the grid.

xmin ≤ x(τ)≤ xmax, τ = 1, . . . ,H.

where xmin(τ) and xmax(τ) are respectively the minimum and the maximum energy flow
allowed. The problem (6.3) is solved by finding critical points for positive and nega-
tive cases and selecting the one with a lower value of (6.3). Constraints are treated by
projection.

The FL and PV agents aim to satisfy respectively the forecast consumption and pro-
duction

x(τ) = x̂(τ), τ = 1, . . . ,H

where x̂ are forecast values. The solution to (6.3) is trivial (xk = x̂).
The B agent has a set of constraints aiming to keep its state of charge as well as

charging and discharging rates within the allowed range.

Qmin ≤ Q(τ)≤ Qmax, τ = 1, . . . ,H

xmin ≤ x(τ)≤ xmax, τ = 1, . . . ,H

where Qmin and Qmax are the minimum and maximum allowed charge of the battery, xmin

and xmax are limits for discharging and charging rates. The battery’s charge evolves as [80]

Q(τ) = Qinit +
H

∑
τ=1

x(τ)
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where Qinit is the initial charge of the battery.
The SH agent has a set of constraints to ensure a room temperature is within the

comfort temperature limits.

T min ≤ T (τ)≤ T max, τ = 1, . . . ,H

where T min and T max are the temperature limits. The room temperature evolves as [80]

T (τ) = T (τ−1)+
µ
c
·
(

T amb(τ)−T (τ−1)
)
+

+
η

c
· x(τ), τ = 1, . . . ,H

where T (0) is the initial temperature, T amb is the outdoor temperature, µ is the conduction
coefficient, η is the heating efficiency and c is the heat capacity of indoor air.

The HWS agent has a set of constraints to ensure the temperature of water inside the
tank is within the allowed range.

T min ≤ T (τ)≤ T max, τ = 1, . . . ,H

with T min and T max are the temperature limits. The water temperature evolves as [81]

T (τ) = T (τ−1)+
Vcold(τ)

Vtotal
·
(

Tcold−T (τ−1)
)
+

+
1

Vtotal · c
· x(τ), τ = 1, . . . ,H

where T (0) is the initial temperature, Vcold is the volume of water with temperature Tcold
entering the tank to replace the consumed hot water, Vtotal is the tank volume, and c is the
specific heat of water. The consumption of hot water is forecast.

The B, SH and HWS agents solve the problem (6.3) using Dykstra’s projection method
with a starting point (zk−uk).

6.3.5 Agent negotiation
ADMM iteratively processes primal and dual variables of the augmented Lagrangian
function. These variables have a meaningful interpretation within the energy network.
The primal variables represent the energy and the dual variables define its price in differ-
ent nodes across the network.

Agent interactions, governed by ADMM, model a negotiation process where device
agents negotiate their energy exchange in exchange zones represented by net agents. Mes-
sages sent from nets to devices represent requests. These messages contain the amount of
energy requested, zk

i . The sign is used to distinguish between production and consump-
tion. From a recipient perspective, a positive value indicates that the energy flows towards
the recipient, a negative value indicates the flow towards the sender. It also includes the
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Table 2: Different market situations

uk
i zk

i Market situation
Positive Positive Overconsumption/Underproduction: the market is proposing the pro-

sumer to consume the energy zi paying the price ui.
Positive Negative Overconsumption/Underproduction: the market is proposing the pro-

sumer to produce the energy zi and get paid the price ui.
Negative Positive Underconsumption/Overproduction: the market is proposing the pro-

sumer to consume the energy zi and get paid the price ui.
Negative Negative Underconsumption/Overproduction: The market is proposing the pro-

sumer to produce the energy zi paying the price ui.

price, uk
i , which not only indicates the current market price, but also is used to distin-

guish between a situation of overconsumption (in which the price will be positive) and a
situation of underconsumption (in which the price will be negative).

Table 2 lists different market situations in exchange zones of energy network based
on the sign of the price and the requested power. The first two cases (i.e. positive prices)
refer to a market with underproduction (i.e. overconsumption) situation. The last two
cases (i.e. negative prices) refer to a market with overproduction (i.e. underconsumption).
In all cases, the suggested payment is given by uk

i · zk
i .

The device agents send messages with offers as response to received requests. This
establishes the precedence relation in agent communication meaning that offer messages
are only sent after request messages have been received and processed. An offer message
contains the amount of energy, xk

i , offered by the device in each time interval.
The negotiation continues until the consensus is reached between the agents. The

device agents agree on their energy profiles so that their variables are equal to those re-
quested by the nets. This situation means the supply is equated to the demand in all the
exchange zones and the corresponding markets are cleared.

6.4 Results and Discussion

This section presents the results obtained by the developed MAS. The tests were per-
formed using the data for the winter season. Winter days are characterized by the need
to use heat pump for both heating domestic hot water and maintaining room tempera-
ture within comfort limits. This represents the most challenging optimization scenario as
during other seasons heat pump is only used for reheating domestic hot water.

6.4.1 Optimizing community cost

Community members participate in community energy management having a common
interest of increasing social welfare through collective use of local resources. This implies
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collaboration in terms of energy use to reduce the cost at the connection point when there
is no external flexibility requests.

Day ahead optimization

Figure 6.3: Energy profiles of the community when optimization starts at 00:00 (left) and
12:00 (right)

Figure 6.4: SOC of the district battery when optimization starts at 00:00 (left) and 12:00
(right).

Multiagent optimization suggests optimal energy usage for the next 24 hours dis-
cretized into 96 program time units (PTUs) corresponding to 15 minute time intervals.
When running a day ahead optimization, the system attempts to schedule energy con-
sumption for flexible loads to time intervals when renewable energy from solar panels is
available. Starting optimization at different time slots during the day changes the per-
spective as the time horizon moves forward embracing new time slots from the next day.
Figure 6.3 provides insights about the effect of executing optimization at different PTUs
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during the same day. The figure shows the energy profiles of the community at the con-
nection point with the main grid. Positive values refer to the amount of energy taken from
the grid (imported energy). Negative values indicate the energy fed into the grid (exported
energy). The plot on the left shows results when optimization was executed at midnight.
The plot on the right refers to starting time at midday which embraces the data for the
following day.

The battery allows storing the excess of renewable energy and later delivering this
energy by discharging when local demand is high. This is why the community does not
import energy during evening hours. The local demand is met by the energy released from
the battery. MAS schedules the district battery charging and discharging so that it takes
locally produced energy only in the amount needed to meet local demand until the end of
the time horizon. Figure 6.4 provides much insight about this process. The plots show
state of charge (SOC) with optimization starting at different PTUs. It was considered that
in the beginning the battery had the lowest allowed SOC of 20%. During the day the
SOC is increased by injecting the energy from solar PVs. Later this energy is released to
supply local demand. No extra energy is left or released for export. Without additional
constraints for optimization, this is the most effective strategy and is as expected. Because
the use of battery is always associated with some costs due to charging and discharging
efficiencies, the battery should only be used when that is really necessary.

Rolling horizon optimization

The method of applying optimization at every program time unit is known as rolling
horizon optimization. Rolling horizon can mitigate uncertainties in the models, such as
forecast errors, and account for the fact that the real time horizon is not limited to a single
day.

Figure 6.5 summarizes the results for rolling horizon optimization. The effect of
rolling horizon optimization can be understood from Figure 6.5a. For comparison, this
figure shows the community energy profiles obtained by day ahead and rolling horizon
optimizations. The former provides the results from the single optimization run at the
beginning of the day. The latter involves the results of 96 optimizations during the day,
with the data for the first PTU being used for control. The difference can be readily un-
derstood. Rolling horizon optimization results in smaller energy exports during times of
intense electricity generation from PV panels. This is explained by the fact that rolling
horizon accounts for time slots in the next days with a need to meet local demand.

The day for which results are presented in Figure 6.5a is characterized by a massive
production from solar PVs panels. The optimized energy profiles suggest peaks in times
of high PV generation. This is because no constraints on possible power flows were im-
posed. In such scenario, the system solely focuses on minimizing the energy bill of the
community. Although the results indicate that rolling horizon optimization can reduce
peaks to some extent, it is not the goal of the community at this step. The issue of dealing
with possible grid overload is addressed in the next section as part of congestion manage-
ment scenarios.
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(a) Energy profile of the community (b) Energy profiles of heat pumps

(c) SOC of the district battery
(d) Charging and discharging of the district bat-
tery

Figure 6.5: Results for rolling horizon optimization.

The optimal behavior of the community is characterized by shifting consumption of
flexible devices to time intervals with electricity available from solar panels. This is
because this electricity is cheaper than the one taken from the main grid. Thus, both
in-home and district devices are expected to use energy in such times during the day.

Heat pumps are flexible devices at the home level. They are used to provide heat
for both domestic hot water and space heating. As expected, MAS suggests using heat
pumps in times with available renewable energy. This is shown in Figure 6.5b that depicts
a three-dimensional bar chart with the consumption profiles of each heat pump in the com-
munity. It can be seen that most of consumption occurs in times of high PV generation.
Consumption in other time intervals is dictated by the need to satisfy temperature limits,
especially for domestic hot water. The consumption of domestic hot water is irregular
with respect to time and amount, especially in the evening.

At the district level, there is a battery storage. When multiagent optimization runs in
a rolling horizon mode, in the end of the day, the battery SOS is not at its lower state
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Table 6.2: Results for community optimization.

Optimization
In-home Community

Energy import (kWh) 16072.94 14384.53
Energy export (kWh) 3694.83 1814.42
Self-consumption (%) 59 80

because it holds some energy to account for the following time horizon. This is shown
in Figure 6.5c that summarizes 96 optimization runs for one day. Figure 6.5d graphically
illustrates the control actions for the battery during the day in terms of the amount of
energy charged and discharged in each PTU.

In-home vs community optimization

Community management should ensure its members benefit from collective energy usage.
To provide insights about the advantages of community-based approach we compared
the results of in-home and community optimizations. The former optimized community
households individually and combined their energy profiles. The latter performed the
community optimization. The results indicate the performance of two approaches varies
depending on the amount of renewable energy that is locally produced. Community-
based approach is better when there is excess of renewable energy. On the other hand,
both approaches perform similarly when it is low.

Figure 6.6 illustrates the amount of imported energy for the two optimization ap-
proaches. It can be seen that for all days community optimization yields less or equal
energy import as those of in-home optimization. Similar results are only observed when
PV generation is low. The analysis of the results indicates that an increase in renewable
energy generation leads to a decrease in energy imported from the grid.

Table 6.2 further summarizes the obtained results. During the period under consid-
eration, the total renewable energy production was 9047.91 kWh. Similarly to the above
daily data, the total energy import and export of the community was reduced. It is impor-
tant to note that besides economic benefits this also reduces the stress on the main grid.
Instead of exporting the produced renewable energy it is used to meet local demand.

Self-consumption is an important performance indicator. It is defined as the ratio be-
tween the energy consumed and the total energy produced by the community. As shown
in Table 6.2, the community based optimization approach increases self-consumption.
These results provide important insights about advantages of collective energy manage-
ment and the estimates of potential savings.
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Figure 6.6: Comparing the energy import of the community when using in-home opti-
mization individually and community optimization.
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6.4.2 Congestion management

Power volatility caused by renewables and irregular consumption poses significant chal-
lenges for the distribution grid. This volatility has the potential to lead to network con-
gestion, decreasing reliability. Congestion management refers to avoiding the thermal
overload of system components by reducing loads. Congestion occurs if the capacity of
the grid is insufficient to accommodate the requested power flows.

This section presents and discusses the results of addressing two different congestion
management scenarios. In these scenarios, first the optimal community energy profiles
were found by community optimization without considering grid capacity constraints.
Next, it was considered that a grid safety analysis performed by a distribution system op-
erator (DSO) required to limit the injected/consumed energy. The limits were introduced
into the MAS in the form of constraints. The resulting constrained optimization problem
was solved by multiagent optimization to reschedule the energy use in the community.

Overproduction

(a) maximum export 5kWh (b) maximum export 3kWh

Figure 6.7: Community energy profiles under congestion management scenarios due to
overproduction.

The first considered congestion management scenario refers to the situation in the
grid with an excess of injected renewable energy. This can readily occur in sunny weather
when local demand is low. Under such circumstances, an increase in voltage can happen
and grid components can be damaged if no proper actions are taken.

Figure 6.7 shows a day ahead scenario for the community addressing the oversupply
of renewable energy. The energy profiles resulting from unconstrained community op-
timization are shown in blue. The results obtained when addressing flexibility requests
from the DSO are shown in yellow. Two different requests limiting the energy injection
are considered. These correspond to the maximum energy injection of 5 kWh and 3 kWh
per PTU. It can be seen that both grid capacity limits are respected by the MAS. The
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Figure 6.8: Charging and discharging of community storage with different constraints
limiting community export.

amount of renewable energy injected into the main grid does not exceed the limits re-
quested. This is achieved by shifting the export from peak sunny periods during the day
to evening and night hours. This reduces the stress on the distribution grid and provides
energy in times of high demand, such as evening hours.

The availability of the storage capacity in the community is critical to exhibiting the
above behavior. The battery is able to take the excess of renewable energy in peak times
and later release it. Since the community is interested in minimizing the cost and maxi-
mizing the profit, the losses in the battery should be minimized.

Figure 6.8 shows the behavior of community storage in terms of energy charging and
discharging in this scenario. This figure illustrates that the more limited grid capacity,
the more energy is taken in peak times of PV production and correspondingly the more
energy released later. This results are as expected and confirm the ability of MAS to adapt
its energy export according to grid conditions.
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(a) maximum import 4kWh (b) maximum import 3kWh

Figure 6.9: Community energy profiles under congestion management scenarios due to
overconsumption.

Overconsumption

The second considered congestion management scenario involves the overload of grid
components due to high demand. This situation is common in times with limited local
production and high consumption.

Figure 6.9 depicts the community energy profiles addressing these congestion man-
agement scenarios. The plots show the results for requests limiting peak consumption to
4 kWh and 3 kWh per PTU. For comparison, the plots also show results for community
optimization without congestion constraints. Similarly to previously considered scenario,
these results suggest that MAS is able to schedule the energy use for the community under
considered congestion management scenarios.

The plots show that high demand occurs in evening hours resulting in a peak consump-
tion around 16:00. The requests from the DSO ask for lowering this demand. To address
this the community needs to anticipate peak demand and to use the energy available in
off-peak times. The more power reduction is requested the more energy is consumed
during off-peak periods. This energy is taken by the community battery storage when
the local demand is low. Later, during peak times, the stored energy is released. Thus,
the community does not overload the grid pulling energy in critical periods and meet its
demand by using the locally stored energy.

Figure 6.10 shows charging and discharging of community storage without and with
congestion management. Without congestion, no energy is injected. This is because dur-
ing the considered day there is no excess of renewable energy. All the energy generated by
rooftop panels is consumed locally. However, when MAS takes into consideration DSO
requests, the battery storage is utilized to charge in off-peak time intervals and discharge
later to meet peak demand.

The reduction in peak demand can also be addressed by shifting consumption of flexi-
ble loads. Heat pumps are flexible loads in the considered community. Figure 6.11 shows
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Figure 6.10: Charging and discharging of community storage with different constraints
limiting community import.
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Figure 6.11: Heat pumps consumption in the community with different constraints limit-
ing community import.
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the cumulative consumption of heat pumps in the community. A shift in the consumption
from peak to off-peak periods can be observed. This shift takes place alongside with the
use of battery storage. The energy consumed by heat pumps can come from the battery
and from the exported energy as long as constraints are respected.

Thus, the obtained results show that flexibility requests from the DSO are met through
efficient use of flexible loads, which combines charging and discharging of battery storage
as well as shifting heat pump consumption to anticipate a peak load.
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Chapter 7

Conclusions

With the increasing diffusion of smart grids, one of the most important new concepts that
have been introduced is flexibility. In this thesis we have shown various examples of
its relevance in smart grid contexts and how its usage can be exploited in order to build
mathematical models, which enable us to solve some of the most important problems in
this new energy grid context.

First, our work in demand response highlights the use of flexibility in smart grids by
showing how it can be employed to minimize energy cost and discomfort for the pro-
sumers, as well as to meet the needs of external actors such as BRPs, DSOs and ag-
gregators. The optimization is performed at various levels: first, within the context of
a single prosumer/house, second, based on interactions between prosumers interested in
buying/selling energy, and, finally, based on external entities interested in buying pro-
sumers’ flexibility. The combined effort of those levels’ optimizations can bring signifi-
cant economic advantages to the energy market players, although in this thesis we focus
more on the prosumers.

In particular, the cost and discomfort of prosumers are reduced on average by up to
29% compared to the results obtained by the naive algorithm (which corresponds to our
baseline), At the same time, the peak load can be reduced on average by over 11% (with
respect to the baseline) as a result of the third level of optimization. Furthermore, the
exploitation of parallel computation in level 1 may reduce computational time by over
92%, and in addition to this, using it in level 2 may further reduce computational time by
over 51%, ensuring that the time needed to perform the complete optimization is less than
half a minute. The employment of parallel computing and dedicated hardware (GPUs)
allows getting rid of various approximations and exploiting the optimal solutions, which
is very important especially in real scenarios.

In our work on pricing systems, flexibility is what realizes the purpose of the pric-
ing functions to shift consumption from one time to another, and therefore determines
the incentive system’s effectiveness. Our work has exposed some important issues in the
state-of-the-art NRG-X-Change mechanism, and addressed them by proposing new func-
tions to determine reward for energy production, and cost for energy consumption. These
functions efficiently solve the issues presented, by actively discouraging curtailment in
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energy production for prosumers, taking into account situations where a congestion may
occur, and encouraging prosumers self-consumption (instead of selling all their produced
energy and buy the energy they need for consumption from another source).

Local energy communities and peer-to-peer energy trading are expected to be impor-
tant components of future energy systems. Our work in the game theory section inves-
tigated different mechanisms for regulating energy exchanges between agents in local
energy communities. The agents are assumed to act in their own self-interest when op-
timizing energy usage. The market mechanisms are designed to incentivize production
and self-consumption of locally produced renewable energy while matching supply and
demand. In this case, other than having the usage of the previous chapter, flexibility is
even more at the core of the mechanism, as flexible loads define the strategies of each
player in the game we have described.

The proposed design exhibits advantageous theoretical properties when compared
with some existing market mechanisms. The results obtained by simulations using real-
world data reveal that incentives offered by the proposed mechanisms in the form of
buying and selling prices lead more sustainable behaviours of energy communities. Ex-
ploiting their flexible loads, consumers schedule their consumption in periods with an
intensive injection of renewable energy whereas producers are given a high reward that
help discouraging them from curtailment, which can appear under other approaches.

In the last chapter, this work presented a multiagent system for a real-world scenario
of community energy management. An appropriate multiagent model was developed
considering electrical and heating networks. The agent models were presented indicating
solution methods for their subproblems.

The obtained results offered important insights and provided the evidence for the va-
lidity of multiagent system approach. Single run of multiagent optimization results in
optimal control actions for all controllable devices in the community. These are in the
form of consumed and/or injected energy as well as temperature set points for thermal
loads. The system demonstrated the ability to offer solutions satisfying all the constraints
whenever feasible solutions exist. These constraints involve allowed state of charge of
battery, temperature limits in each time unit and energy balance in each node of the net-
work. The suggested consumption profiles are meaningful. The energy consumption for
flexible loads is scheduled in times when renewable energy is available. The export of
energy is scheduled so that local demand is met first and only excess of local supply is
fed into the main grid. This is how flexibility has been employed by this novel approach
in order to overcome the issues that have been treated.

Future work on these problems can go in several directions. Regarding the demand
response solution proposed in this thesis, what can improve it significantly would be im-
plementing: (i) forecasting algorithms for energy consumption and generation; (ii) fore-
casting algorithms for real time tariffs; and (iii) different flexibility settings. In particular,
adding those features to the created framework would make it an even more complete
demand response tool.

Regarding the improved incentive mechanism, a promising line of future work would
be to explore different options for the penalty functions that control congestion in our
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scheme. Moreover, it would be interesting to perform further experiments by simulation
of other grid environments. Regarding the game theory approach, we intend to investigate
how the proposed mechanisms behave when diverse sources of flexibility are available in-
cluding heating systems and storage units. Finally, a promising future direction to enhance
the multi-agent system approach would be treating the issue of a fair distribution of costs
and profits between community members.
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[52] Mihail Mihaylov, Roxana Rădulescu, Iván Razo-Zapata, Sergio Jurado, Leticia
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