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Abstract. A field marker is a magnetic field sensor used in synchrotrons, which provides a
digital trigger when the magnetic field reaches a pre-set threshold. This paper describes the
results of an in-situ measurement performed on the Extra Low ENergy Antiproton (ELENA)
decelerator’s main bending dipoles at the European Organization for Nuclear Research (CERN).
It compares the dynamic behavior of Nuclear Magnetic Resonance (NMR) markers and
FerriMagnetic Resonance (FMR) markers in different magnetic fields for the operation of these
sensors in low-energy synchrotrons.

1. Introduction
In synchrotrons, the knowledge of the magnetic field value of the bending dipoles is essential for
beam control. A real-time magnetic measurement system called the B-train is used to transmit
the magnetic field B(t) to users, including mainly the Low-Level Radio Frequency (RF) cavity
system. At CERN, B(t) is distributed using the B-train system in the Low Energy Ion Ring
(LEIR), the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton
Synchrotron (SPS), the Antiproton Decelerator (AD) and the Extra Low ENergy Antiproton
(ELENA) ring.

A combination of induction coils and field markers is used to measure the magnetic field.
A static induction coil, shaped to follow the nominal beam orbit, generates a voltage Vc(t),
proportional to the field time variation, which is acquired using an analog-to-digital converter.
This voltage is integrated in order to calculate the magnetic field B(t). A field marker that
triggers a digital signal at t = t0 when B = B0 is then used as an integration constant. Magnetic
markers are used to improve the B-train’s accuracy and reproducibility, as they consider the
remanent field and correct the gain when using two markers [2]. The calculation for the average
B(t) is noted in Equation 1, where A is the effective surface area of the coil:

B(t) =
1

A

∫ t

t0

Vc dt+B0 (1)
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2. Magnetic Resonance-based field markers
Any sensor capable of measuring absolute field values could be considered, in principle, to
take the role of a marker. The main requirement for stable beam operation is a long-term
reproducibility of the order of 20 µT or better, under a wide range of field and field ramp rate
levels, which is difficult to achieve with commonly used sensors such as Hall probes [1]. In the case
of the ELENA B-train system, the choice was narrowed down to Nuclear Magnetic Resonance
(NMR) and FerriMagnetic Resonance (FMR) sensors, due to their proven performance and
practicality in application.

Magnetic resonance is based on the spin state change of the nuclei (for NMR) or electrons
(for FMR) in the presence of an external field B0. The resonance (jump between the two spin
states) occurs when an excitation RF wave with frequency f0 having a magnetic component
perpendicular to B0 corresponding to the difference between the energy of the two states is
supplied to the sample:

f0 =
γ

2π
B0 (2)

where γ is the gyromagnetic ratio. NMR is a primary metrological reference, providing
the best accuracy for a wide magnetic field range [3], with a gyromagnetic ratio
γNMR/2π = 42.57608 MHz/T for 1H. The main limitations of NMR, i.e. a homogeneous
field and low ramp rate, can be partially overcome by FMR markers. In the case of the ELENA
machine, the FMR sensor used is a band-pass Yttrium Iron Garnet (YIG) filter, where the
resonating sample is a Gallium-doped YIG sphere of 0.36 mm diameter, with a gyromagnetic
ratio γFMR/2π = 28.02495 GHz/T (for an isolated electron). Due to the small sample sizes,
comparatively higher spin density and shorter relaxation time, considerable field gradients and
field ramp rates can be tolerated [4]. On the other hand, this FMR sensor is optimized for
a field of 60 mT. Figure 1 shows the NMR and FMR signals generated when the field level
corresponding to the resonant frequency is reached. In the B-train system, a peak detector
subsequently detects the minimum peak of the signal and generates a trigger signal.

A previous study [5] has already confirmed that the NMR field marker is a viable option for
low-fields at the ELENA ring. Another study [6] investigates the static and the dynamic behavior
of the FMR sensor at one field level, 95 mT, where the repeatability is found to be better than
20 µT. Beaumont [7] investigates the performance of NMR and FMR field markers for the PS
ring and reports a reproducibility of 5 µT and 6 µT respectively using a combined-function

Figure 1. FMR and NMR signals with the corresponding generated trigger signals at 200 mT
with a ramp rate of 368 mT/s
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magnet at different field levels and unspecified ramp rates. This study focuses on the relative
dynamic performances of the two sensors when operating at five different field levels, whilst
investigating the performance of the FMR sensor when operated outside its optimal conditions.

3. Experimental Setup
The ELENA reference dipole, connected in series with the ring dipole magnets, is used for
the test, with the magnetic field measurements carried out using the PT2025 teslameter by
Metrolab Instruments [8] and National Instruments USB card (USB-6366) with an acquisition
rate of 1 MHz. The probes are installed in the centre of the magnet, and measurements are taken
from both probes simultaneously. An independent peak detection card is used for each magnetic
resonance signal in order to generate a trigger signal at the minimum peak. The complete setup
in the magnet is illustrated in Figure 2.

This study investigates the performance of these two sensors at the field range of 43 mT to
200 mT, where the lower limit is the NMR’s specified lowest range. The ramp rates vary from
53 mT/s to 750 mT/s. Following the analysis of 100 signals for the 14 different field (B) and field
ramp rate (Ḃ) parameters, the repeatability of one sigma (σ) of the trigger signal generation
σtNMR , is found using the standard deviation of the trigger time. Comparison of subsequent
cycles requires the assumption that the magnetic history is repeatable as a function of time, as
it was verified independently. Furthermore, the equivalent value in tesla σB(tNMR) is calculated
by multiplying σtNMR with the ramp rate. The reproducibility (σ̄B(tNMR)) is calculated by
finding the mean of the standard deviation in the trigger time generation, in order to compare
the performance of the FMR and NMR sensors at three different (B, Ḃ) sections. Finally, the
delay between the FMR and NMR trigger signal (∆tNMR−FMR) is measured to characterize the
effect of the NMR probe’s inbuilt filter at different field levels and ramp rates.

4. Results
Table 1 shows the results obtained at three field levels. In general, reproducibility improves
at high field levels and low ramp rates. The biggest difference in the reproducibility of the
two sensors is noticed at the lowest field values. This can be attributed to the FMR sensor’s
saturation magnetization and the fact that at lower fields, the FMR signal becomes wider, and
hence leads to imprecise peak detection. An independent t-test finds no statistical significant
difference between the performance of the FMR and NMR sensors for B ≤ 45 mT at a level
of marginal significance p < 0.05. At the two other field/ramp rate levels, the difference in
performance of the two sensors is also found to be statistically insignificant at p < 0.05.

Figure 2. Experimental setup
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Table 1. Trigger signal repeatability for FMR and NMR sensors

B (mT) Ḃ (mT/s)
σtNMR [µs] σB(tNMR) [µT] σ̄B(tNMR) [µT]

∆tNMR−FMR (ms)
NMR FMR NMR FMR NMR FMR

43.0
53.3 42.0 63.3 2.2 3.4

4.7 ± 2.6 11.3 ± 8.5

0.62
93.5 37.4 54.1 3.5 5.1 0.72

45.0
53.3 57.8 205 3.1 10.9 1.00
93.5 65.9 129 6.2 12.1 0.30
102 83.0 246 8.4 25.0 1.09

70.0
368 8.3 6.3 3.1 2.3

3.7 ± 1.0 2.8 ± 0.4

0.05
498 6.8 4.7 3.4 2.3 0.01
748 7.5 3.7 5.6 2.8 0.10

100
368 8.0 7.8 3.0 2.9 0.24
498 6.3 6.2 3.1 3.1 0.28
748 5.5 4.2 4.1 3.2

3.3 ± 0.9 2.8 ± 0.3

0.23

200
368 6.8 8.7 2.5 3.2 1.52
498 6.1 5.2 3.0 2.6 2.03
748 5.6 3.6 4.2 2.7 1.05

5. Conclusion
Under the present test conditions, no sensor is clearly found to outperform the other on
a statistical basis; the choice should therefore be informed by considerations of cost and
practicality. The commercial NMR system used is relatively expensive, although, if required
it can also provide high-quality DC measurements. Moreover, the probe could be adapted to
work in stand-alone mode without the teslameter unit, reducing considerably the cost. On the
other hand, FMR sensors are made at CERN and are still undergoing considerable R&D; they
have the advantage of working in the multi-GHz frequency range, leading to considerable noise
immunity and clean signals, as seen in Figure 1. In the end, since the NMR sensor results to
be slightly more repeatable across all target field levels and ramp rates, it is chosen as the best
candidate for the operation of the ELENA ring.
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