
 

Separation Kernel Robustness Testing 
The XtratuM Case Study 

S.Grixti, N.Sammut 
Faculty of Information and 

Communications Technology 
University of Malta 

Msida, Malta 
stephen.grixti@alumni.um.edu.mt 

nicholas.sammut@um.edu.mt 
 

M.Hernek 
Flight Software System Section 

European Space Agency 
Noordwijk, Netherlands 
maria.hernek@esa.int 

E.Carrascosa, M.Masmano, 
A.Crespo 

Instituto de Automática e  
Informática Industrial 

Universidad Politécnica de Valencia, 
Valencia, Spain 

{ecarrascosa, mmasmano, acrespo} 
@ai2.upv.es 

 
 

Abstract— With time and space partitioned 
architectures becoming increasingly appealing to the 
European space sector, the dependability of separation 
kernel technology is a key factor to its applicability in 
European Space Agency projects. This paper explores the 
potential of the data type fault model, which injects faults 
through the Application Program Interface, in separation 
kernel robustness testing. This fault injection methodology 
has been tailored to investigate its relevance in uncovering 
vulnerabilities within separation kernels and potentially 
contributing towards fault removal campaigns within this 
domain. This is demonstrated through a robustness testing 
case study of the XtratuM separation kernel for SPARC 
LEON3 processors. The robustness campaign exposed a 
number of vulnerabilities in XtratuM, exhibiting the 
potential benefits of using such a methodology for the 
robustness assessment of separation kernels. 

Keywords: fault injection; robustness testing; separation 
kernel; data type fault model; XtratuM. 

I. INTRODUCTION  
Worldwide telecommunications, weather prediction, 

navigation and remote sensing are only a few space 
applications on which today’s society relies daily. Such a 
dependency is projected onto increasingly demanding 
spacecraft functional requirements, usually leading to more 
complex software implementations. A recent NASA study, 
which uses the number of uncommented source lines as a 
complexity metric, claims a 200-fold increase in 
complexity over 20 years, from Apollo to the initial ISS 
missions [1]. The extensive complexity of integrating 
varied criticality software has been pushing the space 
industry to using federated system architectures, where 
each subsystem has its own computing node in the 
avionics suite. However, with an undesirable increase in 
power consumption, mass and volume, the European 
Space Agency (ESA) has been recently considering 
moving to Integrated Modular Avionics (IMA) 
architectures, which have been extensively used across the 
aviation industry since the 1990s [2].  

The main aim of IMA is allowing different criticality 
software to share the same node while conserving the 
inherently available advantages of federated systems, 
namely fault containment and separation of concerns. This 
is realised through Time and Space Partitioning (TSP), 

which partitions the software in the temporal and spatial 
domains [3]. This separation is achieved through adding a 
layer of software referred to as a separation kernel, which 
enforces the segregation and guarantees all applications are 
bound by the predefined temporal and spatial rules. This 
subdivides the software into logical containers or 
partitions, and allocates temporal and spatial resources to 
meet the requirements of all applications. The two main 
pillars of TSP may be summarized as follows: 

 

• Temporal Partitioning:  At a particular point in 
time a software partition has the sole control over 
the onboard computer (OBC), during which it is 
not interfered by other applications. This is 
achieved through creating a cyclic schedule during 
which every application has an execution slot. 
 

• Spatial Partitioning: Every software partition is 
guaranteed to be free from unintended 
modification of data in the spatial resources 
assigned to it. This includes assigning memory 
areas to software applications and making sure 
other resources such as I/O are free from 
competition during the partition’s execution slot.  

 

As opposed to federated architectures, IMA requires 
fewer hardware components, potentially reducing cost and 
improving reliability. Furthermore, integrated architectures 
favor the integration of Commercial Off-The-Shelf 
(COTS) software in order to reduce development and 
maintenance costs. [4] IMA is thus a very promising 
technology within the Space sector. However, with various 
real-time embedded Space systems requiring high 
assurance levels, the applicability of such architectures is 
only a prospect if applications can be guaranteed fault 
containment through robust partitioning mechanisms [5]. It 
is thus implied that the dependability of a TSP system is 
tightly coupled to the robustness of the separation kernel 
and its reliability in preventing propagation of faults 
between applications of different criticality.  

While there exist various means to improving 
separation kernel dependability, such as designing for fault 
prevention and tolerance, testing campaigns aimed at fault 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/333554746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

removal play a reasonable role during development [6]. 
One subset of such dynamic verification techniques is 
robustness testing, which injects faults through exercising 
the code with invalid test inputs. Such testing campaigns 
are aimed at verifying fault tolerance and uncovering 
robustness vulnerabilities.  

 This paper explores the applicability of the data type 
fault model in separation kernel robustness testing. This 
approach, which injects faults through the API, has been 
tailored to study its relevance in uncovering vulnerabilities 
within separation kernels and potentially contributing 
towards fault removal campaigns. Having introduced TSP, 
Section II outlines the pillars of separation kernel 
dependability. Section III provides details of the 
implementation while Section IV exhibits the potential of 
such a methodology through the XtratuM Robustness 
testing case study. Discussion and a number of possible 
improvements are then provided in Section V. 

II. SEPARATION KERNEL DEPENDABILITY  
Ensuring that onboard real-time embedded systems 

hosted on a single OBC are provided with a dependable 
infrastructure involves various components within the 
separation kernel. The following are a few of the important 
constituents that help guarantee fault containment between 
applications of varying criticality. 

• Intricate resource allocation: Resource sharing in a 
safe and reliable manner can be guaranteed if 
allocated assets, such as I/O registers, devices, 
memory and OBC slot-times, are defined in detail 
for each partition.       

• Robust temporal and spatial isolation: The 
separation kernel runs in supervisor processor 
mode and has absolute control on the status of 
each partition. In the event that a partition process 
attempts to overshoot its timeslot, or write data to 
a location that is not assigned to it, it is to be 
flagged by the separation kernel. Being a TSP 
infringement, the process is halted and the event 
noted. The separation kernel can also halt or reset 
a partition if it is repetitively violating TSP 
boundaries.  

• Robust Inter-Partition-Communication (IPC): 
While functional dependency between partitions is 
usually kept to a minimum, transfer of data 
between applications is often necessary. This is 
done through IPC channels strictly defined by the 
separation kernel so as to limit propagation of 
faults between partitions. ault monitor and 
handling mechanism: This mechanism is 
responsible of detecting and handling irregular 
events occurring within partitions or the kernel 
itself. The main objective is to discover the errors 
as early as possible so that offending processes or 
partitions are dealt with and the faults contained 
[7].  

Since such mechanisms are critical to IMA 
dependability, analyzing their robustness will be of 
particular interest. Using the data type model, faults may 

be introduced into each of these constituents through 
hypercalls implementing related services. 

III. ROBUSTNESS TESTING FRAMEWORK 
Robustness is a related concept to the notion of 

dependability. It is defined as “the degree to which a 
system or component can function correctly in the 
presence of invalid inputs or stressful environmental 
conditions” [8]. While a contributor to system 
dependability, robustness is more concerned with cases 
where external components behave unexpectedly and feed 
invalid inputs to the system. This may happen either 
because of a fault within external components or simply 
because of an abnormal combination or sequence of events 
resulting in an irregular system call. An example of the 
latter would be a system composed of several fault-free 
components yet a robustness failure still occurs if the 
correct output from one component is invalid to the next 
component [9]. 

Robustness testing thus, involves test data that 
necessitates faults and is hence applicable to verifying the 
fault tolerance of the software package. In this case, the 
testing methodology is usually referred to as fault 
injection. [6] The flowchart in Fig. 1 outlines the 
methodology employed in executing a fault injection 
campaign for separation kernels. This is comprised of three 
major phases: 

• Preparation 
• Test Generation and Execution 
• Log Analysis 

 

A. Preparation Phase 
The preparatory phase, which deals with outlining the 

testing scope and defining the fault model and test suits 
accordingly, is of particular importance and thus requires 
considerable effort. Having defined the scope as a fault 
removal campaign for separation kernels, the next step is 
devising the system fault model. This is exercised through 
software fault injection and raises three main questions 
[10]: 

• What faults to inject? 
• Where to inject the faults? 
• When to inject the faults? 

 

Figure 1. Robustness testing top-level methodolgy 



 

It is thus clear that as a prerequisite to defining a fault 
model, a good understanding of the system architecture 
under test is an asset [11]. This helps identify mechanisms 
whose robustness is instrumental for system dependability 
and consequently significant in defining a test campaign 
that ensures proper coverage.  

Based on its usefulness in both research and industrial 
projects, the data type fault model has been selected. In 
particular, the Ballista project [12], and the RTEMS 
robustness testing campaign by Critical Software SA [13], 
have shown that this fault model offers potential in 
provoking numerous and diverse vulnerabilities. The data 
type fault model is a black-box methodology that defines 
test cases from the data types of the parameters passed to 
kernel system calls. This is done by defining a set of test 
values for each data type, which is likely to contain 
exceptional values for functions [9]. This “dictionary” of 
interesting values is composed of values suggested in 
testing literature [14] and values that uncovered issues in 
previous tests. Since the greater majority of device drivers 
are coded in ANSI C [10], C-style data types are usually 
considered.  As an example, possible test values for a 
signed integer data type would be: -1, 0, 1, MIN_INT and 
MAX_INT. For multi-parameter calls, test cases are 
created by using a combination of values across all the 
parameters of the function. A combination of valid and 
invalid test data helps unmask any vulnerable parameters 
and trace back to the parameter responsible for the failure.  

B. Test Generation and Execution Phase  
The methodology involves the use of an IMA testbed 

with dummy partitions defined by the separation kernel 
under test.  One of these partitions will contain fault 
placeholders, which for the scope of this paper will be 
referred to as the test partition. Using the data type model, 
these fault placeholders take the form of separation kernel 
hypercalls with a test dataset comprised of valid and 
invalid parameters. Such fault placeholders are generated 
through two XML files that define kernel-specific test 
information; a technique that has been previously proposed 
for the Xception Toolset by Critical Software SA [13]. The 
API Header XML file lists all hypercalls and parameter 
data types for the separation kernel in consideration, while 
the Data Type XML lists test values associated with each 
data type.  The excerpts shown in Fig. 2 and Fig. 3 are 
examples of a three-parameter hypercall header and the 
test value set for an unsigned integer type, respectively. 
Both examples are reproduced from the XtratuM case 
study, which is discussed in the next section.  

 

 

Fig. 4 shows the flow logic to generate the test partition 
containing the fault placeholders. The following steps 
outline the fault injection process for a particular hypercall.  

 
1. The hypercall to be used as a fault placeholder is 

provided to the toolset. This may be provided 
automatically as part of a test campaign or selected by 
the user as required.  

2. Through the use of the two kernel-specific XML files, 
the toolset generates all the possible combinations 
considering the test data over each parameter. 

3. A source file containing one test hypercall is generated 
and compiled with the test partition sources. This 
generates the test partition executable.  

4. The test partition is ‘packed’ with the rest of the 
partitions and the TSP system is run on the target-
system simulator for a selected number of cyclic 
schedules. The test call is invoked at least once per 
major frame. 

5. In each case the return code to the test hypercall 
together with partition and separation kernel health 
specifics are logged for analysis at a later stage.   

6. Steps 2 to 5 are repeated until all test combinations 
have been run and results logged. The test setup runs 
on a UNIX-based operating system and a number of 
shell scripts ensure a whole testing campaign, 
comprising multiple hypercall test suits and the 
accompanying logs, can be completed automatically 
with no intervention required from the test 
administrator. 

 

<DataType Name="xm_u32_t"> 
 <BasicType>unsigned int</BasicType>   
<TestValues> 

<Value>0</Value> 
<Value>1</Value> 
<Value>2</Value> 
<Value>16</Value> 
<Value>4294967295</Value> 

</TestValues> 
</DataType > 
 

Figure 3.   Example of a data type test value set (XtratuM case study) 

<Function Name="XM_reset_partition" ReturnType="xm_s32_t" IsPointer="NO"> 
     <ParametersList>   
      <Parameter Name="partitionId" Type="xm_s32_t" IsPointer="NO"/>   
      <Parameter Name="resetMode" Type="xm_u32_t" IsPointer="NO"/>   
      <Parameter Name="status" Type="xm_u32_t" IsPointer="NO" />   
    </ParametersList>   
</Function>   

 

Figure 2. Example of an API header (XtratuM case study) 

Figure 4. Methodology to generating the test partition  



 

The flowchart in Fig. 5 elaborates on steps 1 to 3, and 
provides a more detailed understanding of the toolset 
generating the source file containing the fault placeholders 
for a particular hypercall.  

Figure 5. Generation of the mutant source  

Each source file contains a fault placeholder in the 
form of one hypercall invoked with a test dataset. The 
toolset can be subdivided into three main sections:  

 
• XML Parser: The front-end function parses the 

hypercall selected for the test suite and, using the 
preconfigured API Header XML file, outputs the 
hypercalls input parameters together with their 
data types. The next stage of the parser then 
generates the test_value_matrix according to the 
Data Type XML file. This matrix contains the test 
values associated with each input parameter for the 
respective hypercall.  

 

• Test Dataset Generator: This toolset generates a 
list of datasets with all possible test value 
combinations found in the test_value_matrix. The 
total number of combinations is equivalent to 

 
 
Where   !!" is the number of test values for      
input parameter !" and N is the total number 
of parameter inputs. 

 

• Mutant Source Generator:  This stage incorporates 
each test dataset within a single source file, which 
is then compiled to form part of the test partition 
executable.   

C. Log Analysis Phase 
This phase emphasizes the importance of proper 

product analysis during the preparation phase of the test 
campaign.  A compromise is to be found between logging 
too much, leading to a lengthier analysis phase, or logging 
too little and potentially missing out on identifying certain 
robustness weaknesses. During each test execution, the 
following are monitored and logged: 
 

• Return Codes, which classify the immediate 
response to the test call and help categorize 
unexpected responses. 

• Exception handlers, which identify any non-
nominal partition or kernel behaviour.  

• Partition and separation kernel statuses, which 
pinpoint Halt or Reset events on both partition and 
kernel levels. 

• Operations undertaken by the Fault Monitoring 
and Handling mechanism of the separation kernel. 
This helps track any actions leading to fault 
containment.  

 

Since robustness evaluation relies on failures identified 
by the health monitor of the kernel under test, a good 
understanding of the latter is an asset to appropriately 
configure logging. As identified through the kernel 
reference architecture [15], logging such data associated 
with each test call is sufficient to classify the outcome of 
each dataset. However, since tests are independent of 
hypercall logic, the means to defining a test case pass/fail 
is also generic. In fact, the Ballista project categorizes test 
results according to the CRASH (Catastrophic, Restart, 
Abort, Silent, Hindering) severity scale [9] and applies the 
following properties for every module under test: 

• Catastrophic - A test should never crash the 
system:  violation of this property implies a 
corruption of the kernel’s state and is hence 
considered a catastrophic failure. 

• Restart - A test should never hang: this is 
considered as a restart failure because a restart of 
the task that stopped responding is required for 
system recovery. 

• Abort - A test should never crash the testing task: 
abort failures cause an irregular task termination 
causing a core dump. 

• Silent - A test should always report exceptional 
situations: when a reportable exception is not 
indicated, this is considered a silent failure.  

• Hindering - A test should never report incorrect 
error codes: a hindering failure occurs when an 
incorrect error code is reported. As with the 
previous case, additional test data analysis is 
required to identify this kind of fault.  

combinations!"!#$ =! n!"
!

!!!
 (1) 



 

Catastrophic, Restart and Abort failures are nominally 
flagged through the kernel fault handling mechanism and 
will also be apparent in partition or kernel health statuses. 
Furthermore, a test case that fails to return is potentially 
indicative of a catastrophic, restart or aborted failure that 
has not been reported by the fault monitor. Conversely, 
identification of Silent and Hindering failures is usually 
only practicable through manually crosschecking returned 
codes against reference documentation. The creation of an 
oracle that can predict if a test case is to generate an 
exception or not is usually considered impractical [12]. 
While classified into five distinct categories, it is to be 
mentioned that all of these failures come at different levels 
of criticality. As an example, a fault occurring within a 
partition-control module is more significant and has 
potentially more impact than a fault within a module that 
seeks through fault monitor events. 

Having provided a good overview of the robustness 
testing toolset that has been developed, its potential is now 
demonstrated through a case study. The next chapter 
details the specifics behind the robustness testing of the 
XtratuM separation kernel and how the developed toolset 
was instrumental in uncovering a number of robustness 
failures. 

IV. CASE STUDY: XTRATUM FOR LEON3 
This section provides an overview of how this 

methodology was used in a robustness testing campaign 
for XtratuM (XM) for SPARC LEON3. For the scope of 
this study, rather than dummy partitions, ESA’s EagleEye 
TSP was used as a testbed. EagleEye TSP is an ESA 
reference spacecraft mission representative of a typical 
earth observation satellite. Its main purpose is the 
validation of functional and real-time properties of new 
technologies [15], and is thus considered very appropriate 
for the scope of this project. This platform consists of a 
LEON3 central node with a memory management unit, 
simulated using TSIM from Aeroflex Gaisler. It runs XM 
as a separation kernel defining the OBSW into five 
partitions over a cyclic major frame of 250ms. Fig. 6 
outlines the test setup utilizing the EagleEye TSP 
spacecraft. 

Before going into the details of the test campaign, an 
overall understanding of the separation kernel is deemed 
necessary.  

A. Components of the XtratuM Separation Kernel 
Considered as a bare-metal hypervisor, XM is a layer 

of software that provides one or more virtual execution 
environments for partitions in highly critical systems. The 
internal XM architecture includes components [4] such as  

 
• Memory Management (Spatial Separation)  
• Scheduling (Temporal Separation)  
• Interrupt management  
• Clock / Timer management  
• Inter-Partition Communication (IPC)  
• Health Monitor (HM) 
• Tracing facilities  

  

XM defines two levels of partitions: normal and 
system. The latter have added privileges, namely managing 
and monitoring the state of the system and other partitions. 
Such services are provided through hypercalls that can 
only succeed if invoked from a system partition. As shown 
in Fig. 6, the FDIR is the only system partition within the 
EagleEye TSP spacecraft. The added privileges make it an 
ideal candidate for a test partition. Within each of the 
partitions created by XM then resides an operating system 
(OS) that locally handles partition-scope tasks. Examples 
of such OSes supported by XM are the RTOS RTEMS for 
multi-threaded C applications and the XtratuM Abstraction 
Layer (XAL) as a single threaded C runtime.  XM also 
supports the Open Ravenscar Kernel (ORK) for running 
partitions implemented in the Ada programming language. 
[7] 

B. Data Types and Test Data Selection 
The data types used in XM interfaces are compiler and 

machine cross development independent [7]. Table I lists 
all XM data types together with the declarations in C-
language 

As referred to in the previous chapter, the test calls are 
generated through a class of test values that are data type 
bound. Such values are appropriately selected to exercise 
the error handling and robustness capabilities of the kernel 
code. These are typically boundary or “magic values” in 
the data type range [13]. Test datasets are key to the 
reliability and confidence in the robustness testing results 
and are to be chosen only after a clear understanding of the 
testing scope. 

TABLE I.  XTRATUM DATA TYPES 

XM Basic 
Types 

XM 
Extended Types 

Size 
(bits) ANSI C Types 

xm_u8_t - 
8 

unsigned char 

xm_s8_t - signed char 

xm_u16_t - 
16 

unsigned short 

xm_s16_t - signed short 

xm_u32_t 

xmWord_t 
xmAddress_t 
xmIoAddress_t 
xmSize_t 
xmId_t 

32 
unsigned int 

xm_s32_t xmSSize_t signed int 

xm_u64_t - 
64 

unsigned long long 

xm_s64_t xmTime_t signed long long 

 
Figure 6. XM test setup using the EagleEye TSP spacecraft 



 

TABLE II.  DATA TYPE TEST-VALUE-SET EXAMPLE 

 

*valid / invalid input depending on hypercall 

Table II provides an example of test values corresponding 
to the xm_s32_t type, which is a standard C-type signed 
integer. It is to be noted that these test values are not 
supposed to represent all the values that may be interesting 
to test with the given data types [13]. They were chosen to 
provide a reasonable range of non-nominal input 
conditions while keeping the test campaign practically 
manageable. For the scope of this case study, the selected 
test values used are the ones suggested in testing literature 
[17], [14], and values that uncovered issues in previous 
tests. The Ballista project [12] has been a prime source in 
this regard. 
 
 It is to be noticed that the example in Table II includes 
test values that are neither boundary nor “magic values” 
for the particular data type. Marked with an asterisk in 
Table II, such values can potentially be valid for certain 
parameters in the hypercalls under test. The objective is to 
avoid fault masking while testing. In hypercalls with more 
than one input parameter, masking can occur if parameter 
validity checks are done on one parameter and not the 
others. Consider the cases in Fig. 7, where hypercall_1 
incorporates validity checks only on the first parameter. As 
with Case 1, since the first parameter is invalid, the kernel 
returns an error code, which is considered as robust 
behavior. In the event Case 2 results in a non-robust 
behavior (e.g. unexpected termination), the invalid first 
parameter in Case 1 is said to mask a second-parameter 
robustness failure. [9] 

Figure 7. Example of fault masking 

C. Test Campaign 
The rationale of this test campaign is to demonstrate 

the potential of the data type fault model in detecting 
robustness vulnerabilities in the hypercall categories 
tested. Table III shows that various calls in all categories 
have been tested, amounting to 64 per cent of total XM 
hypercalls. As shown in Fig. 8, just below 50 per cent of 
untested calls are hypercalls with no parameters. While, as 
suggested by the Ballista project [12], the data type fault 
model may be extended to apply to such hypercalls, this 
was not considered for the scope of this exercise.  

During this test campaign a total of 2662 tests were 
defined. As listed in Table III, the execution of such test 
cases has raised 9 notable issues, some of which share 

Hypercall 
Category [16] 

Total 
Hypercalls 

[16] 

Hypercalls 
tested 

No. of 
Tests 

Raised 
Issues 

System 
Management 3 2 8 3 

Partition 
Management 10 6 236 0 

Time 
Management 2 2 34 3 

Plan 
Management 2 1 2 0 

Inter-Partition 
Communicatio

n 
10 8 598 0 

Memory 
Management 2 1 991 0 

Health Monitor 
Management 5 3 64 0 

Trace 
Management 5 4 428 0 

Interrupt 
Management 5 4 172 0 

Miscellaneous 5 3 41 3 

Sparc V8 
Specific 12 5 88 0 

Total 61 39 2662 9 

     

XM Data 
type 

Data Type 
Range Test Data Description 

xm_s32_t 
 

-231 à 231 -1 
 

-2147483648 MIN_S32 

-16 
* 

-1 

0 ZERO 

1 

* 2 

16 

2147483647 MAX_S32 

!"#$ !: ℎ!"#$%&''_1(< !"#$%!& >,< !"#! >) à Robust  

!"#$ !: ℎ!"#$%&''_1(< !"#$% >,< !"#$%!& >)  à Non-
robust 

TABLE III .          XTRATUM TEST CAMPAIGN 

Figure 8. XtratuM test campaign distribution 



 

common robustness vulnerabilities. The three issues raised 
under the System Management hypercall category where 
related to unexpected kernel operation invoked through the 
XM_reset_system hypercall. XM_reset_system (xm_u32_t 
mode) is a system partition service that resets XM in either 
of two modes: XM_COLD_RESET(0) or 
XM_WARM_RESET(1). XM fails to correctly check the 
mode parameter and an unexpected system reset is invoked 
for invalid modes. This service has now been revised by 
the XM development team to return an 
XM_INVALID_PARAM for invalid modes. 

• Test calls XM_reset_system(2) and 
XM_reset_system(16) resulted in a kernel cold 
reset; an operation, which should have returned 
the invalid parameter return code 
XM_INVALID_PARAM. According to reference 
documentation, a kernel cold reset may be only 
be invoked through hypercall XM_reset_system 
(0). 

• Test call XM_reset_system(4294967295) resulted 
in a kernel warm reset; an operation, which 
should have returned the invalid parameter return 
code XM_INVALID_PARAM. According to 
reference documentation, a kernel warm reset 
may be only be invoked through hypercall 
XM_reset_system(1). 

All issues raised under the Timer Management category 
were related to the XM_set_timer. 
XM_set_timer(xm_u32_t clockId, xmTime_t absTime, 
xmTime_t interval) is a standard service to arm a timer on 
either of the two clocks provided by XM. 

• Test call XM_set_timer(0, 1, 1) has resulted in a 
system fatal error leading to an XM halt. When 
invoking XM_set_timer with small intervals, such 
as 1µs, the next execution time is always expired 
by the time it is checked and the timer handler is 
invoked again. This leads to a recursive loop 
resulting in a stack overflow. A minimum interval 
accepted by XM_set_timer has now been defined 
by the XM development team, and XM_set_timer 
will now return XM_INVALID_PARAM for 
interval values under 50µs. 

• Test call XM_set_timer(1, 1, 1) results in a timer 
trap which crashes the TSIM simulator. As with 
the previous case, the unexpected trap is most 
likely the result of a race condition cause when 
XM_set_timer is invoked with small intervals.    

• Test calls XM_set_timer(0, 1, LLONG_MIN) and 
XM_set_timer(1, 1, LLONG_MIN) incorrectly 
returned a successful operation code when 
invoked with a negative interval. XM fails to 
correctly check the interval parameter and 
does not detect an invalid negative interval. 
This service has now been modified by the XM 
development team to return an XM_INVALID_ 
PARAM for invalid intervals.  

The issues raised under the Miscellaneous hypercall 
category were related to XM_multicall hypercall. 
XM_multicall(void *startAddr, void *endAddr) offers the 

capability to pack several hypercalls in a buffer and then 
execute them as a batch. Test calls with invalid pointers to 
startAddr and endAddr parameters did not return an 
expected invalid parameter return code 
XM_INVALID_PARAM. The kernel instead attempted to 
execute the hypercall leading to unhandled data access 
exceptions. Additionally, it has been determined that such 
a service may lead to breaking the temporal isolation. A 
partition may require multiple time consuming services to 
process all hypercalls in the buffer, preventing nominal 
context switching as required by the scheduling plan. This 
service has been temporarily removed by the XM 
development team. 

All of these issues have been identified by the XM 
Health Monitor and may be thus categorized as 
Catastrophic, Restart or Abort failures within the CRASH 
failure scale. Other Silent or Hindering faults would be 
potentially identified through manually crosschecking 
returned codes, which is being suggested as future work. 

V. DISCUSSION AND POSSIBLE IMPROVEMENTS 
While the XM robustness campaign covers a 

significant part of the separation kernel’s functionality, this 
exercise was intended to be more of a demonstration of the 
applicability of the data type fault model to the separation 
kernel testing rather than a comprehensive robustness test 
of XM itself. Through this experimental project, the 
potential of such a methodology is demonstrated and a 
number of possible improvements emerge. The following 
explains aspects of the robustness testing approach that 
might be improved for future considerations. 

Probably the most prominent drawback when using the 
data type fault model is the fact that result analysis cannot 
be automated. The output of a particular test call is 
context-dependent, heavily affected by the state of the 
system when the test call is invoked. Hence an automated 
oracle that can differentiate between a successful and a 
failed test is only possible if it considers the state of the 
separation kernel at that moment. This is possible if a logic 
model of the whole system is available [13]. Such a model 
could capture the state of the system when the test call is 
invoked and output the expected behaviour and return code 
based on the rule stipulated in the product manual. 
Additionally such a model could be potentially used to 
generate more effective test datasets, increasing coverage 
and reliability in the robustness results.  The probability is 
however, that such a commodity is not readily available, 
and is to be developed during the Preparatory Phase of the 
testing campaign. This requires extra effort resulting in 
longer timelines [13]. As a matter of fact, other literature 
suggests that the creation of an oracle in this regard is to be 
considered impractical [12]. 

This exercise did not consider test cases for hypercalls 
with no parameters. Such calls amount to 16 per cent of all 
XM hypercalls. The applicability of using such a 
methodology to parameter-less hypercalls is not 
immediately apparent. While such modules cannot be 
directly tested through parameter sets, they are still 
influenced by the system state. The Ballista project 
proposes the use of phantom parameters [18]. This 
technique makes use of a dummy module that sets the 
appropriate system state with a phantom parameter before 



 

calling the module under test. While this concept extends 
the applicability of such a methodology, it is also 
beneficial when testing modules with parameters. Multiple 
references, such as [18], [19] and [20], mention that 
robustness results are different when the system under test 
is subjected to different states and different stress 
conditions. Phantom parameters could be used in this case 
to set the separation kernel into a particular stressful state 
before invoking the test calls.   

Although the data type fault model is considered as a 
black box methodology, knowledge of the typical uses of 
the associated data type is very relevant when choosing 
test values. Without such consideration, testing is possible 
by choosing values generically, however this might come 
at the expense of reduced coverage [9]. For the scope of 
this project, each hypercall was treated as a black box and 
test value selection is solely done on data type association. 
As an example, with XM_reset_partition(partitionId, 
resetMode, status), parameters partitionId (valid values: 0 
à 4) and resetMode (valid values: 0 à 1) are both integer 
types and thus their test datasets are very similar. As with 
the Ballista project, a more complete test scenario would 
have involved a basic dataset that is applicable to all 
integer types, together with an additional set specially 
selected in the context of hypercall functionality. 
Furthermore, as suggested in [9], different invalid values 
often elicit different system responses from a given 
hypercall. With some knowledge of the typical uses of a 
data type, the test administrator should attempt to identify 
different ways in which values can be invalid. 

VI. CONCLUSION 
The main aim of this work was to push the boundaries 

of separation kernel robustness testing methodologies 
through researching different methods, or applying known 
methods differently. This work has achieved this through 
employing the data type fault-model to the realm of 
separation kernel robustness testing.  

As demonstrated through the XtratuM for SPARC 
LEON3 case study, where a significant number of 
previously unknown robustness vulnerabilities where 
identified, it is evident that the data type fault model offers 
potential in separation kernel robustness testing. The test 
campaign, which is to be considered as a study to help 
exhibit the potential of the testing methodology rather than 
a fully fledged robustness testing campaign of the 
separation kernel, covered over 64 per cent of total XM 
hypercalls. The 2662 executed tests uncovered 9 notable 
robustness vulnerabilities, which had gone undetected 
during system development fault removal campaigns. 
While results are promising, further work is required to 
quantify the efficiency and dependability of the 
methodology. A dry run by manually cross-checking 
return codes against reference documentation would be 
instrumental as future work in establishing a truth base to 
which robustness testing results may be compared.   

ACKNOWLEDGMENT 
This research was assisted by our colleagues at 

ESTEC-ESA, Martin Hiller and Jorge Lopez Trecastro. 
Their contribution supported the development of the fault 
injection methodology described in this work.  

REFERENCES 
[1] NASA Office of Chief Engineer, "NASA Study on Flight Software 

Complexity," California, 2009. 
[2] James Windsor and Kjeld Hjortnaes, "Time and Space Partitioning 

in Spacecraft Avionics," in Third IEEE International Conference 
on Space Mission Challenges for Information Technology, 
Noordwijk, The Netherlands. 

[3] Martin Hiller, James Windsor, Knut Eckstein, Maria Hernek, and 
Kjeld Hjortnaes, "ESA Roadmap for IMA spin-in to spacecraft 
avionincs ," ESA SP, Volume: 701 SP, Noordwijk, The 
Netherlands, 2012. 

[4] Raul Barbosa and Johan Karlsson , "Experiences from Verifying a 
Partitioning Kernel Using Fault Injection ," in 12th European 
Workshop on Dependable Computing, EWDC 2009 , Toulouse, 
2009. 

[5] John Rushby, "Partitioning in Avionics Architectures: 
Requirements, Mechanisms, and Assurance," NASA Langley 
Research Center, Technical Report NASA/CR-1999-209347, 2000. 

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl 
Landwehr, "Basic Concepts and Taxonomy of Dependable and 
Secure Computing," IEEE Transactions on Dependable and Secure 
Computing, vol. 1, no. 1, 2004. 

[7] Miguel Masmano, Alfons Crespo, and Javier Coronel, "XtratuM 
Hypervisor for LEON2/LEON3: Volume2: User Manual," xm-3-
usermanual-022i, Spain, 2012. 

[8] IEEE Computer Society, "IEEE Standard Glossary of Software 
Engineering Terminology (IEEE Std 610.12-1990)," 1990. 

[9] N. Kropp, P. Koopman, and D. Siewiorek, "Automated Robustness 
Testing of Off-The-Shelf Software Components," in 28th Fault 
Tolerant Computing Symposium, 1998. 

[10] Andreas Johansson, "Robustness Evaluation of Operating 
Systems," 2008. 

[11] Mei-Chen Hsueh, Timothy K. Tsai, and Iyer K. Ravishankar, "Fault 
Injection Techniques and Tools," University of Ilinois, Theme 
Feature 1997. 

[12] Philip Koopman, Kobey DeVale, and John DeVale, "Interface 
Robustness Testing: Experience and Lessons Learnt from the 
Ballista Project," in Dependability Benchmarking for Computer 
Systems., 2008. 

[13] Critical Software , "RTEMS 4.5.0 Evaluation Report," DL-
RAMS02-01-05 , 2003. 

[14] B. Marick, The Craft of Software Testing. NJ: Prentice-Hall, 1995. 
[15] Victor Bos et al., "Time and Space Partitioning the EagleEye 

Reference Mission," Proceedings of DASIA 2013 Data Systems in 
Aerospace, 2013, pp. 70-76. 

[16] Miguel Masmano, Javier O. Coronel, Alfons Crespo, and Patricia 
Balbastre, "XtratuM Hypervisor for LEON3 : Volume 4: Reference 
Manual," xm-3-reference-023i, Spain, 2012. 

[17] SYSGO Embedding Innovations. (2015, April) PikeOS Hypervisor. 
[Online]. http://www.sysgo.com/products/pikeos-rtos-and-
virtualization-concept/  

[18] John P. De Vale, Philip J. Koopman, and David J. Guttendorf, "The 
Ballista Software Robustness Testing Service," in Testing 
Computer Software Conference, 1999. 

[19] Dominco Cotroneo, Domenico Di Leo, Roberto Natella, and 
Roberto Pietrantuono, "A Case Study on State-Based Robustness 
Testing of an Operating System for the Avionic Domain," 
Computer Safety, Reliability, and Security; Vol 6894 of the 
series Lecture Notes in Computer Science pp. 213-227. 

[20] D. Cotroneo, D. Di Leo, F. Fucci and R. Natella, "SABRINE: State-
based robustness testing of operating systems," Automated 
Software Engineering (ASE), 2013 IEEE/ACM 28th International 
Conference on, Silicon Valley, CA, 2013, pp. 125-135. 
 

 
 
 


