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Abstract
As sensor prices drop and computing devices continue to become more compact and

powerful, computing capabilities are being embedded throughout our physical environment.

Connecting these devices in cyber-physical systems (CPS) enables applications with signif-

icant societal impact and economic benefit. However, engineering CPS poses modeling,

architecture, and engineering challenges and, to fully realize the desired benefits, many out-

standing challenges must be addressed. For the cyber parts of CPS, two decades of work in

the design of autonomous agents and multiagent systems (MAS) offers design principles for

distributed intelligent systems and formalizations for agent-oriented software engineering

(AOSE). MAS foundations offer a natural fit for enabling distributed interacting devices. In

some cases, complex control structures such as holarchies can be advantageous. These can

motivate complex organizational strategies when implementing such systems with a MAS

and some designs may require agents to act in multiple groups simultaneously. Such agents

must be able to manage their multiple associations and assignments in a consistent and

unambiguous way. This dissertation shows how designing agents as systems of intelligent

subagents offers a flexible, reusable approach to designing complex systems. It shows how a

set of flexible, reusable components were developed to create a new organization-based agent

architecture, OBAA++, specifically designed for multigroup agents . It presents the Adap-

tive Architecture for Systems of Intelligent Systems (AASIS), a new framework and system

architecture that uses OBAA++ to enable both complex, multigroup MAS and systems of

systems. This work illustrates the reusability and flexibility of the approach by using AASIS

to simulate a CPS for an intelligent power distribution system (IPDS) operating two com-

plex MAS concurrently: one providing continuous voltage control and a second conducting

discrete power auctions near sources of distributed generation.
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Abstract
As sensor prices drop and computing devices continue to become more compact and

powerful, computing capabilities are being embedded throughout our physical environment.

Connecting these devices in cyber-physical systems (CPS) enables applications with sig-

nificant societal impact and economic benefit1. However, engineering CPS poses modeling,

architecture, and engineering challenges2 and, to fully realize the desired benefits, many out-

standing challenges must be addressed3. For the cyber parts of CPS, two decades of work

in the design of autonomous agents and multiagent systems (MAS) offers design principles

for distributed intelligent systems and formalizations for agent-oriented software engineer-

ing (AOSE)4. MAS foundations offer a natural fit for enabling distributed interacting

devices5. In some cases, complex control structures such as holarchies can be advanta-

geous6,7,8. These can motivate complex organizational strategies when implementing such

systems with a MAS9 and some designs may require agents to act in multiple groups simulta-

neously7. Such agents must be able to manage their multiple associations and assignments

in a consistent and unambiguous way. This dissertation shows how designing agents as

systems of intelligent subagents offers a flexible, reusable approach to designing complex

systems. It shows how a set of flexible, reusable components were developed to create a

new organization-based agent architecture, OBAA++, specifically designed for multigroup

agents . It presents the Adaptive Architecture for Systems of Intelligent Systems (AASIS), a

new framework and system architecture that uses OBAA++ to enable both complex, multi-

group MAS and systems of systems. This work illustrates the reusability and flexibility of

the approach by using AASIS to simulate a CPS for an intelligent power distribution system

(IPDS) operating two complex MAS concurrently: one providing continuous voltage control

and a second conducting discrete power auctions near sources of distributed generation.
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Chapter 1

Introduction

What we do, if we are successful,

is to stir interest in the matter at hand.

— Julius Sumner Miller20

This research effort proposes and evaluates abstractions, architectural elements, and a

framework for designing complex systems in a way that supports the distributed design, de-

velopment, and implementation of system components by multiple contributors in a flexible,

reusable manner.

This chapter provides an introduction to the work and its motivation in Section 1.1, and

summarizes the approach, thesis, and contributions of the work in Sections 1.2, 1.3, and 1.4,

respectively. An overview of the document is provided in Section 1.5.

1.1 Motivation

As sensor prices drop and computing devices continue to become more compact and pow-

erful, computing capabilities are being embedded throughout our physical environment.
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Connecting these devices in cyber-physical systems (CPS) enables applications with signifi-

cant societal impact and economic benefit, spanning many critical sectors including energy,

transportation, healthcare, manufacturing, buildings, communities, agriculture, defense, and

aerospace1,21. However, engineering CPS poses modeling, architecture, and engineering

challenges2 and to fully realize the desired benefits, many outstanding challenges must be

addressed3. Several important research needs in CPS have been identified. Specifically,

work in abstractions and architectures for CPS is described as urgently needed22 and grand

challenges in CPS have been identified that cross multiple sectors and areas of research1.

Recent research efforts in the area of distributed cyber-physical control systems are

making use of complex control structures such as holarchies 6,8 (Definition 2.20). When

implementing such systems in a multiagent system (MAS) (Definition 2.7), correspondingly

capable organizational strategies may be required9. Additionally, CPS (Definition 2.4) run-

ning on critical infrastructure or other valuable physical systems may be employed to sup-

port multiple cyber-systems, each pursuing a different set of goals and focusing on different

problem domains23.

In some cases, complex, multigroup organizational designs (Definition 2.14) in MAS may

be warranted24. Implementing a MAS with multiple groups can provide additional flexibility

and redundancy, and can reduce the communication overhead required. However, imple-

mentation in multiple groups introduces additional challenges related to integrating the

groups and managing consistency between them. These complex (multigroup) MAS (Defi-

nition 2.16) may be structured in different ways depending on the application. Multigroup

organizational designs may be flat or hierarchical. Groups may be temporary, as in possibly

short-lived coalitions, or they may form more permanent structures such as open societies

where individual agents come and go. Groups may operate under designated intermediaries

as in federations25 or use compound structures that include several different types of or-

ganizations. Various approaches have been proposed to offer flexible, reusable mechanisms

for managing functionality required to form complex structures, such as a head-and-body
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approach for designing holonic agents 9.

Some organizational designs require an agent to be part of more than one group simul-

taneously26. In such applications, an agent may be called upon to combine, create, or relay

information between their multiple groups. Designing and building agents for these complex

systems can be more difficult than developing traditional agents as the agent must be able

to align its goals effectively while receiving goals from different groups.

The desire to develop additional architectural support for complex MAS lies in part

with their flexibility and scalability. Decreasing device sizes and costs, combined with

an increasing ability to process large amounts of information efficiently has resulted in

significant research investments in these areas. Complex MAS are suitable for a variety of

applications requiring complicated problem solving, offering the ability to employ distributed

reinforcement learning and iterative, dynamic state-based reasoning27.

One area well-suited to the application of complex MAS is that of electrical power distri-

bution systems (PDS). PDS (Definition 2.5) carry electricity from power generation facilities

to customers through a series of distribution lines and transformers. By their nature, PDS

are generally hierarchically distributed, and, with cross-ties and interconnects, PDS may

include complex interaction patterns between the various levels. The idea of architecting

intelligent power distribution systems, or smart grids , as holarchies is receiving research

attention28,8. As with other critical infrastructure CPS, intelligent PDS offers significant

potential benefits coupled with significant challenges. Active research areas include volt-

age control29, islanded operation and microgrids30,31,32, online future markets33, and other

related areas34.

To support complex systems such as an intelligent PDS, an architecture is needed that

can systematically address the challenges of both complex systems and complex organiza-

tional structures within a system.
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1.2 Approach

Our approach focused on developing reusable components to support both complex orga-

nizational structures within a system and the integration of multiple, possibly complex

systems into integrated systems of intelligent systems (Definition 2.13).

For the cyber- or software-parts of CPS (Definition 2.4), our approach relies on two

decades of work in the design of autonomous agents and multiagent systems (MAS). Prior

work in this area provides key design principles for distributed intelligent systems and

formalizations for agent-oriented software engineering (AOSE)4.

Specifically, an approach was needed that was capable of supporting the holonic con-

trol algorithms being developed where intermediate devices act both to aggregate more

distributed content, while concurrently participating as part of a higher-level control holon,

and focused our work on developing an approach that enabled an agent to be part of multiple

groups simultaneously26.

To support the ability for an agent to participate in multiple organizations simultane-

ously, a new architecture was required that would:

• Be based on sound software engineering principles. There should be a clear separa-

tion of concerns 35 between the various organizations in which the agent participates.

Additionally, each organization should be represented as a separate, cohesive compo-

nent in the architecture and each of those components should be weakly coupled to

the others. The architecture should provide a pattern that can be used for agents

participating in one or more organizations.

• Provide architectural features that inherently support group participation. Rather

than requiring significant hard-coded configurations for multiple organizations, the

architecture should provide built-in support for participation in multiple (one or more),

dynamically adapting organizations that may change over time.

• Provide built-in support for both inter-agent and intra-agent communication and pro-
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cessing. The architecture should enable communication between agents residing on

distributed physical hosts as well as for the internal communication required by the

agent to manage its participation in multiple organizations.

Architecting complex, adaptive systems can be challenging. When the project began,

no standard mechanisms were found for engineering agents specifically designed to enable

complex cooperative systems by integrating collections of complex multigroup MAS.

1.3 Thesis Statement

Implementing systems of intelligent systems with

multigroup agents offers a flexible, reusable approach for

engineering complex systems.

This dissertation presents the novel multigroup agent architecture developed specifically

for implementing complex systems. It introduces the design of each agent as a system of

intelligent sub-agents and shows how this approach allows agents to act in multiple groups in

a single system concurrently (e.g., one focused on voltage control). Further, it shows how the

same mechanisms can be employed to allow agents to accept goals from multiple systems,

driven by a different set of goals, at the same time. It includes experimental implementations

with a collection of multigroup agents in a complex intelligent power distribution system

(IPDS) that supports both grid control goals for volt-var management (as might be issued

from an electrical distribution control center) and future market auction goals (as may be

issued from independent market organizations).

This dissertation describes how multigroup agents enable a new level of self control

that provides new supports for agent reasoning and intelligence. For example, IPDS agents

associated with distributed sources of electrical generation may not fall completely under

centralized grid control, and they may not fall completely under market control, although

they can agree to and be authorized to support either or both systems. Multigroup agents
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are capable of not only accepting and issuing goals from various independently-owned or-

ganizations, but can also be configured to carry out more personal goals for the primary

stakeholder or owner of the associated equipment (e.g., photovoltaic solar generation pan-

els). Applying independent goal-driven behavior to each agent is novel as agents typically

carry out the goals of a single organization without this additional level of self control,

reasoning, or autonomy.

Reusability is demonstrated by providing:

1. A standard goal-driven multigroup agent architecture.

2. Application of common organization-control features across problem domains and or-

ganizational designs.

3. Standard practices for specifying the desired behavior of complex, multigroup organi-

zations.

4. Standard practices for implementing agents capable of operating the organizations

specified.

Flexibility is demonstrated by:

1. Using the recommended practices and mechanisms to specify the desired behavior for

a complex multigroup MAS organization.

2. Using the same practices to specify the desired behavior for a second, independent

complex MAS organization operating in a different, but related problem domain.

3. Using the recommended practices and mechanisms to implement intelligent agents

capable of operating both complex, independently-goal-driven systems concurrently.

4. Presenting experimental results based on trials demonstrating the success of the agents

to issue and accept goals for different organizations united under a common set of

system goals.
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5. Presenting experimental results based on trials demonstrating the success of the agents

to issue and accept goals for different systems, working towards a set of goals in a

different problem domain.

1.4 Contributions

Contributions of this research include:

• A new organization-based agent architecture, OBAA++, for implementing complex

MAS36.

• The Adaptive Architecture for Systems of Intelligent Systems (AASIS), a new frame-

work and system architecture for implementing complex MAS applications with OBAA++

multigroup agents .

• A standard decomposition and specification process for defining goal-driven systems

arranged in complex organizations concurrently operated by a multigroup MAS .

• Standard mechanisms for agents to manage personal prioritization and execution of

assigned goals in a way that reflects the personal biases of the agent’s owner or own-

ers37, including mechanisms for conflict detection and management , bias management ,

resource management , and reasoning with utility functions .

• Engineering recommendations for designing and creating systems of intelligent systems

with multigroup agents38,39.

This dissertation presents the AASIS framework for complex systems and the underlying

OBAA++ agent architecture that together provide a flexible, reusable approach to imple-

menting agents for complex systems. Based on my research, I believe this is first architecture

specifically designed to support agents as systems of subagents operating under the guidance

of multiple organizations and multiple systems concurrently.
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1.5 Overview

This chapter provides an introduction to the work and its motivation, and summarizes the

approach, thesis, and contributions of the work.

The rest of the document is organized as follows. Key definitions and a supporting

conceptual model are presented in Chapter 2. Background information and related work

is presented in Chapter 3 and an updated organization-based agent architecture for single

organization MAS is described in Chapter 4. The new OBAA++ agent architecture for

single-organization MAS is presented in Chapter 5. Chapter 6 introduces AASIS along with

standard algorithms for specifying functionality in complex systems. The chapter includes

standard approaches for customizing agent behaviors, and introduces standard mechanisms

for managing goal consistency when agents receive assignments from multiple organizations

and systems. Chapter 7 describes the Adaptive Organization-based Multiagent Systems

Engineering (AO-MaSE) process, the recommended software engineering process for imple-

menting complex systems with multigroup agents. The evaluation of OBAA++ and AASIS

for complex CPS are presented in Chapter 8, including application to a system of intelligent

systems, a sample intelligent power distribution system where agents operate two complex

multiagent systems concurrently, one focused on grid volt-var control23 and a second fo-

cusing on online auctions40. Chapter 9 summarizes the work, and offers conclusions and

recommendations for future research.
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Chapter 2

Definitions & Conceptual Model

You keep using that word.

I do not think it means what you think it means.

— Inigo Montoya, in The Princess Bride

This chapter provides key definitions and a conceptual model for designing complex

systems using the proposed method. It uses cyber-physical systems as examples of complex

systems with examples taken from the developing smart grid as imagined for a software-

enhanced power distribution system for distributing electricity within a residential area.

The Adaptive Architecture for Systems of Intelligent Systems (AASIS) framework de-

scribed in Chapter 6 includes a design process for decomposing complex systems, and pro-

vides specific examples of complex systems, some of which are arranged hierarchically. The

hierarchical structure motivates complex organizational structures consisting of different

groups at various levels and provides a means to evaluate the architecture and framework in

terms of how well it manages complexity (as defined by multiple interacting organizations).

AASIS was designed to work for additional types of complexity, and these examples are

meant to provide an illustration.
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Discussing any subject involving relationships between entities that are inherently com-

plicated can be challenging. Agreeing on a vocabulary is a useful first step. In this chapter,

terms are described that are used to characterize existing systems, and when discussing al-

gorithms for distributed problem solving. The section begins with general terms and works

towards very specific examples of the complex systems used as test cases. Approaches are

suggested for decomposing and designing systems along with a method for mapping them

into a reusable, flexible agent-based framework for implementation. The hope is that by

providing a well-defined conceptual model of terms first, and providing easy access to terms

from the table of contents, that the process for designing and implementing systems with

multigroup agents may be presented a bit more clearly in the remaining chapters.

The definitions are intended to represent the way the terms are used in this dissertation

and when discussing concepts and design aspects associated with the new OBAA++ archi-

tecture for multigroup agents proposed in Chapter 5 and the AASIS framework proposed

in Chapter 6 for implementing complex systems.

This chapter defines basic types of systems in Section 2.1-2.5 including cyber-physical

systems (CPS) and power distribution systems (PDS). It covers agents, multiagent systems

(MAS), and complex intelligent MAS in Sections 2.6-2.14. These definitions are used to

define systems of intelligent systems in Section 2.15. Sections 2.16-2.22 introduce several

types of system designs, including hierarchical and holonic. Finally, examples of application-

specific systems used in this research are covered in Sections 2.23-2.26 and a chapter sum-

mary is provided in Section 2.27.

2.1 Systems

The definitions begin with a very general, and widely-used concept, a system.

Definition 2.1 (System). A system is a set of interacting or interdependent components

forming an integrated whole41,42.
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Definition 2.2 (Delineated System). A delineated system is a set of interacting or inter-

dependent components forming an integrated whole defined in part by the presence of a

boundary 41,42.

Definition 2.3 (Environment). That which lies inside the boundary comprises the delin-

eated system. That which lies outside the boundary makes up the system environment.

This dissertation refers to many types of systems. An overview of the relationships

between the various entities is provided in Figure 2.1. In the Unified Modeling Language

(UML) notation used, a 4 or triangle indicates the entity is a generalization of the related

entity, while the diamond indicates aggregation (i.e., an entity with a diamond has one or

more of its related entities). Use of a ♦ or white diamond indicates that the entities exist

independently, that is, deleting the aggregated entity does not delete the related entity. The

first two concepts, environment and system, were described above. The remaining system

types will be described in the sections below, starting with the crucial differentiation between

types of systems needed for the decomposition process: the division of physical systems and

cyber-systems.

2.2 Physical System

A physical system, for the purposes of this work, refers to a system composed of physical

items used together for a common purpose. Physical systems may include many types

of physical components, including devices, sensors, actuators, connectors, and conduits.

Generally, basic control systems such as Supervisory Control and Data Acquisition Systems

(SCADA) systems may be considered parts of a physical system.
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Figure 2.1: Partial ontology of simple system types displayed an a class diagram.

2.3 Cyber-System

A cyber-system refers to a system composed of interacting software components. For the

purposes of this work, a multiagent system is considered to be purely a cyber-system.
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2.4 Cyber-Physical System (CPS)

A cyber-physical system (CPS) is the composition of a cyber (software) system for computa-

tion and communication with an underlying physical system2. A CPS can thus be described

as shown in Definition 2.4.

Definition 2.4 (CPS).

S = C ◦ P

where S = a cyber-physical system

C = a cyber-system

P = a physical system

The ◦ operator is the composition operator . In this work, the composition operator is

used to define cyber-physical systems, because they require the concurrent composition of

the computing processes with the physical ones 2. That is, the cyber functions are applied

to the physical functions. Order matters. The composition operator is not commutative; in

general, C ◦ P 6= P ◦ C.

2.5 Power Distribution System (PDS)

Definition 2.5 (PDS). A power distribution system (PDS) is a physical system for carrying

electricity, typically encompassing the electrical conduit and associated equipment that runs

from a substation to the supported set of distributed end users.

In this paper, several PDS configurations were selected in which the substation connects

to a set of branching feeders that in turn connect to a set of neighborhood transformers.

Each transformer is connected to 2-6 residential homes that consume electricity, some of

which are also capable of producing electricity with solar PV.
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2.6 Agents & Multiagent Systems (MAS)

The design of software for a CPS can follow different approaches. One design approach

receiving significant research attention for PDS control is that of multiagent systems (MAS).

There are multiple possible definitions for these terms; this dissertation uses the following.

Definition 2.6 (Agent). An agent is an entity that perceives its environment and acts

autonomously in accordance with the information gathered43.

Definition 2.7 (MAS). A multiagent system (MAS) is an interacting set of agents solving

problems beyond the individual capabilities or knowledge of any single agent in the set44.

Agents may be software, biological, or some combination of both. As an interacting

set of entities, a MAS may be operate within a single executable on a single device (e.g.,

a workstation), or may run on many cores in the cloud. A MAS may also be distributed,

running on many different devices, with each entity running in a different executable in a

different location.

2.7 Intelligence

The definition of intelligence remains somewhat non-specific. A survey of conventional

definitions may include aspects of logic, abstract thought, understanding, self-awareness,

communication, learning, emotional knowledge, memory, planning, creativity, and problem

solving 45. To define artificially intelligent systems as those that simulate intelligence, re-

mains correspondingly vague. For the purposes of this work, the following definition, which

works for both software and organic entities, is used.

Definition 2.8 (Intelligent). An intelligent entity is an entity that responds to its environ-

ment, and acts autonomously, rationally, and proactively to achieve its goals 46.
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This definition removes basic reactive control systems from the definition, but includes

all goal-driven, reasoning entities, with an ability to get some information about their envi-

ronment.

2.8 Intelligent System

Definition 2.9 (Intelligent System). An intelligent system is a goal-driven, reasoning sys-

tem of autonomous interacting entities pursuing a common set of goals beyond the individual

capabilities or knowledge of any single entity44 as shown in Figure 2.2.

An intelligent system may include intelligent and non-intelligent (e.g., purely reactive)

Figure 2.2: An intelligent system is a goal-driven, reasoning system.
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entities. At least some of the entities must be intelligent, i.e. autonomous, environment-

aware, goal-driven, and able to reason.

Hybrid intelligent systems may involve the integration of both biological entities, such

as humans, and cyber-systems14.

2.9 Intelligent MAS

An intelligent MAS is a goal-driven, reasoning MAS. The purpose of an intelligent MAS

is defined by the set of goals for the system, just as biological systems are defined by their

purpose.

Definition 2.10 (Intelligent MAS). An intelligent MAS is a goal-driven, reasoning multi-

agent system as shown in Figure 2.3.

An intelligent MAS may be viewed as a society or organization of agents (i.e., as a set

of agents that interact together to coordinate their behavior and often cooperate to achieve

collective goals)47.

Definition 2.11 (Organization). An organization is a set of agents that interact and coor-

dinate their behavior to achieve a common set of goals47.

In this work, an intelligent system is considered to be organized around goals that focus

on a particular problem area. For example, one MAS may be driven by a set of grid control

goals focused on volt-var control and overvoltage prevention, while another MAS may be

driven by a set of goals related to online auctions.

A non-goal-driven MAS is possible, and the general definition of MAS does not specif-

ically require the system to be goal-driven. Generally, outside these formal definitions, the

term MAS is used to mean an intelligent, goal-driven MAS.

Organization-based Multiagent Systems (OMAS) provide an effective mechanism for de-

signing large, complex, intelligent MAS47,48,49. OMAS provide a clear separation between

16



agents and the specification of the organization in which they participate, reducing the

complexity of the system49.

This work focuses on intelligent systems, and therefore, an organization is specified in

terms of the goals the organization must pursue and the possible structures and behaviors,

commonly defined with roles, plans, capabilities, policies, and norms. In organization-based

MAS, the agents and entities that staff or play roles in the organization are kept separate

from specification of the organization, supporting advanced adaptive behaviors50. In this

dissertation, an organization specification is defined as shown in Definition 2.11.

Definition 2.12 (Organization Specification). An organization specification (OS) defines

the set of goals the organization pursues and the structures, behaviors, permissions, require-

ments, and constraints for achieving those goals.

Figure 2.3: An intelligent MAS is a goal-driven, reasoning MAS.
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a MAS implements an OS. An organization is defined by the combination of a MAS and

the OS or OSes it implements. Thus, in this dissertation, an organization is dynamic. It

defines the state of the goals and agents at a specific point in time during execution of the

MAS¿

An organization is staffed by agents or other entities playing roles in the organization.

Each role typically requires one or more capabilities and may reference one or more plans

for playing the role. Models for reasoning about organizations typically include agents in

the reasoning model, as described in Section 3.8.

2.10 Complexity

Managing complexity involves design choices; defining the difference between an organization

and a system can be challenging. Arguably, single systems and single organizations could

be quite complicated. In this dissertation, the term complex is used specifically to indicate

more than one of a type. This term is used in the context of complex systems and complex

organizations as described below.

2.11 Complex System

A complex system is an interacting set of systems, a.k.a. a system of systems, as described

in Definition 2.13.

Definition 2.13 (Complex System). A complex system is a system that includes an inter-

acting or interdependent set of two or more systems.

This recursive relationship is shown in Figure 2.4. Every system operates to achieve its

own set of goals, much like the circulatory system or the respiratory system in biology.

A system component may be a another system. In such cases, it may be helpful to refer

to the larger, containing system as a supersystem, and to the contained, component system
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Figure 2.4: A complex system includes an interacting set of systems and is a system.

as a subsystem. If one or more of the systems are intelligent (i.e., goal-driven), the term

system of intelligent systems applies.

An example of a complex system is an intelligent power distribution system that incor-

porates MAS for grid control and a MAS for online auctions. This example was used to

evaluate the architecture as described in Section 8.1.

2.12 Complex Organization

To manage complexity, a MAS organization (Definition 2.11) may be decomposed or parti-

tioned into more than one organization47.

For example, the goals of a hierarchical system may be decomposed into nested or-

ganizations, each running similar types of goals with different organizations focusing on

different parts of the system. There are many formalized approaches to designing MAS (see

Section 3.6), and depending on the selected approach the definition will be different.

Definition 2.14 (Complex Organization). A complex organization is an organization that

includes an interacting set of organizations and is, itself, an organization as shown in Fig-

ure 2.5.

A system may be decomposed or partitioned into multiple organizations. The terms
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Figure 2.5: A complex organization includes an interacting set of organizations and is an
organization.

organization and group are generally interchangeable. When dealing with a complex orga-

nization, the term organization is used refer to the higher, more complex organization in

the system. The term group or local group, is used to refer to the smaller, contributing

organization.

Definition 2.15 (Local Group). A group or local group is a smaller, contributing organiza-

tion in a complex organization. The term is synonymous with the organization entity shown

in Figure 2.5.

As an organization (Definition 2.11) each group operates to achieve its own set of goals,

called local goals . Typically all local goals reflect or contribute to the overall goals of the

system47.

In a hierarchical arrangement, the system goals are high-level goals, which can be de-

composed into increasing lower-level goals to be given to lower-level organizations. Complex

organizations may be nested hierarchically, which can lead to a recursive set of organizations

of organizations within a system. At any point, if several lower-level organizations operate

together to form a higher-level organization, the lower level organizations may be considered

sub-organizations, or groups, of the higher-level complex organization.

20



Figure 2.6: A complex MAS has a complex (multigroup) organization.

2.13 Complex MAS

A complex MAS is a MAS designed with a complex organization. To avoid confusion

with the term complex system (a MAS is a system), a term such as MAS implemented

with a complex organizational structure could be used, but even the abbreviation would be

cumbersome, so the term complex MAS is used. Additional detail is provided in Chapter 6.

Definition 2.16 (Complex MAS). A complex MAS is a multiagent system with a complex

organization as shown in Figure 2.6.

It is possible to design complex systems that consist of multiple interacting MAS, each

of which is driven by a different set of system goals. If the goals of the MAS are focused on

a different problem-solving area, e.g., around online auctions, rather than voltage control,

they are considered to be different MAS, even if the systems interact and make use of some

of the same underlying devices. The systems may even involve the same underlying agents
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as described in Chapter 6.

2.14 Complex Intelligent MAS

A complex intelligent MAS is an intelligent MAS designed with a complex organization.

Definition 2.17 (Complex Intelligent MAS). A complex intelligent MAS is an intelligent

multiagent system with a complex organizational structure as shown in Figure 2.7.

2.15 System of Intelligent Systems

Definition 2.18 (System of Intelligent Systems). A system of intelligent systems is a com-

plex, intelligent system as shown in Figure 2.8.

Synonym: complex intelligent system.

2.16 Hierarchy

Software, physical, and biological systems can often be viewed in terms of a hierarchy , a

way of decomposing systems into levels. The top-level is considered to provided the most

comprehensive view, which is progressively sub-divided into lower levels. In this work, the

term hierarchy typically refers to a nested, recursive, partially-decomposable hierarchy, in

which a top-level entity can be decomposed progressively to the lowest level, but each level

is not solely the sum of its parts, as additional components or content may be added at each

level. Further, each lower level entity is nested under exactly one higher-level entity, forming

a tree structure, a constrained type of graph. More complex organizational structures (e.g.,

those including overlapping structures) are possible, but are not discussed in this work.
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Figure 2.7: A complex intelligent MAS has multiple groups, each with a local goal model.

2.17 Hierarchical Systems

A hierarchical system is a system composed of interrelated hierarchical subsystems, with

some lowest level of non-composed subsystem51. The lowest level may be arbitrarily selected

to meet the objectives and requirements of system design.
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Figure 2.8: A system of intelligent systems has multiple systems, each with its own system
specification and goals.

2.18 Holon

As part of this research, a holonic multiagent system (HMAS) is proposed to facilitate the

large-scale integration of rooftop solar PV in residential level, minimize the power losses and

deal with scalability issues in distribution system.

Such designs enable a type of recursive control often associated with nested cyber-

physical components24. The word holon comes from holos, meaning whole, and on meaning

parts52 and refers to an entity that reflects both an entire sub-organization, yet simultane-

ously acts as a part of a larger organization. Advanced organizational structures such as

holons provide ways to organize software into more cleanly separated, testable entities and

can help support scalable systems53.

A holon is defined as shown in Definition 2.19.

Definition 2.19 (Holon). A holon is an interacting entity that can be viewed as a whole

functional unit and simultaneously, as a part of a larger unit of organization44,52.

This definition can be applied to both biological and software systems.
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Figure 2.9: A holarchy is an organization of holons8.

2.19 Holarchy

Definition 2.20 (Holarchy). A holarchy is an organization of holons as shown in Fig-

ure 2.98.

Each holon acts as a semi-autonomous subsystem aiming to manage its resources and

make decisions autonomously. Each holon functions as both subordinate to control from

higher levels and as supra-ordinate, acting in a supervisory capacity to the holons acting as

its dependent parts44,52. A holarchy therefore includes holons, and is, itself, also a holon.

This results in a recursive structure that can be viewed as either a whole unit or as a part of

a higher-level holon. At any point, if several lower-level holons operate together to form a

higher-level holon, the lower level holons may be considered sub-holons of the higher-level,

holon which can be referred to the super holon.

This recursive relationship is shown in Figure 2.1010.
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Figure 2.10: A holarchy includes a set of interacting holons and is a holon10.

Figure 2.11: A hierarchical holarchy is a hierarchical organization of holons8.

2.20 Hierarchical Holarchy

Definition 2.21 (Hierarchical Holarchy). A hierarchical holarchy is a hierarchy of holons

as shown in Figure 2.118.

In a hierarchical holarchy, each lower-level holon is part of exactly one immediately

higher-level holon. The figure was specifically used to illustrate distributed entities in a

PDS.
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Figure 2.12: A hierarchic holonic MAS is a multiagent system that implements a hierar-
chical organization of holons.

2.21 Holonic MAS

Definition 2.22 (HMAS). A holonic multiagent system (HMAS) is a is a complex multia-

gent system that implements a holarchy.

HMAS can be implemented using multigroup agents by having each holonic agent operate

in two groups concurrently: both the one that the agent represents in its entirety and a

second where it acts as part of a greater whole.

2.22 Hierarchic Holonic MAS

Definition 2.23 (HHMAS). A hierarchic holonic MAS (HHMAS) is a complex multiagent

system that implements a hierarchical holarchy as shown in Figure 2.12.

In a HHMAS, each lower-level holon is part of exactly one immediately higher-level

holon. The figure was specifically used to illustrate distributed prosumers in a PDS.

An HHMAS is a special type of HMAS, in which the holons are arranged in a nested

hierarchy. A top-level holon reflects a complex system. The top-level holon, viewed as a

holonic group, includes one or more mid-level holons operating within the top-level group.
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These mid-level holons, in turn, may include lower-level organizations represented by holonic

agents running on lower levels, i.e., those considered to be further out towards the edges

of the distributed system. HHMAS is a useful design approach when the goals and control

algorithms in the system are recursive and can be reused between levels. Several HHMAS

were implemented during the course of this work.

2.23 Complex CPS

As described in Section 2.11, a complex system includes an interacting set of two or more

systems. A human, for example, could be considered a complex system, in that each human

includes a nervous system, a respiratory system, and other systems each of which is focused

on specific goals. The systems are interactive, and mutually supportive, yet can be consid-

ered separately to assess current functionality. Every cyber-physical system is an example of

a complex system, since it is the composition of both a cyber-system and a physical system

as shown in Definition 2.4.

A complex CPS is defined shown in Definition 2.24.

Definition 2.24 (Complex CPS).

S = S1 ∪ S2 ∪ ... ∪ Sn

where S = a complex cyber-physical system

n ∈ Z

n ≥ 2

When describing complex CPS, the union operator , ∪ is used. Systems involve a variety

of software and physical components and devices which may work together or be included

in multiple systems at the same time. The order of processing the supporting systems may

not be clearly defined and may change over time. The union operator is commutative;

28



S1 ∪ S2 = S2 ∪ S1.

To form a complex CPS, either the software system or the physical system, or both, could

be complex. For example, cyber-systems may be connected via messaging technologies, and

physical systems may represent networked, distributed assets. Thus, a complex CPS may be

formed by either the composition of a complex cyber-system with a single physical system

as defined in Definition 2.25 or by the composition of a single cyber-system with a complex

physical system as defined in Definition 2.26.

Definition 2.25 (Complex CPS with Simple Physical System).

S = S1 ∪ S2 ∪ ... ∪ Sn

C = C1 ∪ C2 ∪ ... ∪ Cn

Si = Ci ◦ P

where S = a complex cyber-physical system

C = a complex cyber system

Si = a cyber-physical system

Ci = a cyber-system

P = a physical system

n ∈ Z

n ≥ 2
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Definition 2.26 (Complex CPS with Simple Cyber-System).

S = S1 ∪ S2 ∪ ... ∪ Sn

P = P1 ∪ P2 ∪ ... ∪ Pn

Si = C ◦ Pi

where S = a complex cyber-physical system

P = a complex physical system

Si = a cyber-physical system

C = a cyber system

Pi = a physical system

n ∈ Z

n ≥ 2

When describing either complex cyber-systems or complex physical systems the union

operator , ∪ is used. Complex systems involve a variety of elements which may work together

and be used by multiple systems at the same time. The order of processing supporting sys-

tems may not be clearly defined and may change over time. However, each supporting

cyber-system is a composition of the cyber functions on the physical functions (order mat-

ters), as discussed with Definition 2.4.

In turn, the design of each contributing system itself may be complex1,54. A complex

CPS could also involve multiple cyber-systems and multiple physical systems, as may be

envisioned for CPS-enabled cities.
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2.24 Grid Control System (GCS)

Different examples of CPS that employ complex MAS have been developed to evaluate the

architecture and framework and test proposed algorithms. The first is a grid control system

(GCS), in this case, a CPS for volt-var control in a power distribution system. A GCS is

a composition of a complex MAS for grid control with an underlying physical system as

shown in Definition 2.27.

Definition 2.27 (GCS).

SG = CG ◦ PP

where SG = a cyber-physical system

CG = complex MAS for grid control

PP = a power distribution system

2.25 Online Auction System (OAS)

A second example is an online auction system (OAS), a CPS for online auctioning of dis-

tributed electrical generation between local prosumers in a PDS. A prosumer is an entity

that can both produce and consume electricity.

A OAS is a composition of a complex MAS for online auctions with an underlying

physical system as as shown in Definition 2.28.
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Definition 2.28 (OAS).

SS = CS ◦ PP

where SG = a cyber-physical system

CS = complex MAS for online auctions

PP = a power distribution system

2.26 Intelligent Power Distribution System (IPDS)

The examples in this paper propose adding computational and communication capabilities

to a PDS to create an intelligent power distribution system (IPDS). An IPDS is a general

term for a CPS for a PDS. It can include one or more intelligent cyber systems of any type

using the general Definition 2.29.

Definition 2.29 (IPDS).

SI = C ◦ PP

where SI = an intelligent power distribution system

C = a cyber system

PP = a power distribution system

This work describes an approach for implementing complex systems, and systems of in-

telligent systems. Since both a GCS and an OAS may integrate a common PDS, the systems

may interact, sharing common sensors, and determining desired operation of associated in-

verters so as to maximize the achievement of both online auction goals and power control

goals, as discussed in Section 8.1.

The cyber-system in Definition 2.4 may be complex. Using the recursive definition of
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a complex system provided in Section 2.11, a flexible definition for an intelligent power

distribution system (IPDS) was developed such that both a GCS and an OAS may be

examples of a (simple) IPDS as shown in Figure 2.1. Further, if both the GCS and the

OAS are running simultaneously on a common PDS, they create an IPDS with a complex

cyber-system.

Thus, the definition of an IPDS can be expanded, and allowed to incorporate the addition

of new systems focusing on additional areas as well as shown in Definition 2.30.

Definition 2.30 (Complex IPDS).

SI = {C1 ∪ C2. . . ∪ Cn} ◦ PP

where SI = an intelligent power distribution system

Ci = a cyber system

n = the number of interacting cyber systems

PP = a power distribution system

Systems that share resources, such as real and reactive power, create opportunities for

cooperation. Mechanisms for managing goal consistency in complex, cooperative systems

are presented in Chapter 6.

2.27 Summary

This chapter describes the terms used in this research. It defines basic types of systems

including CPS and PDS. It covers agents, MAS, and complex intelligent MAS. It defines

systems of intelligent systems and several types of system design, including hierarchical

and holonic. Finally, examples of application-specific systems used in this research are
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introduced. These definitions help lay a conceptual foundation for the background and

related work described in Chapter 3.
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Chapter 3

Background

To know that we know what we know,

and to know that we do not know what we do not know,

that is true knowledge.

— Copernicus

This research touches on several areas of computer science, some of which are relatively

new. This chapter provides a brief overview of some of these related areas, both to provide

some general background as well as to introduce additional prior work beyond what was

mentioned in the introduction. The intent is to provide a descriptive background, some-

what broad without going too deep. More formal definitions of key terms are provided

in Chapter 2. Section 3.1 introduces the challenges and potential of distributed artificial

intelligence. Sections 3.2 and 3.3 focus on the objectives and motivation for complex, self-

adaptive systems. Section 3.4 discusses the unique aspects of cyber-physical systems and

Section 3.5 discusses multiagent systems.

This chapter also includes an overview of some of the related work that motivates and

enables this research. Section 3.6 looks at some relevant work in the broader field of agent-
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oriented software engineering and organization-based systems. Section 3.7 looks at impor-

tant work in the area of goal-driven systems and Section 3.8 at some of the most successful

approaches for modeling organizations and specifically OMACS, which is a crucial foun-

dation of this work. Section 3.9 covers some key work in the area of tool development

and specifically, prior work on agentTool3 which was used to create our behavior specifi-

cations. Section 3.10 provides an overview of prior work in engineering organization-based

agent systems while Section 3.11 and 3.12 introduce prior work related to modeling goals

and managing goal consistency, respectively and Section 3.13 introduces some research on

complex system that offer especially helpful mechanisms for presenting and discussing the

selected approach. Section 3.14 and Section 3.15 cover prior work enabling our approach

to multigroup systems and the implementation of the voltage control and online auctioning

implementation examples, respectively. Section 3.16 discusses recent research specifically in

the area of HMAS for PDS, a key part of the motivation for this work, while Section 3.17

looks at additional interest in broader sectors and Section 3.18 covers related work with

multigroup control structures and multigroup agents. Section 3.19 provides a chapter sum-

mary.

3.1 Distributed Artificial Intelligence (DAI)

The term artificial intelligence (AI) has been around at least since 1955, when a team of

researchers proposed a research project on the science and engineering of making intelligent

machines 55. Since then, the field has grown tremendously, resulting in advances such as

Watson, the Jeopardy-winning computer56, Roomba, the domestic vacuum-cleaning robot57,

and the autonomous soccer-playing robotic teams competing in annual RoboCup compe-

titions58,59. The subject engages not only researchers, but the public in general. When

Stanford offered their free online course on Artificial Intelligence, over 58,000 of us from all

over the world signed up60,61.
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The goal of using AI to fully emulate human intelligence remains beyond our abilities,

but the application of AI principles to specific sub-problems has been fruitful62. A large and

valuable sub-area is that of DAI, which Bond and Gasser called the subfield of AI concerned

with coordinated, concurrent action and problem-solving 63.

In 1999, Ferber described the goal of creating distributed artifacts capable of accom-

plishing complex tasks through cooperation and interaction 43 and Weiss defined DAI as the

study, construction, and application of multiagent systems, that is, systems in which several

interacting, intelligent agents pursue some set of goals or perform some set of tasks 64.

This definition, with its focus on a system of agents working towards a common set of

goals is part of what I consider to be a critical aspect of intelligent systems (Definition 2.9)

and intelligent MAS (Definition 2.10).

3.2 Complex Adaptive Systems

The study of complex adaptive systems in general uses the word complex in a somewhat

different way than used previously in this dissertation. Complex in this case, may include

systems with large numbers of elements, dynamic networks of interactions, or intricate inter-

connectivity, rather than simply consisting of more than one of a type65.

Adaptive refers to the internally-driven change, adaptation, or mutation of a system in

response to changes in the system environment and has been motivated by examples from

nature and biology, complexity science, and other disciplines, including AI, cognitive sci-

ence, and game theory66,67,68. Current examples include the new 3D-printed, self-charging,

cooperative BionicANTs from Festo69,70.

The adaptive response is often motivated by a specified set of goals71. Research into

complex adaptive systems applies to social organizations, biological organisms, ecological

communities, and DAI.

In this work, the term complex system (Definition 2.13) is used to refer specifically to
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a system of systems. The convention is followed that a single system tends to be united

under a single set of goals, much like the circulatory system or the respiratory system in

biology. Although formed of many different components, each organ system performs a

specific purpose.

A human, on the other hand, consists of many systems – it is a system of systems – and

thus warrants the term complex. This work uses the terms complex MAS and system of

intelligent systems to refer to entities composed of smaller entities, each of which pursues

its own goal-driven objectives.

This research deals specifically with the features needed to support complex intelligent

systems and to manage the inherent complexity through a variety of abstractions and design

decisions that enable the separation of concerns in a reusable and flexible manner.

Work in artificially-intelligent complex adaptive systems has evolved from its foundations

in multiagent systems, and the application of autonomous entities and organizations that

can be programmed to work towards a variety of different, possibly interrelated, or even

potentially-conflicting, goals.

By distributing the intelligence among the devices, systems can react more quickly to

local events, and can employ on-line learning to enhance their responses. The benefits come

with significant complexity, and the management of this complexity is a key part of what

motivated this research.

3.3 Self-Adaptive Systems

Self-adaptive software systems are those capable of evaluating their own behavior in the

context of a changing environment and modifying their behavior when they determine they

are not accomplishing their objectives as well as they could72,73,74. The run-time adaption

is made possible by supporting self- properties including such aspects as self-healing, self-

configuring, and self-optimizing that may be considered hierarchically72,75,76:
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1. Highest: self-adaptiveness, self-control, self-managing, self-governing, self-maintenance,

self-evaluating, and self-organizing.

2. Major aspects: self-configuring, self-diagnosing (identifying anomalies, faults, fail-

ures), self-repair (recovering from failures), self-healing (discovering, diagnosing, re-

acting to failures, proactively avoiding failures), self-optimizing/tuning/adjusting (in

terms of response time, throughput, utilization, and/or workload), and self-protecting,

both reactive and proactive.

3. Primitive aspects: self-awareness (aware of its own states), self-monitoring, self-

situated, context-awareness (aware of its environment).

Adaptive, resilient, self-managing systems may also be referred to as autonomic comput-

ing systems, where new components integrate as effortlessly as a new cell establishes itself

in the human body 75.

3.4 Cyber-Physical Systems (CPS)

CPS is a relatively new term from the field of embedded systems, indicating a targeted

computer system where software and hardware work closely together to enable functionality

in dedicated devices as described in Section 2.4.

Devices range from smart phones and smart watches, to vehicles and traffic lights, to

smart meters and smart inverters for sensing and managing electric power1,21. CPS may

incorporate potentially massive numbers of connected devices working together. Rather than

transporting massive amounts of information to a centralized source, intelligent algorithms

that incorporate sensing, learning, and taking appropriate actions can be distributed among

the various devices77. CPS devices can communicate and be programmed to pursue local

optimums that can be increasingly combined into more centrally-optimum solutions54.
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Physical aspects of a CPS may be organized in different ways and may be either sta-

tionary or mobile. An example of a stationary CPS that tends to be arranged hierarchically

is a residential electric PDS. In a traditional PDS, electricity generally flows from a single

substation, down and out through a distribution network involving high-voltage, 3-phase

feeder lines, which split into single-phase lateral lines, then down into neighborhood trans-

formers, which further drop the voltage to a level suitable for supplying end users in homes.

This hierarchical structure is more like a tree. Connected traffic lights may be arranged in

more complex structures, such as graphs and grids. In some distributed sensor CPS, the

physical sensors may be distributed randomly. In some cases, the such as CPS systems in

transportation, the physical devices may be mobile.

Enabling advanced CPS systems involves subfields such as DAI, MAS, and adaptive

systems. CPS design may incorporate aspects of control theory, game theory, machine

learning, and distributed problem solving27.

3.5 Multiagent Systems

Software systems can be designed in many ways. One option for designing a system is to

create intelligent agents and multiagent systems as defined in Section 2.6. Engineers may

design MAS in many different ways to best meet the needs of the system and to optimize the

communication and processing required. A good overview of the problem domains suited

to MAS is shown in Figure 3.111.

Some MAS are implemented as a single group of agents. Complex MAS many include

many groups. Agents may be part of only one group, or in some cases, for example, when

implementing control holons, agents may need to act in multiple groups concurrently.
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Figure 3.1: Technology comparison of multiagent systems with client-server and service-
oriented system approaches11.

3.6 Organization-based AOSE

A variety of approaches to the successful design and implementation of intelligent, agent-

based systems have been proposed. These engineering methodologies may come with a

recommended set of associated software engineering practices, models, and/or tools. Some

examples of methodologies reviewed in this research area include:

• Adelfe (b. 2003)78

• AGR (b. 2003) agent-group-role based47

• ASPECS (b. 2010)18

• Gaia (b. 2003)48

• Gormas (b. 2011)79

• INGENIAS (b. 2005)80

• MOISE+ (b. 2002)81
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• O-MaSE (b. 2004 MaSE)12 (also OMACS, GMoDS, and OBAA)

• OMNI (b. 2004)82

• OperA (b. 2003)83 (with associated model checking tool, OperettA84)

• PASSI (b. 2005)85

• Prometheus (b. 2005)86

• ROMAS (b. 2012)87

• SODA (b. 2006)88

• Tropos (b. 2004)89 (associated with JACK, GRL)

In some cases, the approaches may be quite similar, and in others, the different methodolo-

gies offer significantly different approaches90 See also a discussion of some of the associated

organizational models in Section 3.8.

O-MaSE is an organization-based, role-centered process framework that consists of three

main components: a metamodel, method fragments, and guidelines12. The metamodel de-

scribes system components as shown in Figure 3.2. Method fragments define engineering

roles, their activities, and the resulting work products, such as the goal models, role models,

and plan diagrams that define the system. Each aspect of O-MaSE is supported by agent-

Tool3 modeling tools, which support method creation and maintenance, model creation and

verification, and code generation and maintenance.

O-MaSE was selected as the engineering process for its organizational focus, the exe-

cutable goal model, the available tools, and its ease of use.

During the course of this work, a new O-MaSE-compliant process was developed and

employed to assist with implementation of complex systems involving a variety of supporting

organizations. The new process, called the adaptive organization-based multiagent system
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Figure 3.2: O-MaSE meta model for engineering agent systems. OMACS components are
highlighted12.

engineering (AO-MaSE) process has been expanded and revised to guide the development

of the multiple organizations required38,39.

Linnenberg et al. used the O-MaSE methodology and agentTool3 to develop DEMAPOS

(DEcentralized MArket Based POwer Control System)33 for power trading; their convention

of combining entities capable of producing and/or consuming electricity into the notion of

prosumer agents has been used in this dissertation as well.

3.7 Specifying Behavior

O-MaSE begins with specifying the goals for the MAS organization and offers the Goal

Model for Dynamic Systems (GMoDS), which includes an executable goal model that will

instantiate goals during runtime91. System goals are defined early in the O-MaSE process

as a single goal specification tree. The overall top goal for the MAS is progressively decom-
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posed and the leaf goals – those without any goal children – are those that get assigned to

participating agents.

GMoDS goals can be customized by providing an optional set of goal parameters to the

tree which can be cascaded down to the assignable goals. During runtime, new goals can be

issued in response to various events (such as a preceding goal being successfully completed),

or the parameters may be modified for existing goal assignments14.

3.8 Modeling Organizations

Following from our selection of O-MaSE as our foundation for engineering systems and

GMoDS for dynamic goal management, this work selected the Organization Model for Adap-

tive Complex Systems (OMACS) to represent the organization information to the agents13.

OMACS defines an organization as a tuple as shown in Definition 3.1.

Definition 3.1 (OMACS organization).

O= < G, R, A, C, Θ, P, Σ, oaf, achieves, requires, possesses >

where:

• G - goals of the organization

• R - set of roles

• A - set of agents

• C - set of capabilities

• Θ - relation over G x R x A defining the current set of agent/role/goal assignments

• P - set of constraints on Θ

• Σ - domain model used to specify environment objects and relationships
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• oaf - function P (G x R x A) → [0..∞] defining quality of a proposed assignment set

• achieves - function G x R → [0..1] defining how effective the behavior defined by the

role could be in the pursuit of the specified goal

• requires - function R → P (C) defining the set of capabilities required to play a role

possesses function A x C → [0..1] defining the quality of an agent’s capability

OMACS also includes two additional derived functions to help compute potential assignment

values: capable and potential.

• capable - function A x R→ [0..1] defining how well an agent can play a role (computed

based on requires and possesses)

• potential - function A x R x G → [0..1] defining how well an agent can play a role to

achieve a goal (computed based on capable and achieves)

The OMACS model is shown in Figure 3.3.

A corresponding organization model for BDI-based JACK agent systems provides the

underlying model for some of the most closely-related research92,93.

Other methodologies include alternate ways of managing organizational structures and

a comparison of several have been conducted94.

Organizations are more fully implemented in O-MaSE and are more central in the model

than in some of the alternatives. O-MaSE does not use norms or contracts, but provides

policies which can be used to describe rules for how organizations must, or should if possible,

behave95,96. OMACS’ organization-based approach provides a key foundation for the design

of the multigroup agents provided in this dissertation.

3.9 Frameworks and Tools

Another active research area that supports the development of complex systems includes

agent and MAS-related modeling tools. Some of the modeling tools and approaches reviewed
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Figure 3.3: OMACS model13.

include the following:

• Agent Development Kit. By Tryllian, Java, services-based97.

• AgentBuilder for BDI agents98.

• agentTool3. Used with O-MaSE, OMACS, GMoDS99.

• Cougaar. Cognitive Agent Architecture from DARPA, focused on scalability, open

source since 2004, cougaar.org, uses plugins for domain-specific capabilities100.

• GIMT. For BDI agents101.

• Grasshopper. Since 1991, FIPA, MASIF compliant, ACL messaging, shared thread

pool100.

• Ingenias IDE. Since 200580

• Jack. Java Intelligent Agent Framework102.
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• JADE. Java Agent Development Framework, for Belief-Desire-Intention (BDI) agents,

FIPA compliant, open-source since 2003, ACL/XML communications, each agent has

own thread103.

• Jason. Based on Agent Speak programming language for Belief-Desire-Intention (BDI)

agents104.

• MadKit.

• MASDK. Multi-Agent System Development Kit105.

• PASSI. Since 2002106.

• SkeletonAgent.

• SPARK agent framework107.

• Tropos Modeling. Since 2002108.

• Zeus. Since 1999. Agent-building toolkit for BDI agents, Java, FIPA compliant109.

The 2010 review provides an overview and comparison of agentTool, Cougaar, Jack,

JADE, and Jason110, while earlier reviews include additional platforms, as well as earlier,

inactive platforms111,97.

The O-MaSE methodology works with agentTool3. Goal specifications (as shown in

Figure 2.2 and Figure 2.3) can be developed graphically, in the Eclipse-based integrated de-

velopment environment with the agentTool3 plugin. agentTool3 also supports the graphical

implementation of role models that relate a role to the goal it achieves, and a required set of

capabilities that an agent must have to play the role. This allows organizational behavior to

be specified in a loosely-coupled manner, independent from the implementation of specific

agents. A Google code project has been created that converts agentTool3 models to UML

drawings in Violet112.
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3.10 Organization-based Agents

An agent architecture was designed to support OMACS called the Organization-based Agent

Architecture (OBAA)14. As shown in Figure 3.4, an OBAA agent consists of two basic com-

ponents, a general purpose control component (CC) and an application specific execution

component (EC). The CC contains the adaptive behavior logic related to organizational as-

signments and is generally domain-independent. The EC contains the application-specific

part of the agent in terms of roles and capabilities. The EC receives assignments, executes

application-specific plans, and notifies the CC when events occur.

The CC has four basic components: Goal Reasoning, Organization Model, Reorganiza-

tion Algorithm, and the overall Reasoning Algorithm (RA). The RA ties the other three

components together. First, the RA gets an event from either another agent or its local

EC. This event is passed to the Goal Reasoning component, which updates the organization

goals and returns the set of active goals. The RA then stores the active goals in the Organi-

zation Model and removes any assignments related to the goals deleted from the active goal

set. If the RA decides a total reorganization is required, the Reorganization Algorithm is

called to compute a new set of assignments. If the RA calls for a partial reorganization, the

Reorganization Algorithm only computes assignments for new goals using using the avail-

able agents. The new/updated set of assignments is stored in the Organization Model and

the updates are sent to either other agents and to the local EC.

The EC receives assignments, executes application-specific plans and notifies the CC

when events take place. The Agent Control Algorithm (ACA) takes assignment updates

from the CC and provides the ability to select and initiate the execution of assigned roles.

The ACA also transmits application specific events back to the CC when they are generated

by executing roles. Each role in the EC provides an algorithm or plan for carrying out its

role while capabilities provide reusable software functionality (e.g., communication) or a

software interface to hardware-based sensors or actuators.

One of the main design goals of the OBAA architecture was to enable as much reuse
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Figure 3.4: Organization-Based Agent Architecture (OBAA)14.
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as possible. Since in an OMACS-based system, much of the reasoning has standard forms

(e.g., goal reasoning, reorganization, etc.), much of the code in the CC is reusable. Knowl-

edge about the OMACS entities can be inserted into standard implementations of both

the Goal Reasoning component and Organization Model component, while a set of stan-

dard Reorganization Algorithms are being developed for plug-and-play compatibility; these

algorithms include centralized as well as distributed versions. While much of the EC is

application-specific, the ACA can be reused and use of standard capabilities can make the

job of developing the application specific roles much simpler.

3.11 Modeling Goals

Goals in agent-based systems are crucial. So crucial that it has been suggested that the true

essence of the design paradigm of MAS is not that of agent-based design and implementation,

but that of goal-driven design and implementation93.

Some conventions for modeling goals have been developed suggest using a rounded rect-

angle for goals and a cloud shape for soft goals 113. Soft goals are defined as: goals that do not

have a clear satisfiability definition, used in a number of methodologies, both agent-oriented

and non-agent-oriented, for modeling non-functional requirements such as security, usabil-

ity, flexibility.113. While the selected O-MaSE framework and the associated agentTool3

models follow the recommended convention for goals, neither uses soft goals for describing

non-functional requirements.

3.12 Managing Consistency

Formal semantics for declarative goal information have been used to reason about goals in or-

der to detect and resolve conflicts114. Tropos and the Goal-Oriented Requirement Language

(GRL) include the integration of scenario notation. GRL introduces modeling symbols for

satisfaction levels and contribution types that address various degrees of the satisfaction of
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goals (rather than all or none), as well as partial contributions and degrees of conflict115.

This work motivated our some of our objectives around managing goal consistency, which

were implemented using conflict detection and resource management mechanisms, see Sec-

tion 6.13.2 and 6.13.4.

Prior work also suggested that our approach to managing goal consistency should include

assessments of both logical consistency and resource consistency. Logical conflicts result

when an agent is given goals A and B and either A⇒ ¬ B, or B⇒ ¬ A. In unparameterized

goals, detecting conflicts may be difficult. For example, given two goals, where g1 =stop

and g2 =go, the agent, unable to understand natural language processing, would need a way

to determine these goals are mutually exclusive. However, the OMACS model provides for

parameterized goals which can be used to make the the reasoning process easier. Given two

goals, g1 = (go, 1 fps) and g2 = (go, 0 fps) (i.e., stop), it may be easier to build algorithms

to detect conflicts.

Adding reasoning based on resource constraints would require adding new features to

the OMACS model. In prior research, one resource conflict approach defines a resource

requirement as a tuple of a specific resource type, t, and an amount, n116. The set of

resource types is T . The resource set, R, is a set of resource requirements. Resource sets

are combined where possible. An example is (energy; 20) and (energy; 30) becomes (energy,

50). Any resource type not included can be assumed to have a number of 0. Resources

are either renewable or consumable. Resource sets are either necessary or possible and a

resource summary is considered a tuple of these two sets, with the necessary set being a

subset of the possible set.

An algorithm for adding a new set of goals was proposed to help detect and avoid resource

conflicts in intelligent agents116, followed by a suggested approach to detecting and avoiding

goal interference based on protecting preconditions and invariants92.

Requirements engineering and goal-driven design are related and additional work with

resolving conflicts in cooperative design systems was helpful117 along with continuing efforts
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in goal modeling, operations, goal life-cycles, and semantics for Belief-Desire-Intention (BDI)

Agents118,119.

Although OBAA agents do not use a BDI approach for determining goal assignments,

the CAN language developed for describing plan bodies118 provided interesting options for

reasoning about goal consistency from our goal names. An external method for detecting

consistency between assigned goals (Section 6.13.2) is proposed in Section 6.13, but evalu-

ating whether a similar application of the CAN language for reasoning in multigroup agents

is recommended in Section 9.4, Future Work.

The Persuasive ARgument for Multiple Agents (PARMA) Action Persuasion Protocol

has been suggested for BDI agents120. In this approach, BDI agents discuss proposed actions

to achieve goals that have been assessed with value indicators. The idea of value indicators

motivated the proposed conflict resolution approach to not only include resource conflicts,

which in a sense reflect costs and requirements, but to also incorporate an assessment of

value. Implementing mechanisms to provide an assessment of value in non-BDI agents allows

community welfare as well as higher-ranking authority to influence conflict resolution.

Understanding policies is be helpful when managing goal conflicts. Policies specify orga-

nizational rules. Different types of policies include assignment policies, behavioral policies,

and reorganization policies13. Each policy may be implemented as either a law policy or

a guidance policy 121. Law policies must be followed, while guidance policies are followed

whenever possible and can provide a basis for managing conflicts122.

These useful features of O-MaSE organizations contributed to architecture and our new

agents are able to use policies and other organizational rules, limits, and constraints, to

assist with their advanced self-control process of monitoring new goals, detecting potential

conflicts, and reasoning about resolution approaches (see Section 4).

Research into conflict resolution in cooperative systems comes from fields including com-

puter science, artificial intelligence, and social sciences117. Klein describes several primary

conflict resolution approaches in computational systems:
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1. Development-Time. This approach assumes that designers have the time, resources,

and ability to ensure that a system is designed such that any possible conflicts are

resolved during compilation.

2. Knowledge-Poor, Run-Time. This approach avoids the exhaustive effort required for

the first option, and allows agents to detection, asset, and resolve conflicts as they oc-

cur during run-time. Examples given include backtracking and constraint-relaxation.

These approaches were found to take little advantage of conflict resolution expertise

while being encumbered with restrictive formalisms.

3. General. This approach, says Klein, comes the closest to providing conflict resolu-

tion expertise with first-class status. However, the paper suggests that none of the

implemented systems using the general approach, nor any of those proposed, offer a

comprehensive theory of conflict resolution.

Ring and Van De Ven lay out a typology of governance structures based on risk and

trust as shown in shown in Figure 3.515. Both markets and hierarchies have relatively

low needs to establish trust (the top row) compared to recurrent contracts or relational

contracts (bottom row). Markets, for example, do not require an agent to depend on a

single trustworthy partner – they are free to participate or not – in the market as desired and

time frames are generally discrete without undue time pressures. When time is crucial and

economic efficiency is the objective, top-down hierarchical governance can efficiently help

resolve conflicts and ensure effective operation123.

The focus of this investigation was on the upper right quadrant, as generally our multi-

group systems are holonic and hierarchical. When there is a high possible risk (right col-

umn), hierarchical control can be employed so that agents are not required to depend on

establishing trust ; a hierarchical relationship is authoritative and is trusted by definition124.

Therefore at least for now, a dependency on policies, norms, and contracts to ensure collec-

tively beneficial behavior was not needed. Testing the agents in multigroup organizations
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Figure 3.5: Typology of governance structures based on risk and trust. Hierarchical au-
thority can help resolve conflicts15.

where establishing high trust among peers, and employing policies and contracts may be

required, has been recommended for future work (see Section 9.4). Establishing trust in

distributed systems is challenging and an area of current critical research125,126,127.

However, rather than enforcing conflict resolution entirely through hierarchical rela-

tionships, this idea has been used to motivate the development of the new agent-biasing

mechanism described in later sections. The biasing features enable structures to support

the management of potentially-conflicting goals, similar to the way an employee handles

tasks from a variety of administrative and project managers.

3.13 Modeling Complex Organizations

Additional disciplines provide concepts helpful when designing supports for managing con-

flicts in complex, cooperative, holonic systems. Kineman provides an illustration of an

advanced holonic system that introduces the idea of modeling multiple contextual domains,

relational holons, and complex systems16. An example is shown in Figure 3.6. The work
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Figure 3.6: Holon diagrams for Eukaryota showing interrelationships between contextual
domains16.

discusses a holon as a composition of structure and function and explores the relationship

to adaptive interaction with the agent’s environment. This foundation is reflected in the

inner organization of the new agents and the multiple inter-related contextual ontologies

enabled by participation in multiple, independently-governed, yet related (or overlapping)

organizations. Although not formalized in this effort, additional research into relational sci-

ence, category theory, and the modeling of complexity could be helpful to further formalize

reasoning about agents participating in multiple organizations and the associated need to

detect and manage potential conflicts as suggested in Section 9.4.

Work with organization-based MAS has brought a more organization-focused design ap-

proach that supports loose-coupling between agents and the organizations they implement.

Work with Moise, and Moise+ provide formalized insights into the required structural,

functional, and deontic specifications of organizations50,81. Deontic refers to duty and the

permission and obligation of agents to perform roles in the organization. The work done

in this research follows the loose-coupling suggested with Moise and O-MaSE50,81,49,12 and
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applies some of their key concepts in organization specifications as described in Section 6.7.

3.14 Power Distribution Systems (PDS)

Power Distribution Systems (PDS) (Definition 2.5) transmit electrical power from power

generation facilities to substations, down feeder and lateral lines to the neighborhoods

where it is consumed by customers in homes and businesses as shown on the right side

of Figure 3.7. The energy distributed via PDS drives almost every aspect of life in modern

developed countries. Failure to deliver power reliably can have significant impacts. Unfor-

tunately, according to some reports, 80% of customer power interruptions are due to failures

in their PDS128. In addition, the potential for interruption is higher than necessary because

many lines are deployed overhead as underground deployment costs five to ten times more.

Considerable research is being done on applying agent systems and more recently, holonic

MAS to power distribution systems129,130,131,7,132.

Although PDS are critical to power systems, little real-time information is available to

operators. Most of the planning and operations are based on archived information from

historical load research. Typically, the only real-time information available is related to the

feeder gateway at the substation. Thus, most PDS operate non-optimally and have problems

recovering from abnormal events. Recent technological advancements and the increased use

of renewable energy have made it obvious that current level of automation is insufficient.

Many people are opting to install rooftop solar panels and energy storage devices in their

homes, which poses new challenges and new opportunities to power companies. While

controlling power quality can become more difficult in the presence of renewable resources,

parts of the system may still be able to deliver locally generated power even after becoming

disconnected from the rest of the PDS.
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3.15 Online Auctions

Distributed renewable generation also brings new power producers to the market133. Rooftop

photovoltaic (PV) panels allow home owners to generate more electricity than personally

needed and this excess production could be voluntarily sold to nearby homes, alleviating

additional transmission costs especially in rural areas134. Electricity is sold as a continuous

quantity and the associated markets involve pricing that may change on a minute-to-minute

basis. Forward markets assist with scheduling capacity and energy in advance135. The speed

and complexity of the calculations needed to support distributed online auctions is a good

fit for intelligent agents136.

The interest in agent-led online auctions and the desire to evaluate suitable auctioning

algorithms motivated the selection of the second MAS to be implemented by the IPDS

agents. For this, a second, independently-goal-directed holarchy operating on the same

underlying physical PDS was implemented to operate concurrently with the existing grid

control holarchy to test the architecture and implementation mechanisms to see how well it

worked for implementing multiple MAS with multigroup agents.

3.16 HMAS for PDS

PDS are naturally distributed and hierarchical in structure. The ability to proactively

optimize the network and adapt to interruption events such as disconnects is obviously a

desirable property in modern PDS. The requirements for reactive and proactive adaptation

across highly distributed systems is a perfect fit for the use of MAS. PDS tend to branch out

hierarchically from a single substation. At each level, an organization of supporting elements

can be used as parts of higher-level organization. Such implementations may be referred to

as a holonic organizational multiagent system (HOMAS)53 or as simply a holonic multia-

gent system (HMAS)24. Organizations can be created that map a hierarchy of agents to the

physical system. When recursive organizations are associated with an underlying physical
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component, the multi-layer hierarchy may be referred to a as a hierarchical HMAS or HH-

MAS. While MAS have seen significant attention in power systems, HMAS and HHMAS

are just starting to be introduced to PDS8,28,130,131.

Active research projects focus on power auctioning, negotiating, volt-var control, dis-

tributed communications, and other focus areas137,138,139,140,141,142,143. Recent research also

applies holonic multiagent systems (HMAS) to power distribution systems (PDS)132,130,131,

sometimes in concert with specific agent-oriented software engineering methodologies.

Using HMAS to control a PDS is a natural fit. Intelligent agents are generally assumed

to exhibit autonomy, reactivity, proactivity, and social ability144, while MAS are, by nature,

reactive and proactive. In addition, the social ability of agents allows them to work col-

lectively towards the common good in a variety of configurations. Finally, the autonomous

nature of agents allows them to make decisions based on local knowledge and constraints,

thus allowing the system to adapt quickly and efficiently to its changing environment. Un-

fortunately, unrestrained MAS often exhibit a phenomenon known as emergent behavior,

which can be either beneficial or harmful. One approach to harnessing the positive quali-

ties of MAS while constraining emergent behavior is through the use of organization-based

MAS122,145. In an organization-based MAS, agents are assigned to play well-defined roles

in the organization in order to achieve the organization’s goals. Organizational policies

constrain the behavior of the organization and techniques and metrics have been developed

that can predict the overall behavior exhibited by organization-based MAS18.

An example hierarchic HMAS (HHMAS) for a PDS is shown in Figure 3.7. In such

a system, each agent at level n may actually represent an organization of agents at level

n-1, which may again represent an organization of agents at level n-2. While similar to

traditional hierarchical control systems where control passes from the top levels to the lower

levels, there is a major difference. Since each level consists of one or more organizations,

if a connection is lost between level n-1 and level n-2, organizations at level n-2 can still

operate autonomously, attempting to achieve their goals as best they can.
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Figure 3.7: Holonic multiagent system mapped to physical power distribution system7.
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3.17 Intelligent Infrastructure

Research into control systems for infrastructure go beyond energy systems into trans-

portation, healthcare, manufacturing, buildings, communities, agriculture, defense, and

aerospace1,21,146. Holonic control systems have been proposed for sectors from manufac-

turing147,17 to street lighting148 to power distribution systems7.

An example of a holonic control structure for prosumers in a power distribution system

is shown in Figure 3.88. Prosumers are capable of both producing and generating electricity.

Groups of lower-level prosumer holons, such as homes, may be see as sub-holons within a

higher, neighborhood-level holon. The higher control holon provides terms and conditions

down to the lower-level holons. But information about power transactions and control

parameters flow both directions – both down from the holon to the sub-holons and up from

the sub-holons to the higher holon. Sub-holons also interact with their peers on the same

level to negotiate power transactions. The control approach can be repeated as needed

through increasing levels of aggregation8.

Figure 3.8: Holonic control structure for prosumers in a power distribution system8.
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3.18 Agents in Complex Organizations

Holonic designs often require agents to operate as both part of a higher holon and an

a lower holon. The ADACOR architecture designs holons in a 5-level architecture that

was especially interesting17. The five levels include planning, management, coordination,

operation, and physical as shown in Figure 3.9. In ADACOR, different types of holons are

placed at different levels. Product holons form the process planning level, task holons form

the management level, supervisor holons form the coordination level, and operational holons

form the lowest, operational level. Most holons interact vertically between levels, except

for the operational holons which interact with peers in order to synchronize their activities.

Task holons interact with operational holons for distributed monitoring and scheduling while

the addition of the supervisor holons enables more global, centralized optimization. The

adaptive ADACOR mechanism emerges in a bottom-up approach, built upon the individual

self-organization of manufacturing holons17.

ASPECS offers an agent-oriented software process for engineering complex systems18.

This process and the associated framework enables agents to play roles in multiple groups

as shown in Figure 3.10. ASPECS supports modeling systems at various abstraction levels

through hierarchical behavioral decomposition based on roles and organizations. Systems

are recursively decomposed until behaviors can be managed by atomic entities18.

The goal of this research was to design an agent architecture that would work for a vari-

ety of complex organizational structures, as well as agents supporting different systems, that

would provide explicit support for managing different objectives and domain requirements

concurrently. A flexible, reusable architecture was needed for implementing goal-driven,

intelligent agents capable of participating in different groups, and in different systems con-

currently.
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Figure 3.9: The ADACOR holonic architecture for agile and adaptive manufacturing con-
trol arranges holons into five levels17.

3.19 Summary

This chapter presents a brief overview of key prior work that motivated and enabled this

work, beginning with distributed artificial intelligence, complex adaptive systems and cyber-

physical systems, continuing through prior work in the engineering challenges of MAS, and

finally recent work in the specific application areas that motivated the simulation exper-

iments for the multigroup agents. This background was used in the development of the

updated organization-based agent architecture described in Chapter 4.
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Figure 3.10: The ASPECS process allows agents to play roles in multiple groups18.
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Chapter 4

OBAA: Basic Agents for MAS

Great things do not just happen by impulse,

but are a succession of small things linked together.

— Vincent van Gogh

Building on key concepts from the Organization-based Agent Architecture (OBAA)14, an

updated agent architecture was developed. The updated architecture is modular, loosely

coupled, extensible, and still designed for single-organization multiagent systems. This

chapter provides an overview of the key components of the agent architecture that are

needed to establish the background an prior work on which this dissertation builds. The

next chapter, Chapter 5, shows how these basic agents provide a foundation for persona –

new subagents that provide the necessary foundation for implementing complex multigroup

MAS.

Section 4.1 introduces the motivation and objectives for updating the architecture. Sec-

tion 4.2 introduces key areas of reusable functionality in organization-based MAS. Section 4.3

provides an overview of the updated organization-based agent architecture. Section 4.4

describes the execution component (EC) for performing application-specific functions and
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Section 4.5 describes the control component (CC) for performing common aspects of orga-

nizational administration and participation. Section 4.6 describes architectural aspects of

different organizational decision-making styles such as operating in a master-slave configura-

tion. Section 4.7 summarizes the updated basic agent architecture and Section 4.8 provides

a chapter summary.

4.1 Motivation

Organization-based MAS and specifically, the Organization-based Agent Architecture (OBAA)

developed by Chris Zhong14 provide many desirable features. OBAA works well for imple-

menting single-organization MAS. The updated architecture continues to employ many of

the features first suggested in OBAA, but has updated certain elements to be more modular

and less tightly coupled. The updated architecture enables reuse of key elements to form

distributed, complex systems as described in Chapter 6. The architecture continues to use

many features originally designed and proposed by Chris Zhong14 and Rui Zhuang149.

4.2 Reusable Organization Functionality

At its most basic, an agent has capabilities and can be given assignments. The capabilities

are used to execute plans. Agents in an application are equipped with capabilities and carry

out application-specific plans.

Application-specific functionality can vary greatly – some applications may require move-

ment in two dimensions (as in simple games), or movement in three dimensions (as in robotic

teams). However, it is possible to design multiagent systems with a common core set of func-

tionality related to assignments.

Definition 4.1 (Organization-based agent). An organization-based agent is an agent ca-

pable of reasoning about its organization13, with the ability to reorganize, or transition
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from one organizational state to another, in response to updated goals or changes in the

environment.

Definition 4.2 (OBAA). The organization-based agent architecture (OBAA) is an agent

architecture for organization-based agents that use OMACS for reasoning about its organi-

zation13.

OBAA agents are designed such that all MAS created from OBAA agents can employ

common features for creating, issuing, and accepting assignments150.

4.3 Overview

The updated single-organization architecture provides additional reusable components that

provide an enhanced foundation for extending the architecture as described in Chapters 5

and 6. These foundations will be used to enable systems of intelligent systems as discussed

in Chapter 8.

An overview of the updated OBAA agent architecture is shown in Figure 4.1.

The agent is divided into two areas of functionality:

• Control component (CC). The upper portion associated with common control com-

ponent aspects, associated with generating, issuing, and accepting assignments

• Execution component (EC). The lower portion associated with application-specific

capabilities and plan execution

4.4 EC: Application-Specific Execution

The application-specific execution component (EC) is associated with capabilities and plan

execution. At its most basic level, agents have capabilities and use them to execute plans.

This basic functionality is part of the EC shown on the diagram. A simple autonomous
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Figure 4.1: Overview of the updated basic agent architecture.

agent could use just this functionality to execute plans autonomously. As shown in the

lower component on Figure 4.1, the EC includes seven identified components:

1. Assignment Manager (AM)

2. EC Execution Algorithm (ECEA)

3. Task Manager (TM)

4. Task

5. Plan Selection Algorithm (PSA)
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6. Plan

7. Capability

As described in the following sections, these components enable the agent to execute

application-specific functionality.

4.4.1 Receiving Assignments

Every EC includes an Assignment Manager (AM). The AM maintains the interface to the

entity issuing assignments to the agent. In each agent, the AM is given assignments by the

CC. Every assignment includes the EC, a role, and a goal. The assignment goal may include

goal parameters, describing specific guidelines for achieving the goal.

As the MAS runs, the AM maintains three queues and, together, these queues reflect

the current desired behavior for this agent. The AM maintains a separate queue for each of

the following:

• Assignments. For new assignments.

• Deassignments. For current assignments that are being revoked.

• Goal Modifications. For changes to a current assignment, specifically changes to the

guidelines, i.e., the goal parameters associated with an assignment to adjust the desired

behavior associated with the assignment goal.

The AM can be customized to perform checks on assignments and assignment modifica-

tions before accepting them, and may be configured to provide feedback if an assignment is

refused or the guidelines altered to reflect the specific preferences, biases, or other require-

ments of the agent. This is perhaps less of an issue for agents operating as they do in a

single MAS, but is very helpful when extending these core components to handle multiple

organizations as described later, in Chapter 4.
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4.4.2 EC Execution Algorithm

The Execution Component Execution Algorithm (ECEA) operates continuously as long

as the agent is alive and not disabled. The ECEA provides the new assignment updates

maintained by the AM to the Task Manager, which prioritizes the assignments and maintains

progress and status information for each assignment. With each computational cycle, the

ECEA will execute a step in its assigned task (or tasks). After executing task steps in each

cycle iteration, or if there are no active tasks, the ECEA will end the iteration with a call

to execute the CC Execution Algorithm as described in Section 4.5.2.

The ECEA is customizable. A basic ECEA is shown in Algorithm 1.

Algorithm 1 EC Execution Algorithm

1: procedure ExecuteECEA
2: am ← assignmentManager()
3: tm ← taskManager()
4: cc ← controlComponent()
5: while isAlive() do
6: while am.hasAssignments() do
7: tm.addTask(new Task(am.pollAssignment())

8: while am.hasDeAssignments() do
9: tm.removeTask(am.pollDeAssignment())

10: while am.hasGoalModifications() do
11: tm.updateTask(am.pollGoalModification())

12: t = tm.getNextTask()
13: if t 6= ∅ then
14: executeTask(t)

15: cc.execute()

4.4.3 Managing Tasks

As described in the ECEA, the Task Manager (TM) is responsible for maintaining a prior-

itized list of tasks for the agent. Each task includes:

• The associated assignment.
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• Status information, e.g., achieved, in progress, failed.

• The selected plan for accomplishing the task.

4.4.4 Choosing a Task Plan

MAS implementations include custom versions of the Plan Selection Algorithm (PSA) for

selecting the best plan for accomplishing a task. The algorithm may vary in complexity,

from simple look-ups to complex algorithms that may take into account the current status

of the agent, participating humans, nearby entities, or the organization as a whole, as well

as current objective functions and constraints. If the task plan is not yet determined and

the task is active, the task will call the PSA to get the selected plan.

4.4.5 Executing Plans with Capabilities

When the ECEA calls for execution of the next step in its active task or tasks, the task will

execute one step, or cycle, of the selected plan. Plans are executed by calling methods and

functions from the agent’s capabilities.

Agent capabilities generally come in three major types:

• Sensor capabilities. The ability to access devices that provide information or readings

regarding perceptions of the environment, humans, or other agents.

• Actuator capabilities. The ability to access devices that be take actions.

• Processing capabilities. The ability to perform mathematical or other computational

functions.

Capabilities may have parameters that can be set. The necessary information may be

passed in via goal parameters or guidelines that provide specific information about desired

behavior. An agent may continue with an ongoing task that has a parametrized goal, getting

updated guidelines to vary the behavior in response to current organizational objectives.
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Agents may be configured with their own preferences or biases, and these can be used

to adjust the issued parameters to reflect individual preferences. Goal consistency and

customization is discussed in more detail in Section 6.13.

4.5 CC: Organizational Control

In Figure 4.1, the common organizational functionality given to each agent is encapsulated

in the control component (CC). Every OBAA agent has a CC. When the agents are first

created, the agent creates and initializes the CC, which will in turn, initialize the EC with

its first set of assignments. As shown in the upper component on Figure 4.1, the CC includes

five key components:

1. Event Manager (EM)

2. CC Execution Algorithm (CCEA)

3. Goal Reasoning (GR)

4. Organization Model (OM)

5. Reorganization Algorithm (RA)

As described in the following sections, these components enable the agent to perform

the functions necessary to generate, issue, and accept assignments.

4.5.1 Reacting to Events

Just as the application-specific EC is driven by the assignments provided by the CC, the

CC is driven by events generated by the EC. These events are raised during the execution

of plans via the methods in EC capabilities. When a method is called, it may raise various

events (e.g., when an agent is disabled, execution of a task fails, or when a goal is achieved

or modified). The CC Event Manager manages the queue of events provided by the EC.
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4.5.2 CC Execution Algorithm

The Control Component Execution Algorithm (CCEA) operates continuously while the

agent is alive and not disabled. With each execution cycle, the CCEA processes the events

managed by the EM and checks for messages received from other control components. If,

after processing the events and CC messages, the CCEA determines reorganization is neces-

sary, it will call the Reorganization Algorithm (RA). The RA requires the ability to perform

goal reasoning and understand and update knowledge regarding the current state of the

organization and is described in Section 4.5.3 through 4.5.5.

Implementation of the CCEA depends on the organizational decision-making style em-

ployed by the organization, and on the organizational role of the CC within that approach.

Some organizations operate in master-slave configurations, but other organizational styles

are possible as well151. Organizational styles are discussed further in Section 4.5.3.

The CCEA is customizable. A basic CCEA during the ongoing continuous working state

is shown in Algorithm 2.

Algorithm 2 CC Execution Algorithm

1: procedure ExecuteCCEA
2: reorgNeeded ← false
3: em ← eventManager()
4: ra ← reorganizationAlgorithm()
5: while em.hasEvents() do
6: processEvent(em.pollNextEvent())

7: while ccComm.hasMessages() do
8: processMessage(ccComm.getNextMsg())

9: if reorgNeeded then
10: reorganize()
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4.5.3 Understanding the Current Organization

The CC maintains the current state of the organization in the Organization Model (OM).

The OM includes information about agents and capabilities, current assignments, roles,

goals, policies, and other aspects and relationships that describe the state of the organi-

zation. The architecture uses OMACS for the OM as defined in Section 3.8 and shown in

Figure 3.3.

4.5.4 Goal Reasoning

The CC includes a Goal Reasoning (GR) component that uses a static goal specification

to generate and update the set of active runtime instance goals. During initialization, all

untriggered goals are instantiated and set as active. Active instance goals are issued to

participating agents. As the agents work on the goals, new goals may be triggered, and

goals may be achieved, failed, or obviated (as when achievement of one goal makes another

goal unnecessary). The architecture can use GMoDS for the GR. GMoDS is described in

Section 3.7.

4.5.5 Reorganizing

As execution continues, and the environment, the agents, and/or interacting humans change

state, and as goals are added, modified, and removed, the organization may need to reorga-

nize. During the process of reorganization, the set of assignments are updated. The roles

that can achieve the set of active goals are reviewed, as well as agents capable of playing

the roles. The capabilities with which each agent is equipped and how well a role fulfills a

goal are used to determine the optimum set of assignments. The new assignments are issued

to the EC Assignment Manager (AM) as a set of three queues, one for new assignments to

be added, one for current assignments to be removed, and one for modifications to current

assignment goals as described in Section 4.4.1.
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4.6 Organizational Styles

OBAA organizations may employ different organizational decision-making styles. One com-

mon style employs a simple master-slave configuration, but other organizational styles are

possible as well151. In the master-slave configuration, one master agent is responsible for

registering all participating agents, for getting the initial goal guidelines, and for gener-

ating and issuing assignments for all of the organization participants including itself. All

agents that are not the master act as slaves and register with the master to receive issued

assignments.

4.6.1 Organizational Roles

The organizational approach defines a set of organizational roles the CC may play. For

example, in the master-slave configuration, there are two organizational roles: (1) master

and (2) slave. Other approaches, such as voting or other peer-based approaches, may have

a different set of possible roles. Organizational roles should not be confused with the EC

roles; EC roles are set by the RA during a reorganization. Organizational roles may be

specified and remain static throughout the operation of an organization, or they could be

dynamic, as when a new master is selected to replace a master that has been disabled or is

otherwise unable to continue.

Organizational roles are used to keep track of which agents are active in the organization

and can accept assignments within that organization. The CC master issues assignments

and both the CC master and the CC slaves can accept assignments.

The behavior for a typical CC master is shown in Figure 4.2. All control components,

including the master, begin by initializing their associated application-specific execution

component. When the process is complete, the master moves to the continuous working

state. During this state, the master checks for registration messages from participating

slaves, and responds to events from its own associated EC and others, which are communi-

74



cated as messages via their associated slave CC. The master maintains a list of active agents

to which assignments may be issues and creates and issues assignments to itself and others

in accordance with the current state of the organization. At any time, if an end event is

detected, because of system shutdown, or in the event participation privileges have been

revoked, the agent will move to a terminating end state.

Figure 4.2: Behavior of a basic control component master.

The behavior for a typical CC slave is shown in Figure 4.3. As in the master, each slave
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begins by initializing their associated application-specific execution component. When the

process is complete, the slave sends a registration message to its master and moves to the

confirmation registration state. The agent waits here until it receives a confirmation from

the master. If the agent waits longer than a specified time limit, the agent times out and

returns to the registration state to try again. If the agent does not get confirmation from

the default master within a given amount of time, the agent elevate itself, if equipped, to

act as a new master or can begin to perform independently, as during periods when the

agent becomes disconnected from its master. After receiving confirmation, the agent moves

to the continuous working state. In this state, the slave will continuously process any new

assignments, deassignments (the removal of an active assignment), and goal modifications.

It will also monitor events from its associated EC and send organization-related events,

such as task failure events to the CC master for processing. At any time, if an end event

is detected, because of system shutdown, or in the event participation privileges have been

revoked, the agent will move to a terminating end state.

4.6.2 Organizational Capabilities

Like organizational roles, organizational capabilities are different from, but analogous to,

EC capabilities. Each agent’s CC is equipped with functionality that determine its ability to

play various organizational roles. This may not be used much in single-organization MAS,

but when systems become more complex and distributed, as described in Section 6, the

ability for agents to on new organizational roles may be required.

4.6.3 Master-Slave Configuration

An example of a single-organization MAS built with basic agents is shown in Figure 4.4.

The figure shows three agents operating in a master-slave configuration. The Supervisor

Agent is acting as the organizational master, and is shown in more detail in Figure 4.5.

The Forecaster agent and the Worker agent are both acting as slaves to the organizational

76



Figure 4.3: Behavior of a basic control component slave.

master. A participant device agent is shown in more detail in Figure 4.6.

4.7 Basic Agents (Persona)

Each organization-based agent has a general-purpose Control Component (CC) and an

application-specific Execution Component (EC), allowing separation of the general features

needed for group participation from the execution of application objectives.
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Figure 4.4: Example single-organization multiagent system.

The agent is derived from the basic EC shown as the lower component. The agent

includes the functionality in the base EC class shown in the lower component as well as

the CC functionality that has been abstracted into the upper component. The specific

implementation of the CC reflects the organizational approach and the corresponding orga-

nizational role (or roles) the CC can play. In a similar fashion, the architecture provides for

an application-specific implementation of the base agent that reflects the core functionality

needed to serve as an agent in that type of organization. Most of the agent functionality is

provided in the specific EC capabilities with which the agent is equipped.

In the next chapter, a special type of MAS is introduced, that uses this updated agent

architecture as the foundation for a new type of agent called a persona. By using persona,

and changing the definition of an agent (quite a bit), a flexible, reusable architecture was

developed that enables complex MAS.
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Figure 4.5: Supervisor Agent acting as CC master in a master-slave configuration.

4.8 Summary

This chapter presents an updated architecture for agents that create, operate, and par-

ticipate in a MAS. It describes how the architecture, includes a control component (CC)

for common organizational functionality and an execution component (EC) for application-

specific behaviors. It describes key entities within each of these and provides an overview

of the way the supporting components work together to enable single-organization MAS.

In addition, this chapter describes various organizational styles for generating and issuing

tasks, and provides a more detailed example of a MAS employing a master-slave config-

uration for assigning goals. It describes how each basic agent is designed with a flexible,

domain-specific EC, while the supporting CC offers organizational control functionality that

is reusable across many different types of applications.

It describes the motivation for updating the OBAA architecture so that these basic
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Figure 4.6: Worker Agent acting as CC slave in a master-slave configuration.

agents can be used in a special type of MAS that enables multigroup agents. The basic

agent introduced here forms the foundation for a subagent, called a persona. By using this

new persona type, and changing the definition of an agent (quite a bit), a new flexible,

reusable agent architecture for complex, multigroup MAS was developed as described in

Chapter 5.
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Chapter 5

OBAA++: Agents are MAS

I am large, I contain multitudes.

— Walt Whitman152

In the this chapter, a special type of multiagent system (MAS) is introduced, one that

uses the updated basic agent architecture presented in Chapter 4 as the foundation for a

new type of agent, or sub-agent, called a persona. These persona, along with a significant

change to the architecture of an agent, enable a new flexible, reusable agent architecture for

complex, multigroup MAS.

This chapter introduces the new Organization-based Agent Architecture for Multigroup

MAS (OBAA++). OBAA++ views each agent as a MAS of subagents or persona, with each

persona built on the basic agent foundation described in Chapter 4. This shift in our view

of an agent and its supporting standardized types of persona, provide a flexible, reusable

architecture for implementing complex MAS.

Sections 5.1 and 5.2 provide motivation for developing a standard agent architecture

to implement complex MAS. Section 5.3 shows how each multigroup agent is a MAS and

Section 5.4 describes the implementation of an OBAA++ multigroup agent. Section 5.5
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describes how each multigroup agent is implemented as a specialized MAS, an inner organi-

zation of persona, and Sections 5.6- 5.8 introduce the standard persona types. Section 5.9

describes communication within an OBAA++ multigroup agent and between OBAA++ multi-

group agents. Section 5.10 provides a chapter summary.

5.1 Managing Complexity

One approach to managing complexity in distributed artificial intelligence is the application

of organization-based agent architectures. Organization-based agent architectures provide

standard patterns and models for designing and implementing organizations of agents in a

MAS application49,13,153. Agents are computational entities that may function autonomously

and/or collectively in MAS43. Some reader familiarity with autonomous agents and MAS

is assumed; additional references providing more detailed background, characteristics, and

motivations for agent-based systems are provided154,155. Agent systems may be considered

a form of distributed artificial intelligent and have been used to implement control systems.

Agent systems my be complex and the management of the many software components that

drive emergent behavior can pose significant engineering challenges. Agent-oriented software

engineering (AOSE), with its focus on goal-driven design, is seeing significant attention in

the area of intelligent or smart systems, especially in the areas of infrastructure. K-State has

active interdisciplinary research projects into agent-oriented control systems for the smart

grid. This effort is motivated, in part, by the demands of the United States National Science

Foundation (NSF) Intelligent Power Distribution Systems project38,156,7.

5.2 Motivating Example

K-State developed an HHMAS (Definition 2.23) under the interdisciplinary Intelligent Power

Distribution System (IPDS) project. In this project, intelligent agents work cooperatively

in a distributed HHMAS to control an electrical power distribution system (PDS) with
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a high degree of renewable penetration7. The HHMAS is a complex MAS , consisting of

multiple organizations, reflecting the hierarchical nature of an electrical distribution system

as described in Section 3.14.

A system for grid control was developed using holonic design principles, with the standard

holarchy being divided into three layers. The highest layer functions at the substation level,

with an intermediate feeder layer of groups, which are in turn composed of smaller groups at

the lowest level associated with neighborhood transformers, each of which provides electricity

to 4-6 homes, some of which may be equipped with photovoltaic (PV) solar generation panels

that can produce enough distributed generation (DG) during a sunny midday to power the

load of several homes.

When fast-moving clouds cover the PV panels, it can trigger an undesired and potentially

harmful rapid drop in voltage. This can be partially alleviated by increasing the amount

of reactive (non-useful) power from each set of PV panels. Help can be provided by agents

controlling other PV panels, even from a distance, so long as the phase of the supporting

lateral line is the same.

Just as the physical PDS system is arranged hierarchically, the proposed control algo-

rithms were designed in recursive organizations of hierarchical holarchies.

The complexity of such systems can introduce additional challenges. When implementing

holarchies with a complex MAS, an agent may be assigned goals from different organizations

within a single system. Further, in complex CPS, agents may be assigned goals from different

systems – and there are several ways an agent could be assigned a goal that might be in

conflict with an assigned goal from another organization.

The new version of OBAA, OBAA++ was specifically developed to provide a set of

reusable foundations that would enable multigroup agents. In OBAA++, each multigroup

agent is designed as a goal-driven inner organization of sub-agents36. To clarify the dis-

tinction between the agent and its sub-agents, the term persona is used for the specialized

sub-agents. Each agent has one persona for each affiliated group and one self persona that
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acts as the central, goal-directed brain of the agent, responsible for initiating and managing

the roles and commitments within that affiliated group. Each agent is initialized with a

set of goals that drives the behavior of the self persona. They include goals for joining and

maintaining membership in specified affiliated groups. When a self persona determines that

its agent requires a new affiliation, the self persona creates a new persona to join the group.

Self persona function similarly for each agent in a complex MAS.

5.3 A MAS of Persona

Multigroup agents are those designed specifically to support participation in multiple groups

concurrently. OBAA++ multigroup agents implement each agent as a system of intelli-

gent persona, each built using the Organization-based Agent Architecture (OBAA). Each

OBAA++ persona consists of two basic components, a general purpose Control Component

(CC) and an application-specific Execution Component (EC)14,36. The CC manages the

common functions associated with registering, and issuing or accepting goal assignments,

which the EC manages execution of domain-specific plans for carrying out assigned goals.

Implementing agents as an inner organization of subagents called persona provides a

reusable approach flexible enough to implement different types of multigroup MAS. In ad-

dition, the system enables different control systems running on a common physical system,

to share functionality related to common sensors and control devices. The agent is goal-

driven, and the same mechanisms used to specify goals in MAS can be used to customize

agent behaviors. For example, a single goal model is created for each home agent that can

specify the relative importance of the different affiliated groups in which the agent partici-

pates. Parametrized goals allow the standard home goals, reused among the home agents,

to be customized to reflect the behavior desired either by the power company providing

power quality direction, the local market organization providing online auction direction, or

even by the homeowners themselves to reflect their biases towards community assistance or

84



maximizing personal profit.

5.4 Multigroup Agents

As mentioned in Section 1.1, designing and building multigroup agents is more difficult than

developing traditional agents because each multigroup agent must be able to align its goals

and behavior with the goals of all of its affiliated groups. Implemented as a special type of

MAS, each multigroup agent operates as an organization of persona36.

The internal organization of each agent has a unique self persona that acts as the master

of the organization. Upon instantiation of the agent, the self persona is created and given a

set of goals that drives the behavior of the self persona. These goals are generally application

specific and includes goals for discovering, joining, and maintaining membership in the

appropriate affiliated groups. The details of how the agent determines its affiliated groups

are also application specific. However, when a self persona determines that its agent requires

membership in a group, the self persona creates a new persona to join that group. The self

persona instantiates the new persona with an appropriate set of goals and the new persona

carries out behaviors to achieve its goals. The self persona typically functions identically

for each agent in a complex MAS.

The framework is designed to allow a single agent to participate in multiple affiliated

groups at the same time. Each persona can be designed, implemented, and tested indi-

vidually before being integrated into a single agent by supplying appropriate configuration

information for each agent, which can include the affiliated groups to join, whether the

agent is responsible for creating those groups, and how the agent should contact the group.

Application specific behavior is designed and implemented the same as in OBAA agents

using goals, role behaviors, and capabilities.

Specifically, OBAA++ was designed to enable complex systems that are highly:

1. Autonomous. Agents must be able to operate autonomously.
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2. Social. Agents must be able to communicate with affiliated agents.

3. Secure. Interaction with outside groups is limited to the associated persona, allowing

the isolation and implementation of continuous authentication, authorization, and

validation measures to help provide a defense against malicious or faulty behavior.

4. Flexible. Agents must implement the communication protocols, exchanges, security

measures, and other practices required by the systems they implement.

5. Extensible. Agents must provide a way to easily modify and extend functionality.

6. Scalable. Agents must be designed for significant scalability, both in complexity and

in the number of distributed elements managed within a single complex system.

7. Intelligent. Agents can be both reactive and proactive, responding intelligently to their

environment, employing reasoning, and providing advanced self-control to manage

potentially-conflicting goals issued from multiple stakeholders.

OBAA++ treats each agent as an integrated group of sub-agents called persona. In

this architecture, a single agent may simultaneously execute its own internal goal-driven

behaviors, while also participating as a member of one or more affiliated organizations.

Multigroup agents may create and manage multiple dynamically-generated affiliated groups,

to achieve the overall objectives of a complex, multigroup MAS.

5.5 Inner Organization of Persona

Successful companies, like many organizations, tend to begin with a strategic plan first, long

before hiring begins. In a similar manner, the organizations that our agents will form and

participate in are originally designed by specifying the goals for the organization.

For consistency, every goal specification in a multigroup simulation begins with a single

top goal to succeed at the full set of goals the organization attempts to accomplish.
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The top goal is progressively broken down through an iterative approach. Typically,

the organization goal specification begins with a few simple high-level goals for each major

objective required.

The agent itself is designed as an organization of sub-agents as shown in Figure 5.1.

OBAA++ assists the designer by providing some key communication and control features as

reusable components, sub-agents, and capabilities. Agents can be designed, implemented,

and tested individually by supplying appropriate configuration information including the

list of affiliated groups, whether the agent is responsible for initially running any of those

groups, and how the agent should contact and begin participating in the group. Application-

specific behavior is designed and implemented as in OBAA++ using goals, role behaviors,

and capabilities.

The goal of the new architecture is to allow a single agent to participate in multiple

groups, or organizations, simultaneously.

OBAA++ employs a standard approach to defining persona that corresponds to the

system decomposition performed during design. Each agent has a unique self persona that

acts as the master of the organization. Upon instantiation of the agent, the self persona is

created and given a set of goals for the agent including standard goals such as discovering,

joining, and maintaining membership in the agents affiliated groups. Each agent also has

one persona for each of its affiliated groups, and may have one or more worker persona.

OBAA++ agents have three persona types as described in the following sections.

5.6 Self Persona

The lone self persona in each agent is equipped with a Self Control Capability that enables

reasoning about the detection and management of potentially conflicting goals.
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Figure 5.1: An OBAA++ multigroup agent operates an organization of sub-agents called
persona.
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5.7 Affiliate Persona

Affiliate persona are responsible for relating with other agents in the context of an external

group. The architecture provides a basic set of functionality associated with registering in-

ner participants, providing intra-agent communication, issuing agent goal assignments, and

responding to internal events, are provided with the underlying multigroup agent architec-

ture.

5.8 Worker Persona

Worker persona operate much like independent intelligent agents. They may be equipped

with both equipment and processing capabilities that enable them to function when dis-

connected from the larger group. Where appropriate, they are equipped with: (a) sensor

capabilities, (b) actuator capabilities, and (c) core processing capabilities. This provides a

single set of secure access points to operate associated capabilities. If requests for sensor

readings or control actions come from affiliated organizations, the requests can be vali-

dated against the installed checks, monitoring, limits, and security requirements encoded in

the core equipment access capabilities. All other types can either use these capabilities in

their plans, or can send requests to the workers to execute the capability on behalf of an

organization.

5.9 Communication

OBAA++ multigroup agents communicate along two dimensions: externally and internally

as shown in Figure 5.2, External organizations are oriented horizontally (encompassed by

dashed rectangles) while internal agent organizations are oriented vertically (encompassed

by solid rectangles). For clarity, the self persona of each agent is omitted.

As shown, each persona communicates internally with other persona as well as exter-
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Figure 5.2: Inter- and intra-agent communications.

nally with other agents in its affiliated group. Within an agent, persona communicate by

passing messages via two internal communication queues, which are shown as bold arrows

vertically within internal organizations. The persona CCs communicate directly via the

CC communication queue, while persona ECs communicate with each other via the EC

communication queue. These two queues correspond to organizational communications and

application specific communications. The OBAA communication between the EC and CC

within each persona allows application specific information to be transmitted to the CC and

organizational information to be transmitted to the EC.

Authentication and authorization protocols can be employed via specially-designed en-

dowed capabilities to meet the security requirements of each different system.

Each system can employ custom communication protocols for connecting, registering,

and operating the system. Affiliated agents can communicate over private channels as
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needed to support the distributed algorithms and processes required.

Within an agent, the CCs are used to create the organization-specific behavior. Only the

self persona issues goals to itself and the other inner persona. All other inner persona accept

their goals from the self persona. All other organizational behavior is implemented within

the ECs of the inner persona. An affiliate persona may be issued a goal to administer an

organization. In this event, it will implement a domain-specific plan to attempt to connect

to all participants, initialize a new executable goal model, register agents, and begin issuing

organization-specific assignments to external agents.

5.10 Summary

This chapter introduces the new OBAA++ agent architecture designed specifically for com-

plex, multigroup MAS. Each OBAA++ agent is a MAS of subagents called persona, and

each persona is built on the basic agent foundation described in Chapter 4. It shows how

this new view of an agent, along with the three standardized types of persona, self persona,

worker persona, and affiliate persona, provide a flexible, reusable foundation for implement-

ing complex MAS.

In the next chapter, a new framework and system architecture, the Adaptive Architecture

for Systems of Intelligent Systems (AASIS) is introduced that uses multigroup OBAA++

agents to build complex systems.

91



Chapter 6

AASIS: Framework for Complex

Systems

Pull a thread here and you’ll find

it’s attached to the rest of the world.

— Nadeem Aslam157

Special functionality is required to support participation in complex, multigroup mul-

tiagent systems (MAS). A new approach was standardized and is introduced as the new

Adaptive Architecture for Systems of Intelligent Systems (AASIS). AASIS provides design

and implementation guidelines and a supporting set of foundational architectural features to

use OBAA++ agents to support complex, multigroup participation in a reusable and flexible

way.

Section 6.1 and Section 6.2 introduce the new AASIS framework and its layered architec-

ture. Section 6.3 describes the process for decomposing complex systems while Section 6.4

and Section 6.5 introduce the idea of local groups and affiliates. Section 6.6 describes the

process for working with multiple organization models in a complex application. Section 6.7
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defines the information needed to specify organizations in AASIS. Section 6.8 describes stan-

dard goal that govern the high-level behavior of multigroup agents and their customization

with goal parameters called guidelines. Section 6.9 introduces standard control mechanisms,

while Section 6.10 describes the standard plan types executed by multigroup agents. Sec-

tion 6.11 describes standard capability types for multigroup agents, including both innate

and endowed capabilities and suggests recommended practices for implementing additional

agent capabilities. Section 6.12 shows how the process can be applied to holonic orga-

nizations, as a special type of multigroup MAS. Section 6.13 introduces mechanisms for

managing consistency and bias and Section 6.14 provides a chapter summary.

6.1 AASIS Framework

The Adaptive Architecture for Systems of Intelligent Systems (AASIS) was specifically de-

signed to provide a flexible, reusable framework for implementing complex systems. It

includes mechanisms and recommendations for decomposing complex systems, specifying

their behavior using an organization-based approach, and implementing the systems with

multigroup agents.

The framework uses the new Organization-based Agent Architecture (OBAA++)14 de-

signed to support reactive and proactive organization-based agents.

6.2 Layered Architecture

An illustration of the AASIS layered architecture for implementing a complex cyber-physical

system using the AASIS framework is shown in Figure 6.1.

There are two main layers – first, the cyber layer than sits on top of of the physical

layer. Then the cyber layer is further divided into three layers: (1) supervisory layer, (2) an

intermediate communications layer for participating in affiliated groups, and (3) a working

layer for interfacing with the sensors and actuators associated with devices in the physical
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layer. The approach is similar to the ADACOR holonic control architecture17 shown in

Figure 3.9, but in AASIS, the top two levels are combined into a single supervisory layer.

Figure 6.1: AASIS employs a layered design approach. The cyber layer includes super-
visory, communication, and control layers which sit above the physical layer, containing
sensors, actuators, and communication hardware.

Heads and bodies are employed in holonic organizations, but AASIS also works with

more flexible master/slave roles. Current implementations require a default master or head

for each organization.

6.3 Decomposing Complex MAS

One way to manage complexity is to decompose a complex system into components. This

process is illustrated with an example of a cyber-physical system as it warrants the term

complex. For systems that don’t include a physical system component, the rest of the
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decomposition would remain the same.

The decomposition begins with the definition of CPS as the composition of a cyber-

system (software system) and an underlying physical system:

S = C ◦ P

where S = a cyber-physical system

C = a cyber-system

P = a physical system

In this work, the composition operator , ◦, is used when decomposing cyber-physical

systems, because the cyber functions, specific to each system, are applied to the physical

functions and order matters. See Definition 2.4.

Two specific applications that motivated the desire to develop a means for implementing

systems of intelligent systems have been mentioned. Cyber-systems were needed to support

two different problem domains in the future power distribution system. Therefore, there

is a single physical electrical PDS, common to both systems, designated as P1 and two

envisioned cyber systems: (1) a system to support power quality and voltage control, C1,

and (2) a system to conduct online auctions, C2.

A PDS in a residential area is shown on the far right hand side of Figure 6.2. The physical

PDS carries electricity in a hierarchical manner from the single substation (level 1), out into

a series of 3-phase feeder lines (level 2), which branch into three sets of single-phase lateral

lines (level 3), out to neighborhood transformers (level 4) before flowing to home consumers

(level 5). Homes appear as part of the most distributed organizations, the neighborhoods.

The first cyber-system, C1, involves power quality throughout the distribution system

from the substation (level 1) down to individual homes (level 5). The second cyber-system,

C2, begins where neighborhoods are joined under a lateral line (level 3) and does not op-

erate at either the feeder or substation levels. There may be many such power exchanges,
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Figure 6.2: Two complex multiagent systems running on a common physical power distri-
bution system.

each of which begins at the lowest level with a group of homes (level 5), their associated

neighborhood transformers (level 4), several of which are consolidated under a lateral line

(level 3).
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Two CPS can be built on the same PDS:

S1 = C1 ◦ P1 and

S2 = C2 ◦ P1

where S1 = CPS for power quality control

S2 = CPS for online auctions

C1 = power quality cyber-system

C2 = online auction cyber-system

P1 = power distribution system (PDS)

However, the two systems may not be completely independent. Decisions about partici-

pating in online auctions may impact the flexibility for managing power quality and decisions

for managing power quality may impact the amount of distributed generation (DG) avail-

able for online auctions. Although only C1 will issue control actions in P1, both C1 and

C2 will access P1 sensors. Both C1 and C2 could employ forecasts predicting weather and

expected electrical production and consumption. Mechanisms are needed to integrate the

two systems along with mechanisms to allow them to employ common functionality required

in both systems.

The selected approach supports common access to underlying physical devices, includes

the functionality of both CPS S1 and S2, as well as additional functionality for integrating

the two systems, enabling a mechanism for conflict detection and resolution (as well as

customization) to resolve potential conflicts between the two CPS. The complex IPDS was

designed as a single integrated CPS to carry out both the power quality goals and the online
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auction goals as follows:

S0 = (C0 ∪ C1 ∪ C2) ◦ P1

where S0 = CPS for IPDS

C0 = common and higher integration cyber-system

C1 = power quality cyber-system

C2 = online auction cyber-system

P1 = physical PDS

When describing complex cyber-systems, the union operator , ∪ is used. Cyber-systems

involve a variety of components which may work together, be reused, and be shared among

the various cyber systems. The greater set of cyber functions that includes the union of

all interacting functionality is applied to the physical functions. Order of the supporting

cyber or software systems may not be clearly defined. The union operator is commutative;

C1 ∪ C2 = C2 ∪ C1.

This chapter includes the description of two different complex MAS, C1 and C2. Imple-

mentation of both in a complex CPS is described in Chapter 8.

6.3.1 Two Types of Complex MAS

Following the hierarchical nature of PDS, both S1 and S2 were implemented as a multi-level

hierarchic holonic multiagent system (HHMAS). An HHMAS is a type of MAS where the

system can be decomposed hierarchically into a system of nested agents called holons 158.

Each holon may manage and represent an entire lower-level organization while acting as a

participant in an organization higher up the control hierarchy. Holonic design enables the

reuse of control logic at each level and provides a means for propagating multiple distributed

local optimizations up the hierarchy (called a holarchy in the HHMAS) to support increas-
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ingly centralized control objectives. The two holarchies, one for online auctions and one for

power quality control are shown in Figure 6.2. In this figure, each holon appears as an oval.

The C1 holarchy is shown towards the right of Figure 6.2. There is a single holon at the

substation level (level 1), with multiple feeder holons (level 2), each of which as multiple

lateral holons (level 3), which in turn has multiple transformer holons (level 4), which are

the final level of organizations, containing home holons (level 5), which are not currently

subdivided further. The C2 holarchy is shown on the left of Figure 6.2. The multiple ovals

reflect multiple holons starting with lateral holons (level 3), containing transformer holons

(level 4), and home holons (level 5).

In organization-based MAS, each organization (or group) of agents interact to achieve

a set of organization goals. A complex organizational structure such as a holarchy can be

viewed as having many groups. Agents can act to achieve assigned goals and in response to

communications received from other agents. In the goal processing system used, assigned

goals can be modified by updating custom goal parameters (e.g., a goal to manage reactive

power with a smart inverter can be modified to increase the amount of additional reactive

power requested). The requirements for the two complex MAS were different, providing

several good tests for the flexibility of the proposed system architecture.

Characteristics of the two complex MAS are compared in Table 6.1. In addition, work

is being done on a third complex MAS for state estimation where full instrumentation is

unavailable159.

6.3.2 Specifying Multigroup HHMAS

Both complex MAS are implemented as an HHMAS. Several approaches to implementing

HHMAS have been proposed. Our approach implements each holon in the holarchy as a

goal-driven organization.

Each holonic organization is considered to exist at the more centrally located level, that is

the higher level (with a lower number). Thus, C1 has a single holonic organization operating
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Aspect C1 C2

domain power quality online auctions
direction power company local market
goals continuous discrete
action focus immediate future
holarchies single multiple
levels/holarchy 5 3
up flow messaging messaging
down flow goal params messaging
solution non-linear linear
environment dynamic static
power focus reactive real

Table 6.1: Characteristics of two selected complex multiagent systems.

at level 1 while C2 has none. Both have several holonic organizations operating at the lateral

level 3. The set of hierarchic holonic organizations in the C1 holarchy and the C2 holarchy,

OC1 and OC2 , respectively, are defined as follows:

OC1 = OC1,1 ∪OC1,2 ∪OC1,3 ∪OC1,4

OC2 = OC2,3 ∪OC2,4

where

Ok,l = the set of level l organizations of cyber-system k and

Ok,l = {ok,l,1, ok,l,2...ok,l,n}where

n ∈ Z

n = the number of organizations in level l of cyber-system k

When describing complex organizations, the union operator , ∪ is used to combine sets of

organizations. Organizations involve a variety of components which may work together, and

be part of multiple organizations at the same time. The respective cyber system includes the

greater set of organizations that includes the union of all organizations in that cyber system.

The order of processing the supporting organizations may not be clearly defined and may
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change over time depending on the goals and characteristics of the cyber system and the

state of the environment. The union operator is commutative; OC1,1∪OC1,2 = OC1,2∪OC1,1.

When individual organizations, e.g., ok,l,1 ok,l,2 form a set, they are generally defined as an

ordered tuple.

This reflects the set of all holons at each level, but does not indicate their holonic location,

such as which level 3 lateral holon contains a specific level 4 transformer holon. To specify

the equivalent of a given holon such as the first online auction level 3 lateral holon, oC2,3,1,

their location in the hierarchy must be included as shown in the following:

ok,l,1 = hk,l,1 ∪ {ok,l,1,1, ok,l,1,2...ok,l,1,m} ∪ {ak,l,1,1, ak,l,1,2...ak,l,1,x}

where

ok,l,1 = a holon in level l of system k

hk,l,1 = the head of ok,l,1

ok,l,1,i = body holon in ok,l,1

ak,l,1,j = non-holonic agent in ok,l,1

m,x ∈ Z

m = the number of level l + 1 body holons in ok,l,1

x = the number of level l non-holonic agents in ok,l,1

This reusable approach is flexible enough to specify the different types of holarchies

required. Each holonic organization employed a common level-specific goal model and role

model to drive the desired behavior. A set of level-specific goal models was developed for C1

and another, independent set was developed for C2. This allowed the models and behavior

specifications for the two systems to evolve independently, reducing undesired coupling in

an already complex system.
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6.4 Local Groups

Organizations in MAS can be given a very specific, defined meaning. For simplicity, rather

than sub-organization, the term local group to define an organization within a complex

organization. In a complex hierarchical organization, there may be one local group acting

at the top of the hierarchy, several local groups operating at various intermediate levels, and

still more local groups operating the lowest levels. Each local group has local goals.

These aspects are addressed by the AASIS framework as will be described in the following

sections.

6.5 Affiliates

The term affiliated entities or affiliates are entities that could – or are – acting within a local

group. The entities are said to be affiliated with that local group. In intelligent, goal-driven

systems, suitably-equipped goal-driven entities may be assigned one or more of the local

group’s local goals.

Affiliate persona are responsible for relating with other agents in the context of an ex-

ternal group. In AASIS, they are equipped with: (a) a Connect Capability that provides the

authorization and authentication protocols necessary to contact another agent in the group

and (b) a Communication Capability that provides the ability to compose, encode, send,

receive, and decode group messages. Group Participants are equipped with a group-specific

Participate Capability enabling them to register with the group and receive goal assignments

from the group. The default Group Administrator is equipped with the group-specific Ad-

minister Capability. One default administrator is assigned per local group. However, in the

event the default administrator becomes incapacitated or suspect, a participant could be

elevated to serve as a new or interim administer. The capabilities could be serialized and

sent or switched on when a new administrator is required.
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6.6 Multiple Organization Models

By definition, a complex MAS (Definition 2.16) includes two or more organizations, which

are called local groups. Each local group includes a set of local goals as shown in Figure 2.6.

As described in Section 3.6, there are many approaches to designing, specifying, and im-

plementing MAS. This work selected the Organization Model for Adaptive Complex Systems

(OMACS) to represent the organization information to the agents13. OMACS defines an

organization as a tuple o=<G, R, A, C, Θ, P, Σ, oaf, achieves, requires, possesses>.

A single OMACS model is sufficient for any adaptive system operating as a single orga-

nization; however, when designing a multigroup MAS, such as holonic systems, there will

be an OMACS instance, oi, for each of the organizations in the complex MAS.

When using this approach, AASIS defines a multigroup MAS as a specific type of

complex MAS, C, implemented as a complex organization, OC , represented as an ordered

tuple of organizations as shown in Definition 6.1.

Definition 6.1 (Multigroup MAS).

C = OC = {oC,1, oC,2, . . . oC,n}

where

C = a complex (multigroup) MAS

OC = the set of organizations in C

n = the number of organizations in the multigroup MAS

When individual organizations form a set, they are generally defined as an ordered tuple.

In each organization, oC,i, the set of agents can be denoted as Ai. Therefore, the set of

multigroup agents in C is defined in AASIS as shown in Definition 6.2.
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Definition 6.2 (Multigroup Agent).

µ = {a | ∃a ∈ Ai, Aj | a ∈ oi ∧ a ∈ oj}

where

µ = the set of multigroup agents in C

on = organization n

An = set of agents in on

i 6= j

6.7 Specifying an AASIS Organization

Successful companies, like many organizations, tend to begin with a strategic plan first,

long before hiring begins. In a similar manner, the organizations that our agents will form

and participate in are originally designed by specifying the goals and desired behavior for

the organization. Staffing the organization with agents is an implementation aspect, and

subject to specifics of the physical system size, scope, and available devices and software

available on the system.

The information needed to specify the behavior of an organization in AASIS is shown in

Figure 6.3.

This information is developed by following the Adaptive Organization-based Multiagent

Systems Engineering (AO-MaSE) process, an O-MaSE-compliant software engineering pro-

cess described in Chapter 7. The AASIS framework provides reusable types and components

that support flexible implementation details to provide for a many types of systems as shown

in Chapter 9.
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Figure 6.3: AASIS organization specification requirements.
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6.8 Goals and Guidelines

Every goal specification in a multigroup simulation begins with a single top goal to Succeed.

The top goal is progressively broken down through an iterative approach. Typically, the

organization goal specification begins with a few simple high-level goals for each major

objective required.

In the hierarchic holonic implementations, there is one goal specification for each type

of organization in a system. There is exactly one type of organization for each holonic level

in that system. There may be more than one organization operating at each level and all

organizations within that level use the same goal specification, however, the guidelines, or

goal parameters, are be different for each organization.

Holonic goals are highly recursive, providing aggregation functions when working up the

holarchy and providing methods for distributing goals or power quantities when working

down the holarchy. The goals for each HHMAS, designated as G1and G2 for S1 and S2,

respectively, can be viewed as the union of the goals of each holonic organization in the

HHMAS.

Therefore, the goal decomposition of the goal specification for C1, which has five levels

of agents (1-substation, 2-feeder, 3-lateral, 4-neighborhood, 5-home):

GC1 = GC1,1 ∪GC1,2 ∪GC1,3 ∪GC1,4

where GC1 = the goals for the grid control system

Gk,l = the goals for level l of cyber system k

Likewise, the goal decomposition of the goal specification for C2, which has three levels
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of agents (3-lateral, 4-neighborhood, 5-home):

GC2 = GC2,3 ∪GC2,4

where GC2 = the goals for the online auction system

Gk,l = the goals for level l of cyber system k

Use of the union operator indicates that the same goal, with the same name may be

reused across different organizations. If gi ∈ Gi ∧ gj ∈ Gj ∧ gi = gj then gi and gj should

refer to the same type of goal1.

For consistency, the two levels in the online auction system C2 are numbered the same

as the corresponding levels in the grid control system, C1.

Because multigroup agents are built to be autonomous and to function during periods of

disconnect, goal models are developed for even the lowest level of participants, in this case

homes, even though they may not run organizations themselves. This design decision will

be discussed further in Chapter 8, when the organizations are implemented with multigroup

agents.

The goal specification for each multigroup system was constructed independently with

the standard Goal Specification Builder process described below.

AASIS is designed so that evolution of one system does not impact the evolution of a

different system. Development of both the grid control system and the online auction system

follow their own, independent, iterative AO-MaSE development process. Changes to either

system naturally affect the self control process in a participating agent, as reflected in the

standard process developed for specifying goals as shown in the Goal Specification Builder

process for multigroup systems shown below.

1Different instances of the goals will be created in the respective organizations when the GMoDS for the
organization is initialized or updated during execution.
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Algorithm 3 Goal Specification Process for Multigroup MAS

1: procedure GoalSpecificationProcess(A, S)
2: BuildSystemGoalSpecifications(A, S)
3: UpdateAgentGoalSpecifications(A, S)

Algorithm 4 Multigroup Goal Builder

1: procedure BuildSystemGoalSpecifications(A, S)
2:

3: for each level type, l in S do
4: m = new GoalModel
5: if Sl 6= S then
6: ag = new AdministrateGoal(S,l)
7: ag.addParameter(S.ChildConnections)
8: ag.addParameter(S.LevelGuidelines(l))
9: m.add(ag)

10: if Sl 6= S then
11: pg = new ParticipateGoal(S,l)
12: pg.addParameter(S.ParentConnection)
13: pg.addParameter(S.LevelGuidelines(l))
14: m.add(pg)

15: m.write()

6.9 Standard Control Mechanisms

AASIS employs a standard, customizable set of goals, roles, and plans to implement complex

MAS with OBAA++ multigroup agents36. Affiliated agents must first establish a secure

connection based on the authorization and authentication requirements of governing MAS.

Participants must first establish a connection, a goal typically assigned to the self persona.

Once connections are established, or reestablished after a connection has been interrupted,

the affiliate persona assigned to the participation goal in that local group will get a goal to

attempt to register with the default administrator of the organization. Similarly, the agent

that is configured to start operation as the default group administrator will attempt to

register all participants listed in the organization specification provided to the default group

administrator. The organization specification includes the goal model the administrator will

use to create goal instances during run time, the assignment algorithm, and success criteria.

The approach is flexible in that organizations can customize their desired behavior, but the
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Algorithm 5 Multigroup Agent Goal Builder

1: procedure UpdateAgentGoalSpecifications(A, S)
2:

3: for each level type, l in S do
4: m = new GoalModel
5: ag = new TopGoal(S)
6: ag.addParameter(S.ChildConnections)
7: ag.addParameter(S.LevelGuidelines(l))
8: m.add(ag)
9: if Sl 6= S then . not bottom level

10: ag = new AdministrateGoal(S,l)
11: ag.addParameter(S.ChildConnections)
12: ag.addParameter(S.LevelGuidelines(l))
13: m.add(ag)

14: if Sl 6= S then . not top level
15: pg = new ParticipateGoal(S,l)
16: pg.addParameter(S.ParentConnection)
17: pg.addParameter(S.LevelGuidelines(l+1))
18: pg.addTrigger(S.AdministrateGoal,
19: S.TriggerAdminEvent, S.ParentConnection, S.LevelGuidelines(l+1)
20: pg.addTrigger(S.AdministrateGoal,
21: S.UnTriggerAdminEvent, S.ParentConnection, S.LevelGuidelines(l+1)
22: m.add(pg)

23: m.write()

core set of organizational events (such as achieving a goal) and conditions (what it takes to

succeed) are standard and reused across all local groups.

6.10 Plan Types

Following the three layers in a cyber-system (see Section 6.2), there are three standard types

of plans:

• Self control plans.

• Affiliate plans.

• Autonomous worker plans.
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6.10.1 Self Control Plans

Every OBAA++ multigroup agent is driven by a self control plan. This plan operates for

the life of the agent. The plan is used when the self persona is assigned to the Self Control

Role to achieve the Self Control goal. This can be customized, and further decomposed as

needed reflect the objectives of the associated device, robot, or processing unit. Self Control

is a parametrized goal, and can be customized with a set of object or simple parameters to

reflect the behavior desired for the agent by its owners.

6.10.2 Affiliate Plans

OBAA++ persona that will be assigned to act within affiliate organizations are given plans.

The specifics of the plans are dependent on the type of organizational decision-making style

the local group is using. For example, if the group is designed to work in a master-slave

configuration (as most of ours are), the affiliate plans will be one of two main types, or a

hybrid permitting both:

• Organization administration plans. These plans tend to provide functionality similar

to the OBAA CC master CC Execution Algorithm (CCEA) described in Section 4.5.2.

It includes the ability for an affiliate persona responsible for issuing goal assignments

to understand the current state of the organization, understand the active goals, re-

arrange, and issue assignments to itself and others in the local organization.

• Organization participation plans. These plans tend to provide functionality similar

to the OBAA CC slave CCEA also described in Section 4.5.2. It includes the ability

for an affiliate persona to accept an assignment to play a role to achieve a goal in the

local organization.
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6.10.3 Autonomous Worker Plans

Many OBAA++ agents include one or more autonomous worker plans. These plans may

operate for the life of the agent. The plan typically includes the necessary plan or plans to

utilize sensors, control actuators, and conduct various processing and analytical capabilities

associated with the native physical equipment available to the associated device, robot, or

processing unit.

6.11 Capability Types

AASIS employs a set of standard capability types, some of which are designed to provide the

control component (CC) functionality for operating an external, affiliated organization in

much the same way that internal persona participate within the agent. While the implemen-

tation details of these standard types vary with the specific security and other requirements

of the associated system, these types are reusable and expected in any AASIS implemen-

tation. Much like OBAA, the CC functionality is supplemented with domain-specific EC

capabilities as appropriate.

Additional common capabilities. As a online system, all persona types are typically

equipped with (a) a Synchronization Capability to provide correct date and time awareness

and all but the self persona are given (b) an Inner Participate Capability to allow the persona

to accept goal assignments from the self.

Capabilities can be designed, implemented, and tested individually. In addition, each

agent is given a set of initialization guidelines as goal parameters that describe external

agent connections, the group in which they will cooperate, and the agent that will act as the

default group leader. Additional application-specific behavior is designed and implemented

the same as in OBAA agents using goals, role behaviors, and capabilities.

AASIS is designed to support agents participating in different systems concurrently. As

such, some capabilities used in the plans may be either innate or endowed.
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6.11.1 Innate Capabilities

Innate capabilities are those that the agent already has, generally related to the devices

(i.e., the sensors and actuators), that the agent has been designed to use. Additional innate

capabilities may include special learning or analytic capabilities built for the data associated

with those devices such as data predictors and forecasters, or data cleanliness or anomaly

detection algorithms.

6.11.2 Endowed Capabilities

Endowed capabilities are those specifically developed to support the needs of the organi-

zation, including capabilities to connect, register to participate, accept assignments in the

organization, issue assignments, or send organizational messages.

6.12 Hierarchic Holonic Organizations

Specifying hierarchic holonic organizations for a complex MAS begins with creating a com-

plex goal model, G. G represents the full set of goals that the system will attempt to achieve

and must be decomposed to provide a subset of the goals to each local group to pursue.

Similarly, the complex MAS has a set of roles, R, as well as plans and capabilities required

to perform the plans.

6.12.1 Holonic Goals

Hierarchic holonic organizations designed in the context of two types of goals: One goal

for the head or super holon administering the collective holon, and one goal for the body or

subholon that participate within the holon. As a recursive organizational structure, the goals

for each level of a holarchy should be able to be represented with the same goal model. The

original work began with holonic goal specifications customized by the equipment available
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at each level, but as work continued, a way to avoid this was developed and a truly holonic,

reusable, recursive approach to goal specifications for holarchies was developed. Following

O-MaSE, each local goal model in the complex goal model, G, undergoes refinement before

the process continues.

6.12.2 Holonic Roles

Following O-MaSE, after developing the refined goal model G, the complex role model

specification R is developed. Roles allow us to specify the organizational behavior of an

organization without requiring knowledge of the actual agents that will participate. That

is, roles offer a useful way to allow the specification of how the organization should function

to be developed independently of the specifications for each agent.

For each organization, we begin by defining roles to achieve each goal in Gk,l where k is

the system, l is the level within the system, and G is the goal model for the organization.

The role specification for C1, which has five levels of agents (1-substation, 2-feeder,

3-lateral, 4-neighborhood, 5-home) includes the set of roles defined at each level:

RC1 = RC1,1 ∪RC1,2 ∪RC1,3 ∪RC1,4

where RC1 = the roles for the grid control system

Rk,l = the roles for level l of cyber system k

Likewise, the role specification for C2, which has three levels of agents (3-lateral, 4-

neighborhood, 5-home) includes the set of roles defined at each level:

RC2 = RC1,3 ∪RC1,4

where RC2 = the roles for the online auction system

Rk,l = the roles for level l of cyber system k
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Use of the union operator indicates that the same role, with the same name may be

reused across different organizations. If ri ∈ Ri ∧ rj ∈ Rj ∧ ri = rj then ri and rj should

refer to the same role.

Algorithm 6 Role Specification Process for Multigroup MAS

1: procedure RoleSpecificationProcess(A, S,G)
2: BuildSystemRoleSpecifications(A, S,G)
3: UpdateAgentRoleSpecifications(A, S,G)

Algorithm 7 Multigroup Role Builder

1: procedure BuildSystemRoleSpecifications(A, S)
2:

3: for each level type, l in S do
4: m = new RoleModel
5: if Sl 6= S then
6: ar = new AdministrateRole(S,l)
7: m.add(ar)

8: if Sl 6= S then
9: pr = new ParticipateRole(S,l)

10: m.add(pr)

11: m.write()

In more complex systems, additional roles to achieve each goal can be added. A mecha-

nism for selecting which role to use must be added to the assignment algorithm used by the

control component master for the organization.

6.12.3 Holonic Plans

Following AO-MaSE, after completion of the refined goal model and role model, the plan

specifications are developed. Plans provide the details of how a role is to be performed and

can be specified by the organization designers without knowing anything about the actual

agent who will be selected to perform the plan.

Following the process above, the plan specification for C, PC , includes the set of plans
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Algorithm 8 Multigroup Agent Role Builder

1: procedure UpdateAgentRoleSpecifications(A, S)
2:

3: for each level type, l in S do
4: m = new RoleModel
5: if Sl 6= S then . not bottom level
6: ar = new AdministrateRole(S,l)
7: m.add(ar)

8: if Sl 6= S then . not top level
9: pr = new ParticipateRole(S,l)

10: m.add(pr)

11: m.write()

defined at each level: as follows:

PC = PC,1 ∪ PC,2 ∪ PC,3 ∪ ...PC,n−1

where PC = the plans for system C

n = the number of agent levels in system C

Pk,l = the plans for level l of cyber system k

Plans may be quite similar at each level, differing according to the different devices avail-

able at each level of the corresponding physical system. Use of the union operator indicates

that the same plan, with the same name may be reused across different organizations. If

pi ∈ Pi ∧ pj ∈ Pj ∧ pi = pj then pi and pj should refer to the same plan.

Plans can be built with the following algorithm.

Algorithm 9 Plan Specification Process for Multigroup MAS

1: procedure PlanSpecificationProcess(A, S,G)
2: BuildSystemPlanSpecifications(A, S,G)

In more complex systems, additional plans that perform each role can be added. A

mechanism for selecting which plan to use must be added to the plan selection process used

by the plan executor.
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Algorithm 10 Multigroup Plan Builder

1: procedure BuildSystemPlanSpecifications(A, S)
2:

3: for each level type, l in S do
4: p = new Plan
5: if Sl 6= S then
6: ap = new AdministratePlan(S,l)
7: m.add(ap)

8: if Sl 6= S then
9: pp = new ParticipatePlan(S,l)

10: m.add(pp)

11: m.write()

Plans are implemented by calling methods. These methods are grouped into sets called

capabilities. Again, plans and capabilities can be developed to specify desired organization

behavior before any agents have been identified to implement the system. This principle

of defining the organization behavior fully before staffing the organization with agents is

crucial to loosely coupled complex systems defined by multiple participating entities.

The communication layer for a mid-level holon is shown in Figure 6.4.

The communication layer for a leaf-level holon is shown in Figure 6.5.

6.13 Managing Consistency and Bias

In IPDS agent-organizations for the Grid Control System (GCS), there are currently two

main drivers: (1) increasing or decreasing reactive power to offset sudden changes in dis-

tributed generation and (2) the desire to maintain efficiency by keeping the voltage level

from node to node. Voltages should always be keep within hard limits of 0.95 to 1.05 at all

nodes. This was used to develop several IPDS examples that motivate the research:

1. A home agent controlling associated PV may have a personal goal to adjust its smart

inverter setting to compensate for its home’s net change in power from the grid. This

goal may mean the agent should decrease reactive power injection. At the same time,

the agent could get an updated goal from the neighborhood organization to increase
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Figure 6.4: Communication layer for a level n agent in a mid-level holon.
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Figure 6.5: Communication layer for a level n+1 agent in a leaf-level holon.
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reactive power injection due to the combined effects among the neighborhood homes.

(Although cloud cover is highly spatially-correlated, it is certainly possible for one

home to experience cloud cover while nearby homes are in full sun. Especially as

clouds may tend to pass from home to home in rapid succession, this may be a very

practical test case.)

2. A home agent controlling an associated PV may also have a personal goal or even a

law policy (which may be implemented as a hard goal) to maintain voltage between

0.95 and 1.05. At the same time, the agent could get an updated goal from the

local neighborhood organization to increase reactive power, but assisting with this

assignment would cause the home voltage to go out of bounds.

3. A neighborhood transformer agent may supervise four homes, several of them with

PV. The neighborhood transformer agent has issued the home reactive power setting

goals that work best for the local group. As part of its higher-level lateral organization,

the neighborhood transformer agent gets a goal to increase the neighborhood reactive

power settings. Does this introduce a conflict? If so, how should it be managed?

Mechanisms for detecting inconsistencies and supporting the implementation of stable

distributed control algorithms were needed, possibly with the later application of formal

methods to ensure consistent behavior. Specifically, mechanisms for managing goal consis-

tency in multigroup agents, were needed and future work is planned to test these mechanisms

in IPDS agents operating in hierarchically- and holonically-structured organizations.

In each test case, the agent should be able to continuously monitor its goal assignments,

detect the existence of possible conflicts, determine whether a conflict exists or not, and if

a conflict is detected, enact procedures for appropriately managing the conflict37.

In his 2008 paper on Future Directions for Agent-Based Software Engineering, M. Winikoff

suggests three research areas are key to the future of the field93. The first of these is goals.

Within this key area, one of the specific questions is:
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Figure 6.6: Goal Model for Dynamic Systems (GMoDS) execution model14.

What (generic) mechanism can be added to agents to detect interactions between

goals, in order to avoid conflict (e.g., resource contention) and exploit positive

interactions (“synergy”)?

In our applications, each organization – both inner organizations (the personal orga-

nizations maintained by each agent privately) and affiliated organizations (those that are

created dynamically by the agents when working together) are driven by a defined set of

specification goals. Using GMoDs the goal specification also becomes a working part of the

runtime engine, instantiating goals for assignment to participating agent persona. Persona

represent the agent in a dynamically-created, affiliated group. Persona are assigned to play

a role to achieve a goal. Mechanisms supporting goal consistency are focused on enabling

the persona to assess the goals they get from an organization in light of their current assign-

ments and to detect direct conflicts and implement procedures for managing goals among

themselves.

The AOSE process and tools used to design agent systems can be crucial. AO-MaSE

provides recommendations for engineering complex systems.

There were several good options for selecting an approach. The current execution model

in the Goal Model for Dynamic Systems (GMoDS)91 is shown in Figure 6.614. A trig-

gered goal becomes active unless obviated due to no longer being necessary under current

conditions (e.g., a rescue goal may be obviated if the search finds a non-resuscitable target.)
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The recent work with Belief-Desire-Intention (BDI) agents proposes a goal life cycle that

includes an initial pending state from which the agent may decide to either activate, suspend,

or abort the goal. Suspended goals may be sent back to the pending state periodically for

reevaluation. Goals in the active or monitoring states may also be sent to the suspended

state and from there may return to the pending state. This life-cycle provides interesting

insights to constructing a framework to support the monitoring, assessment, and resolution

of potential goal conflicts118.

Starting with an execution model implementation may be helpful, as it would provide

a common structure regardless of the specific conflict reasoning and resolution approaches

chosen. Triggered organization goals can be terminated before an agent begins by being

removed due to negative triggers, obviation, or a guaranteed failure (such as the loss of

a critical resource for achieving the goal). Triggered goals not removed may be assigned

to an agent, but instead of a triggered goal going directly to the active state, there would

be three assigned states: (1) a mandatory first stop for assessing and reviewing the goal

for possible conflicts prior to adoption, which may include negotiation or returning a goal

found to be inconsistent (2) holding, a temporary wait which could be revisited either due

to a specific event or reviewed on a schedule and (3) achieving, the process of actively

executing the associated plan. Should the running goal model for the organization decide

that an assigned goal instance has been removed, obviated, or failed, it can notify the agent

assigned, who will stop assessing, release the hold, or stop executing the plan, as appropriate.

At the highest level, there may be two opposing approaches to managing goal consistency:

• The first would be to provide a perfect life, to design the system so no inconsistencies

can be introduced and to enforce rigorous evaluation prior to goal creation that would

not allow the creation of goals that conflict.

• The second is to permit the creation of goals that may be incompatible and assume

that detecting and resolving conflicts in cooperative systems is part of natural and

artificial intelligence.
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As organizations, multigroup agents can employ a variety of organizational mechanisms

and supporting data structures including policies to guide the agent’s monitoring, detection,

and resolution of goal conflicts. Rules, however, may simultaneously both help to address

organizational needs, but they may also inherently contradict organizational needs160.

In summary, were are several possible ways to proceed:

1. Develop something similar to the Thangarajh and Winikoff method based on existing

parametrized goals. This would provide an approach for non-BDI agents built on the

existing GMoDS goal model.

2. Develop something similar to the Dufree method using a hierarchical behavior and

space search algorithm. Goals from higher organizations would obviate any existing,

related goals created by lower level organizations, and only law policies, reflecting re-

quired or inherent equipment limits, would limit the adoption of goals as directed down

the hierarchy. This top-down command-and-control approach is possibly inherently

more consistent, but also less flexible, and could negate some of the benefits of having

intelligent, communicating, cooperative agents working out local optimal solutions.

3. Employ rigorous category theory to address the issue at a deeper level.

An approach similar to the first option was selected. The work focused on developing

and testing mechanisms to address to the following specific cases of detection, consistency,

and response.

• Detection of direct conflict.

• Detection of potentially antagonistic goals.

• Evaluation and internal management of antagonistic goals.

• Full or partial acceptance of non-conflicting, parametrized requests.
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• Detection and selection of compound plans that support pursuit of one or more goals

simultaneously.

• Identification of non-conflicting, non-opposing, unrelated goals and a mechanism for

acceptance and execution via request.

6.13.1 Multigroup Agent Architecture

The simulation employed the multigroup agent architecture being developed. The multi-

group agent architecture implements agents as groups of subagents and enabled standard

mechanisms for reasoning about potential conflicts, establishing and maintaining connec-

tions with other agents in affiliated groups, and enabled agents to instantiate and administer

affiliated organizations for achieving multiagent objectives.

Standard mechanisms can be incorporated into agent architectures for assessing goal con-

sistency and managing the appropriate evaluation, negotiation, and acceptance of assigned

goals before incorporating them into the agent workflow.

In their model116, there is a resource summary associated with each plan. For us, when

a plan gets assigned to a goal, the plan resource summary could effectively become the

resource summary for the associated goal. This approach or something similar may be

useful in the IPDS project when setting and managing goals associated with managing

elastic and inelastic load demands for each home.

6.13.2 Goal Conflict Management

The selected approach to goal consistency primarily focuses on the area where an agent is

participating in an affiliated group and gets a goal from the CC master issuing the organi-

zation assignments. The CC master assigns the goal to the affiliated CC slave. A persona

in an affiliated organization typically provides communication and representation only; sig-

nificant processing work is performed by a dedicated persona operating within an agent’s
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Figure 6.7: Simplified goal direct-conflict-detection table.

private domain. The following definitions may be helpful.

As described earlier, a direct conflict is a logical inconsistency. Two goals are in direct

conflict when the goal identifier, the unparameterized goal type, of one is enough to imply

the direct negation of another, e.g., when one of the two cases applies:

• A ⇒ ¬ B.

• B ⇒ ¬ A.

Given that personal inner organizations can maintain independent and private goal mod-

els, and that the identifiers used between goal models could possibly have inconstant usage,

a direct means of maintaining a hash table of key-value pairs was selected. The key is the

unique identifier of a goal that conflicts, and the value is a list of all goal identifiers that

are in direct logical conflict with the key goal. For example, if a self agent goal model has a

Pay goal and an affiliated group has a Freeze Expenditures goal, the list may be as follows:

<Teller.Pay>, <Account.FreezeExpenditures>,

<Account.FreezeExpenditures>, <Teller.Pay>.

Entries are added to the list in both directions as appropriate. Currently, there is only

one case where the direct conflicts involve parameters and that is essentially where an all or

none are assumed. The current implementation of this mechanism assumes goal identifiers

are consistent between all goal models, and the prepending of the optional organizational

indicator was not needed. Some logical inconsistencies in the test simulation are noted in
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Figure 6.8: Goal-conflict management support.

Figure 6.7. Actual implementation prepended all entries with the goal model and used the

actual goal type identifier. Some of the associated components related to to Goal Conflict

Management are noted in Figure 6.8.

6.13.3 Community Bias Management

The selected approach for enabling reasoning based on the authority of natural hierarchies

was generalized to include a configurable community bias. Each agent maintains a com-

munity bias indicator on a per goal basis. This bias indicator is currently configured as a

simple multiplier, with 1.0 indicating the agent is completely community-focused and will

strive to achieve the community goal in full. Similarly a ration of 0.0 would be completely

selfish, indicating the agent will do nothing to support the associated goal when issued by an

affiliated organization. Some of the components related to community bias and selfishness

management are noted in Figure 6.9.
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Figure 6.9: Community bias versus selfishness support.

126



Figure 6.10: Resource management support.

6.13.4 Resource Management

Resource management is a critical component of real world reasoning and therefore, this

effort included an implementation of resource management mechanisms that can be used

to determine soft conflicts, e.g., when two goals each require 7 units of a resource from an

agent that only has 5 available. Some of the components related to Resource Management

are noted in Figure 6.10.

6.13.5 Reasoning with Utility Functions

Enabling resource management motivated an associated mechanism so that not all resource

applications must be assumed to be equal. The project approach included the addition of

utility functions to assist an agent that cannot meet the full demands of two assignments

and must determine how much each goal should be partially satisfied to maximum the total

possible utility. This mechanism will form the foundation from which a variety of distributed
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Figure 6.11: Reasoning with utility functions support.

constraint satisfaction problems can be resolved and begins to set a core layer from which a

library of game theoretic algorithms could be employed and tested. Some of the associated

components related to reasoning with utility functions are noted in Figure 6.11.

6.14 Summary

This chapter describes the way complex multiagent systems can be implemented in the

OBAA++ multigroup agent architecture and illustrates how the architecture supports not

only multigroup organizations such as holarchies, but how the system can support multiple

organizations, operating under different goal-driven behavior specifications concurrently.

This AASIS framework can be used to build complex systems by employing the software

engineering process described in Chapter 7.
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Chapter 7

AO-MaSE: Engineering Complex

Systems

If you give someone a program, you will frustrate them for a day;

if you teach them how to program, you will frustrate them for a lifetime.

— David Leinweber161

This chapter describes the process developed for engineering multigroup agents for com-

plex cooperative systems. Section 7.1 describes the motivation and challenges. Section 7.2

introduces the novel adaptive architecture. Section 7.3 covers the iterative, O-MaSE-

compliant process used to build organizations, both inner organizations within a multigroup

agent, and external, affiliate organizations the agents create and operate. Section 7.4 de-

scribes the process for beginning with the inner organizations of persona and Section 7.5

describes the process for affiliate organizations. Section 7.6 describes software quality ben-

efits and Section 7.8 provides a chapter summary.
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7.1 Challenges

Smart infrastructure optimization involves some of the most complex and critical systems in

modern society7. Agent technology offers a way to manage the inherent complexity of such

systems. Agents can be used to represent simple variables in a computer program as well

as complex, distributed, intelligent objects involving potentially infinite numbers of states,

decisions, and actions and reactions141. When modeling power systems, agent traits of par-

ticular interest include autonomy, heterogeneity, adaptivity, social ability, communicability,

flexibility, and concurrence162. Agents implement goal-based behavior and intelligent power

distribution system (IPDS) agents must demonstrate the ability to support the objectives of

their respective owners while also acting cooperatively to achieve common objectives, such

as maintaining critical loads and system efficiency.

Power flow, quality, and control lends itself to distributed, recursive optimization where

possible. Some local optimization can be distributed and may not result in propagation

throughout the hierarchy, while the system as a whole may be impacted by larger, more

centralized control options such as load tap changes. Using a flexible, holonic architecture

allows us to evaluate a variety of control algorithms and strategies.

7.2 AO-MaSE

The Organization-based Multiagent Systems Engineering (O-MaSE) framework provides a

foundation supporting tailored software engineering implementations. A compliant process

must meet the following requirements: (1) no new constraints may be placed on existing en-

tities and relationships in the O-MaSE metamodel, (2) the method guideline pre-conditions

must not become stronger or post-conditions made weaker, and (3) no existing metamodel

entities, tasks, work products, or method-roles may be eliminated9.

Multiagent systems (MAS) and holonic MAS (HMAS) may involve complex systems.

Getting started with such frameworks can be challenging163. The Adaptive O-MaSE software
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engineering process (AO-MaSE) provides a set of recommendations for dealing with that

complexity by applying some of the principles commonly associated with agile processes164.

Several of these agile principles are associated with MAS in general and include an ability

to respond to changes, an ability to participate in ongoing collaboration, a recognition of

the importance of interaction between autonomous participants, and a focus on goal-driven,

executable components. In a similar way, the AO-MaSE approach focuses on adaptability

and the structured evolution of a working system. Other systems such as PASSI have

gone further to incorporate agile processes165. Agile PASSI research confirmed that agile

processes tend to spend less time on design and correspondingly more in coding and testing

and found that a quicker move to implementation was helpful when addressing high-risk

areas165. In addition, research at the University of Vigo in Spain has adapted the INGENIAS

methodology to follow the agile process SCRUM with promising results166.

The process follows four key strategies:

• Start simply and add incrementally; in the AASIS framework, agents given even simple

goals may require a significant infrastructure to execute.

• Apply recommended process conventions to enhance clarity and consistency.

• Follow models with code construction to get working systems early.

• Expand, enhance, and refactor as functionality evolves.

By following the AO-MaSE approach and detailed implementation guidelines, the full

set of required components can be implemented early, and form a basis for expanding and

enhancing the system. Completing the connections in a working system provides exam-

ples of how components connect the various models and drive the behavior of the system.

For example, event triggers on the goal model may appear as transitions in the plan dia-

grams and domain objects may appear in method parameters in plan states and associated

capabilities. A working version that connects the parts provides a concrete example for
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software engineers and developers that have little experience in agent-oriented engineering.

The method construction guidelines provide the ability for a team of software engineers and

subject matter experts to work collaboratively to select key elements for implementation

and to develop associated work products including requirements specifications, goal mod-

els, organization models, domain models, role models, role plans, plan states, capabilities,

protocols, policies, and code.

7.3 Iterative Implementation

In AO-MaSE , the architect begins by creating a fully executable but limited-scope vertical

spike through the system to create a working version early that offers a solid core from which

increasingly complex analyses and behavior can evolve. AO-MaSE follows the O-MaSE

compliant process and depicts three iterations that include the tasks and work products

shown in Figure 7.1.

This iterative, O-MaSE-compliant process is used to build organizations, both the inner

organizations within a multigroup agent, and the external, affiliate organizations that the

agents create and operate while supporting different systems39.

7.4 Internal Organizations

In AO-MaSE, the design process begins by defining the inner organizations of persona. For

simplicity, each organization can begin with a supervisory level and a worker level that

manages the various sensors and actuators the agent can access. This allocation of persona

to different layers according to their purpose is somewhat similar in approach to the layered

ADACOR implementation17. Different types of entities together form a process layer across

the system.
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Figure 7.1: In AO-MASE, each organization develops in a progressive, iterative process.
Tasks are shown as rectangles, work products are shown as rounded rectangles.
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7.5 Affiliate Organizations

Independently, systems are designed by determining first, the organizational design for the

system. If the system will employ multiple organizations, the system should be decomposed.

In some designs, for example those employing hierarchic or holonic aspects, there may be

multiple types of organizations. Organizations that differ in goals, roles, or behavior should

be identified. In hierarchic structures, for example, there may be a top-level organization,

a mid-level organization, and a lowest-level organization type. There may be one type of

mid-level organization, regardless of the number of levels between the highest and lowest

parts of the system.

The inner and affiliated organizations are integrated by implementing the communica-

tion layer with the additional goals, roles, capabilities, and persona to the inner organization

models. Capabilities can be reused between independently-specified systems. This can be

enhanced by defining good application programming interfaces (API) and following devel-

oping standards.

7.6 Software Quality

The project resulted in the development of a clear, repeatable process that sped the im-

plementation of systems with no loss in functionality. The AO-MaSE process and the

model-driven tools provide a complete path through the design, specification, implementa-

tion, and execution of a MAS. The process was successfully used to test implementation

of the required goals, roles, capabilities, and plans required for the initial IEEE test case

developed by the electrical engineering simulation team. The AO-MaSE process was em-

ployed during the development of an entirely new type of organization that will allow the

implementation of additional reasoning for agents participating in multiple organizations.

The process and tools provided a clear path that again allowed implementation of the first

iteration of end-to-end functionality in a matter of days.
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A comparison of O-MaSE compliant systems, some of which were developed using the

AO-MaSE guidelines and some which were not, is shown in Table 7.1. For example, for

the initial iteration of AO-MaSE, the options are constrained to create a quick implemen-

tation that cuts all the way through the process. When developing the initial set of roles

that achieve each goal, the AO-MaSE process recommends starting with exactly one role

capable of achieving each goal (see the first row entry in Table 7.1). In O-MaSE, no such

correspondence is required and the association between goals and roles can be much more

complex. This flexibility is available in later AO-MaSE iterations as well; however it is

not recommended for the first iteration. Similar constraints are recommended for the ini-

tial implementation of AO-MaSE with regard to roles and plans. AO-MaSE recommends

starting with one plan for each role. Additional recommendations for the initial AO-MaSE

iteration are shown in the remaining rows along with their correspondence to the associated

characteristics permitted in the original O-MaSE process (as shown in column 3).

7.7 Application

The AO-MaSE process was developed and implemented during the production of the initial

IPDS architecture. AO-MaSE design conventions, recommended practices, and guidelines

are described and illustrated.

7.7.1 Iteration 1: Getting Started

In addition to the infrastructure of the component parts, an OBAA-based system offers

significant initial agent functionality, but introduces some additional embedded complexity.

System behavior develops in response to a variety of events such as goal triggers, agent

registrations, and organizational events. Early execution can help software engineers get a

better understanding of the system. The first iteration results in a streamlined implementa-

tion that provides an early executable model of the system. The following summarizes the
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Feature AO-MaSE initial itera-
tions

O-MaSE final imple-
mentation

Goal – role
correspon-
dence.

Direct 1-1 correspondence
facilitates initial modeling
and subsequent debugging.

No correspondence required;
multiple roles may achieve a
goal.

Roles – plan
correspon-
dence.

Direct 1-1 correspondence
facilitates initial modeling
and subsequent debugging.

No correspondence required.

Plans and
plan state
consistency.

Plans initially imple-
mented using automated
INIT-EXECUTE-STOP
template.

Plans created and refined in-
dependently as flexible finite
state models.

Post-fix ob-
ject type
naming stan-
dards.

Consistent application of
suffix object type names
(e.g., SmartMeterCapabil-
ity, ManagePowerGoal) im-
proves code readability and
maintainability.

Suffix object type names not
required. Less code clarity
and increased need for com-
menting or familiarity for
implementation and debug-
ging.

Clearly-
defined design
process.

Yes. Application of pro-
cess framework and agent-
Tool3 modeling tools clearly
described.

Yes. Application of pro-
cess framework and agent-
Tool3 modeling tools clearly
described.

Clearly-
defined im-
plementation
process.

Yes. Well-defined and struc-
tured implementation pro-
cess and guidelines provided.

Flexible process for imple-
mentation; few direct guide-
lines.

Table 7.1: Implementation of O-MaSE-compliant MAS with and without AO-MaSE.
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AO-MaSE recommended practices for an initial iteration.

1. Define one top-level goal to reflect the overall behavior desired by the system; add a

small number of terminal goals (without subgoals) to represent core objectives.

2. Define the initial set of interfaces to the overall organization.

3. Define roles to achieve each terminal goal. Where possible, follow parallel, explicit

naming conventions that differ only in type.

4. Define plans to perform each role.

5. Define the Plan Selection Algorithm (PSA).

6. Define capabilities specific to each plan; define a local domain-specific communication

capability and an external controller communication capability.

7. Assign role requirements. Most roles require control communication (for OBAA

agents), the local domain-specific communication, and at least one role-specific ca-

pability.

8. Define a limited number of plan states (e.g., INIT, EXECUTE, and STOP).

9. Define plan state transitions and state behaviors by defining and calling capability

methods.

10. Define agent types based on the problem domain.

11. Define the Execution Component Execution Algorithms (ECEA).

12. Define the Control Component Execution Algorithms (CCEA).

13. Configure agent instances with associated capabilities and attributes.

14. Configure environment object instances such as sensors and actuators.
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15. Configure, implement, debug, test, and execute the initial vertical spike.

The project began with the specification of requirements. From the set of requirements

for the initial phase of the project an initial focus was selected that allowed testing core

functionality – the distribution and management of goals within a local organization. Since

achieving each goal requires substantial infrastructure, goals were limited to a small set of

core objectives. The top goal of each recursive organization is Support IPDS, as shown in

It will guide agent organizations while connected to the grid and while running in islanded

mode.

The organization model was developed to define the boundaries and interfaces for the

system. Each IPDS would seek an external controller that would both receive requests

and send requests/guidelines down to the system, enabling centralized control and com-

munications from the primary energy supplier. Inputs were provided to characterize the

organization’s goals. The goal model was drafted and then refined to show the supervisor

triggering a manage instance goal for each participant. The domain model began to reflect

the objects in the environment and included a smart meter object and a PV system, along

with equipment attributes and unique identifiers.

Following the guidelines, a role was created for each terminal goal, a plan for each role,

and gave each plan three initial states: (1) INIT for performing actions that will only

need to be done once, (2) a role-specific state that captures the main work of the role,

and (3) a STOP state consisting of behaviors to be executed when finishing the plan. The

recommended capabilities were defined. As plan states were developed in the plan diagrams,

the methods required of each capability were identified. Parallel naming conventions for

goals, roles, plans, and role-specific default capabilities aided clarity and were used to employ

additional code automation. Agent types did not parallel the goal or plan names. Instead,

they reflected the physical installation or focus of the agent type. The first class was an

Neighborhood Agent class, expected to run on or near a transformer serving 2-6 homes, and

a Prosumer agent class, expected to be installed on or near a home-based smart meter.
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As the OMACS components developed, they were implemented in the OBAA-based

IPDS framework. Agent and Environment configuration files were used to instantiate specific

agents and objects for a variety of test cases. The AASIS framework can be employed

immediately if one control component master is declared for any local organization. The

first iteration began with one supervisor neighborhood agent (the control component master)

and two prosumer agents (both control component slaves) to test the ability of the system

to solve adapt to changing local conditions.

7.7.2 Iteration 2 – Filling in the Framework

With a working simulation provided during Iteration 1, the focus in Iteration 2 shifted to

adding functionality to address a variety of potential challenges. Development focused on

enhancing the plan states and capability method calls. Additional capability types were

added, providing additional differentiation and room for expanded functionality. Capabili-

ties were implemented with simple algorithms that served to define the expected interfaces

that would be required to support more complex optimization algorithms that were being

developed in parallel research projects.

The goal model was enhanced to include parameterized goals with the external controller

providing combined guidelines for the organization. Additional triggers were added to the

refined goal model. The supervise goal, which had been distributing combined goals among

participants during the INIT state, was enhanced to adapt participant goals during the

SUPERVISE state in response to each participant’s simulated history.

Organization guidelines were grouped into objects with defined purposes, making the

system easier to expand as requirements were added. Three types of guidelines were given

to each organization: combined load guidelines, combined power quality guidelines, and

evaluation guidelines that reflected desired feedback intervals and forecast horizons. As a

holarchy, the combined organization guidelines could be adapted in response to temporal

conditions just as local participant guidelines were adapted. Plan states continued to evolve
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to reflect more complex logic and additional actions and events were added to define the

transitions between states. Objects and attributes were added to the domain model as more

external devices were defined.

Capabilities grew in functionality as plan state logic developed. Capability methods

were enhanced to include simulation interfaces and smart meter sensor capabilities began

obtaining simulated device data from MATLAB. As capabilities became more complex,

they were refactored into smaller, more specific capabilities that in turn began to grow in

functionality. An IPDS Builder component was added to support the reliable generation of

test cases.

7.7.3 Iteration 3 – Filling in the Framework

The third iteration focused on extending the refined goal model; introducing forecasting

goals and adding supporting agent types. Although goal changes represent a relatively major

change to the IPDS design, by following the guidelines and recommended process and code

policies, new features were added relatively easily. The application, once established, was

easy to extend. Additional goals brought additional triggering events and goal parameters.

As communications are added to plan diagrams, they include the specification of the

performative, the type of message content, and the role of the agent with which the com-

munication takes place. Message types and their associated message content types were

implemented for each communication capability.

As an IPDS organization starts up, agents participating in the organization register with

the control component master. The specification goal tree gets instantiated and activates

the top level goal along with any non-triggered, non-preceded leaf goals. For example, as the

goal plan for the Supervise Prosumers goal is executed, the Supervise Prosumers Plan INIT

state triggers an instance of the Manage Prosumer goal for each participant. As each home

agent gets assigned to a Manage Prosumer Role, it first enters the Manage Prosumer Plan

INIT state, and then triggers a new instance of an associated Forecast Prosumer goal. The
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home agent then transitions to the Manage Prosumer MANAGE state and begins sensing

consumption and generation readings, which it reports back to the Supervisor, alerting the

Supervisor if it detects an out-of-bounds condition. The supervisor optimizes combined local

guidelines within the organization, adapting participant goals to maximize compliance. If

guidelines cannot be met within the local organization, the supervisor will raise a request

to the external controller who will, in turn, attempt to address the request from within

the controller agent’s local organization, recursively raising requests up the holarchy until a

solution is available.

Figure 7.2: Implementing complex MAS with AO-MaSE.

An early cut all the way through a complex system supports early visual feedback. Fig-

ure 7.2 shows a view into a running IPDS test case. There is one organization window

for each multigroup agent. Organization goals appear in each top left panel. Roles appear

in the top center panel. Participating agents are displayed in the lower right panel. In

the center bottom panel, assignments are displayed, indicating that each agent has been

assigned to a specific instance goal based on their capabilities and attributes as defined in

the agent configuration file. In this assignment panel, the current values of the agent’s goal
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parameters are shown as they are adjusted by their local group administrator. The pro-

sumer goals are being distributed in accordance with each participant’s demand. Maximum

kW guidelines may be positive or negative. Negative upper boundaries are assigned to a

participant generating more PV power than the participant is consuming. The extended

system passed a variety of tests and demonstrated the operation of multiple goal models and

assignments. During this iteration, the system was extended to additional levels of the hol-

archy in preparation for the evaluation of the test case involving 62 location-based hosts and

approximately 46 local IPDS organizations. The test case is based on the IEEE Distribution

System Analysis Subcommittee 37-Node Test Feeder case that begins with the substation

node labeled 1. Electricity is distributed out along the 3-phase feeder lines. Extensions to

the IEEE test case were made to test the system down to the home level. In this version,

there were four nodes along a single-phase lateral line (39-42), four nodes corresponding to

agents running on neighborhood transformers (43,48,53,58), and four homes being supplied

by each transformer. The earliest trials assumed one of every four homes was equipped with

roof-mounted solar PV panels. For example, Home 44 had PV distributed generation (DG)

capabilities, but Homes 45, 46, and 47 under Neighborhood Transformer 43 did not.

7.7.4 Discussion

Each number on the test case diagram corresponded to a physical location or node that

could host IPDS agents. These locations had sensors and/or actuators depending on the

physical configuration being simulated. Generally, real power (P) and reactive power (Q)

consumption (load) values were assumed to be available by phase at each of the nodes.

In addition, homes equipped with PV had sensor readings available for the real power

generated. Actuators or controllable equipment ranged from a single load tap changer at

the top of the distribution network, down through capacitors on the three-phase feeders to

smart inverters, which allowed for some moderation of reactive power at each PV-equipped

home. Reactive power is typically “non-useful” power but can be used to help manage the
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power quality characteristics during periods of drastic changes in generation associated with

intermittent clouds. In addition, voltage readings may be used to help minimize losses and

optimize efficiency. The simulation pulled simulated readings every second for each of the

62 nodes. Calculated control values were calculated in response to the readings. Calculated

values consistently matched the updated control settings calculated in reference MATLAB

test cases.

7.8 Summary

This chapter describes AO-MaSE, a customized O-MaSE-compliant process and suggests

a novel approach based on early execution and iterative extension for engineering complex

systems with multigroup agents. It describes a recommended software engineering process

employing specific design conventions that begin simply and focus on moving sooner from

initial concepts to code construction while creating an evolving, iterative framework suited

to the development of complex, adaptive, intelligent, autonomic systems. The effort includes

policy recommendations and detailed guidelines that produce a vertical slice of a complex

system earlier in the process, forming a working core that enables quicker feedback into the

behavior of a complex, recursive, hierarchical HMAS. The process is compliant with the

proven O-MaSE process and enables the full functionality needed for complex control sys-

tems yet offers a structured path towards implementation that addresses several challenges

encountered when developing complex MAS. The AO-MaSE process can be used to build

systems of intelligent systems as described in Chapter 8.
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Chapter 8

Evaluation

A complex system that works is invariably found

to have evolved from a simple system that worked.

A complex system designed from scratch never works

and cannot be patched up to make it work.

You have to start over, beginning with a working simple system.

— John Gall167

This chapter discusses the software experiments and the evaluation of the OBAA++

agent architecture and the AASIS framework for implementing complex systems. Sec-

tion 8.1 describes a complex system, an intelligent power distribution system (IPDS), in

which the agents operate a complex multiagent system (MAS) for a Grid Control System

(GCS) for continuous volt-var control and a second a complex MAS for an Online Auction

System (OAS) for conducting online auctions near sources of distributed generation (DG).

Section 8.1.1 describes the experiments and evaluation with the GCS and Section 8.1.1

describes the experiments and evaluation with the OAS. Section 8.1.3 describes the evalu-

ation with a system of intelligent systems that includes agents running both the GCS and
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OAS. Section 8.2 describes the experiments and evaluation in a second application domain,

a graduate school research lab (GSRL), and the test cases associated with implementing

architectural components to support agents managing goal consistency when accepting as-

signments from different systems. Section 8.3 provides a chapter summary of the results of

the evaluations.

8.1 Evaluation of AASIS on PDS

This chapter shows how AASIS and the OBAA++ agent architecture balance the dual ob-

jectives of flexibility and reusability, and demonstrate the architecture’s efficacy by demon-

strating how existing intelligent power distribution agents reapplied the same architecture

and process to implement a second, goal-driven complex MAS operating concurrently and

utilizing the same underlying physical equipment and power distribution system (PDS).

8.1.1 Grid Control System (GCS)

An example distribution system was developed based on an industry standard test feeder

and was first used to evaluate power quality control algorithms to use smart inverters to

assist with managing voltage168,19.

Information flow in the new grid control holarchy is illustrated in Figure 8.1. Sensor

information from home smart meters with power generation and consumption information

as well as voltage information is sent up the power quality holarchy for aggregation at

progressively higher levels. At the same time, local optimization algorithms are calculating

new requests for reactive power assistance and distributing the requests as modified goal

parameters back down the holarchy.

The intelligent power distribution system implemented includes a complex MAS, focused

on volt-var control and overvoltage prevention. Implementation followed the AO-MaSE

process described in Chapter 7.
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Figure 8.1: Simplified information flow in the grid control holarchy.

Two goal types were defined for the GCS:

• Be Super Holon. A goal to act as the head of the holon, accepting goals for the holon,

registering and maintaining registration with, and creating and issuing assignments

to, participants in the holon (the body) to maintain control objectives as defined in

the goal.

• Be Holon. A goal to act as part of the body of the holon, registering with the head,

accepting assignments, and doing its part to maintain grid control objectives as defined

in its goals.

These goals worked hierarchically throughout the system.

Both goals are parameterized goals, accepting parameters that characterize the desired

behavior. There are two parameterized goals, one related to the information needed to form

the necessary connections and registration with the external, affiliated agents in each local

group, and a second that contains the guidelines for the specific type of grid control desired.

By parameterizing the goals consistently, when the super holon in a high-level group creates

goals for the set of participating holons (the body), the body holons have the information

needed to in turn, act as a super holon in a lower level group, passing down its portion of
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the desired behavior into smaller sub problems to its participating body.

Following AO-MaSE, two roles were defined for the GCS:

• Be Super Holon Role. This role can be used to achieve the Be Super Holon goal.

• Be Holon Role. This role can be used to achieve the Be Holon goal.

Using roles reduces the coupling between agents the behavior specification for the orga-

nization. The Reorganization Algorithm (RA) is used by the agent playing the Super Holon

Role to determine dynamically the best roles for participants in the body of the local group

in response to the current guidelines and abilities of each participating agent.

Following AO-MaSE, two plans were defined for the GCS:

• Be Super Holon Plan. The Be Super Holon Plan includes plan steps for Initializing

and Administering the local group. The Initializing step includes initializing the Grid

Admin Capability based on the guidelines, and setting up the organization and goal

reasoning needed to distribute assignments to itself and the participating agents. The

main Administering step includes accepting and maintaining connections and regis-

trations from the body so that participating agents can be included in goal reasoning

and accept assignments in the local group. It also includes the work flow for managing

grid control. Tests included aggregation of the power reports sent from the body and

passing the information up the holarchy. A power report includes information about

the current power readings, the last power readings (taken at the prior time step), the

available margin, and assessments of the trends (based on the difference between the

last reading and the current reading).

• Be Holon Plan. The Be Holon Plan includes plan steps for Initializing, Registering,

Confirming, and Participating in the local group. The Initializing step includes in-

formation for connecting to the head, while registering and confirming are used to

make sure the agent is registered with the head and ready to receive assignments in

the local group. The main Participating step includes either getting simulated sensor
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Capability Description
Date Time The ability to understand the simulation systems

view of the current date and time and to derive
information such as time of day, and time and
to derive information such as time of day, week-
day/weekend, associated event schedules, and ap-
ply time-dependent information such as forecasts.

Grid Admin The ability to create a new grid control orga-
nization according to the model specifications
provided and administer the organization, de-
termining assignments and assigning them to
appropriately-equipped agents.

Grid Control Holon The ability to create and report voltage and VAR
information.

Grid Participate The ability to join and accept assignments in a
grid control organization.

Grid Control Super Holon The ability to gather, aggregate, and assess volt-
age var information for the local grid control
group.

Power Communication The ability send and receive messages related to
grid control.

Smart Meter The ability get a load, generation, and voltage (if
available) reading from an authorized smart meter
device.

Smart Inverter The ability to set the reactive power setting on an
authorized smart inverter device.

Table 8.1: Key capabilities in the grid control system.

readings, as the home prosumer agents do, or getting aggregated power messages, as

the higher level agents do. PV-enabled home agents adjust their associated smart

inverter settings to balance their immediate needs in response to swings in distributed

generation (DG) (see Figure A.2) and also provide information about their margin in

power messages to the head.

Agents were provided with capabilities that matched the sensors and actuators on their

host (e.g., smart inverters on PV-enabled homes). Some key capabilities are listed in Ta-

ble 8.1.

All agents were implemented in Java using OBAA++. Each IPDS host was run in a
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Figure 8.2: Partial topology of an IPDS test case.

separate Java virtual machine, with each host supporting one or more agents. Communi-

cation between agents was provided using RabbitMQ, with two separate communication

channels used for each organization, one for CC-CC communication and one for EC-EC

communication.

Each agent was configured with a predefined list of its affiliated organizations and

whether it would be the initial master of those organizations. This list was generated

from the physical layout of the IPDS test cases and is appropriate for this type of system.

The initial master agent has the responsibility of initiating their appropriate organizations

and providing the specified organizational knowledge (goals, roles, etc.) to the other agents.

The system worked in discrete time intervals where MATLAB computed voltage values

within the PDS based on second by second power generation and power consumption values

taken from historical data.
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Figure 8.3: Oversized smart inverters offer 20% more reactive power contribution for volt-
var control19.

The first trials implemented the control algorithm using an oversized smart inverter19.

Home agents obtained readings, homes with DG calculated their reactive power needs, and

and sent power messages to the head with trends and available margins. The head ag-

gregated the requests from all participants and updated the guidelines for the DG-enabled

home to adjust reactive power settings to assist with the combined needs of the neighbor-

hood. A series of tests were written using the Spock Specification Language, which were

verified against both MATLAB calculations and manual computation. Tests were used to

verify that the system produced correct results, specifying the desired setting when possible,

or a maximum value when constrained by the available reactive power setting based on a

20% oversized smart inverter shown in Figure 8.3.

Details for some of the smart inverter tests are shown in Table 8.2. Reactive power

is indicated with Q. Pgen refers to total distributed generation and PL refers to total

consumption load. Current values are shown as well as values sensed at the last time

slice.

Data from MATLAB was fed into the IPDS system where control values were computed

and fed back into MATLAB for the next time period. Simulated sensor readings were pro-
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Capability Description
Qsetting Pgen lastPgen PL lastPL QL lastQL lastQqen

0.3962 0.4492 0.6001 5.0289 5.0289 3.7717 3.7717 0.4501
0.4486 0.6001 0.5993 0.5493 0.5493 0.4120 0.4120 0.4493
0.4485 0.5993 0.5989 2.0591 2.0591 1.5443 1.5443 0.4489
0.4450 0.5989 0.5970 0.7518 0.7518 0.5639 0.5639 0.4469
0.4501 0.6001 0.6001 5.0000 5.0000 3.0000 3.0000 0.4501
0.4407 0.7501 0.7501 5.0000 5.0000 3.0000 3.0000 0.4469
0.3080 0.3492 0.6001 5.0289 5.0289 3.7717 3.7717 0.4501
0.4000 0.5000 0.5000 2.0000 2.0000 3.0000 3.0000 0.4000
0.5732 0.6500 0.6487 0.4612 0.4612 0.3258 0.3258 0.7901
0.2222 0.7500 0.6842 0.1111 0.1111 0.2222 0.2222 0.2880

Table 8.2: Tests on reactive power (Q) settings calculated given different sets of input power
readings.

vided by MATLAB and distributed to the appropriate agents as sensor readings, depending

on their location and their available sensors. Typically, these sensor readings included the

real and reactive power consumed, voltage levels, and the real and reactive power generated

(for Home agents with PV panels).

Home agents with smart inverters then calculated the appropriate reactive power settings

based on their sensor data and goals. The agents then sent their calculated settings back

to MATLAB for recalculation of the new sensor readings.

On startup, the simulation can be paused to verify the initial set of set simulated sensor

data for all 560-devices is read correctly (see Figure 8.4).

A PDS can be decomposed into a three-level hierarchical ordered system based on natural

physical topology (i.e., substation, feeder, and neighborhood levels). A neighborhood holon

represents a single-phase transformer serving a group of residences or end-user prosumers.

The neighborhood level encompasses all neighborhood holons. A feeder holon includes

single-phase laterals with nested groups of neighborhood holons. The feeder level includes

all feeder holons. Finally, feeder holons are nested in a substation holon, which includes the

three-phase primary distribution lines and laterals connected to the distribution substation.

In this view, the substation level includes a single substation holon.
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The holonic partitioning scheme requires no physical change in system configuration

or customer connection. Moreover, the proposed architecture relieves loading on commu-

nication and information processing while reducing the control, and energy management

computational burden by enabling substation holon targets to be cascaded down to lower

level holons of the holarchy.

The holonic control sequence is illustrated in Figure 8.5. The control algorithm begins

with the lowest level home prosumer agents. Some specified fraction of the home agents

are equipped with rooftop solar PV panels for distributed generation. The first iteration

starts with all home agents reporting their real and reactive power demand and generation

(if available) to their neighborhood transformer agent. The neighborhood transformer agent

aggregates the sensor readings from all connected homes (typically 2-6) and forwards the

aggregated values and additional supporting information up to their designated 3-phase

feeder line agent, which in turn forwards their aggregated values to the substation agent.

The substation agent runs an optimal power flow (OPF) calculation to calculate new

targets based on the responses received and passes the new targets back down the same

hierarchy for progressive distribution. After the first new targets reach all the way down to

the homes, the homes check to see if the new targets are within a given tolerance of their

Figure 8.4: Displaying simulated sensor data during initialization.
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Figure 8.5: Iterative grid control sequence diagram.

response values and the desired operation of their associated smart inverter (if PV-enabled).

After the first iteration, they likely are not, so the PV-enabled homes send their pro-

posed response actions based on their new targets, and these new response values are again

aggregated and communicated up the hierarchy. The process continues until the substation

targets are not significantly different. At this point the substation level is considered con-

verged, and the process continues from the feeders on down. Within a couple iterations,

the feeder level target values are considered converged and the process continues between

the neighborhoods and the homes. When the neighborhoods don’t change, the homes will
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make any final adjustments to their actions based on their last set of new targets and cycle

is complete. Each home executes their control actions and the cycle is ready to begin again.

Following the AO-MaSE recommended process, a simple initial test case was first pre-

pared. Each smart device was assumed to provide a host for a set of intelligent agents.

The first test case included one neighborhood organization, five hosts, ten agents, and eight

inter-agent connections (communication connections between persona within a single agent).

The test configuration was scaled to include 62 hosts, 124 agents, 46 organizations, and 110

inter-agent connections. The layout of this configuration is shown in Figure 8.2 where the

lowest-level nodes (e.g, 44-47, 49-52, etc.) correspond to homes. Current trials involve cases

with up to 400 hosts and 800 agents and are being used to develop two additional algorithms

for GCS and further evaluate the scalability of the IPDS architecture.

All agents were implemented in Java using OBAA++. Each IPDS host was run in a

separate Java virtual machine, with each host supporting one or more agents. Communi-

cation between agents was provided using RabbitMQ, with two separate communication

channels used for each organization, one for CC-CC communication and one for EC-EC

communication.

Each agent was configured with an organization specification detailing the agent’s af-

filiated organizations and the default master for each affiliated organization. Details for

the organization specification was generated from the physical layout of the associated PDS

driving the test case and the details of the grid control algorithm being tested. The de-

fault master agent has the responsibility of initiating their appropriate organizations and

providing the specified organizational knowledge (goals, roles, etc.) to the other agents.

Experiments run in discrete time intervals, using simulated sensor readings directly from

MATLAB-computed power and voltage values based on second-by-second power generation

and power consumption values taken from historical data. Simulated sensor readings were

provided by sensor adaptors to MATLAB and distributed to the appropriate agents as

sensor readings, depending on their location and their available sensors. Sensor readings
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included the real and reactive power consumed, voltage levels, and the real and reactive

power generated (for Home agents with PV panels).

IPDS Home agents with smart inverters then calculated the appropriate reactive power

settings based on their sensor data and parameterized goals.

In all test cases, the agents correctly aggregated real and reactive power values and as-

sessed voltages correctly, matching the test case results provided from electrical engineers,

and verifying that the system produced the same results as obtained during their MATLAB-

only computations. Agent capabilities accessed simulated measurements and higher level

agents correctly aggregated values and assessed them as in-bounds or out-of-bounds. Home

agents operated their smart inverters in response to the simulated measurements. In addi-

tion, agents calculated the amount of reactive power margin based on an over-sized inverter

and reported the margin up the hierarchy. All communication took place vertically. No al-

gorithms tested thus far include negotiation among peers. Several options for smart inverter

algorithms were tested. The algorithm to use is provided to the agents with their initial

guidelines (parameterized goals).

Addition of new actuators, including capacitors on both the single-phase lateral lines

and three-phase feeder lines is planned as described in Section 9.4.

8.1.2 Online Auction System (OAS)

In addition, a second multigroup, complex HHMAS was implemented in a complex MAS

co-located and operating concurrently with the GCS.

In the associated new online auction holarchy, each home agent participates in a single

local group at the lowest level of the auction holarchy. Each of these locals group includes

a single neighborhood transformer agent assumed to be located on or near a nearby pole

transformer that supplies a set of homes with electricity. Each neighborhood transformer

agent supported exactly four homes, with one of the four having rooftop photovoltaic (PV)

panels for generation.

155



Each neighborhood transformer agent executed (brokered) a first-tier auction, accepting

bids from four participating homes for a given future time. Homes equipped with PV were

assumed to have surplus power to sell that nearby homes (served by the same transformer)

could bid for. The transformer agent and its homes autonomously create a small local

market organization to execute the auction.

Each transformer agent also participated in a higher-level tier-2 auction. In these sec-

ondary auctions, each transformer agent served as an auction participant, while the asso-

ciated lateral line agent accepted four transformer bids and brokered a second-tier double

auction.

The two-tier double auction is implemented as a two-part linear programming problem;

special computational capabilities were employed by the agents40.

The volumes of energy bought and sold are determined through the auction by max-

imizing the total utility of all participating agents. The secondary auction requires the

power requested from each neighborhood transformer agent to serve as the neighborhood

bid quantity while the tier 1 clearing price serves as the new buy or sell price. The lateral

line agent serves as the broker in the second-tier auction and determines the final clearing

price at which the power trading occurs. There are various ways in which the clearing price

can be determined (e.g., through negotiations with the utility company, to obtain budget

balance, or by other means). The objective of the auction is to maximize the social welfare

function (SWF), the aggregated utility of all winners.

Each auction was conducted asynchronously in accordance with the specific guidelines

provided as goal parameters. Guidelines include those specified for the market organizations

in which the online auctions will be conducted, as well as custom guidelines given to each

multigroup agent that serve to direct the behavior of each agent in such a way that the agent

could be customized to reflect the personal pricing strategies and comfort/profit motives

of the owner. Some agents may be ultimately controlled by the homeowner, making the

decision whether to sell power and at what future time and price. Some agents may be
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wholly owned by the power company or market agency, for example, those running along the

lateral lines. Simulated CPS agents communicate over RabbitMQ, a fast implementation of

the Advanced Message Queuing Protocol (AMQP) standard.169. The Java-based simulation

runs on Windows and iOS.

A smart system running on or near the smart meter may be a likely candidate to support

the brokering of online auctions between homeowners and the grid. These test cases focused

on extending the multigroup agents already running the GCS, a complex MAS for grid

control to simultaneously support concurrent calculations for bidding and brokering online

sales agreements among the PDS stakeholders.

The OAS employs a two-tier double auction scheme where home prosumer agents create

bids to express their intentions and send them to an agent acting as the broker in a local

market organization. The agent brokering the local auction determines the optimal resolu-

tion of the auction, and in the event of any unsatisfied amounts, participates as a bidder

in a secondary, higher-level auction. The approach exploits the applicability of the double

auction in the second-tier, where the auction takes place between the secondary partici-

pants representing their remaining community bids and shows the efficacy of the proposed

hierarchical model as it further maximizes the overall social utility.

The motivation grew from research into several two-tier resource allocation techniques.

Most specifically, that of spectral allocation such as Zhou’s170 where a two-tier resource

allocation approach has been proposed that integrates a dispatcher-based node partition-

ing scheme with a server-based dynamic allocation scheme. Also, Abdelnasser171 proposes

a semi-distributed (hierarchical) interference management scheme based on resource allo-

cation for femtocells1. In addition, several other market-based economic models have been

proposed for the process of competitive buying and selling to solve for an optimal power flow

in a smart grid. Local interactions172 and decentralized resource scheduling173 have been

considered with better convergence under tight computational budget constraints. Auc-

1Femtocells are small, low-power cellular base stations
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tions are an efficient mechanism, easily implemented in a grid structure, that allows buyers

and sellers to compete for the resources to be auctioned to achieve an optimal resource

flow in order to maximize the social benefits to the participants. Double auctions are auc-

tions that involve both buyers and sellers. These auctions can be designed as an efficient,

incentive-compatible mechanism where buyers and sellers participate without the risk of

losing anything by choosing to participate. A recent study on auctions for spectrum allo-

cation in wireless networks174 has shown that a double auction can achieve a greater social

welfare (benefit) compared to other auction mechanisms such as the well-known Vickrey-

Clarke-Groves (VCG) mechanism175. An efficient double auction mechanism with uniform

pricing has been proposed176, that considers the dynamic, heterogeneous and autonomous

characteristics of resources in a grid computing system. The double auction was developed

and analyzed as a mechanism to characterize the trading price of the energy trading market

that involves the storage units and the potential energy buyers in the grid177. Furthermore,

several applications178,179,180 have been proposed in a different field of study and have been

shown as an effective mechanism when interest of both buyers and sellers are taken into con-

sideration for a competitive market happening in a computational grid system. No existing

literature was found where a double auction has been implemented in a hierarchical man-

ner for electricity trading in isolated microgrids to achieve a greater social benefit in PDS.

The implementation in a two-tiered structure, comprised of intelligent agents participating

in the auction by sending messages to the auctioneer indicating an interest to buy or sell,

demonstrates flexibility and reusability as follows. First, the proposed two-tier approach

implements bids in two reusable stages. In the first tier, the auction involves individual

homes within a neighborhood acting as buying and selling agents. In the second tier, a

similar auction between multiple neighborhoods is conducted. This arrangement follows the

spatial topology of the PDS, where feeders deliver power via several transformers to the

neighborhoods. The approach is flexible in that it could be implemented in existing dis-

tribution systems – or added to existing intelligent distribution systems – without needing
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separate systems for information exchange, with both agents at the transformers and on

feeders reusing the capabilities and plans to broker auctions.

Second, the double auction mechanism proposed is formulated as a linear programming

problem known to be of exponential complexity. The tiered-approach can be perceived as a

divide-and- conquer scheme that divides the larger auction problem at the feeder level into

several smaller, more tractable sub- problems, one corresponding to each neighborhood, that

are solved in a parallel fashion.

Lastly, the constraints imposed upon the auctions taking place at the first tier and second

tier are different. It can be assumed that across individual homes within a small geographical

neighborhood would entail an underlying well-connected social group. Hence, the demands

or supplies of electricity of individual homes at any given instance can be gleaned either

from historical data or from prediction algorithms. These can serve as bids for the first tier

auction, obviating the need for direct human intervention. Furthermore, the energy pricing

must be uniform across the entire neighborhood. These requirements need not hold at the

feeder level, where each neighborhood may be priced differently. Furthermore, due to larger

geographic distances between neighborhoods, the auction may have to take into account

additional factors such as I2R loss, local cloud conditions, etc.181. Some of these issues, not

currently taken into account, could be readily incorporated with minor modifications.

Agents were equipped with the key capabilities shown in Table 8.3.

The holonic power auction organizations were all fed from a single power power line, with

a single lateral feeder agent, L39. The power line was assumed to supply four neighborhood

transformers, each hosting one of the neighborhood transformer agents, N43, N48, N53, and

N58. Each transformer supplied four homes, with one of the four homes providing mid-

day power from rooftop PV panels. Each home was assumed to host an agent. The four

agents associated with PV-enabled homes generated offers to sell power at a given future

time to the other three homes in their neighborhood in the first-tier auction. The four

neighborhood agents all received four bids from the supplying homes—one to sell power,
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Capability Description
Auction Communication The ability send and receive messages related to

online auctions.
Auction The ability to create bids to buy or sell power to

be exchanged at a specific future time.
Broker The ability to gather bids and broker a specific

auction for a local online market organization.
Date Time The ability to understand the simulation systems

view of the current date and time and to derive
information such as time of day, and time and
to derive information such as time of day, week-
day/weekend, associated event schedules, and ap-
ply time-dependent information such as forecasts.

Market Admin The ability to create a new online market or-
ganization according to the model specifications
provided and administer the organization, de-
termining assignments, and assigning them to
appropriately-equipped agents.

Market Participate The ability to join and accept assignments in an
online market organization.

Table 8.3: Key capabilities in the Online Auction System (OAS).

and three offers to buy power. Upon receiving the bid messages from the four home agents,

each neighborhood agent acted as a broker to execute the local auction. After executing the

first-tier auctions, some bids were not completely fulfilled. The brokering agent determined

the remaining quantity and forwarded the offer to the lateral agent for the second tier

auction to be brokered by the lateral agent.

We can look inside the transformer agent participating in a 2-tier double auction and see

how the process flows. This agent is concurrently supporting grid control communications

as well, in a highly analogous but more complex process. The steps are shown in the

Neighborhood Transformer agent type beginning with the self persona and the two affiliate

persona participating in the Auction Holarchy as shown in Figure 8.6.

The numbered steps indicating persona interactions during a two-tier auction are sum-

marized below. See also Figure 8.6.

1. Self initializes a (Tier 1) T1 broker persona.
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Figure 8.6: A multigroup agent with multiple affiliated groups. Numbered steps indicating
persona interactions during a two-tier auction.
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2. T1 broker connects and registers each external T1 bidder.

3. T1 bidders submit bids to T1 broker.

4. T1 broker forwards initial results to Self for review.

5. Self reviews, forwards to T2 bidder.

6. T2 bidder submits bid to T2 broker.

7. T2 broker issues T2 results to T2 bidder.

8. T2 bidder forwards to Self for review.

9. Self reviews, forwards to T1 broker.

10. T1 broker issues T1 auction results to T1 bidders.

The bid information and auction clearing results for four first-tier auctions is shown in

Figure 8.7. In each first-tier auction, there were three bids to buy power as indicated by

a non-zero buy bid price, bi, shown in yellow. In each first-tier auction, there was one bid

to sell power, indicated by a non-zero sell bid price, sj, shown in green. The agent name,

Ai, and the bid quantity for all bids, qi,j, are also shown in the four first-tier tables. The

associated home agents send their bid message to their associated neighborhood broker. The

neighborhood brokers translated the message content information from each participant into

a array of bids and bid information and used a double-auction computational capability to

execute the auction. In each first-tier auction, at least one bid could not be satisfied fully

within the first-tier auction. Unsatisfied quantities were used to create bids at the first-tier

clearing price in a second-tier auction.

In addition to serving as brokers in the lower organizations, the neighborhood trans-

former agents also serve as auction participants in the higher-level second tier auction or-

ganization brokered by the agent running on the power line. The lateral power line broker

agent then brokers a second-tier auction with the new secondary bids by again translating
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the message information into an input array and executing the secondary auction compu-

tational capability. The inputs and results of a second-tier auction are also presented in

Figure 8.7; there is one second-tier bid resulting from each of the four first-tier auctions.

These are shown in the black text between the first-tier tables. N43 and N48 provided a

single buy bid each for their unsatisfied quantities at the clearing price of their respective

first-tier auctions. N53 and N58 provided a single sell bid each for their excess quantities

at the clearing price of their respective first-tier auctions. All four neighborhood bids were

forwarded to the broker of the second-tier auction and the results of the second-tier auction

are shown in Figure 8.7 in red. The second-tier results where passed down to the first-tier

participants, with the final reconciled quantities, ri,j shown beside the corresponding original

bid quantities, qi,j, provided in the four first-tier tables.

Figure 8.7: Results from a two-tier auction trial.

The additional test cases involved the new online auction behavior running concurrently

with the continuous power quality control process. Example results are provided to show
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the details of a single future power auction running on a single lateral line. The line feeds

four neighborhoods, each with four homes. The process flow can be illustrated by looking

at one of the neighborhoods, N48. In the first tier auction, the 4 homes send bids to the

broker agent running on the transformer (as shown in the upper group). Any additional

unsatisfied quantities are then used in a second tier auction, where N48 and the other three

neighborhoods send bids to the agent running on the lateral line (as shown in the lower

group).

In the first tier auction, the first three agents want to buy, and the forth, PV-enabled

home wants to sell. The first two are willing to pay more than the selling price of 16.76

cents. But together they need 4.6+6.3 or 10.9 units of power and the seller only has 7.4.

The broker satisfies each of them based on the quantities and price they bid at the first tier

clearing price of 16.84 cents and will try to buy the remaining 3.5 units in the second tier

auction.

In the second-tier auction, the price is good—another neighborhood, N53, is wanting to

sell 10.3 units for just 14.62 cents each. The second tier broker will announce the clearing

price and let N48 know that it was able to satisfy all 3.5 units requested. Back in the tier

1 auction, N48 will distribute this accordingly, with the requests from both H49 and H50

fully satisfied. Only the third tier 1 agent, H51 who hoped to buy at a too-low price of 10

cents was not successful.

The online auction simulations demonstrated the ability to add new organizations and

new behavior by extending the capabilities of an existing set of distributed intelligent agents

simulating implementation in a distributed CPS. Further, the behaviors and communications

and messaging protocols were independently configured in a repeatable, extensible manner.

Changes to the desired market behaviors have minimal impacts on the previously existing

functionality, and specifications for the behavior of the market behaviors remain unaffected

by the modifications to the prior functionality (related to managing voltage fluctuations).

Therefore, in addition to testing the distributed implementation of a double auction, the
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results showed the ability of the multigroup agents to successfully create and participate

in new organizations, implement new and independent goal-driven behavior specifications,

and successfully manage the addition of new capabilities to support the new objectives.

Additional information about the OAS and the auction trials is provided in Appendix B.

8.1.3 Complex System: Two HHMAS

Attempting to illustrate the participation domains, capabilities, and component types that

support a single agent requires some detail. The diagram shown in Figure 8.6 has been

developed based on the biological model shown in Figure 3.616 to illustrate internal aspects

along with relationships to affiliated organizations for an agent acting in two complex sys-

tems: a Grid Control System (GCS) for volt-var control and an Online Auction System

(OAS) for conducting discrete auctions.

The agent is designed as an organization containing sub-agents as shown in Figure 8.6

shown earlier in this chapter. This figure depicts a neighborhood transformer agent type,

A2, shown in purple.

Neighborhood transformer agents, or neighborhood agents for short, support two dif-

ferent multigroup organizations, the first, O2 supporting the OAS as shown on the left in

green, and a second multigroup organizations, O1 supporting the GCS as shown on the right

in pink. An example of this type of agent was Neighborhood 43 or N43 from the test cases.

The agent has a single self persona shown in the inner purple circle, and three worker

persona, shown as inner purple rectangles: one for forecasting, one for getting sensor readings

from the smart meter, and one for controlling the smart inverter actuator. The self persona,

s2,1, will handle the set of parametrized goals that will be used to initialize the agent.

In our experimental systems, neighborhood agents operate in middle layers of their

holarchies. Neighborhoods support and manage a lowest-level set of homes below them,

and neighborhoods operate as parts of local organizations under higher-level single-phase

lateral lines or three-phase feeder lines above them.
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Thus, the agent has a corresponding affiliation with two local groups in each system.

The two local groups for the auction system are shown as the two green ovals on the left,

and the two local groups for the grid control system are shown as the two ovals on the right.

In each system, the two local groups are related.

Therefore, following the AASIS design process, in addition to the self persona and the

worker persona, agent a2,1 has four affiliate persona, one for each local group in which the

agent acts. Each affiliate persona plays one role in the affiliated organization, and this

has been depicted by the role the affiliate persona is currently playing in each affiliated

organization.

For a more detailed explanation, look first at the upper local group on the left, o2,1,1.

This local organization, o2,1,1, is named o2 because it is a group in O2, and o2,1 because it is

part of the first, or lowest level of organization in the holarchy (that is, it includes homes

and neighborhoods). The final subscript indicates that the organization shown is the first

group in the lowest level of the auction organization.

The five darkly colored elements represent roles in the local organization, o2,1,1. There

are four body roles, shown as diamonds, and one head role shown as a triangle in this local

organization. The head of this organization is colored purple, like the neighborhood agent,

and indicates that this neighborhood agent is currently playing the administrator (head)

role in that local organization. The other participant roles in this organization, depicted

with green diamonds, are played by the homes supported by the associated transformer.

Similarly, in the green organization shown in the lower left, o2,2,1, there are four body

roles, shown as diamonds, and one head role shown as a triangle. One of the participants

(body) in this organization is colored purple, like the neighborhood agent, and indicates

that this neighborhood agent is currently playing a participant (body) role in that local

organization.

Because the organizations are related holonically and hierarchically, we can also see that

the entire organization o2,1,1, is being represented in the higher level organization, o2,2,1, by
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the transformer agent, as shown with the dotted green lines.

An analogous pair of organizations is shown on the right, representing the agent’s affili-

ation with two local groups in the grid control system. Again, the agent heads one organi-

zation while representing that organization in a second, higher-level organization. The grid

control roles are shown with the abbreviations for the agents playing them in the test case

used for the complex IPDS running both a GCS and OAS.

AASIS was used to implement multiple complex MAS with a set of multigroup agents

concurrently operating organizations for both power quality control and online auctions.

The trials indicate that the AASIS mechanisms for decomposing systems and designing

and implementing agents were reusable. This was demonstrated by reusing the standard

approach, capability types, and connection, registration, and initialization processes to ex-

periment with a second complex MAS. In addition, the flexibility of AASIS to handle two

different types of complex MAS was demonstrated. In addition to handling the differences

listed in Table 6.1, the AASIS implementation provides for different communication ex-

changes and protocols for handling registration and inter-agent communication as may be

expected when managing systems operated under the direction of different agencies (such

as the power company and the associated market organizations).

The OBAA++ agent architecture employs the concept of agent persona to separate the

behavior of the agents in each of its affiliated group while providing a mechanism for coordi-

nating those behaviors internally. Persona provide a way to reduce unnecessary coupling of

behavioral reasoning between groups while increasing the cohesion of the behavior reasoning

for an agent within a specific group. The use of the OBAA++ agent architecture is demon-

strated by its use in a holonic MAS designed to provide distributed, intelligent control for

PDS.

The IPDS experiment demonstrated the efficacy of the multigroup agents to provide

continuous operation for voltage control.

Addition of the online auctioning experiment demonstrated that multigroup agents could
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be extended to initiate and conduct discrete online auctions in new multigroup holarchies,

extending their functionality without impacting prior, externally-governed tasks from inde-

pendent multigroup organizations.

The research demonstrated a possible mechanism for enhancing distributed intelligent

agents supporting IPDS to include the capabilities and behaviors necessary to create, broker,

and bid in online auctions using a two-tier double auction mechanism. Additional work

is planned to develop and test the addition of various alternative online power auction

algorithms in existing agents running in simulated distributed cyber-physical PDS. Plans for

evaluating additional iterative auction solutions may be investigated, along with additional

mechanisms for adapting the behavior due to communication delays, agents entering and

leaving the local auctions, and responding to potential attempts to manipulate the market

based on known (or learned) effects of agent-assisted pricing mechanisms.

8.2 Evaluation of AASIS for Goal Consistency

The complex IPDS test cases demonstrated the flexibility and reusability of the OBAA++

architecture and the AASIS framework. Additional tests to evaluate the extensibility to new

application domains was desired, along with development and evaluation of architectural

aspects and processing algorithms for managing goal consistency among multigroup agents.

Thus, a new application domain was used to develop a new set of test cases in a very

different problem domain, a university Graduate School Research Lab (GSRL). This domain

includes a professor with goals to run a research lab and advise students, and a set of

graduate students who get goals from multiple sources, including goals to assist in the lab,

but also from family, friends, and of course, also subject to personal goals for learning and

maintaining basic health and quality of life as shown in Figure 8.82.

The test cases included two agent types with the following goals (simplified somewhat

2http://www.deathbymovies.com/wp-content/uploads/2012/08/agent-smith.jpg
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Figure 8.8: Applying AASIS to a new problem domain: a graduate student getting goal
assignments from multiple, independent sources.

to test the architectural components being developed):

• Grad Student Agent. with goals: Work, Study, Eat, Relate, Personal/Play, Sleep.

• Professor Agent. with goals: Work, Run Research Lab.

A simple method was used to detect conflicts between various goal types (as characterized

by the name or type of goal, rather than the specific parameters, weightings, and temporal

aspects as the system runs). Conflicts were defined as shown in Figure 8.9.

Graduate students have critical needs, for example, sleep > 0 and eat > 0. Additional

goals were designed such that some could be compatible and performed at the same time

(by combining plans), such as eating and studying, some where in conflict (sleeping and

Figure 8.9: Conflict detection table for entities and organizations associated with a graduate
school research lab.
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Figure 8.10: Total utility by hours invested.

working). Utility functions were developed to characterize the optimal utility per daily

hour invested in the pursuit of a particular goal.

For testing, the utility functions shown by total utility over the selected hours and by

the average utility per hour are shown in Figure 8.11 and Figure 8.10, respectively. These

were used to manage the agent’s response to increasing demands from affiliated groups such

as research labs or relationships. Additional content can be found in Appendix C.

The following test cases were used to evaluate the goal consistency and biasing architec-

tural supports described in Section 6.13:

• Direct conflict; request rejected.

• Potentially antagonistic goals; complete request accommodated.

• Antagonistic goals; partial request accommodated.

• Non-conflicting, non-antagonistic request accommodated.
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In all cases the system performed as expected. The implemented new components pro-

vided useful features when designing and implementing complex MAS and provided demon-

strable capabilities for detecting conflicts, rejecting or accommodating requests as appro-

priate and provided some means just as the application of utility functions for meeting or

partially meeting requests. Additional work was investigated in the areas of overlapping

task assignments and combining plans and is planned for additional research.

The proposed approach was implemented and provides a start on architectural and cal-

culational methods for managing goal consistency in multigroup agents. The work is original

and provides a flexible, reusable approach to assist with managing goal consistency. The

work is motivated by some of the theoretical research being done around the management of

goal consistency. Additional work is needed to implement support for promising theoretical

foundations and value and cost-based reasoning, especially in the area of agent learning and

the application of stable game theory algorithms for distributed satisfaction problems.

Goal management among multigroup agents is an active area of research and is receiving

Figure 8.11: Average utility per hour based on task duration.
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considerable theoretical attention. This work provides a small start on implementing stan-

dard architectural mechanisms for supporting goal management. The work lays a promising

foundation for implementing and evaluating a variety of game theory algorithms in a cyber-

physical multigroup architecture. Agents as personal organizations of subagents that are

able to create and administer affiliated organizations appears to hold promise for robust,

scaleable, extensible, flexible systems of multigroup agents.

A promising result is the initial quantifiable approach to managing potentially antago-

nistic goals through the application of utility cost and benefit functions. Correctly designed,

the application of community utility can help control systems find stable optimums.

For the test cases described, simple utility functions provided a mechanism for managing

potentially antagonistic goals. Figure 8.11 illustrates the total utility by number of resource

units (daily hours) spent and Figure 8.10 shows the average utility or value per hour. Biasing

mechanisms allow agents to tailor their response to particular goals. Additional work on

biasing and utility functions should support the application of temporal considerations, as

an agent may be willing to forgo selfishness for community benefit when requested to assist

with some goals by not others, and the relative weight of personal versus community benefit

may change depending on such as factors as time of day, day of week, season, weather,

related pricing structures or other dynamic indicators that may be of interest only to the

participating agent rather than to the community as a whole.

8.3 Summary

This chapter discussed complex systems and demonstrated how OBAA++ multigroup agents

implementing a system with a complex MAS can be further extended to implement systems

of complex MAS, or as they are called in the framework, systems of intelligent systems .

The framework employs intelligent multigroup agents, and each agent is an inner MAS

sub-agents called persona, enabling the introduction of special self control capabilities that
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can assist with managing goal assignments from multiple groups. The architecture’s ability

to balance the dual objectives of flexibility and reusability was demonstrated by showing

how existing intelligent power distribution agents were implemented with the same architec-

ture, framework, and process to implement a second, goal-driven complex MAS operating

concurrently and utilizing the same underlying physical equipment and power distribution

system (PDS).

Results showed the multigroup agents were used to simulate and evaluate complex sys-

tems, obtaining the same results obtained with centralized implementations of the grid con-

trol algorithms and the two-tier double auction algorithms in the MATLAB environment.

Together, the GCS and OAS demonstrated a complex IPDS, or a system of intelligent sys-

tems, with multigroup agents operating both a complex MAS for online grid control and

concurrently, a complex MAS for online auctions.

In addition, testing in a second problem domain, a graduate school research lab (GSRL)

was introduced for demonstrating architectural features for goal customization, consistency

management, and agent biasing between the demands of potentially competing systems. The

conclusions of this work and recommendations for continuing the research are summarized

in Chapter 9.
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Chapter 9

Conclusions and Recommendations

All Nature bristles with the marks of interrogation –

among the grass and the petals of flowers,

amidst the feathers of birds and the hairs of mammals,

on mountain and moorland, in sea and sky – everywhere.

It is one of the joys of life to discover those marks of interrogation,

these unsolved and half-solved problems and try to answer their questions.

— Sir John Arthur Thomson

This chapter concludes this thesis by summarizing the current state and contributions of

the work. Section 9.2 summarizes the current state and open issues. Section 9.3 addresses

limitations and Section 9.4 highlights some areas proposed for future work and Section 9.5

acknowledges the funding that helped support the implementation and and evaluation of

the architecture. Section 9.6 provides a chapter summary.
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9.1 Summary of Contributions

The purpose of this research was to develop a flexible, reusable approach to implementing

complex intelligent systems. Specifically, an architecture was developed that allow agents

to accept assignments from different groups and manage their multiple associations and

assignments in a consistent and unambiguous way.

The work includes the construction of a set of definitions and conceptual model, and

the definition of an intelligent system as a goal-driven, reasoning entity. Intelligent systems

may be implemented as either a single system with a single set of goals, or may be designed

as complex, multigroup systems, where each group functions as a goal-driven entity in

support of the system goals. We further defined complex intelligent systems, as systems

that integrate two or more systems, each focused on a different problem-solving domain,

with goal sets that may compete for resources and processing.

Contributions include the new OBAA++ agent architecture for multigroup MAS. OBAA++

provides core reusable functionality by designing agents with an inner MAS of sub-agents

called persona. A single self persona provides advanced reasoning for each multigroup agent,

while domain-specific worker persona manage sensors, actuators, and associated computa-

tions. Flexible affiliate persona provide the architectural mechanism for multigroup agents

to create, administer, and participate in multiple local groups for a single system, and to

create, administer, and participate in forming multiple, multigroup systems concurrently.

OBAA++ agents were employed in AASIS, a novel framework for implementing systems

of intelligent systems with multigroup agents. AASIS provides an approach to implementing

and operating complex systems that is both flexible and reusable. It is reusable enough

to work for different types of complex systems, yet flexible enough to allow the necessary

customizations required to handle different goals, organizational designs, and organizational

decision-making styles.

This work demonstrates that AASIS and the OBAA++ architecture balance the dual

objectives of flexibility and reusability, and shows the architecture’s efficacy by extending
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existing intelligent power distribution agents to initiate and operate additional complex

organizational structures to support a second, goal-driven HMAS operating concurrently

and utilizing the same underlying physical equipment and distribution system.

The IPDS experiment demonstrated the effectiveness of the multigroup agents to oper-

ate a multigroup MAS for volt-var control. Addition of the online auctioning functionality

in the same agents, demonstrated that multigroup agents could be extended to initiate and

conduct discrete online power auctions in new multigroup holarchies, extending their func-

tionality without impacting prior, externally-governed tasks from independent multigroup

organizations.

The research demonstrated a possible mechanism for enhancing distributed intelligent

agents supporting future power distribution systems to include the capabilities and behav-

iors necessary to create, broker, and bid in online power auctions using a two-tier double

auction mechanism. Additional work is planned to develop and test the addition of var-

ious alternative online power auction algorithms in existing agents running in simulated

distributed cyber-physical PDS. Plans for evaluating additional iterative auction solutions

may be investigated, along with additional mechanisms for adapting the behavior due to

communication delays, agents entering and leaving the local auctions, and responding to

potential attempts to manipulate the market based on known (or learned) effects of agent-

assisted pricing mechanisms.

The work included the development of architectural supports and components for man-

aging goal consistency. In addition to developing and testing the additions for conflict

detection and management, the effort provided a second simulation test for the new AASIS

framework. The architecture supported the new research lab experiments, and resulted in

several enhancements beyond the original system.

The following architectural supports were designed and tested.

• Goal Conflict Management

• Community Bias Management
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• Resource Management

• Reasoning with Utility Functions

Application of the AO-MaSE process helped with the potentially pain-staking implemen-

tation of complex adaptive systems designed as highly independent, yet interwoven compo-

nents. Agent-oriented engineering and implementation of goal-driven, organization-based,

complex control systems remains challenging, but standard architectures, frameworks, tools,

and processes provide valuable assistance for exploring their potential in our evolving smart

infrastructure and other intelligent distributed applications.

In the new architecture, each agent implements an internal organization of sub-agents.

Like other MAS, this internal organization of sub-agents is goal-driven and offers the same

architectural support to multigroup agents that have been tested in MAS. This concept

of an agent as an organization provides the foundation for our approach to managing the

complexity of multigroup agents through implementing a reusable, goal-driven agent archi-

tecture for building complex systems.

A reusable multigroup agent architecture has been developed, along with a framework

and recommended software engineering practices, to support the implementation of com-

plex multigroup applications. The architecture has been used to implement multiple,

independently-governed organizations within an integrated collection of agents simulating

an intelligent power distribution system. The simulation employs agents on a common phys-

ical electrical power distribution system (PDS) that operate multiple, multigroup systems

concurrently: one for power quality control one for online power auctions.

9.2 Current State

The Adaptive Architecture for Systems of Intelligent Systems (AASIS) was used to imple-

ment multiple complex multiagent systems (MAS) in a set of intelligent power distribution
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system (IPDS) agents concurrently operating organizations for both power quality control

while conducting future power auctions. The trials indicate that the AASIS mechanisms

for decomposing systems and designing and implementing agents were reusable. This was

demonstrated by reusing the standard approach, capability types, and connection, regis-

tration, and initialization processes to implement a second complex MAS. In addition, the

flexibility of AASIS to handle two different types of complex MAS was demonstrated. AA-

SIS handled the differences listed in Table 6.1, and the AASIS implementation provides for

different communication exchanges and protocols for handling registration and inter-agent

communication as may be expected when managing systems operated under the direction

of different agencies (such as the power company and the market organizations).

9.3 Limitations

Managing goal consistency remains a challenging problem. AASIS endows each intelligent

agent with advanced organizational mechanisms such as policies and norms; future work in-

cludes evaluating these as possible mechanisms to provide greater customization for agents

balancing the demands of multiple affiliations. Currently, all multigroup MAS implemented

in AASIS have been holarchies. The architecture will be tested with different types of multi-

group organizations, including the flat, overlapping groups employed in the state estimation

MAS182,159, and is being considered for application in different problem domains.

9.4 Future Work

The system will be used to test new iterative grid control algorithms including integrated

optimal power flow calculations and advanced iterative auction mechanisms. Additional

trials will evaluate the impact of message unreliability and delays on the robustness of the

new control algorithms. Currently, all multigroup MAS implemented in AASIS have been

holarchies. The architecture will be tested with different types of multigroup organizations,
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including the flat, overlapping groups employed in the state estimation MAS182 159, and is

being considered for application in different problem domains.

Additional testing of the conflict resolution method could be applied when implementing

a holonic multiagent system to assist with demand side management in electrical power

distribution systems in the Intelligent Power Distribution System project7. Ramchurn, et

al., have shown peak demand can be reduced by employing cooperative agent-based control

systems in demand side management183.

Additional application experiments with additional control algorithms proposed for agent-

based intelligent power distribution systems are possible184,185,186 and will include the ad-

dition of new actuators, including capacitors on both the single-phase lateral lines and

three-phase feeder lines.

Additional work is planned around merged plans that can be conducted simultaneously.

For example, the test implementations include goal models focused on the number of daily

hours spent. The current limit is 24 daily hour units. The conflict table indicates that the

goal Eat is in direct conflict with some goals, such as Sleep. But does not conflict with goals

such as Study or Relate. In each of these cases of potential overlap, combined plans such

as Study and Eat were developed. Future work should include a mechanism to extend the

total number of daily work units possible by overlapping these plans.

Although OBAA++ agents do not use a BDI approach for determining goal assignments,

the CAN language developed for describing plan bodies118 provided interesting options for

reasoning about goal consistency from our goal names and evaluating whether a similar

application of the CAN language for reasoning in multigroup agents is recommended.

AASIS endows each intelligent agent with advanced organizational mechanisms such as

policies and norms; proposed future work includes evaluating these as possible mechanisms

to provide greater customization for agents balancing the demands of multiple affiliated

groups.

Extension of the utility functions is being discussed with project team members from
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the Electrical and Computer Engineering department at Kansas State University1 interested

in employing game theoretic algorithms and agent learning. Current application of utility

functions is limited to an agents personal goal reasoning. However by combining the total

utility for the complex MAS in a manner such as the following, the system’s ability to seek

and maintain stable community-based optimums could be enhanced as proposed below.

Ut =
n∑

i=1

ui +
g∑

j=1

vj
p∑

k=1

ukj

where Ut = Total Utility

n = number of individual agents

ui = utility of individual agent i

g = number of affiliated groups

p = number of participants in group j

ukj = utility of individual participant k in group j

vj = the relative value of group j’s success

Reducing unneeded duplication in the specifications is likely to reduce implementation

time and have a beneficial impact on system and test case maintenance.

The addition of actors within persona may provide benefits. Actors are essentially well

encapsulated active objects, which can only communicate by sending one another immutable

messages asynchronously. Whatever state an actor holds internally, it cannot be accessed

from outside the actor except by sending a message to the actor and receiving its reply2.

The actor model was proposed by Hewitt in 1973 as a mathematical model of concurrent

computation with actors as the universal primitives187. When an actor receives one of its

1http://ece.k-state.edu/
2http://www.drdobbs.com/parallel/jvm-concurrency-and-actors-with-gpars/229402193
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finite message types, the actor can make decisions, create more actors, send messages, and

plan its next response3.

For example, actors may hold promise for assisting with agent-to-agent negotiations

within the context of centrally-managed hierarchical organization. Agent-to-agent negotia-

tions may be helpful for managing goal consistency but may require a broader effort than

this initial focus. Some concepts and ideas included in this section are not being suggested

for immediate application. However, they may be of interest to later work and are included

in an effort to maintain a slightly more complete vision of potentially-beneficial research

contributions.

Related work in the development of intelligent cyber-physical systems (CPS) may also

provide insights that could be used to enhance goal reasoning. Crucial cyber-physical sys-

tems may require significant verification and validation and provide ideas for assessing po-

tential conflicts in distributed artificial intelligence188,1,189.Testing the architecture for appli-

cation in other complex, critical, and/or computationally-demanding problem areas is also

planned.

Future work is planned for developing additional architectural aspects and processing

algorithms for managing goal consistency among multigroup agents supporting the objec-

tives of multiple affiliated groups while operating in concert with differing owner-specified

degrees of selfishness and cooperation.

9.5 Special Acknowledgment

The project providing testing and validation of the engineering approach described here

was supported by the United States National Science Foundation (NSF) via Award No.

CNS-1136040. The NSF provides “fundamental scientific research that has had a profound

impact on our nation’s innovation ecosystem and kept our nation at the forefront of the

3http://www.drdobbs.com/parallel/jvm-concurrency-and-actors-with-gpars/229402193

181



world’s science-and-engineering enterprise”190; I thank all those who invest and participate

in their efforts.

9.6 Summary

This chapter describes the current state of the research with limitations and plans for future

work. It summarizes the major contributions, including OBAA++, the new agent archi-

tecture for complex MAS, the AASIS framework and system architecture for multigroup

agents, and AO-MaSE, the O-MASE compliant-process for designing and implementing

complex MAS and systems of systems with multigroup agents.

Reusability was demonstrated by providing:

1. A standard goal-driven multigroup agent architecture.

2. Standard practices for defining desired behavior of complex organizations.

3. Standard practices for implementing agents capable of operating the organizations

specified.

Flexibility was demonstrated by:

1. Using the recommended practices and mechanisms to specify the desired behavior for

a complex multigroup MAS organization.

2. Using the same practices to specify the desired behavior for a second, independent

complex MAS organization operating in a closely-related problem domain.

3. Using the recommended practices and mechanisms to implement intelligent agents

that operate both multigroup organizations concurrently.

4. Presenting results from experiments implementing the organizations specified with

multigroup agents.
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Appendix A

IPDS Grid Control System (GCS)

The world is not composed of atoms or symbols or cells or concepts.

It is composed of holons.

— Ken Wilber

The OBAA++ agent architecture and the integrated multigroup AASIS framework was

used as the basis for implementing an intelligent power distribution system (IPDS) project

that aims to evaluate distributed control algorithms for electrical power distribution systems.

While the project simulates the PDS using MATLAB, our objective in designing the cyber

architecture is to make it realistic so that could be used in a true cyber-physical deployment

where the computation is distributed within the system.

The IPDS assumes there are a certain number of homes in the system with rooftop solar

PV panels. In general, at midday with full sun, PV panels can provide enough power to

supply multiple homes. While PV power provides important socio-economic benefits, at

high penetrations, it can be problematic in terms of power quality and voltage.

When the solar generation rises and falls as during a day with full sun, no power quality

issues are introduced and the electricity flows from the substation, and then increasingly
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Figure A.1: Recursively-optimized IPDS simulation.

from the PV-enabled homes as the sunlight increases. Similarly towards evening, the flow

of electricity again comes increasingly from the substation as the sun sets. These sources of

distributed renewable generation can bring significant socioeconomic benefits, and smaller

PV penetrations (the percent of homes with PV panels) can be handled with existing con-

trols. However, the flow of electricity from PV panels is subject to significant intermittency

when, for example, fast moving clouds introduce rapid variations in the amount of genera-

tion produced as shown in Figure A.21. When power changes rapidly, voltage variations can

be introduced that cause power quality issues—lights can flicker and sensitive electronics

could be damaged. At higher penetration levels, this creates a significant problem for the

power companies.

A notional example of the IPDS architecture is shown in Figure A.3 (self persona are

omitted due to limited space). In the bottom right of the figure, a neighborhood organi-

zation with eight different agents is shown. There is one Transformer agent, four Home

agents, and three Forecaster agents. Typically, there is a Home agent for each home in the

1https://www.egauge.net/
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Figure A.2: Variability in distributed generation from a rooftop solar photovoltaic (PV)
installation.

neighborhood, with a Forecaster agent for each home with a PV panel. There is also a single

Transformer agent, which is typically co-located with its own Forecaster agent. Notice that

the Transformer agent has two persona, one that is the master of its Neighborhood organi-

zation and one that represents its neighborhood in its parent Lateral organization. In total,

the Lateral organization has four Transformer agents in it that represent neighborhoods,

along with a Forecaster agent and the Lateral agent, which acts as the master. Notice that

the Lateral agent has two persona, one of which represents the Lateral organization in the

parent Feeder organization.
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Figure A.3: Partial architecture for an IPDS test case (not all agents are shown for each
organization).

A.1 HMAS for PDS Grid Control Requirements

Our approach uses holonic design principles to formulate the control problem and develop

a computational architecture appropriate for intelligent power distribution systems. Power

distribution systems, and cyberphysical systems in general, can use this holonic approach

when the associated physical system can be recursively decomposed from the top-level (a

super-holon reflecting the entire system) into set of sub-systems, eventually resulting in the

lowest level sub-systems that consist of the low-level physical devices. In a power distribution

system, the top level is a substation, while the lowest level devices (agents) represent the

individual consumers, or homes.

An example of modeling a power distribution system in this way is shown in the three-

level holarchy of Figure 2. Each white oval encapsulates an organization, or group of agents

working together, while the grey ovals encapsulate a level in the system, i.e., the substation,

feeder, and neighborhood levels. Each node labeled with a number represents an agent in

that particular organization. Each agent at one level may actually be composed of several
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agents at the next lower level, which may again be composed of agents at next lower level.

Atomic (non-decomposed) agents may exist at any level.

As illustrated in Figure 3.7, there are four levels in the IPDS: Substation, Feeder, Lateral,

and Neighborhood. Each level consists of a set of organizations designed for that level. The

PDS control system is designed to support multiple objectives depending on the state of the

environment. These include (1) improving efficiency during normal operation, (2) managing

power quality during intermittent cloud cover, or (3) supplying local power to critical loads

during periods when disconnected from the rest of the PDS. During typical operation the

overall system goal is to improve efficiency, but during periods of intermittent cloud cover,

the rapid rise and fall of PV generation can result in power quality issues and thus the overall

goal switches to maintaining power quality. These objectives are communicated between

layers through a set of goals and the parameters of those goals.

For the IPDS, each organization at the same level is the same type of organization,

each populated with different agents based on the physical configuration of the PDS. As

the organizations cooperate towards the achievement of their goals, these goals become

the chief control and feedback mechanism within the system. For instance, at level n, the

system may only have access to p kW of power and thus it would have the goal of efficiently

distributing p kW of power. Instead of dividing p evenly among the agents (the sub-systems)

for distribution, the agents can negotiate amongst themselves to determine exactly how best

to distribute the power based on the needs of the agents (sub-systems). Thus each agent at

level n would be assigned the goal of efficiently distributing its negotiated amount pi of power

where p =
∑
pi. Each organization attempts to achieve its overall goal by decomposing its

goal into individual goals that are assigned to agents in the organization.

In the IPDS, one agent is assigned to the master role in each organization. The master

receives the organization’s goals from its parent organization and decomposes them and

assigns them to other local agents. In addition, the master represents its local organization

in its parent organization, where it can negotiate with other agents for the redistribution of
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Figure A.4: 62-node test case logical topology (4 neighborhood transformers, 16 homes).

power. If the master becomes disconnected or disabled, an existing agent in the organization

is elected to take its place.

The topology is shown logically in Figure A.4 and with a sample geo-spatial representa-

tion in Figure A.5.

A.2 Behavior Specification and Models

The desired behavior for grid voltage control organizations and the agents capable of creating

and managing holonic organizations for grid control was defined in models according to the

AO-MaSE process.
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Figure A.5: 62-node test case sample geospatial topology (4 neighborhood transformers, 16
homes).

A.2.1 Specifications for Grid Control Organizations

The refined goal models for grid control organizations begins with a single substation at the

top, branching into a possibly nested series of three-phase feeder lines (feeders may branch

into other feeders), down through single-phase lateral lines, into neighborhood transformers,

and into individual homes, some of which may be equipped with rooftop solar PV panels

and smart inverters. The associated goal models are shown in Fig A.6. The goals and goal

parameters are applied recursively between levels - the models are easily applied to any tree-

based network configuration, the only requirement being that all participants have exactly

one parent, except the top-most substation. In our case, the only level that could have its

own level as a parent node was the feeder level, but they could be adjusted as needed if for

example, a single-phase lateral line agent had another single-phase lateral line agent as its

parent.

The holonic role models are highly similar between roles, reusing a large fraction of

the content between levels, but device-specific goals and roles are required to manage the
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Figure A.6: Grid control organization goal models.

different types of sensors and actuators available at different levels of the power distribution

system. Therefore, role models for grid control are customized by the types of levels. The

goals and goal parameters are applied recursively between levels; the models are easily

extensible from homes to neighborhood transformers, to radial or branching single-phase

lateral lines, to feeders, to substations – or to a series of aggregated feeders (feeders under

feeders) to substations.

A.3 Grid Control Agents

The types of agents in each organization are based on the level where they appear. Most

agents have sensors to measure the voltage and power quality at their locations, while some

are co-located with actuators that provide control actions to the PDS. At the substation

level, the agent types include a single Substation agent and a set of Feeder agents, which
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represent their sub-organizations from the feeder level. At the feeder level, the agent types

include a single Feeder agent (who also represents its organization at the substation level)

and a set of Lateral agents. Each Lateral agent represents a lateral organization, which also

includes a set of Transformer agents who are representing their neighborhood organizations.

At the neighborhood level, the Transformer agents are joined by a set of Home agents

that reside on individual homes, which may or may not have rooftop photovoltaic (PV)

solar panels. Additional supporting agents may also be resident in each organization. For

example, in the neighborhood level, Forecaster agents may be co-located with Transformer

and Home agents to help forecast the local load, temperature, and cloud cover.

A.4 Equipping Agents with Capabilities: Sensors, Ac-

tuators, Processing

At the neighborhood level, Home agents equipped with PV generation can be outfitted with

smart inverter actuators. In alternating current systems, electrical power has two com-

ponents, real power, P, and reactive power, Q. P reflects the power available to do useful

work and Q can be adjusted to help maintain power quality. Smart inverters can be set

to introduce more or less Q to help balance the voltage during sharp swings in PV-enabled

generation. Reactive power can be combined up the hierarchy, enabling distributed, coop-

erative solutions. In the event the smart inverters cannot vary Q enough, smart capacitors

on the lateral lines can be actuated to provide additional voltage relief for all downstream

agents. When the combination of smart inverters and capacitors is not enough, the Sub-

station agent can alter the setting on its associated load tap changers and provide voltage

relief affecting the entire PDS.
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A.5 Control Flow

A typical control cycle begins when agents get a new set of sensor data for current generation,

consumption, and voltages. If significant changes have occurred since the last set of sensor

values, a Home agent equipped with PV-generation may update its smart inverter setting to

optimize its performance in relation to its assigned goals. All Home agents then report their

data values to their supervising neighborhood Transformer agent, who takes the readings

from all the Home agents in its organization, and then calculates and sends a set of smart

inverter settings to the PV-enabled Home agents optimized for the neighborhood goals.

The Transformer agent, which is the neighborhood’s representative in its parent Lateral

organization, then reports its current status and margin information to the Lateral level.

This process of local aggregation, optimization, and reporting continues up through Lateral

and Feeder lines to the Substation. Higher-level organizations have additional actions they

can take to support larger changes using equipment such as capacitors and load tap changers.

Under the original approach, once all homes converge, all homes must send a new message

all the way up the holarchy to the substation and wait for the message to get back down

the holarchy from the substation before they can execute their inverter settings.

The algorithm was enhanced by recognizing once a level has converged, it will always

remain converged as shown in Fig A.7.

• First, responses from the smart meter are aggregated up the holarchy to the substation.

• Then, OPF is used to calculate targets for each subholon feeder. They pass these

targets all the way down to the homes and new responses come back up.

• Once the targets and responses for all 38 feeders get within a given tolerance, the

feeders have converged. Once converged, always converged, so the algorithm won’t go

as high as the substation again during this cycle of iterations; the feeder targets will

not continue to change.
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• Each feeder continues as the top of new smaller holarchy, continuing iterations under

any feeder whose has subholon targets that are still outside the tolerance.

• Subholons that are not converged continue their target is within the tolerance. As the

converge in any area of the distribution system reaches all the way down to the home,

the home sets the smart inverter actuator reactive power setting to the target value.

In this way, only unconverged areas continue the iteration. Eventually, the convergence

spreads out to all distributed areas; first, the 3-phase feeders converge, and then, in a

distributed fashion, the convergence spreads out and down until the last neighborhood (the

one with 287) reaches convergence.
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Figure A.7: Iterative grid control algorithm.
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Appendix B

IPDS Online Auction System (OAS)

We forget just how painfully

dim the world was before electricity.

— Bill Bryson191

The application employs a two-tier double auction scheme where home prosumer agents

create bids to express their intentions and send them to an agent acting as the broker in

a local market organization. The agent brokering the local auction determines the optimal

resolution of the auction, and in the event of any unsatisfied amounts, participates as a

bidder in a secondary, higher-level auction. The approach exploits the applicability of the

double auction in the second-tier, where the auction takes place between the secondary

participants representing their remaining community bids and shows the efficacy of the

proposed hierarchical model as it further maximizes the overall social utility40.

The project demonstrates an architecture for multigroup agents that provides a mod-

ular, extensible approach for supporting agents participating in multiple affiliated and in-

dependent groups, each with their own behavior specification, while providing a means

to customize the intelligent agents based on homeowner preferences and personal market
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strategies.

The remainder of this appendix is organized as follows. The two-tier double auction

algorithm is defined in Section B.1. The behavior specification and associated models are

described in Section B.2. Auction agents are defined in Section B.3. Agent capabilities are

described in Section B.4. A description of the auction process is provided in Section B.5.

B.1 Two-tier Double Auction Requirements

In the two-tier double auction, each home prosumer agent participates in a single holon

at the lowest level of the holarchy. Each of these lowest level organizations includes a

neighborhood transformer agent that may be situated on or near the pole transformer that

supplies a small set of homes with power. For testing, each neighborhood transformer agent

supported four homes supplied by the associated transformer, one of which has rooftop

photovoltaic (PV) panels for generation.

Each neighborhood transformer agent was equipped to broker a local auction, accepting

bids from the four participating homes for a given future time period. Homes equipped

with rooftop solar panels were assumed to have surplus distributed generation (DG) to sell

that nearby homes (those served by the same transformer) could bid on. The neighborhood

transformer agent and and the homes supplied by the transformer would autonomously

create a small local market organization and execute (or broker) the auction.

Each neighborhood transformer agent also further equipped to participate in an auction

at a higher level. In these secondary auctions, the neighborhood transformer agents served

in a different role. In the higher organization, each neighborhood agent served as an auction

participant, while the single lateral power line agent, supplying electricity to several neigh-

borhoods, was equipped to accept their bids and serve as broker in the second-tier double

auction.

The holonic nature of these local market organizations is illustrated in Figure B.1. Home
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Figure B.1: Holonic market organizational structure for the two-tier, distributed double-
auction simulation.

prosumer agents bid in first-tier auctions brokered by agents running on neighborhood trans-

formers. Neighborhood transformer agents then bid in second-tier auctions brokered by an

agent running on their supplying lateral power line.

B.1.1 First-Tier Auction

At the first tier of the proposed scheme, each of the neighborhood transformer agents (in-

dexed k ∈ 1, 2, ...N ) conducts an independent auction from the bids provided by the home

prosumer agents supplied by the associated transformer. In each local first-tier auction, let

Nk
B and Nk

S be the number of potential buyers and sellers with indexes i and j, respectively,

their bid prices per unit of energy be cb,i and cs,j, and their maximum demands and avail-

able supplies (in energy units) be di and sj. With denoting ck0 the clearing price per unit of
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power, the agent utilities can be defined as follows. For buyers:

ub,i =

 (ck0 − cb,i)qb,i, cb,i ≥ ck0

0, otherwise

 . (B.1)

and for sellers:

us,j =

 (ck0 − cs,j)qs,j, cs,j ≥ ck0

0, otherwise

 . (B.2)

Here, the volumes of energy qb,i and qs,j bought and sold are determined through the

auction by maximizing the total utility of all participating agents, Uk. With pk being

the assigned energy volume imported (exported when positive) to neighborhood k, the

underlying auction is formulated as the following linear programming problem. Maximize:

Uk =
∑
i∈Wk

B

ub,i +
∑
j∈Wk

S

us,j . (B.3)

Subject to:

0 ≤ qb,i ≤ di. . (B.4)

0 ≤ qs,j ≤ sj. . (B.5)∑
j∈Wk

S

qs,j −
∑
i∈Wk

B

qb,j = bk . (B.6)

The neighborhood transformer agent, serving as the broker, places the quantities bk and ck0

as the bid volume and price, respectively.

B.1.2 Second-Tier Auction

This secondary auction requires the power requested from each neighborhood transformer

agent k, to serve as the neighborhood bid volume bk and clearing price ck0. The lateral feeder

line agent serves as the broker in the second-tier auction and determines the final clearing
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price c0 at which subsequent power trading occurs and the power flow from each power-

exporting neighborhood l to every power-importing neighborhood k. There are various ways

in which the clearing price may be determined (e.g., through negotiations with the utility

company, to obtain budget balance, or by other means). These issues are not addressed

here, and a price c0 is determined somewhat arbitrarily, to lie within the range of prices in

the neighborhood bids. The clearing price determines the winner sets—the set of neighbors

that ultimately participate in the auction—either as buyers or sellers as defined below.

Wl = {k| bk ≤ 0, ck0 ≥ c0} . (B.7)

WE = {k| bk ≤ 0, ck0 ≥ c0} . (B.8)

The objective of the auction is to maximize the social welfare function (SWF), the aggregated

utility of all winners, as provided in the following equation.

SWF =
N∑
k=1

Uk . (B.9)

The neighborhood utilities as seen by the broker in this tier are now determined as follows.

Uk =


(ck0 − c0)pk, k ∈ Wl

(c0 − ck0)pk, k ∈ WE

0, otherwise

 . (B.10)

This allows the SWF to be expressed directly in terms of the bids in the following linear

programming formulation to obtain the power flows P k,l. Maximize:

SWF =
∑
k∈Wl

∑
i∈WE

(ck0 − cl0)pk,i . (B.11)

223



Subject to:

pk =
N∑
l=1

pk,l . (B.12)

 0 ≤ pk ≤ bk, k ∈ Wl

pk ≤ bk ≤ 0, k ∈ WE

 . (B.13)

∑
k∈Wl

pk +
∑
l∈WE

pl = 0. (power balance) . (B.14)

The power balance constraint above assumes an isolated microgrid that does not transfer

power from external sources. A single clearing price was assumed in the experiments, and

the approach is strongly budget balanced. However, the above problem can be reformulated

in various ways, in which case a strong budget balance requirement may be added as another

constraint.

B.2 Behavior Specification and Models

The desired behavior for online market organizations and the agents capable of creating and

managing these organizations was defined in models according to the AO-MaSE process.

B.2.1 Specifications for Market Organizations

The refined goal models for the two-tier double auction includes home agents in the lowest

level and transformer agents running on the poles in the first-tier auctions, and single-phase

lateral line agents working with several neighborhood transformer agents to conduct the

second-tier auctions. The associated goal models are shown in Fig B.2. The goals and goal

parameters are applied recursively between levels; the model could be easily extended to

conduct additional, higher-level auctions as circumstances allow. The differences in the goal

models are unique to the highest and lowest tiers. The lowest level will not have any (lower)

auction connections or need guidelines to broker an auction. The highest level will not have
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any (higher) broker connections or need auction guidelines to participate in a higher-level

auction.

Figure B.2: Two-tier market organization goal models.

A single market role model can be used for all markets. The role model is shown in

Fig B.3. The goals and goal parameters are applied recursively between levels; the model

could be easily extended to conduct additional, higher-level auctions as circumstances allow.

B.3 Online Auction Agents

In addition to the computational approach for the auctions, the ability to extend an exist-

ing intelligent power distribution system to support future online auctions was evaluated.
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Figure B.3: Two-tier market organization role model.

For example, future power distribution systems may include distributed intelligent agents

supporting advanced capabilities such as reactive and proactive power quality control for

voltage regulation and control192. Mechanisms were explored for enhancing intelligent agents

by adding capabilities to autonomously create and conduct online auctions. This required

agents to operate under the external guidance of multiple affiliated organizations and adapt

their behavior to provide the additional functionality without compromising or impacting

prior agent behaviors.

B.3.1 Equipping Agents to Conduct On-line Auctions

To implement the on-line double auctions, the existing hierarchic holonic MAS (HHMAS)

was used to evaluate power quality control algorithms for future intelligent power distribu-

tion systems. The topology, shown in Figure B.4 is based on the IEEE 37-bus feeder test

case, with a sample data for a community of four neighborhoods, with four homes each with

one of the four having distributed generation that could be made available for sale. The

market organizations were arranged in a holonic manner, similar to the grid control options,

but are be subject to different behavior specifications and external stakeholders. A smaller,

but highly parallel second hierarchical holarchy was implemented to support holonic on-

line auction experiments. Agents were built using AASIS and the OBAA++36 architecture

specifically designed for multigroup agents participating in multiple independently-controlled
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Figure B.4: Power distribution network topology for the double-auction test case.

organizations.

OBAA++ agents are equipped with capabilities that provide specific functionality. The

architecture includes an executable goal model for specifying organizational behaviors and

defining the behavior goals for each of the local market organizations. During execution

of the system, suitably-equipped agents are dynamically assigned to specific roles that can

achieve a particular organizational goal. Agents in market organizations can be assigned

to only one of two roles. They either act as an auction participant, to achieve the goal we

called Auction, or they act as the auction broker, accepting bid messages and executing the

double auction for the participants to achieve the goal we called Broker. Agents are never

assigned to do both in the same local organization, but some mid-level agents may broker

auctions in a lower-level organization, and then bid in auctions in a higher-level one, as

Neighborhood transformer agents do.

The necessary capabilities include typical group formation and administration abilities

such as the ability to create authorized connections to affiliated agents (for example, an
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auction participant must be able to establish a secure line of communication with the local

market broker) and to register with the organization, essentially presenting the participants

capabilities to the broker so it can get assigned roles to achieve the goals defined for the

local market organization. Additional online auction related capabilities focus on the ability

to prepare bids, send bid messages to the broker, or call the necessary analytical capabilities

to execute or broker the auction and determine the degree to which each bid is satisfied.

A list of the capabilities required for each role is shown in Fig B.5 along with the goal

that role can achieve to meet the overall objectives of the organization.

Figure B.5: Agents operating in the online auction organizations may be assigned to either
Auction or to Broker.

B.4 Equipping Agents with Capabilities: Processing

At the neighborhood level, Home agents equipped with PV generation can be sources of

distributed generation (DG). These agents can participate in forward online auctions to

sell power or energy at some future time. Agents can be customized to reflect the pricing

preferences of their owner and when they detect they will have additional DG beyond the

immediate needs of their owner, they can make a bid to sell future generation in online

auctions.
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B.5 Exchanging Market Messages and Brokering Auc-

tions

Each auction is conducted asynchronously in accordance with the specific guidelines pro-

vided. Guidelines include those specified for the market organizations in which the online

auctions will be conducted, as well as custom guidelines given to each multigroup agent that

serve to direct the behavior of each agent in such a way that the agent could be customized

to reflect the personal pricing strategies and comfort/profit motives of the owner. We ex-

pect some agents may be ultimately controlled by the homeowner, who makes the decision

to sell or not - and some agents may be wholly owned by the power company or market

agency, for example, those running along the lateral lines. Communication between agents

was simulated using RabbitMQ1, a fast implementation of the Advanced Message Queuing

Protocol (AMQP) standard.169.

1http://www.rabbitmq.com/
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Appendix C

Graduate School Research Lab

(GSRL)

After great pain, a formal feeling comes.

— Emily Dickinson1

Additional tests to evaluate the flexibility and reusability were desired, along with de-

velopment and evaluation of architectural aspects and processing algorithms for managing

goal consistency among multigroup agents. Thus, a new application domain was used to

create a new set of test cases.

This application domain centers on a university research lab. It includes a professor

with goals to run a research lab and advise students, and a set of graduate students who

get goals from multiple sources, including assisting in the lab, but also from family, friends,

and of course, also maintain personal goals for learning and maintaining basic health and

quality of life as shown earlier in Figure 8.8.

1As quoted in How to Write a Dissertation or Bedtime Reading for People Who Do Not Have Time To
Sleep 193.
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Figure C.1: Professor agent goal model.

Goal models, role models and the other specifications for the test cases provided verifica-

tion that the architecture supports the creation of affiliated organizations between affiliated

agents.

The goal specification for a research professor agent is shown in Figure C.1 and the goal-

based specification for a dynamically created affiliated organization for a graduate research

lab is shown in Figure C.2.

A similar goal specification for a graduate student is shown in Figure C.3

While the test cases were created to provide a simple way to motivate the desired ar-

chitectural features, the work also be applied to the development of a holonic MAS for

Figure C.2: Research lab goal model.
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Figure C.3: Graduate student goal model.

PDS.

The Adaptive O-MaSE (AO-MaSE) process provided a way to build the systems and

implement the necessary features38. Additional test-driven development support is planned

for additional work as the creation of agent software relies heavily upon design-time configu-

ration and robust error handling and feedback is critically important for the implementation

of agent systems, even with the support provided by agentTool3 and the supporting O-MaSE

framework. For additional discussion, see Section 8.2.
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Appendix D

Acronyms and Glossary

D.1 Acronyms

AASIS Adaptive Architecture for Systems of Intelligent Systems

AI Artificial Intelligence

AM Assignment Manager

API Application Programming Interface

AO-MaSE Adaptive Organization-based Multiagent Systems Engineering

APE agentTool Process Editor

BDI Belief-Desire-Intention

CC Control Component

CCEA Control Component Execution Algorithm

CPS Cyber-physical systems

DAI Distributed Artificial Intelligence

DG Distributed Generation

EC Execution Component

ECEA Execution Component Execution Algorithm
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EM Event Manager

GCS Grid Control System

GMoDS Goal Model for Dynamic Systems

HMAS Holonic Multiagent System

HHMAS Hierarchic Holonic Multiagent System

IEEE Institute of Electrical and Electronics Engineers

IPDS Intelligent Power Distribution System

GR Goal Reasoning

MAS Multiagent System

MDP Markov Decision Process

NSF National Science Foundation

O-MaSE Organization-based Multiagent Systems Engineering

OAS Online Auction System

OBAA Organization-based Agent Architecture for single-organization MAS

OBAA++ Organization-based Agent Architecture for multigroup MAS

OM Organization Model

OMACS Organizational Model for Adaptive, Computational Systems

OMAS Organization-based Multiagent Systems

OPF Optimal Power Flow

OS Organization Specification

P Real power

PDS Power Distribution System

PSA Plan Selection Algorithm

PV Photovoltaic

Q Reactive power
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RA Reorganization Algorithm

SWF Social Welfare Function

TM Task Manager

UML Unified Modeling Language

D.2 Glossary

A glossary of some of the key terms and concepts follows. Descriptions that best reflect the

essence of the idea for those unfamiliar has been included below along with the providing

source.

Adaptive Organization-based Multiagent Systems Engineering (AO-MaSE). A complete-

lifecycle, O-MaSE-compliant methodology for analyzing, designing, and developing complex,

multigroup multiagent systems150.

Agent. Computational system instances that inhabit a complex dynamic environment,

sense and act autonomously in this environment in order to achieve a set of goals150.

AgentTool. A Java-based graphical development environment to help users analyze,

design, and implement multiagent systems developed by the Multiagent and Cooperative

Robotics (MACR) Laboratory at Kansas State University194.

Architecture. That which is fundamental or unifying about a system as a whole; the set

of essential properties of a system which determine its form, function, value, cost, and risk195.

Capabilities. Capabilities are atomic entities used to define a skill or capability of

235



agents13. Capabilities can capture soft abilities such as the ability to access resources,

communicate, migrate, or computational algorithms. They also capture hard capabilities

such as those of hardware agents such as robots, which include sensors and effectors150.

Complex MAS. An multiagent system with a complex organizational structure contain-

ing multiple groups. See also multigroup MAS.

Computer science. Computer science is the scientific and practical approach to compu-

tation and its applications196.

Computer scientist. A computer scientist specializes in the theory of computation and

the design of computational systems196.

Critical Peak Pricing. Rate and/or price structure designed to encourage reduced con-

sumption during periods of high wholesale market prices or system contingencies by imposing

a pre-specified high rate or price for a limited number of days or hours197.

Critical Peak Pricing with Load Control. Demand-side management that combines direct

load control with a pre-specified high price for use during designated critical peak periods,

triggered by system contingencies or high wholesale market prices197.

Cyber-physical systems (CPS). Engineered systems that are built from and depend upon

the synergy of computational and physical components. Emerging CPS will be coordi-

nated, distributed, and connected, and must be robust and responsive. Examples include

the smart electric grid, smart transportation, smart buildings, smart medical technologies,

next-generation air traffic management, and advanced manufacturing198.
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Demand Resource or Demand-Side Resource. An electricity consumer that can decrease

its power consumption in response to a price signal or direction from a system operator197.

Direct Load Control. A demand response activity by which the program sponsor re-

motely shuts down or cycles a customer’s electrical equipment (e.g., air conditioner, water

heater) on short notice. Direct load control programs are primarily offered to residential or

small commercial customers. Also known as direct control load management197.

Distributed Energy Resources (DER). A changing mix of demand-side resources, includ-

ing changeable load, dispatchable distributed generation and storage, as well as variable

output local generation such as wind and solar. In the event of a disturbance, attack, or

natural disaster, these resources can help alleviate constraints or support electrically en-

ergized islands that can mitigate the impact to events, and improve response times for

post-disturbance reconstruction199.

Distributed Generation or Distributed Generators (DG). Distributed Generation is a

broad term that encompasses both mature and emerging onsite power generation technolo-

gies with power output as small as 1 kW and as large as 20 MW200.

Environment. The external world in which a system or an entity operates. Agents can

perceive their environment through sensors and can act on the environment via actuators.

Agents may be part of the environment for other agents.

Goal. A desirable state of the world or the objective of a computational process13.

Goal Model for Dynamic Systems (GMoDS). A software tool that provides a formal def-

inition and decomposition of system goals and the relationships between them and offers a

237



framework for executing a goal model within an organization. See also Specification Goals,

Instance Goals, and Goal Parameters.

Goal Parameters. Guidelines provided to customize a parameterized goal.

Holon. An agent or unit that is at the same time a whole – composed of smaller parts –

and also a part of higher level organization. An atomic holon is one considered to be at the

lowest level of a particular system - and no additional division is considered. Alternatively,

a non-atomic holon plays both a role in a higher level organization and can, itself, be con-

sidered as an organization of holonic agents201.

Holarchy. An organizational approach based on holons.

Holonic Multiagent System. A special kind of multiagent system where an agent may

consist of multiple, similar agents acting together, where each agent may either one of the

parts, or act as the head (the agent that represents the holon to the greater system).

IEEE Standard 1547. Current IEEE Standard 1547 requires all distributed generators to

disconnect from the grid upon loss of power. New standards would allow a PDS to operate

as an islanded microgrid with its own resources202.

Instance Goals. Temporal versions of specification goals created during system execution.

Intelligent Power Distribution Systems project (IPDS). A four-year 1.1 million project

focusing on developing an architecture to support the evolving power distribution system156.

IntelliGrid. EPRI’s IntelliGrid initiative is a collaborative effort to create a technical
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foundation for a smart power grid that links electricity with communications and computer

control to achieve gains in reliability, capacity, and customer services. A major early prod-

uct is the IntelliGrid Architecture, an open-standards, requirements-based approach for

integrating data networks and equipment that enables interoperability between products

and systems. This program provides utilities with the methodology, tools and recommenda-

tions for standards and technologies when implementing systems such as advanced metering,

distribution automation, demand response, and wide-area measurement. The program also

provides utilities with independent, unbiased testing of technologies and vendor products200.

Markov Decision Process (MDP). A framework for modeling decision-making when out-

comes are partly random and partly under control of a decision maker. MDPs are used in

stochastic processes where the probability of future states depend only on present state and

nothing preceding it203,204,205.

Micogrid. A small energy system capable of balancing captive supply and demand re-

sources to maintain stable service within a defined boundary206.

Multiagent System. A system consisting of multiple autonomous entities having different

information and/or diverging interests175.

Multigroup Agent. An agent designed to accept or issue assignments in multiple groups

and/or multiple systems concurrently.

Multigroup MAS. An multiagent system with a complex organizational structure con-

taining multiple groups. See also complex MAS.

Organization-Based Agent (OBA): An agent capable of reasoning about its organiza-
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tion13, with the ability to reorganize, or transition from one organizational state to another,

in response to updated goals or changes in the environment.

Organization-based Multiagent Systems Engineering (O-MaSE). A complete-lifecycle

methodology for analyzing, designing, and developing heterogeneous multiagent systems150.

Organizational Model for Adaptive, Computational Systems (OMACS). A model that

defines a system in terms of an organization consisting of goals, roles, agents, capabilities,

and the relationships between these entities13.

National Science Foundation (NSF). The United States NSF provides research funding

for many advanced research efforts, including the Kansas State Intelligent Power Distribu-

tion System Cyber-Physical Systems Project198.

P (power). Real power, also called active power. The part of the power flow that can

be used to perform desired functions. Complex power is the vector sum of real and reactive

power. The apparent power is the magnitude of the complex power. Aspects of power are

related as shown in the following figure with Real power (P), Reactive power (Q), Complex

power (S), Apparent Power (—S—), and Phase of Current (φ) as indicated.

Photovoltaic (PV). PV devices absorb sunlight and convert the light energy into electric-

ity that you can be used to supply energy for homes or industrial applications. PV panels

allow a home to act as a prosumer depending on the availability of sunlight.

Policies. Organization policies are formally specified rules that describe how an organi-

zation may/may not behave in specific situations150.
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Power Distribution System (PDS). The parts of the grid that operate below transmis-

sions levels, generally below 34.5kV, including all utilization voltage equipment plus all lines

that feed power to service transformers; and all radial equipment207.

Power Quality. Power quality refers to the attributes of the power delivered to cus-

tomers, including voltage, wave form, and harmonics. A power quality problem can be

defined as voltage, current, or frequency deviations that result in failure or misoperation of

equipment207.

Prosumer. An entity that can be both a producer and consumer of electricity.

Q (power). See Reactive power.

Software architecture. The software architecture of a program or cyber-system refers

to the structure and organization of the system, including its components, the externally

visible properties of those components, and the relationships among them208,209.

Software engineering. The science and art of designing and making with economy and

elegance, [...] systems so that they can readily adapt to the situations to which they may be

subjected 210.

Reactive power (Q). As reactive power increases, the ability to carry real power (R) is

reduced and the corresponding efficiency decreases. Uncorrected reactive power makes it

more difficult to stabilize grid voltage. See real power for additional information.

Renewable Energy. Energy which comes from natural resources such as sunlight, wind,

rain, tides, and geothermal heat, which are naturally replenished. The smart grid will be

able to make better use of these energy resources by giving grid operators tools to reduce
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power demand quickly when renewable sources such as wind or solar power dips, and it

will have more energy storage capabilities to absorb excess renewable power when it isn’t

needed, then to release that energy when the renewable power declines. In effect, energy

storage will help to smooth out the variability in intermittent renewable resources, making

them easier to use211.

Smart Grid (SG). A developing network of transmission lines, equipment, controls and

new technologies working together to respond to our evolving demands for electricity211.

Smart Grid Objectives. Objectives for the smart grid include more efficient transmission

of electricity, quicker restoration of electricity after power disturbances, reduced operations

and management costs for utilities, lower power costs for consumers, reduced peak demand,

increased integration of large-scale renewable energy systems, better integration of customer-

owner power generation systems, and improved security200.

Smart meter. An electrical meter that records consumption of electric energy in intervals

of an hour or less and communicates that information at least daily back to the utility for

monitoring and billing purposes212.

Specification Goals. Behavior objectives for the system. Specification goals are instan-

tiated as instance goals during system execution.

Var control. Control of reactive power (VARs). By reducing the amount of reactive

power flowing on the distribution feeder, the electric utility can reduce electrical losses and

improve the voltage profile213.

Voltage control. The primary purpose of voltage control is to maintain acceptable volt-
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age (120 volts plus or minus 5 percent) at the service entrance of all customers served by

the feeder under all possible operating conditions213.

Volt-Var optimization. Integrated control of both voltage and reactive power combined.

Feeder voltage and feeder reactive power flow are closely related and dependent variables.

Control actions to change one of the variables can result in opposing control actions to

change the other variable. For example, raising the voltage using the substation trans-

former LTC can produce a voltage rise that could cause capacitor bank controls to remove a

capacitor bank from service, thus lowering the voltage. Similarly, placing a capacitor bank

in service could cause the LTC to lower the voltage at the substation. The coordinated

control of voltage and reactive power is needed to determine and execute volt-VAR control

actions that are truly optimal. In addition, adaptive algorithms may be added to allow the

system to learn from previous actions and their resulting impacts213.
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