
Noname manuscript No.
(will be inserted by the editor)

Characterization of Flow through random media via1
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Abstract We leverage on Information Theory to assess the fidelity of approx-7

imated numerical stochastic groundwater flow simulations. We consider flow8

in saturated heterogeneous porous media, where the Karhunen-Loève (KL)9

expansion is used to express the hydraulic conductivity as a spatially corre-10

lated random field. We quantify the impact of the KL expansion truncation on11

the uncertainty associated with punctual values of hydraulic conductivity and12

flow velocity. In particular, we compare the statistical dependence between13

variables by considering (a) linear correlation metrics (Pearson coefficient of14

correlation) and (b) metrics capable of accounting for nonlinear dependence15

(coefficient of uncertainty based on mutual information). We test the selected16

metrics by analyzing the relationship between hydraulic conductivity fields17

generated via Monte Carlo sampling with different levels of truncation of the18

KL expansion and the corresponding fluid velocity fields, obtained through19

the numerical solution of Darcy’s flow. Our analysis shows that employing20

linear correlation metrics leads to a general overestimation of the correlation21

level and IT-based indicators are valuable tools to assess the impact of the22

KL truncation on the output velocity values. We then analyze the impact of23

the number of retained modes on the spatial organization of the velocity field.24

Results indicates that (i) as the number of modes decrease the spatial correla-25

tions of the velocity field increases; (ii) linear indicators of spatial correlation26

are again larger than the nonlinear counterparts.27
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1 Introduction30

In the context of subsurface geology it is well known that the hydraulic proper-31

ties of natural aquifers exhibit heterogeneity over diverse spatial length scales32

[7,25]. This ubiquitous heterogeneity and the typical poor level of characteriza-33

tion of subsurface environments lead to a lack of knowledge about the hydraulic34

properties of the hosting formations, which is a major source of uncertainty.35

This motivates the interest towards applications of uncertainty quantification36

and propagation through numerical modeling of subsurface flow and transport37

processes.38

In this work we consider the uncertainty stemming from incomplete knowl-39

edge of the hydraulic conductivity of fully saturated heterogeneous porous for-40

mations on the resulting steady state flow field. To address its parameterization41

under uncertainty, permeability (or hydraulic conductivity) is often described42

by random fields, where the heterogeneity structure can be characterized with43

geostatistical methodologies [7]. These methods rely on an assumed statistical44

distribution and spatial covariance function for the parameter under investiga-45

tion. A classical assumption is to assign a lognormal distribution to hydraulic46

conductivity, although different models have been proposed in the literature47

[25]. When the log-conductivity is expressed by a multi-Gaussian random field,48

the well-known Karhunen-Loève (KL) [21] expansion can be used to reduce49

the stochastic dimension of the problem. This allows reducing the computa-50

tional costs for uncertainty propagation, which can be achieved also through51

the implementation of model reduction techniques, e.g. [22,20,19]. KL-based52

approximations rely on a truncation of the exact expansion, which, in practice,53

is equivalent to selecting a number of terms in the series, also called modes.54

The number of modes retained in the KL expansion is typically determined55

by ensuring that a given fraction of the variance (considered as a proxy of56

the spatial variability) of the underlying field is retained. However, this ap-57

proach does not ensure that a satisfactory level of variability of the output is58

also retained (see e.g., [33]) particularly in the presence of nonlinear relations59

between inputs and quantities of interest (QoI). Quantitative indicators are60

therefore required to assess the foreseen effect of such approximations on QoI.61

In this work our target is to characterize the propagation of uncertainty to62

fluid velocity in fully saturated heterogeneous porous media. The simulation63

of fluid velocity is fundamental to numerical studies aimed at assessing the im-64

pact of heterogeneity in fluid flow and solute transport processes taking place65

in heterogeneous aquifers and reservoirs. For instance, the velocity field and66

its spatial structure are key information to simulate and predict transport and67

dilution of solute mass in the subsurface [13,32,8]. To address these problems,68

general indicators that can connect parameters describing the spatial hetero-69
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geneity of geomaterials properties to flow and transport emerging features are70

sought in recent literature [2].71

Developed after the work of Shannon [30], Information theory (IT) pro-72

vides a suite of indicators that can be used to assess the similarity in informa-73

tion content of two distributions. Arguably the most widespread quantitative74

indicator derived from IT is Shannon entropy. In addition, IT provides quan-75

titative indicators that can assess the mutual information between variables.76

These indicators can also be used to describe correlation within a spatial and77

temporal fields. For example, when nonlinear systems are of concern, the IT-78

based mutual information can be used as an alternative to linear correlation,79

as shown, e.g., by [26] in the context of the characterization of subsurface min-80

eral distributions. IT-based indicators have been previously employed within81

model-based assessment of groundwater flow and solute transport. For exam-82

ple several studies have relied on the concept of entropy as an indicator of83

uncertainty within risk assessment procedures [23,1] or to set up optimal ex-84

perimental design for model discrimination [17]. IT mutual information has85

also been shown to be an indicator of the degree of nonlinearity existing be-86

tween output variables in flow and transport simulations, with a particular87

focus on their spatial correlation [4]. As an alternative approach, the concept88

of entrogram was introduced in [3]. This latter corresponds to the fraction of89

the entropy of a variable sampled within a given spatial window and that of90

its counterpart associated with the whole spatial domain, as a function of the91

ratio between the spatial window and the whole domain sizes. The results in92

[3] indicate that the entropic scale (i.e., a measure of the overall persistence of93

a pattern of association) can be related to widely employed solute transport94

descriptors.95

In this work, we apply IT-based metrics within stochastic groundwater96

flow simulations. We consider stochastic simulations based on Monte Carlo97

sampling of the KL expansion of hydraulic conductivity. The selection of the98

number of modes in the KL-expansion is typically guided by selecting a propor-99

tion of the variance of the original hydraulic conductivity field to be retained.100

Such proportion can be analytically determined and increases with the num-101

ber of retained modes. However, for values of the variance of log-conductivity102

above unity the degree of nonlinearity between input (hydraulic conductivity)103

and output (flow velocity) increases [4]. A critical issue in this context is to104

control and constrain a priori the output approximation accuracy. Our work105

explores the possibility to employ IT-based metrics in the context of a quan-106

titative assessment of the approximation resulting from KL series truncation.107

While IT has been employed with a similar objective in other fields [16], to108

the best of our knowledge this idea is explored here for the first time in the109

context of stochastic groundwater flow simulation. In particular, for flow fields110

associated with an increasing number retained modes in the KL expansion111

we (i) compare the resulting entropy of the flow field, to investigate the level112

of variability retained in the predicted quantity of interest; (ii) evaluate the113

mutual information (MI) between flow fields obtained at different levels of res-114
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olution; (iii) compare the behavior of the spatial auto MI of the flow fields, to115

investigate how the spatial organization of the diverse flow fields behaves.116

In the following, section 2 presents the considered problem setup, the IT117

indicators employed in the analysis and the considered quantities of interest.118

Section (3) present the results obtained by the application to groundwater119

flow with three different levels of heterogeneity, i.e. three selected variances of120

log-conductivity.121

2 Methods122

2.1 Problem setup123

We consider steady flow in a two dimensional heterogeneous saturated porous124

medium, through Darcy’s law and fluid mass conservation125

∇ · u = 0 u = −K(x)∇h x ∈ Ω (1)

where u[LT−1] is the Darcy velocity, K[LT−1] is hydraulic conductivity, h is126

hydraulic head, Ω is a two-dimensional spatial domain. Note that, even though127

our results are limited to a two-dimensional set-up, they can be extended to128

three dimensional systems following the same line of reasoning. In the latter129

case, we expect a different quantitative behavior (the dimensionality of the130

problem is a crucial factor in the flow organization), but we expect a similar131

qualitative behavior. The Darcy velocity has two components, i.e., v and u132

which are transversal and longitudinal with respect to to the main flow di-133

rection, respectively. We consider in this study flow taking place in a squared134

domain of unit size. We impose impermeable boundaries along the right and135

left edges, while we set a uniform value of v and of h along the top and bot-136

tom boundary, respectively. Equation (1) is numerically solved upon employing137

a mixed two-field finite element approach (see e.g., [9]) implemented within138

the FreeFem++ environment [14]. We employ a structured triangular spatial139

discretization, considering 313600 triangles in order to ensure the accurate res-140

olution of the hydraulic conductivity spatial distribution (i.e., one correlation141

length of the conductivity field, see below, has been discretized by 16 elements142

[29]) and, in turn, of the ensuing velocity fields.143

We assume here the log-conductivity Y = ln(K) as a spatially correlated144

Gaussian random field. Under such assumption, a reference field Ȳ can be145

defined through the Karhunen-Loève expansion [21]146

Ȳ =

∞∑
n=1

ξnλnfn(x) (2)

where ξn are orthogonal Gaussian random variables with zero mean, λn and147

fn(x) are the eigenvalues and eigenfunctions that can be used to approximate148

the Y field with spatial covariance CY (x,y). In the following we assume an149

exponential separable covariance function CY ref (x,y) = σ2
Y ref exp(−|x1 −150
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Fig. 1 Number of terms NT to be included in (3) as a function of the target retained
variance in the truncated field Fσ2 .

y1|/η−|x2−y2|/η), being σ2
Y ref the variance of the conductivity field, η [L] the151

correlation length and with subscript 1 and 2 indicating the longitudinal and152

transverse spatial directions, respectively. The correlation length η is chosen153

as 1/35 of the domain size. The analytical expressions provided in [34] are154

then used to compute the factors λn and the functions fn(x) in the expansion155

(2). The series (2) is employed in practice upon truncation to a finite number156

of terms, i.e.,157

Y =

NT∑
n=1

ξnλnfn(x) ≈ Ȳ (3)

The number of terms NT included in the expansion can be selected upon158

requiring that the generated fields retain a given fraction Fσ2 of the reference159

field variance, i.e. σ2
Y = Fσ2σ2

Ȳ
, with Fσ2 < 1. In this context Fσ2 is often160

considered as an a priori indicator of the fidelity of the truncated expression161

in reproducing the original field. Figure 1 depicts Fσ2 versus NT . Note that162

the value of Fσ2 increases monotonically with NT , i.e. the number of terms163

increases with the required level of retained variance. Note that the Karhunen-164

Love expansion is valid for all variances of Y and can applied considering any165

dimensionality of the system.166

In this work we analyze Monte Carlo samples of log-conductivity fields167

characterized by three distinct reference variances, i.e. σ2
Y ref = 0.5, 1.5, 2.5.168

For each of these three cases we consider a reference sample where the fields169

are generated upon truncating the expansion when the variance of the corre-170

sponding field attains a value of 0.97 of σ2
Y ref . Then, for each of the considered171

σ2
Y ref we generate MC samples with Fσ2 comprised between 0.5 and 0.97 upon172

selecting a number of 1000 realizations per sample. In the following the results173

associated with Fσ2 = 0.97 are labeled as reference fields Y ref ,uref ,vref . Vari-174

ables obtained for Fσ2 < 0.97 are considered as truncated fields and indicated175

with Y tr,utr,vtr. Note that, even though low level of Fσ2 (e.g., smaller than176

0.8) may be too restrictive in the context of practical applications, we here177

cover them in order to highlight the emergence of trends/patterns in the our178

results179
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2.2 Information Theory180

Uncertainty in a discrete random variable, X, can be quantified via Shannon181

Entropy [30]182

H(X) =

NX∑
i=1

pi ln(p−1
i ) (4)

where NX is the number of bins used to discretize the sample probability183

distribution, and pi is the probability associated with the i -th bin. Shannon184

Entropy can be interpreted as a measure of the uncertainty associated with X,185

i.e., H(X) is maximum (assigned the binning) in case pi is uniform across all186

the NX bins while it equals zero when all the values of X fall into one single187

bin. Note that employing the natural logarithm leads to have nats as unit of188

measure for H(X), other choices for the base of the logarithm are possible.189

Statistical dependence between two random variables, i.e., X and Z, can190

be characterized by the reduction in the uncertainty that the knowledge of one191

variable entails for the other. This is formalized by the mutual information as192

I(X;Z) =

NX∑
i=1

NZ∑
j=1

pi,j ln(pi,j/(pipj)) (5)

where NZ is the number of bins associated with Z, pj is the probability dis-193

tribution for Z and pi,j is the joint probability distribution between X and194

Z. Mutual Information turns out to be null in case of independent random195

variables, while the equality H(X) = H(Z) = I(X;Z) holds in case that the196

knowledge of one variable is sufficient to predicted the other one exactly. Mu-197

tual Information is again measured in nats as in (4). It is important to recall198

here that mutual information is a nonlinear dependence metric, i.e., it is capa-199

ble of detecting dependence between random variables which are not induced200

by a linear relationship. On top of mutual information it is then convenient to201

define the dimensionless uncertainty coefficient (UC ) [31]202

UC(X;Z) =
2I(X;Z)

H(X) +H(Z)
(6)

where UC is bounded between zero, for independent variables, and one, when203

there is an exact dependence between the two variables. In the following the204

UC will be compared against the well known linear correlation coefficient (or205

Pearson coefficient), i.e., ρ(X;Z), which captures only the intensity of the lin-206

ear dependence between two variables. Note that in principle ρ(X;Z) can be207

both larger or smaller than UC(X;Z), for a given pair of variables (X;Z). The208

IT metrics employed in our work can be defined for continuous probability dis-209

tributions where summations and probability mass functions are replaced by210

integrals and probability density functions, respectively. This approach would211

be characterized by a less intuitive and immediate interpretation, for example212

Entropy could be negative, infinite or impossible to evaluate, see, e.g.[6,15].213

Furthermore, the pdfs of the fluid velocity components are not associated with214
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a known analytical formulation but are here obtained as the result of numer-215

ical simuations. Employing a continuous approach would require subjecting216

these variables to quantization [6]. In general, the quality of IT metrics esti-217

mates increases (in a way which depends on the specific metric) with the level218

of quantization of the continuous variables [15]. These consideration lead us219

to treat the analyzed variables as discrete ones in line with several previous220

studies [28,12,24].221

2.3 Quantities of interest222

Our analysis considers three quantities of interest, i.e., (i) the log-conductivity223

Y and (ii) the two components of the velocity field v (longitudinal to the pres-224

sure gradient) and u (transverse). First, we focus on the analysis of punctual225

values of these variables, upon considering their distributions associated with226

diverse levels of truncation in the KL-expansion, as quantified by Fσ2 . This is227

obtained through two different types of analyses:228

– we investigate the relationship between(i) the variance of the values of Y229

and that of v and u, as well as, between (ii) the Shannon Entropy, for the230

same variables, considering the diverse levels of Fσ2 .231

– we analyse the relationship between the Linear Correlation Coefficient for232

(i) Y ref and Y tr and (ii) vref , uref and vtr, utr, as a function of Fσ2 . We233

repeat the analysis by focusing on the corresponding uncertainty coeffi-234

cients..235

These statistics are evaluated at each location of the domain, we then exclude236

from the analysis locations which have a distance from the boundary smaller237

than eight correlation lengths, to avoid the influence of domain boundaries.238

Furthermore, in the following we report the spatial averages of the statistics239

of interest.240

The Information Theory metrics detailed in Section 2.2 refer to discrete241

random variables. Hereafter, we treat Y and v,u as discrete quantities in (4)-242

(6), i.e., we consider their probability mass distributions resulting from empir-243

ical frequencies. For each of the three considered σ2
Y ref , we employed a regular244

binning, made of 15 bins, ranging from the minimum to maximum values of245

the targeted quantities Y ref , vref , uref , obtained for the reference field (cor-246

responding to Fσ2 = 0.97). The same bins are then employed to discretize the247

probability distributions associated with variables obtained for the same σ2
Y ref248

but smaller Fσ2 . Note that the number of bins employed in the discretization249

of the inspected variables can be thought as the achievable characterization250

accuracy (e.g., as dictated by hypothetical instrumental apparatuses). For ex-251

ample, our choice of binning of the log-conductivity field could be thought as252

be equivalent to consider a system with 15 distinct hydrofacies, each identified253

by a bin.254
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3 Results255

Our analysis is subdivided into two main parts. In the first part of our analy-256

sis, we aim at quantifying variations in the uncertainty in the punctual values257

as a function of the number of retained modes in the KL-expansion (2) and258

at assessing the degree of correlation and mutual correlation between corre-259

sponding values associated with diverse levels of truncation. Then, we assess260

the impact of the retained number of modes on the spatial organization of the261

two velocity components. To this end, we evaluate the uncertainty coefficient262

and the linear correlation coefficient between pairs of v and u separated by263

increasing spatial lags (along the mean flow direction), for a selected Fσ2 .264

3.1 Analysis of punctual values of velocity and log-conductivity265

We analyze here the relationship between the uncertainty of the input field,266

Y, and of the two velocity components, u and v. We firstly focus on the quan-267

tification of uncertainty as rendered by the variance (see e.g., [11]) and by268

Shannon entropy. Figure 2 displays σ2
Y against σ2

v and σ2
u, for diverse values269

of Fσ2 (indicated by diverse markers) and variance of the reference field σ2
Y ref270

(points indicated by diverse colors). As expected σ2
v and σ2

u are both directly271

proportional to σ2
Y [11]. In particular, we find that the results associated with272

a single value of σ2
Y ref follow a specific trend, where σ2

v increases nonlinearly273

with σ2
Y while σ2

u display a trend close to linear (compare trends identified by274

symbols displayed in the same color in Figure 2a and b). This result is consis-275

tent with the idea that variations in the input log-conductivity are more deeply276

reflected by the longitudinal velocity rather than the transverse one. For both277

the velocity components the dependence of σ2
v and σ2

u on σ2
Y is specific to the278

selected value of σ2
Y ref .279

To demonstrate the possible limitations in using the variance to charac-280

terize heterogeneity of velocity distributions (see also [5,18]), Figure 3 reports281

the frequencies of the reference v for two values of σ2
Y ref (note that values are282

normalized by the average longitudinal velocity). As the level of heterogene-283

ity in Y increases the shape the pdf of velocity tends to display a increasing284

skewness towards high velocity values. For illustrative purposes, and to em-285

phasize this transition, we compare the probability mass functions of v with286

that of Gaussian variables with equal mean and variance values. The change287

in the probability density shape is a result of the nonlinear relationship be-288

tween log-conductivity and velocity, emerging for increasing σ2
Y ref , that has289

been reported in previous literature (e.g., [4]). The results shown in Figures290

2-3 therefore suggest that the variance may not be an optimal indicator to291

characterize the velocity probability distributions for increasing heterogeneity.292

For this reason, we resort to the Shannon entropy of v and u, which are293

shown as a function of σ2
Y in Figure 4. This analysis reveals a lack of generality294

in the relationship between H(v) and σ2
Y (as well as, in those between H(u)295

and σ2
Y ) which are strongly sensitive to the value of σ2

Y ref . In particular, the296
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Fig. 2 Relationship between the variance of the log-conductivity, σ2
Y , and of the longitudi-

nal (a) σ2
v and (b) transverse velocity components σ2

v , for σ2
Y ref = (0.5 (red), 1.5 (green),2.5

(blue) and diverse values of Fσ2 , indicated by different markers.

Fig. 3 Probability function for the longitudinal velocity component vref , i.e., v, for the
reference field given (a) σ2

Y = 0.5 and (b) σ2
Y = 2.5. The probability function associated

with a Gaussian variable with the same mean and variance is depicted (black curves) for
each case.

relative change in H(u) and H(v) between the same levels of truncation Fσ2297

largely differs as a function of σ2
Y ref . This result suggests that same relative298

change in the input variance is reflected in a different way on the velocity299

components pdfs, depending on the heterogeneity of the system.300

To overcome this issue, we consider Shannon entropy H to describe the301

relation between Y and v, u. Figure 5a displays the relationship between302

the Shannon Entropy of the log-conductivity, H(Y ), and of the longitudinal303

velocity,H(v) , as a function of σ2
Y ref and Fσ2 . Assigned a given value of σ2

Y ref ,304

we observe that H(v) increases linearly with H(Y ). This result shows that the305

uncertainty associated with v increases linearly with Fσ2 , or equivalently that306

H(v) approaches its reference value as a linear function of H(Y ). However,307

Figure 5 also indicates that the slope of the H(Y )-H(v) linear relationship is308

specific to the investigated σ2
Y ref values. In particular, we observe that H(v)309

is inversely proportional to σ2
Y ref (assigned a value of Fσ2). This result shows310

that the probability mass functions of v are more uniformly distributed across311
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Fig. 4 Relationship between the variance of the log-conductivity, σ2
Y , and the Shannon

Entropy of (a) longitudinal H(v) and (b) transverse H(u) velocity components, for σ2
Y ref

= 0.5 (red), 1.5 (green),2.5 (blue) and diverse values of Fσ2 , indicated by different markers.

Fig. 5 Relationship between the Shannon Entropy of the log-conductivity, H(Y ), and of
the (a) longitudinal H(v) and (b) transverse H(u) velocity components, for σ2

Y ref = 0.5

(red), 1.5 (green),2.5 (blue) and diverse values of Fσ2 , indicated by different markers.

their supports as σ2
Y ref decreases, thus rendering increasing H(v) values. Note312

that this result is related to our choice of employing a constant number of313

bins for all σ2
Y ref , which implies that the bin size is highly variable across314

the different samples. In other words, this reflects the higher degree of spatial315

homogeneity of the values of v when the system heterogeneity is low, where316

the probability density displays relatively uniform values as a function of v.317

Qualitatively similar results are obtained for the transverse velocity, as shown318

in Figure 5b. Note, however, that H(u) appears to be less sensitive than H(v)319

to σ2
Y ref , i.e. markers identified with different colors are more close together in320

Figure 5b than in Figure 5a (note the different vertical axis scale). Moreover,321

the values of H(u) tend to saturate to an asymptotic value for Fσ2 > 0.9. The322

analysis suggests that an increase in Fσ2 can be expected to have important323

effects on the resulting pdfs of v even for Fσ2 > 0.9, while the pdf of the324

transverse velocity u only displays a minor shape transition in the same range325

of values.326
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We analyze now the relationship between (i) the correlation between the327

truncated Y tr and the reference Y ref field and (ii) the correlation between328

the ensuing vtr, utr (associated with the truncated Y ) and the reference fields329

vref , uref . Our objective is to assess the significance of the linear correlation330

and of the uncertainty coefficients in quantifying the representativeness (or331

fidelity) of the velocity field obtained upon through a truncated field with re-332

spect to the reference one. Figure 6 shows the results obtained by associating333

each value of linear and nonlinear correlation coefficients computed for the334

log-conductivity with the those obtained for the corresponding velocity com-335

ponents. Figure 6a suggests that the relationship between ρ(Y ref ;Y tr) and336

ρ(vref ; vtr) depends on σ2
Y ref , with increasing correlation detected for decreas-337

ing σ2
Y ref . On the other hand, Figure 6b shows that the relationship between338

UC(Y ref ;Y tr) and UC(vref ; vtr) is insensitive to the degree of heterogeneity339

in the reference permeability field and that the two indicators practically co-340

incide, i.e. UC(Y ref ;Y tr) ≈ UC(vref ; vtr). The linear correlation coefficients341

are considerably larger than the corresponding uncertainty coefficients, for342

any considered value of Fσ2 and σ2
Y ref . In particular for Fσ2 = 0.9 we obtain a343

ρ(vref ; vtr) ≈ 0.93 and UC(vref ; vtr) ≈ 0.5. A similar behavior is observed for344

the transverse velocity u, where the maximum ρ(uref ;utr) approaches unity345

while the corresponding value of UC(uref ;utr) is below 0.7. Such striking346

quantitative differences between the two indicators can be explained upon347

observing the bivariate distributions obtained for the pairs (vref ; vtr) and348

(uref ;utr), reported in Figure 7. In particular, we observe that the largest349

velocity values detected in the reference velocity distributions are consistently350

not found within the truncated fields vtr. This discrepancy becomes more ev-351

ident for decreasing values of Fσ2 (see Figure 7b).This result is of potential352

relevance to a variety of applications in which the presence of large values of v353

(jointly with their spatial organization) plays a crucial role, e.g., early arrival354

times of dissolved chemicals at control planes (e.g., [10]), evaluation of the355

level of system connectivity (see e.g., [27]) and solute dispersion mechanisms356

(see e.g., [18]). Comparison of Figure 6c-d also shows that the truncated fields357

tend to underestimate the magnitude of the transverse velocity component.358

The implication of this result is that the tortuosity of the resulting stream-359

lines would be likely underestimated for the truncated fields with respect to360

the reference ones.This behavior would propagate to solute transport dynamics361

(see e.g., [5]), possibly resulting in incorrect predictions of solute time arrivals362

at control planes and inaccurate quantification of uncertainty.363

Overall results in Figure 6 suggest that a linear correlation metric over-364

estimates the representativeness of the truncated fields with respect to the365

reference fields. Therefore, the use of linear metrics would be misleading if366

employed to assess the convergence of truncated fields to a higher fidelity ap-367

proximations. The low values of UC(vref ; vtr) suggests that surrogate models368

based on a KL-based expansion of log-conductivity may be practically unable369

to faithfully reproduce the full velocity pdfs, particularly as for what concern370

the large velocity tail of the distribution.371
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Fig. 6 Correlation analysis between truncated and references fields quantified by
(a) linear correlation coefficients ρ(Y ref ;Y tr), ρ(vref ; vtr), (b) uncertainty coefficients
UC(Y ref ;Y tr), UC(vref ; vtr), (c) linear correlation coefficients ρ(Y ref ;Y tr), ρ(uref ;utr),
(b) uncertainty coefficients UC(Y ref ;Y tr), UC(uref ;utr). Results are for σ2

Y ref = 0.5 (red),

1.5 (green),2.5 (blue) and diverse values of Fσ2 , indicated by different markers. Dashed black
lines indicate the axes bisectors.

3.2 Analysis of spatial correlation372

We extend here the analysis to the characterization of the spatial auto-correlation373

of the velocity components v and u, as rendered by different values of Fσ2 , i.e.374

with increasing number of modes retained in the KL-expansion. To this end we375

evaluate distinct two-points correlation metrics, i.e., (i) the linear correlation376

coefficient ρ(v; v(s)), ρ(u;u(t)) and (ii) the uncertainty coefficient UC(v; v(s)),377

UC(u;u(t)) (see Section 2.2) where s and t are spatial lags in the longitudinal378

and transverse directions, respectively. These lags are here normalized by η,379

the correlation length assumed for Y ref .380

Figure 8 shows the trends of ρ(v; v(s)) and UC(v; v(s)) against s, for diverse381

values of Fσ2 , assigned σ2
Y ref = 0.5 and σ2

Y ref = 2.5. For both indicators we382

observe that spatial correlation tends to decrease with increasing Fσ2 . This383

result suggests that the use of truncated fields enforce larger spatial correlation384

than the reference one. We also observe that the linear correlation observed385

in the velocity components displays a slight inverse proportionality to σ2
Y ref ,386

i.e. increasing heterogeneity reduces the linear correlation of the longitudinal387

velocity component, for a fixed lag. On the other hand, UC(v; v(s)) appears388
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Fig. 7 Bivariate log-probability distributions between reference and truncated fields of the
longitudinal v (a)-(b) and transverse u (c)-(d) velocity component. The truncated fields are
obtained with (a) and (c) Fσ2 = 0.9, (b) and (d) for Fσ2 = 0.5, for σ2

Y ref = 2.5.

to be less sensitive than ρ(v; v(s)) to the value assumed by σ2
Y ref . Figure 8389

also shows that ρ(v; v(s)) tends to be larger than UC(v; v(s)) assigned a given390

lag s. This result indicates that the linear correlation metric always scores391

higher than the nonlinear one, in line with results in Figure 6. To explain this392

result, Figure 9 displays the joint pdfs of v; v(s) evaluated at spatial locations393

separated by lag of (a) one, (b) three and (c) six for σ2
Y ref = 0.5 and (d-f) for394

σ2
Y ref = 2.5. The joint probability distributions depicted in Figure 9 show two395

consistent features: (i) a high density in the upper left corner, aligned with396

the upper left - bottom right diagonal, and (ii) a fairly symmetrical dispersion397

of the probability density around this diagonal, whose intensity increases with398

spatial lag. The definition of ρ(v; v(s)) is such that feature (i) turns out to399

be the dominant one, i.e., ρ(v; v(s)) reflects the marked tendency of the joint400

probability density pi,j of displaying dominant terms when i = j. The linear401

correlation metric is instead poorly sensitive to the actual dispersion of the402

joint pdf. On the other hand, UC(v; v(s)) detects the dispersion of the joint403

pdf, which reflects non negligible probability of having uncorrelated pairs of v.404

This feature is emphasized as the spatial lag increases (e.g., compare panels a405
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Fig. 8 (a)-(b) Linear Correlation Coefficients and (c-d) Uncertainty coefficients for pairwise
values of the longitudinal component of velocity, i.e., ρ(v; v(s)), as a function of the spatial
lag s, along the mean flow direction for (a,c) σ2(Y ref ) = 0.5 and (b,d) σ2(Y ref ) = 2.5.
Lags are aligned with v and normalized by the Y ref correlation length η. Diverse level of
truncation (i.e., Fσ2 ) of the KL-expansion are depicted, with different line types.

and c in Figure 9). These observations highlight the relevance of considering406

suitable summary metrics (such as the uncertainty coefficient) in order to407

characterize the whole behavior of the v and v(s) joint pdf.408

Figure 10 displays spatial correlation of the transverse flow velocity com-409

ponent u. As previously noted for v (see Figure 8), we observe that the spa-410

tial correlation of u measured by means of ρ(u;u(t)) or UC(u;u(t)) tends to411

decrease with Fσ2 , even though in a less marked fashion with respect to v.412

Figures 10a-b reveal that ρ(u;u(t)) assumes negative values, a feature related413

with the conservation of mass imposed by the flow equation (1). Note that,414

for Fσ2 = 0.5, 0.6 and t larger than two (approximately) the value of ρ(u;u(t))415

displays some mild oscillations. This feature is associated with the fact that as416

fewer modes are retained in the KL-expansion the ensuing Y tr fields exhibit417

a periodic behaviour in space determined by the shape of the retained modes.418

Inspection of Figure 10c-d suggests that UC(u;u(t)) is smaller than ρ(u;u(t))419

for assigned σ2(Y ref ) and Fσ2 , in line with the results obtained for v (see420

Figure 8). Furthermore, as fewer modes are retained in the KL-expansion (i.e,421

small Fσ2) the values of UC(u;u(t)) increases, given t. Inspection of the inserts422

in 10c-d allows observing that also UC(u;u(t)) has a fluctuating behaviour as423

a function of t for Fσ2 = 0.5, 0.6 (see previous discussion of Figure 10 a-b). We424

note that the correlation detected by UC(u;u(t)) is very similar for the two425

considered σ2
Y ref . This result reflects the fact the joint log-probability of pair-426

wise u values display a fairly similar shape in the two cases, as shown in Figure427

11. A close comparison of the curves in Figure 10c-d reveals that UC(u;u(t))428

tends to zero faster for σ2
Y ref = 0.5 than for σ2

Y ref = 2.5 (see results in log-429
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Fig. 9 Joint log-probability distribution of pairwise values of the longitudinal velocity, i.e.,
v, separated by different spatial lags s for σ2(Y ref ) = 0.5 and (d-f) σ2(Y ref ) = 2.5. Lags are
aligned with v and normalized by the Y ref correlation length η, results are for Fσ2 = 0.97.

Fig. 10 (a)-(b) Linear Correlation Coefficients and (c-d) Uncertainty coefficients for pair-
wise values of the longitudinal component of velocity, i.e., ρ(u;u(t)), as a function of the spa-
tial lag t, along the transverse direction for (a,c) σ2(Y ref ) = 0.5 and (b,d) σ2(Y ref ) = 2.5.
Lags are aligned with u and normalized by the Y ref correlation length η. Diverse level of
truncation (i.e., Fσ2 ) of the KL-expansion are depicted, with different line types (see legend
in Figure 8). Inserts in (a)-(b) extend results to the interval t ∈ [0, 20], in (c)-(d) display
UC values with a log-axis scale.
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Fig. 11 Joint log-probability distribution of pairwise values of the transverse velocity, i.e.,
u, separated by different spatial lags t for σ2(Y ref ) = 0.5 and (d-f) σ2(Y ref ) = 2.5. Lags are
aligned with u and normalized by the Y ref correlation length η, results are for Fσ2 = 0.97.

scale reported in the inserts). This result is in line with the distribution pi,j430

being more evenly distributed across the bins in Figure 11b-c than in Figure431

11d-e. These differences appear subtle but may play a role in determining432

the spatial correlation of transverse displacement in solute transport models,433

which play a relevant role in the upscaling of solute mixing, transport dynam-434

ics and associated risk assessment (e.g., [13,?]). The spatial organization of the435

transversal flow component plays a crucial role in the transport dynamics of436

dissolved chemical (either passive or reactive ones). As such, it appears crucial437

to rely on summary metrics that can quantify the characteristics of joint pdfs438

of interest.439

4 Conclusions440

In the context of fluid flow within two-dimensional heterogeneous porous media441

we assess the impact of diverse degree of truncation of the Karhunen-Loève442

(KL) expansion of the log-conductivity (Y ) field in terms of the ensuing (i)443

variability of the velocity field components and (ii) of their correlation in space.444

Analysis of point wise velocity components indicates that the variance can be445

an incomplete descriptor of the uncertainty associated with the velocity field446

and suggests to focus on the Shannon entropy as a metric to quantify the degree447

of uncertainty associated with both velocity components. In this context, one448

of the objectives of our study is to quantify the similarity of truncated input449

and output fields to a reference probability distribution. To this end, we tested450
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linear and nonlinear correlation metrics. We find that the linear correlation451

coefficients, for both Y and the velocity components, are always larger than452

the corresponding Uncertainty coefficients. This result shows that the linear453

metric overestimates the degree of similarity with respect to the nonlinear454

one. A direct implication of this comparison is that linear correlation metrics455

may lead to misleading results when comparing velocity fields associated with456

different levels of truncation of the KL-expansion. Our results also suggest that457

truncated velocity and log-conductivity have the same uncertainty coefficients458

if compared against their reference fields, a result which can be valuable to459

assess the relation between input and output variables in the approximation460

of stochastic groundwater flow outputs.461

In line with these results, our analysis also shows that the Linear Correla-462

tion Coefficient typically exceeds the Uncertainty Coefficient when evaluating463

the spatial correlation between pairwise velocity components. Furthermore, we464

found that as the number of modes in retained in the KL-expansions decreases465

both velocity components become more correlated in space (according to both466

the linear and nonlinear metrics, even though with different degrees). These467

results could be relevant in assessing the correlation structure in solute mass468

velocity distributions, which are employed in upscaled or effective transport469

models.470

Overall our results suggest that it is beneficial to assess the impact of di-471

verse degree of truncation of the input KL-expansion by means of Information472

Theory metrics. The latter can provide a more comprehensive assessment of473

the degree of uncertainty and of dependence (either among point-wise, across474

levels of truncation, and pairwise velocity components, across space lags) than475

standard metrics (e.g., variance and Linear Correlation coefficient).476

IT metrics are capable of capturing salient features of point-wise velocity477

components and their spatial organization and therefore they may help in478

quantifying the impact of approximations (such as those entailed by the KL479

truncation) on analyses of practical relevance. These include, for example,480

uncertainty quantification and risk assessment for flow and solute transport481

scenarios. Moreover, our results indicate that IT metrics could be employed482

upscaling methodologies aimed at characterizing solute transport and mixing483

in heterogeneous media, which are routinely constrained to observed point-484

wise and two-points correlation indicators of the flow components.485
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