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Abstract
Orbit correction in accelerators typically make use of a

linear model of the machine, called the Response Matrix
(RM), that relates local beam deflections to position changes.
The RM is used to obtain a Pseudo-Inverse (PI), which is
used in a feedback configuration, where positional errors
from the reference orbit as measured by Beam Position Mon-
itors (BPMs) are used to calculate the required change in the
current flowing through the Closed Orbit Dipoles (CODs).
The calculation of the PIs from the RMs is a crucial part
in the LHC’s Orbit Feedback Controller (OFC), however in
the present implementation of the OFC this calculation is
omitted as it takes too much time to calculate and thus is
unsuitable in a real-time system. As a temporary solution the
LHC operators pre-calculate the new PIs outside the OFC,
and then manually upload them to the OFC in advance. In
this paper we aim to find a solution to this computational
bottleneck through hardware acceleration in order to act au-
tomatically and as quickly as possible to COD and/or BPM
failures by re-calculating the PIs within the OFC. These re-
sults will eventually be used in the renovation of the OFC
for the LHC’s Run 3.

INTRODUCTION
Figure 1 illustrates the schematic of the Orbit Feedback

Controller (OFC) as it is implemented today in the LHC.
The red and blue arrows in Figure 1 show the data paths
of the Beam Position Monitors (BPMs) and the Closed Or-
bit Dipoles’ (CODs) signals respectively. The OFC uses
BPM measurements throughout the machine in order to au-
tomatically adjust the average beam position by performing
adequate changes to the COD currents [1].

The OFC was designed in C++ using ROOT libraries prior
to the LHC start-up in 2008. ROOT is a scientific software
framework originating from CERN with the purpose of be-
ing used for the analysis of experimental data related to high
energy and nuclear physics [2]. The Service Unit (OFSU)
was designed using CERN’s Front-End Software Architec-
ture (FESA) and serves as an interface to the OFC from
which the operators can change certain parameters as well
as control the operation of the OFC itself. The OFSU also
serves as a proxy of the incoming measurements collected
and calculations done by the OFC [3,4].

The currents flowing in the CODs are related to the beam
position as measured by the BPMs by a Response Matrix
(RM), which essentially describes changes in positions as a
function of COD deflections. The main principle behind the
∗ leander.grech.14@um.edu.mt
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Figure 1: Schematic of orbit feedback controller [1].

orbit correction is to (a) measure the beam position using the
BPMs, (b) calculate the error with respect to the reference
orbit and then (c) calculate the change in current needed in
each COD to correct the beam position.

To calculate the required change in current in each COD
the OFC uses Singular Value Decomposition (SVD) algo-
rithm, where the RM is decomposed into three more man-
ageable matrices, from which the so called Pseudo-Inverse
(PI) is found. This PI then directly relates the required COD
deflections as a function of the measured orbit error [1].

The following is a basic description of the PI and the SVD
algorithm. The PI of a non-square matrix A, is a matrix
which when multiplied to A produces an identity matrix.
The PI is calculated after computing the SVD of A, which
evaluates A as a multiplication of three sub-matrices with
special properties, making it trivial to find the PI. Below is
the result after SVD:

A = UΣV∗

where U and V are unitary matrices and Σ is a rectangu-
lar diagonal matrix, with non-negative real numbers on its
diagonal. The PI, A−1, is calculated as follows:

A−1 = VΣ+U∗

where Σ+ is Σ with the diagonals inverted, i.e. Σ+ii =
1
Σii

In the OFC, the SVD is used to compute the PIs of the
horizontal and vertical RMs, which have around 1150 rows
(number of BPMs) and 550 columns (number of CODs in
one plane). Apart from this there might be different config-
urations of the LHC (optics) in which the magnets are used,
for which RMs and accompanying PIs have to be computed
as well.

PROBLEM DEFINITION
In the current implementation of the OFC, multiple re-

sponse matrices (e.g. during the RAMP, 13-14 RMs are
used) for different machine configurations (optics) are used.
It might be the case that there is a change in the LHC oper-
ation due to a malfunction in the BPMs or the CODs and
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this would prompt a change in the RM as well. Considering
that it takes in the order of seconds to re-calculate a PI from
a RM using SVD, the OFC is unable to react quickly to
changing LHC parameters and therefore this functionality
is suppressed in the OFC. As a workaround when the LHC
operators suspect a malfunctioning COD which is causing a
residual error in the orbit correction, it is masked and thus
current requests are no longer sent to it. Following this the
PI is calculated offline on another machine using SVD and
then is manually uploaded to the OFC where it can be used
without the malfunctioning COD. This has been shown to
work in the past with non-critical CODs however it is not
a sustainable solution mainly because the whole process
can take from a few minutes to a few a hours to complete,
depending on the availability of expert operators who can
perform this task.

In the case of a BPM suspected to be malfunctioning,
the LHC operators can mask the respective BPM so that its
measurements are no longer taken into consideration during
the orbit correction calculations. This may also be done
automatically by the OFC itself and is accomplished by read-
ing the hardware state given to it by the BPM UDP packets
coming from the respective BPM crates. Ideally, following
the masking of a BPM, the PI should be recomputed imme-
diately, but due to the long computation time, the reading of
that BPM is instead set to the reference value.

Ultimately in the current OFC implementation, the re-
quired COD deflections are calculated using the original PI
without taking into consideration the malfunctioning BPM.
The result of this is that the beam position at the location
of the malfunctioning BPM is left relatively unaffected by
artificially forcing the position at that location to be exactly
the reference orbit [4]. This is an adequate solution when
a small number of BPMs are malfunctioning in sparse lo-
cations, however should it be the case that adjacent BPMs
are defective, the OFC might induce significant beam dis-
tortions. Thus it would be a significant improvement over
the current system to calculate the PI immediately and in
real-time for any malfunction in the BPMs.

As opposed to the solution mentioned above for the BPMS,
the situation for malfunctioning CODs is more critical.
When we multiply our positional errors vector with the PI
calculated by the SVD, we are using the entire set of cor-
rector magnets included in the RM. Applying a correction
involving a malfunctioning corrector may lead to impor-
tant distortions not only around a failing corrector but also
throughout the whole machine. The orbit will reflect the
absence of the corrector kick and the PI will automatically
try to restore the missing kick. As a consequence, in the
event of a corrector failure the feedback must be stopped
and the SVD on all response matrices recomputed without
that corrector.

There are 2 categories of correctors: (1) ≈ 250 correctors
with maximum currents between 70A and 600A where in
case of a powering failure an automatic dump trigger is gen-
erated and the beams are dumped immediately. (2) 756 arc
correctors (CODs) with a maximum current of 60A where in

case of a failure a dump trigger is generated if the corrector
deflection is larger than 5 µrad.

Since the RMS kick strength of the CODs is around
12 µrad, the beam is dumped for the majority of corrector
failures (5-10 events per year), however for smaller deflec-
tions the OFC can correct the problem even if the PI is not
recalculated immediately. This is due to the circuit time
constants of these arc corrector magnets which range be-
tween 20 and 60 seconds, thus creating a sufficiently long
“beam rescue window”. These failures have to be detected
immediately by the OFC by reading the state information of
the power converters powering the CODs and then updating
the PI matrices by excluding the malfunctioning corrector
within no more than 2 seconds. The missing corrector will
leave a bump on the orbit but using this process it is possible
to continue operation in these conditions and thus saving the
beam.

The crux of this work was the recalculation of the new PI
matrix through the SVD algorithm as it has been found to
be the computational bottleneck of the OFC in this regard.
Regardless of whether the component failure comes from the
CODs or the BPMs, the aforementioned PI has to be recalcu-
lated in order to ensure the most optimal beam control and
consequently maximising the beam lifetime. Since the SVD
algorithm is very computationally expensive for relatively
large matrices (O

(
mn2) , where m is the number of BPMs

and n is the number of CODs), care should be taken as not
to compromise the the real-time behaviour of the OFC.

PROPOSED SOLUTION
For the case when the COD is not in a critical location in

the LHC, we propose that one of the heaviest computational
components in the OFC today, which is the pseudo-inverse
calculation through the SVD algorithm, could be made faster
by using hardware acceleration. Hardware acceleration li-
braries allow the use of multi-core devices, such as modern-
day conventional CPUs, much more efficiently through a
careful use of the CPU cache memory. Apart from this, such
libraries allow you to utilise other devices such as Graphical
Processing Units (GPUs) which have a massive number of
computational units.

Today there exist many GPU manufacturers, with the main
two brands being NVIDIA and AMD, however NVIDIA is
often considered at the forefront of the competition. NVIDIA
also developed a parallel computing platform, CUDA, for
the sole purpose of creating programs which can use both
the CPU and GPU for mathematical calculations [5]. There
exists another parallel computing platform, OpenCL, which
unlike CUDA is non-proprietary and royalty-free [6]. For the
tests described herein, only NVIDIA devices were consid-
ered, namely the GTX1080Ti and the Tesla V100, primarily
due to their availability as offered by CERN’s Techlab [7].

After some research we found a hardware acceleration
library called ArrayFire which might be ideal for the calcu-
lation of the SVD algorithm within the OFC [8]. ArrayFire
abstracts the hardware drivers from the programmer and pro-
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vides an easy-to-use interface with which to accelerate code.
Apart from this ArrayFire provides a myriad of hardware
accelerated mathematical functions ranging from simple ar-
ray manipulations to multi-dimensional matrix manipulation
and linear algebra. ArrayFire also provides the user with a
choice as to which device, as well as which programming
paradigm to use for code acceleration.

In particular ArrayFire gives the programmer the ability to
choose from (1) OpenCL, (2) CUDA and (3) asynchronous
multi-threaded execution on multi-core CPUs. Both (1)
OpenCL and (2) CUDA offer the possibility to interface
with massively parallel architectures including, but not only
limited to GPUs whereas (3) the CPU implementation uses
optimised thread manipulations depending on the required
implementation.

TESTS
All the following tests were done on different devices,

each having different kinds of hardware. Specifically these
devices consisted of multi-core CPUs, a high-end gaming
oriented GPU (GTX1080Ti) and a high-end general-purpose
GPU (Tesla V100).

Benchmarking tests on each device were done, where the
ArrayFire and the original implementation using ROOT ob-
jects of the SVD algorithm were tested. Specifically these
tests focused on measuring the time it takes the device to
compute the PI of the response matrix, and finding the av-
erage execution time over many executions. Following this
another benchmarking test was done on the ArrayFire im-
plementation focusing on collecting more statistics on the
execution time of the PI calculation.

Another test focused on comparing the PI provided by the
Orbit Feedback Service Unit (OFSU) with that calculated
by using ROOT objects and the ArrayFire libraries on the
different machines available. In this test the PI matrix was
multiplied with the original response matrix, which obtained
a pseudo-identity matrix. The latter was then compared to
an identity matrix from which some accuracy statistics were
obtained. Such statistics include the average error from the
ideal identity matrix as well as the standard deviation of the
errors.

The final test done focused on measuring the machines’
resource usage. This was done by running the benchmarking
test with one iteration of the PI calculation and measuring
the CPU usage as well as the memory consumption of the
process. Following this a python script was used to visualise
the measured data from the running process.

RESULTS
Benchmarking Tests

The benchmarking tests provided a good insight into the
effect of hardware accelerated libraries on the computation
time of the SVD algorithm. Figure 2 shows the average
execution time of the SVD algorithm for different libraries,
running on different machines. Note that some libraries

were not possible to be used on specific machines, e.g. the
ArrayFire CUDA library could not be used where there was
no NVIDIA device. The ROOT and ArrayFire CPU libraries
were executed on all machines and for those machines which
have a GPU installed, these libraries were executed on their
respective CPUs.

From the results shown on Figure 2, it is clear that the
fastest libraries were the ArrayFire CPU and ArrayFire
OpenCL which on average outperformed the traditional
ROOT implementation by two orders of magnitude. The
execution time on Intel Core i7-4790 was similar for both
the ArrayFire CPU and OpenCL implementations however
the small difference between the two execution times could
not attest which one of the two libraries performs better.
The execution times for both Intel Xeon Co-processors were
also very similar to one another, however it is clear that the
Xeon Phi 7120 outperformed the Xeon E5-4650 on all oc-
casions. From the results below it can also be concluded
that the ArrayFire CUDA implementation on both NVIDIA
devices was on average, approximately half an order of mag-
nitude slower when compared to both the ArrayFire CPU
and OpenCL implementations.

Figure 2: SVD execution time on different devices.

Another important conclusion drawn from this test was
that the use of GPUs, namely the NVIDIA GTX1080Ti and
the NVIDIA V100, is not suitable for the SVD calculation
of the PI of the LHC response matrix as all of the CPU
machines outperformed them. The reason for the poor per-
formance of the GPUs in this implementation is that the
speedup obtained from a massively parallel architecture of a
GPU is overshadowed by the time it takes to transfer data, to
and from such devices. Should it have been the case where
the SVD had to be performed on a much larger matrix, such
as a high-definition image, the use of GPUs would have
proved to be ideal. It is important to note that GPUs are
mounted on the motherboard via a PCI (Peripheral Compo-
nent Interconnect) port, which is inherently slower than the
connection between the CPU and main memory. In addition,
ArrayFire optimises the SVD algorithm through the use of
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the CPU cache, which is orders of magnitude faster than
main memory [9].

SVD Accuracy Statistics
This test addresses the hypothesis that different device ar-

chitectures (namely in GPUs) would provide different results
due to different optimisation techniques when hardware ac-
celerating the SVD algorithm. The different results might be
caused by floating point rounding errors or different cut-off
values used within the SVD algorithms themselves as they
are implemented in the respective libraries. Note that all the
results calculated by all the libraries were compared to the
original PI of the respective RM which has been used in the
OFC. Throughout the rest of this test these results will be
annotated by OFSU (Orbit Feedback Service Unit) results,
as they were obtained from this FESA class.

To obtain results for this test first a pseudo-identity matrix
was obtained by multiplying the original RM by the PI ob-
tained from the respective computation library calculated on
each respective machine as shown in Figure 2. Following this
an absolute error of all the elements of the pseudo-identity
matrix was obtained by subtracting an ideal identity matrix
from the pseudo-identity matrix. The average error and the
standard deviation of this absolute error from an ideal matrix
were then used as metrics for the accuracy of the respective
method by which the PI was calculated.

Figure 3a shows that the average error obtained from re-
spective libraries is the same when executed on different
machines. This suggests that the computation result of the
PI through the SVD algorithm is not hardware dependent.
Figure 3a also shows a discrepancy in the error obtained from
the OFSU and the ROOT libraries, however this should not
be taken into consideration in this test. This discrepancy was
due to calculation parameters which could not be perfectly
matched from one library to the other. Such parameters
include the number of eigenvalues (singular values) to be
used in the calculation of the PI as well as the cut-off value
for such eigenvalues, below which the eigenvalue is zeroed
out.

The standard deviation of the error is shown on Figure
3b where it can be seen that this value is independent of
the hardware where the computation is running on, as was
the case for the average error. It can also be seen that the
standard deviation of the error is approximately the same
for all the libraries with which the PI is calculated. This
implies that the accuracy of the calculations is similar across
libraries.

Memory and CPU Usage
The best performing device from the above tests was the

Intel® Core™ i7-4790 CPU @ 3.60GHz CPU. Following
this, CPU and memory usage analysis were done on all
three libraries supported by this device. First off was the
implementation using the ROOT libraries, and it can be seen
from top plot in Figure 4 that even if multiple cores are being
used throughout the execution of the program, they are not

(a) Average

(b) Standard deviation

Figure 3: Error of pseudo-identity matrix from an ideal
matrix.

being used simultaneously at any point in the execution of
the program.

This is different to when the ArrayFire libraries are used.
The bottom plot in each of Figure 4 and Figure 5, respec-
tively show the ArrayFire CPU implementation with multi-
ple threads and here it can be seen that the approximate time
that these multiple threads stay alive, is in accordance to the
results obtained in Figure 2, which was ≈ 80 ms. Similarly
for the program when it is built with OpenCL libraries, it
can be seen from the middle plot in Figure 4 and the top plot
in Figure 5 that for ≈ 80 ms all of the CPU cores were used.

Figure 4: CPU usage percentage during SVD calculation
using different libraries.

Proceedings of ICALEPCS2019, New York, NY, USA - Pre-Release Snapshot 11-Oct-2019 14:00 UTC

Feedback Control and Process Tuning
MOPHA151

3

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: Details from Figure 4.

Apart from the CPU utilisation, the machine’s main mem-
ory (RAM) usage was also analysed. Here Figure 6 shows
the memory usage for the original SVD algorithm using
ROOT objects; ArrayFire using CPUs; and ArrayFire using
OpenCL implementations respectively. The original imple-
mentation is quite standard, where after approximately 2
seconds, the response matrix is loaded and enough memory
is allocated to hold the PI after it is calculated. This mem-
ory consumption remains constant up until the end of the
execution.

For ArrayFire over CPU in Figure 6 (green plot) we see
a different scenario, where after 1.2 seconds, the memory
consumption increases by approximately one order of mag-
nitude. This is due to ArrayFire copying the input response
matrix over many threads, in order to parallelize the algo-
rithms used to calculate the PI. A similar situation can be
seen for ArrayFire over OpenCL with the difference being
that this implementation uses three times more memory dur-
ing the calculation of the PI.

This difference in memory consumption between Array-
Fire’s CPU and OpenCL libraries can be attested to the
specific programming paradigm used when opting to use
OpenCL. However the latter was not further analysed due
to it being proven to have a similar performance to the Ar-
rayFire CPU implementation yet consuming close to three
times more memory.

Figure 6: Memory consumption during SVD calculation
using different libraries.

CONCLUSION

From the work presented in this paper, it was concluded
that hardware acceleration libraries offer a good solution
to solve the computational bottleneck found in the current
implementation of the OFC when it is calculating the pseudo-
inverse for the response matrix used between the CODs and
the BPMs. However the use of GPUs in future designs of
the OFC would not be recommended due to the relatively
small matrices used in the calculations. It was found that
the time overhead of copying the input matrix to the GPU
would balance out the accelerated computation by the GPU.
In conclusion the preferred choice for accelerating the SVD
computation within the OFC is ArrayFire using CPUs.
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