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The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one
of the most frequently inherited causes of infant mortality. Afflicted patients loose the
survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog
that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN
protein levels, which are insufficient in patients. SMN is known to partner with a set of
diverse proteins collectively known as GEMINs to form a macromolecular complex. The
SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear
ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that
alleviate the neuromuscular phenotype by restoring the fundamental function of SMN
without augmenting its levels are also crucial in the development of an effective treatment.
Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the
surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together
with in vivo studies documenting their requirement for the correct function of the motor
system, this review speculates on whether GEMINs constitute valid targets for SMA
therapeutic development.
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INTRODUCTION
Spinal muscular atrophy (SMA) is a primarily early-onset disor-
der characterized by spinal motor neuron loss and atrophy of the
proximal limb and intercostal muscles. Considering that available
therapies are, at best, palliative, SMA remains one of the most fre-
quently (∼1:6000 newborns) inherited causes of infant mortality.
Afflicted patients have a homozygous loss of the survival motor
neuron 1 (SMN1) gene but retain one or more copies of a nearly
identical homolog, SMN2. Owing to a key nucleotide substitution
between the two genes, exon 7 of SMN2 is often skipped, gener-
ating a truncated protein (SMN�7) that is unstable and rapidly
degraded. SMA is thus the result of insufficient amounts of SMN
protein and its levels are generally inversely correlated with the
severity of the disease, hence making SMN2 copy number the pre-
dominant modifier of the neuromuscular phenotype (reviewed
in Burghes and Beattie, 2009; Monani and De Vivo, 2014). As
we approach the twentieth anniversary since the discovery of the
gene determining SMA (Lefebvre et al., 1995), promising thera-
peutic options in the pipeline, highlighted in this review, are a
good reason to celebrate the two decades of relentless progress in
our understanding of this devastating disorder.

Primary treatment strategies for SMA aim at boosting SMN
protein levels mainly through pharmacologic agent-induced tran-
scriptional activation or splicing pattern alteration of the SMN2

Abbreviations: ASO, antisense oligonucleotide; CNS, central nervous system; ISS,
intron splice silencer; scAAV, self-complementary adeno-associated virus; SMA,
spinal muscular atrophy; SMN, survival motor neuron; snRNA, small nuclear
ribonucleic acid; snRNP, small nuclear ribonucleoprotein.

gene, enhancement of SMN2 exon 7 inclusion via antisense
oligonucleotides (ASOs) or replacement of mutant SMN genes
with functional copies by means of gene therapy vectors. Their
effectiveness is highly dependent on targeting the relevant tissues
at the appropriate time during disease progression, with recent
studies indicating a high requirement in the motor system early
during the course of the disease (Foust et al., 2010; Le et al.,
2011; Lutz et al., 2011; Kariya et al., 2014). It is, however, worth
pointing out that in view of mounting evidence suggesting that
SMA may be a multisystem disorder (reviewed in Hamilton and
Gillingwater, 2013), treatments with a global reach would prob-
ably translate into better outcomes. All in all, pharmaceutics that
alleviate the SMA phenotype without augmenting SMN levels are
also crucial in the development of an effective treatment, con-
sidering that these could be combined with primary options to
enhance benefit to patients that fall outside the therapeutic win-
dow of opportunity. In this regard, restoring the critical function
of SMN without modifying its levels is a logical avenue worth
pursuing.

SMN is part of a macromolecular complex that also includes
a set of diverse proteins collectively known as GEMINs. The
SMN-GEMINs complex is indispensible for chaperoning the bio-
genesis of the small nuclear ribonucleoproteins (snRNPs), which
are crucial for pre-mRNA splicing (reviewed in Cauchi, 2010;
Workman et al., 2012). There is increasing evidence to suggest
that deficiency of this function makes SMA a spliceopathy with
consequences that are particularly detrimental to the motor unit
(Zhang et al., 2008, 2013; Boulisfane et al., 2011; Lotti et al.,
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2012), an assumption that is still controversial (Baumer et al.,
2009; Praveen et al., 2012; Garcia et al., 2013). Inspired by recent
unexpected findings revealing a premier role for the GEMINs in
snRNP biogenesis (Battle et al., 2006; Lau et al., 2009; Yong et al.,
2010; Zhang et al., 2011; Grimm et al., 2013) along with in vivo
studies that document a negative impact on the motor system
following perturbation of key GEMIN proteins (Jablonka et al.,
2002; Winkler et al., 2005; Cauchi et al., 2008; Shpargel et al.,
2009; Borg and Cauchi, 2013), in this review we ask whether
these predominant SMN associates constitute valid targets for
SMA therapeutic development. Importantly, we explore lines of
research that need to be pursued in order to validate this concept.

LEADING TREATMENT STRATEGIES FOR SMA
Chief amongst the strategies directed at promoting exon 7 inclu-
sion within SMN2 transcripts is the use of ASOs, which are strings
of modified nucleotides that bind to specific mRNA sequences.
New generation ASOs are endowed with a chemistry that confers
nuclease resistance and limit non-specific protein interactions.
The most effectual molecules target an intron splice silencer
sequence (ISS-N1) in the 5′ end of intron 7, thereby displac-
ing factors that normally repress exon 7 inclusion (reviewed in
Douglas and Wood, 2013; Sivanesan et al., 2013). Results in severe
mouse models of SMA, which typically have transgenic human
SMN2 in an Smn knockout background, have been extraordinary.
Indeed, the ASO’s ability to restore full-length SMN expression
normalized both neuromuscular function and lifespan (Hua et al.,
2011; Porensky et al., 2012; Zhou et al., 2013). Furthermore,
evidence indicates that ASO activity in peripheral tissues, in addi-
tion to the central nervous system (CNS) is necessary for robust
phenotypic effects (Hua et al., 2011), though it remains some-
what contentious (Porensky et al., 2012). One drawback of ASOs
is the lack of blood-brain barrier crossing, thus necessitating
their delivery into the cerebrospinal fluid. In this respect, the
most likely option is direct injection into the intrathecal space,
which is a rather invasive method. Encouraging outcomes of a
phase I and phase II clinical trial of ISIS-SMNRx, an ISS-N1
targeting ASO with a phosphorothiorate backbone and 2′-O-
methoxyethyl (MOE) modification developed in collaboration
with academia by ISIS pharmaceuticals (Chiriboga et al., 2013;
Finkel et al., 2014), have propelled this molecule to phase III of
clinical development www.clinicaltrials.gov—NCT02193074 .

Gene therapy has always been an attractive solution to treat-
ing genetic disorders through the restoration of the normal form
of the defective gene. The use of self-complementary adeno-
associated virus (scAAV) vectors to replace SMN and, thereby,
rescue severe SMA mice has been a remarkable success story.
This is in part due to the choice of scAAV-9 as a vector, con-
sidering its ability to both penetrate the brain and infect motor
neurons in addition to other cell types. Furthermore, rapid trans-
gene expression by virtue of its dimeric inverted-repeat genomic
structure is a pivotal aspect of its potency. Independent groups
reported that lifespan and motor ability were essentially res-
cued in severe SMA mice treated with scAAV9-SMN (reviewed in
Mulcahy et al., 2014). Mirroring findings with ASOs, therapeutic
benefits with regards to survival were greater when the vector was
delivered intravascularly in contrast to intracerebroventricularly,

hence, underscoring the global requirement of SMN for maximal
recovery (Foust et al., 2010). Various challenges remain includ-
ing manufacturing aspects, immune response-related issues and
the need for repeated administration in view of the episomal
nature of the designed vector. Nonetheless, considering the very
promising results achieved in pre-clinical studies, this form of
treatment has just entered the clinical circuit www.clinicaltrials.
gov—NCT02122952 , and results are expected to inform on the
appropriate optimization.

Orally administered, blood-brain penetrating small molecule
enhancers of SMN have been on the table long before the emer-
gence of nucleic acid-based therapies. Although an overwhelming
majority only induce a moderate increase in the life expectancy
of severe SMA mice, a handful entered clinical development, and
unsurprisingly exhibited poor efficacy in clinical trials (reviewed
in Seo et al., 2013). Still in the pipeline at phase I, where safety
at ascending doses is assessed, are two key compound classes.
Quinazoline derivative RG3039, is a transcriptional activator of
the SMN2 gene through an unknown mechanism that involves
inhibition of RNA decapping enzyme DcpS (Singh et al., 2008). In
addition, proprietary molecules developed by PTC Therapeutics
Inc. in partnership with Roche are able to correct alternative
splicing of the SMN2 gene (Naryshkin et al., 2012, 2014). It
is noteworthy that both compound classes led to a dramatic
improvement in the survival and neuromuscular function of an
intermediate (Gogliotti et al., 2013) and a severe SMA mouse
model (Naryshkin et al., 2012, 2014), respectively.

TARGETING SMN FUNCTION RATHER THAN LEVELS
Restoring the fundamental function of SMN without ameliorat-
ing its levels is not a novel line of therapeutic attack. In this
respect, genetic and pharmacological modifiers that confer a
striking phenotypic improvement that is not mediated by SMN
up-regulation have been receiving more deserved attention over
the years. Identified as the first fully protective modifier of SMA
in humans (Oprea et al., 2008), overexpression of the F-actin
bundling protein Plastin 3 was found to rescue motor unit defects
in both zebrafish and mouse SMA models (Oprea et al., 2008;
Ackermann et al., 2013). Recently, pharmacological inhibition of
β-catenin signaling using quercetin was found to substantially
improve the SMN deficiency-associated neuromuscular pathol-
ogy across species, uncovering another promising pathway that
can be therapeutically targeted in SMA (Wishart et al., 2014).
Spurred by intriguing results in preclinical models (Imlach et al.,
2012; Dimitriadi et al., 2013), the K+ channel modulators riluzole
and 4-aminopyridine, are at phase II/III of clinical development
www.clinicaltrials.gov—NCT00774423, NCT01645787 . Results

permitting, both can be repurposed for SMA considering that
they are already FDA/EMEA-approved to treat alternative con-
ditions. Fasudil, a RhoA/Rho kinase (ROCK) inhibitor that has
been reported to promote a dramatic phenotypic improvement
in an intermediate SMA mouse model (Bowerman et al., 2012),
might receive a similar handling considering that it is presently
on clinical trial for other disorders. Notably, the mitochondrial
pore modulator olesoxime, developed by Trophos, is at a very
advanced stage of clinical evolution and closer to being the first
drug approved to treat SMA in view of the recently announced
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positive therapeutic outcomes following completion of a phase III
trial (American Academy of Neurology, 2014 Annual Meeting).
Commonly grouped as “neuromuscular protectants,” these exam-
ples of compounds and genetic modifiers seem to have a different
mode of action since they most likely act on various down-
stream processes that are negatively impacted when SMN levels
are insufficient.

Although no consensus has been reached, there is a sizable
body of work that points to an indispensible role for SMN in
spliceosomal snRNP biogenesis, specifically the assembly of a set
of seven Sm proteins in the form of a ring onto small nuclear
RNAs (snRNAs). Primarily, levels of SMN strongly dictate the
capacity of cell extracts to produce snRNPs (Wan et al., 2005),
which in turn influences SMA phenotypic severity (Gabanella
et al., 2007) or phenotypic rescue in the mouse model (Workman
et al., 2009). It is also noteworthy that maximal snRNP assembly
activity in the spinal cord coincides with the highest exigencies
of SMN during the development of the motor unit (Gabanella
et al., 2005; Foust et al., 2010; Le et al., 2011; Lutz et al., 2011;
Kariya et al., 2014). There is probably no other described non-
canonical activity that displays a tight correlation between in vitro
and in vivo characteristics including the reported involvement in
axonal mRNA trafficking (reviewed in Briese et al., 2005; Fallini
et al., 2012), which is often the second most-featured role for
SMN. Axonal growth defects linked to disruption of this activ-
ity are typical on SMN deficiency in zebrafish (Beattie et al.,
2007) and ex vivo mouse motor neuron cultures (Rossoll et al.,
2003). For reasons as yet unknown such phenotypes have not
been reported in Drosophila and mouse SMA models despite

both displaying disrupted synaptic morphology and function
(Burghes and Beattie, 2009; Grice et al., 2011, 2013; Sleigh et al.,
2011).

Transcriptome abnormalities are the logical consequence of
reduced or altered snRNP production, and recent in vivo stud-
ies have started to define the signature mRNA changes that
are thought to bring about a collapse of the motor system in
SMA (Imlach et al., 2012; Lotti et al., 2012; Zhang et al., 2013).
Interestingly, restoration of Stasimon, a splicing target of SMN
that is required for motor circuit function, corrects some but
not all aspects of the SMA phenotype in animal models (Lotti
et al., 2012). In this context, although this finding provides a
link between a single splicing perturbation event and motor
dysfunction, it highlights the anticipated probability that the
entire SMA phenotype is the culmination of multiple instances
of mRNA dysregulation (Zhang et al., 2013). Hence, would
the identification of modifiers that act upstream of pre-mRNA
splicing induce better disease amelioration? It is highly likely,
a view supported by studies showing that restoration of nor-
mal snRNP levels through either injection of purified snRNPs
or introduction of the SMNA111G allele, which is capable of
snRNP assembly, corrects the disease phenotype in zebrafish
and mouse SMA models (Winkler et al., 2005; Workman et al.,
2009).

GEMINs: DISEASE-MODIFYING CANDIDATES?
Spliceosomal snRNPs function in the nucleus, whereby in con-
cert with numerous cofactors, they catalyze the removal of introns
from pre-mRNAs, a process that is essential for the production

FIGURE 1 | SMN and GEMINs: protein interactions and motor system

requirements. (A) Circular representation of the intricate web of interactions
between members of the SMN-GEMINs complex in vertebrates. Ribbons
shown in colors specific to each complex member indicate interactions
verified in more than one experimental system. Black ribbons specify
interactions in only one experimental system (based on data reviewed in
Cauchi, 2010). (B) Degree of overlap between specific Gemins and SMN with
respect to organismal viability on enhanced RNAi-mediated knockdown

starting early during development in Drosophila (based on data featured in
Borg and Cauchi, 2013). With regards to SMN, the N4 RNAi strain developed
by Chang et al. (2008) was utilized for comparison. With the exception of
Gemin2 within the CNS, there is a similar requirement for both Gemins and
SMN in the motor system. Width of the ribbons is inversely proportional to
viability (the wider the ribbon, the lower the viability). Ribbon color
corresponds to the tissue in which knockdown is restricted. Graphics in
(A,B) were built using Circos (Krzywinski et al., 2009).
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of functional proteins. The central step in the snRNP biogenesis
cycle takes place outside the nucleus, most likely to prevent
partially assembled RNPs from interacting with their substrates.
Key events within this cytoplasmic phase have been recently rede-
fined to essentially shift the focus of attention from SMN to
the GEMIN constituents of the SMN-GEMINs complex, which
was long known to be a critical chaperone of this pathway
in vivo (Cauchi, 2010; Li et al., 2014; Matera and Wang, 2014).
Vertebrates have the most elaborate version of the SMN-GEMINs
complex, formed from a web of intricate interactions between its
members that include SMN, GEMINs 2–8 and UNRIP (Cauchi,
2010) (Figure 1).

Following transcription and nuclear export, the RNA arm
of snRNPs is identified by free cytoplasmic GEMIN5 subunits
through the stringent recognition of a code formed of sequences
and structural motifs (Battle et al., 2006; Yong et al., 2010).
Binding is mediated by GEMIN5’s WD-repeat domain, a ubiq-
uitous motif that gained an RNA binding label only recently
(Lau et al., 2009). The majority of Sm proteins, the core pro-
tein component of snRNPs, are bound directly by GEMIN2,
which wraps itself around the entirety of a crescent-shaped
pentamer formed of Sm D1/D2/E/F/G. GEMIN2’s reach is
so remarkably extensive that it also blocks the RNA binding
pocket on the Sm pentamer, hence preventing promiscuous RNA
binding (Zhang et al., 2011). Interestingly, amongst the SMN-
GEMINs complex members, GEMIN2 is the most phylogenet-
ically conserved, followed by SMN, GEMIN5, and GEMIN3 in
that order. Other complex components were added later dur-
ing evolution, and are thus only present in Metazoans (Cauchi,
2010). These considerations underline Sm protein recognition
and capture as the pivotal proofreading activity in snRNP
biogenesis.

Prior to nuclear import, steps leading to ring closure through
addition of the Sm B/D3 dimer, followed by the uploading of a
heptameric Sm core around a conserved uridine-rich sequence
of each snRNA (Sm site), are still unclear including the involve-
ment in precise detail of other key members of the SMN-
GEMINs complex. The withdrawal of SMN’s participation as
the primary architect of snRNP assembly raises questions about
its exact role in this remarkable engineering feat. Considering
that some have snRNP-independent functions (Cauchi, 2010),
does SMN act as a magnet to attract the diverse members
of the SMN-GEMINs complex? (Box 1) Is this property the

reason why SMN has been reported to interact with a myr-
iad of proteins (Rossoll and Bassell, 2009)? If so, what are the
key chaperones that favor association with the bona fide mem-
bers of the SMN-GEMINs complex, and, hence, discriminate
against non-specific partners? Nonetheless, the SMN oligomers
at the core of the SMN-GEMINs complex might also provide
the platform on which snRNP assembly is engineered by the
GEMINs.

The highlighted molecular and structural studies provide a
compelling case for the candidature of GEMINs as modifiers
of SMA, presumably through suppression of defective snRNP
synthesis, which is the hallmark consequence of SMN paucity.
Strong support is provided by in vivo studies (Table 1). To this
end, similar to SMN, complete loss of Gemins is unsurprisingly
incompatible with life, a finding that stresses the importance of
splicing to the correct functioning of an organism. Specific abla-
tion of Gemin levels in either muscle or motor neurons results in
more or less the same organismal viability profile in Drosophila
as that observed for SMN (Chang et al., 2008; Borg and Cauchi,
2013) (Figure 1). In mice, decreased levels of Gemin2 in an
Smn+/− background induce an enhanced motor neurodegener-
ative phenotype that correlates with disturbed snRNP assembly
(Jablonka et al., 2002). Interestingly, restricted Gemin knock-
down in the motor unit was found to have a negative impact
on Drosophila motor ability, hence resulting in phenotypes that
mimic those uncovered on SMN deficiency (Chan et al., 2003;
Rajendra et al., 2007; Cauchi et al., 2008; Chang et al., 2008;
Grice et al., 2011, 2013; Borg and Cauchi, 2013) (Table 1). It is
intriguing to note that a flurry of recent reports have uncovered
disruption of Gemin protein levels and depletion of their associ-
ated nuclear bodies, known as gems, in disorders other than SMA,
including amyotrophic lateral sclerosis (ALS), which is the most
common adult-onset motor neuron disease (Rafalowska et al.,
2014 and reviewed in Cauchi, 2014). Undoubtedly, these findings
consolidate the link between GEMINs and neurodegeneration.

CONCLUSIONS AND PROSPECTS
Recent studies highlighting the prominent role of GEMINs in
snRNP assembly, and the indispensability of this activity for the
correct functioning of the motor system give a strong impetus
for investigations that attempt at answering key open ques-
tions (Box 1). Conclusive evidence of the disease-relevance of
GEMINs requires functional assessment in SMA animal models,

Box 1 | Outstanding Questions

� How is the SMN-GEMINs complex assembled and what are the principal chaperones involved in this process? Although great
strides were made in understanding the involvement of the SMN-GEMINs complex in snRNP assembly, little is known about how this
large macromolecular machine is itself assembled. Molecular and real-time cell imaging studies will be crucial in delineating this process
and identifying novel factors that provide chaperoning activities.
� Does up-regulation of Gemins confer a convincing strong suppression of the SMA phenotype in animal models? Evidence
favoring modulation of the disease-associated pathways through supplementation of Gemin protein levels has been sparse, and in vivo
genetic studies are essential to address this issue conclusively.
� Can genetic and small-molecule therapeutic candidates that improve snRNP assembly independent of increasing SMN levels

be identified? High throughput screens are not new in the SMA field, hence technology and knowhow is already existent. The application
of an SMA-associated phenotype that is directly linked to perturbation in snRNP assembly will be a fundamental issue in the design of
such screens, which hold the promise of uncovering novel SMA therapeutic targets and candidates.
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Table 1 | Phenotypes in Gemin-mutant multicellular model organisms.

Component Organism Phenotype on perturbation References

Gemin2 Worm RNA interference-mediated knockdown results in embryonic and larval
lethality

Burt et al., 2006

Fly Global loss of function is lethal whereas on restriction to muscle, it
abrogates locomotor and flight ability

Borg and Cauchi, 2013

Zebrafish Antisense morpholino knockdown of Gemin2 reduces survival in embryos;
conflicting reports on motor axon outgrowth phenotypes

Winkler et al., 2005; McWhorter et al.,
2008

Mouse Homozygous knockout results in early embryonic lethality; double
heterozygotes for Smn and Gemin2 null alleles have enhanced motor neuron
degeneration

Jablonka et al., 2002

Gemin3 Worm Complete loss of function induces larval arrest whereas partial loss of
function leads to viable organisms that have variable defects in oogenesis
and progeny that is embryonic lethal

Minasaki et al., 2009

Fly Organisms with a global loss of function have reduced motor activity and
neuromuscular junction defects prior to death at larval and/or prepupal
stages; specific loss of function in the CNS or muscle confers loss of
mobility and a flightless phenotype; ovarian disruption results in egg polarity
defects, oocyte mislocalisation, abnormal chromosome morphology and
disruption of cellular bodies

Cauchi et al., 2008; Shpargel et al., 2009;
Cauchi, 2012; Borg and Cauchi, 2013

Mouse Homozygous loss of gene function is embryonic lethal; heterozygotes have
minor defects in ovarian morphology and function

Mouillet et al., 2008

Gemin5 Fly Organisms that are homozygous for loss of function alleles have delayed
development and are larval lethal; ablation of protein levels in CNS or muscle
has a negative impact on motor behavior including locomotion and flight

Gates et al., 2004; Borg and Cauchi, 2013

particularly a positive impact on neuromuscular defects and life
expectancy on augmentation of their function in an SMN defi-
cient backdrop. Such proof of principle is imperative to establish
whether GEMINs or any snRNP assembly enhancing candidates
identified in future genetic screens constitute relevant targets
for the development of therapeutic approaches that are inde-
pendent of SMN supplementation. SMA-directed therapies are
expected to be broad spectrum considering the emerging over-
lap in the pathophysiology of both SMA and ALS (reviewed in
Cauchi, 2014). Although further research efforts are warranted,
the possibility of reversing the course of SMA, from fatal to a
treatable condition, is gathering momentum and closer than ever
to becoming a reality.
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