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Abstract
Athos is a new soft X-ray beamline at SwissFEL, where

the Apple X type undulators will be equipped. These de-
vices are flexible to produce light in different polarization
modes. An adequate magnetic field model is required for the
operation of undulator. The undulator deflection parameter
K and its gradient are calculated starting from the Fourier
series of the magnetic field. In the classical parallel and
anti-parallel operational modes - respectively elliptical and
linear modes, the variation of the magnetic field as well as
its parameters are evaluated by computer modeling. The
results are compared to the magnetic measurements of the
first Apple X prototype.

INTRODUCTION
16 Apple X undulators will be installed on Athos Beam-

line. Each one contains 800 magnets distributed in a Halbach
configuration in 4 arrays (see Fig. 1 top right). Motors are
equipped to move the arrays longitudinally and radially. The
different operational modes of the undulator are defined by
the way of longitudinal shifting of the arrays.
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In parallel mode, the opposite arrays are shifted in same
direction. The polarization of light changes its elliptical
form. While in anti-parallel mode, we move the opposite
arrays in different direction, which turns the polarization
axes of the photon beam. Moreover, by changing the radial
gap between the arrays, we are able to adjust the magnetic
strength.

During the parallel mode, the K value variation (see Fig. 2)
in the measurement results is not able to be explained with
the previous magnetic (single harmonic) model. An updated
and adapted physical model with higher harmonics of the
Fourier series was proposed. The correction was applied
for the non-sinusoidal magnetic field. The analysis of the
influence of the high harmonic coefficients are mainly dis-
cussed in this contribution. The calculation result indicates
that the updated model is not enough to describe the phe-
nomenon. Further discussion about the K value variation
will be carried out in the last part.

UPDATED MAGNETIC FIELD MODEL
The convention of the coordinate system of the magnetic

field composes a transverse plane (x,y) along with its lon-
gitudinal position z. The horizontal and vertical compo-
nents of the magnetic field are named as Bx and By respec-

Figure 1: Top left: Example of a non-sinusoidal field correction with multiple harmonics. Top right: Scheme of the
longitudinal shift of 4 arrays (Circular mode as an example). Bottom left: Scheme of simplified expression of the magnetic
field in Fourier domain. Bottom right: Using the mathematical tools to express 4 arrays as a function of the first array.
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Figure 2: Measurement result of K value variation in parallel
mode.

tively. On the reference electron beam orbit, equally speak-
ing (x, y) = (0,0), the non-sinusoidal and periodical mag-
netic field of a single array can be expressed with a series.
We take the example of Bx component:

Bx(z) =
∑

h=1,3,5
Bxh cos

(
h

2π
λu

z + ϕn

)
(1)

The different harmonic orders of the series are noted as h.
Using only the first 3 odd harmonic orders is enough for the
theoretical analysis. λU is the undulator period. ϕn is the
relative longitudinal phase shift of the nth array. (see Fig. 1
top right).

With the simplified expression in the Fourier domain and
the rotation matrix [1] (see Fig. 1 bottom left and bottom
right), we are able to express the whole field of 4 arrays as a
function of harmonic coefficients of one array and longitu-
dinal phase shifts:

B̂
(
B̂1h, ϕ1, ...

)
=

∑
h=1,3,5

4∑
n=1

exp(ihϕn)Rn · B̂1h (2)

where B̂1h is a vector in transverse plan. (ˆ) means that
the parameters could be complex due to the expression in the
Fourier domain, Rn is the rotation matrix. The advantage
of this complex expression is to simplify the calculation of
the K value and its gradient. Comparing the previous and
the updated model with the measurement results (see Fig. 3
and Fig. 4) show that the updated magnetic model is more
reliable.

K VALUE AND ITS GRADIENT
The undulator associated deflection parameter K of a non-

sinusoidal magnetic field [2] is expressed:

Keff = κ

√ ∑
h=1,3,5

(
b2
xh
+ b2

yh

)
(3)

where we define: κ = eλu

2πmec
and bh =

Bh

h .
Eq.(3) in complex form is updated as:

K2
eff =

∑
h=1,3,5

K̂h · K̂∗
h (4)

Figure 3: During the parallel mode: Transverse magnetic
field distribution along z in elliptical polarization case.

Figure 4: During the anti-parallel mode: Transvers magnetic
field distribution along z in the case of linear polarization
with certain angle.

where K̂h is also a vector in transverse plan: (K̂xh, K̂yh) =

κ B̂h
h = κ b̂h .
For the simplification of the calculation, we define a Zh

matrix as a combination of the rotation matrix Rn and longi-
tudinal phase shifts:

φ1 = ϕ1, φ2 = ϕ2, φ3 = ϕ3 + π, φ4 = ϕ4 + π

Zxh = eihϕ1 − eihϕ2 + eihϕ3 − eihϕ4

Zyh = eihϕ1 + eihϕ2 + eihϕ3 + eihϕ4

Zh =

[
Zxh 0
0 Zyh

]
The 4 arrays are in the linear horizontal polarization mode

(pure vertical field) when φ1 = φ2 = φ3 = φ4 = 0. After
the change of variables between ϕ and φ, the magnetic field
distribution in the model matches closer the magnetic field
of the real undulator.

Then the formula (4) can be expressed as:

Keff = κ

√ ∑
h=1,3,5

[(Zh · b̂1h)T · (Zh · b̂1h)∗] (5)
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In parallel mode, we shift relatively arrays No.1 and No.3
in the same direction - the polarization of the photon beam
changes its elliptical form. The relative shift phase differ-
ences of the arrays vary thus in this way:

φ1 = ϕp, φ2 = 0, φ3 = ϕp, φ4 = 0

With the Zh matrix, the number of the array doesn’t play
a role anymore, we can note b1h as bh . We obtain then Keff
in parallel operational mode:

Keff (ϕp)=2
√

2κ
√ ∑

h=1,3,5
(b2

xh
+b2

yh
)−cos(hϕp)(b2

xh
−b2

yh
)

(6)
Implementing the empirical value of bx and by for each

harmonic into the Eq. (6), we are able to compare the differ-
ence before and after the update with higher harmonics (see
Fig. 5). The relative correction is on a level of 10−5.

Figure 5: Correction of K value variation with multiple
harmonics compared to the single harmonic case.

The anti-parallel mode is able to change the polarization
axes of the photon beam. We shift the opposite array No.1
and No.3, or No.2 and No.4, in different direction. The phase
shifts vary accordingly:

φ1 = ϕp̄, φ2 = 0, φ3 = −ϕp̄, φ4 = 0

The equation of the K variation as a function of ϕp̄ in
anti-parallel mode is more complicated. Therefore, we only
show the simulation result in Fig. 5 together with the result
of the parallel mode. The variation in anti-parallel mode is
much more important. However, the correction is still on a
level of 10−5. The coefficients b3 and b5 have not enough
influence to create a difference on a level of 1%, which is
the case of the measurement (see Fig. 2).

The updated equation of the transverse gradient of K is:

∇K =
κ2

Keff

∑
h=1,3,5

ℜ(Ĵh · b̂∗h) (7)

where Ĵh is the Jacobian: Ĵh =
[
∂x B̂xh ∂y B̂xh

∂x B̂yh ∂y B̂yh

]
.

MEASUREMENT AND ANALYSIS
The measurement result in Fig. 2 is reproducible on a level

of about 10−5. To operate the undulator for the beamline
[3], we need to fit the measurement points to satisfy the
precision requirement of 10−4. Based on the analysis of the
multiple harmonics update for the physical model, the single
harmonic model is enough. The background part can be
fitted by the old model. The residual part, called corrective
part for fitting, can be well fitted with a model in form of
sin2(ϕ).

This residual part of the K value variation has not yet been
fully understood. However, the analysis in Fig. 6 shows that
it is strongly related to the magnetic strength. It decreases
faster than the magnetic field versus the radial gap between
the arrays.

Figure 6: The relative amplitude of the fitted b1 and the
coefficient of the corrective function sin2(ϕ) versus gap of 4
arrays.

CONCLUSION
The higher harmonics of the magnetic field of the Apple

X undulator make a difference on a level of 10−5 for the K
value variation during different operational modes. These
modeling results suggest that the variation of K at a level of
1% is not related to the higher harmonics. We have not fully
understood this behavior yet. A further analysis indicates
that the mechanical deformation could be the reason of this
unknown effect. However, with empirical characterizations
and fits, we can handle this problem for operation. The
measurements about the mechanical deformation is being
carried out in order to find an explanation.
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