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ABSTRACT 

 The purpose of this thesis is to analyze whether the use of automated aeration 

systems for reducing moisture in corn during storage provides sufficient net present value 

for Nebraska corn farmers. The objective is to examine if an automated aeration system 

provides sufficient energy savings, marketing opportunities and reduced drying costs 

before corn delivery to an elevator. 

 On-the-farm corn storage has steadily increased and harvesting corn before the 

moisture has achieved the desired targets cost farmers in drying charges and shrink. 

Farmers are interested in whether automated aeration systems can remove enough moisture 

from grain, without over-drying the bin, without spending a large amount of time 

determining when to run their grain bin aeration fans. 

 Data for this project were obtained from four privately owned 60,000 bushel grain 

bins outfitted with the IntelliAir™ BinManager™ automated aeration system. Moisture 

samples were taken from each of the trucks hauling grain to the bin and again after removal 

of the corn after the automated system had ran for 9 months. Energy usage, drying charges, 

and shrink were calculated for the initial corn moisture averages and the moisture at the 

time of removal. 

 Each bin was examined using Net Present Value (NPV) analysis to determine 

whether the energy savings were enough to offset the initial installation cost and annual 

expenses of the project. After the NPV was estimated for each of the bins, a sensitivity 

analysis of how corn price changes and no aeration required would affect the NPV analysis. 



  
 

Finally, an analysis of the total costs savings of a continuously ran aeration system was 

compared to the automated aeration system.  

 The conclusion of the NPV analysis was that adding an automated aeration system 

would be profitable under most scenarios. More studies are needed to determine the 

profitability of automated aeration systems in different regions, moisture inputs, and bin 

sizes.
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CHAPTER I: INTRODUCTION 

1.1 Background and Justification 

 Grain quality can be maintained by controlling physical, chemical and biological factors. 

Thus, food corn processing and storage facilities are ever-striving to maintain grain quality and 

reduce spoilage when corn is harvested. Processing facilities are not capable of storing all the grain 

necessary for stretching inventory from one harvest to another. On-the-farm storage is used to 

bridge the gap between harvests. Storing corn for nine months has an increased risk of loss to 

farmers. To control the risk of loss, farmers aerate corn to ensure quality when delivered to the 

processor. Aerating the corn properly reduces the risk of spoilage but over aerating can reduce the 

selling price via shrink and excess drying charges.  

 Aeration techniques used to monitor and reduce the properties of corn are often labor 

intensive and can result in a reduced selling price. Automated aeration systems present a method to 

accurately monitor corn quality and control the physical properties of corn to targeted goals via 

technology. To use these systems, farmers select moisture and temperature set points for a given 

bin. The automated aeration system determines when the aeration fans are turned on by calculating 

what ambient temperature and relative humidity conditions outside the bin will achieve the desired 

grain moisture and temperature within the bin.  

1.2 Project Objectives 

The purpose of this project is to determine whether the use of automated aeration systems 

for reducing moisture in corn during storage provides sufficient net present value for Central 

Nebraska corn farmers to invest. The objective is to provide an economic analysis of whether an 

automated aeration system can provide profits through marketing opportunities, reduced energy 



2 

bills, and reduced drying costs before corn delivery to an elevator. A sensitivity analysis will 

display the conditions needed for profitability to occur. 

The importance of this analysis lies in the understanding of a new technology and how it 

could increase farm profits. As farms become larger, farmers often start harvesting corn earlier in 

the season. Utilizing an automated aeration system allows farmers to harvest corn sooner. The 

automated aeration system consists of temperature, moisture, and ambient sensors contained in a 

grain storage bin system. The sensors are linked to a computer system. The computer system turns 

aeration fans on and off using farmer-defined parameters inputted by farmers. The automated 

system allows farmers to choose corn holding temperature and desired moisture content. Corn can 

be dried from 17% moisture to 14% without using natural gas by running aeration fans to reduce 

shrink and minimize drying charges at delivery. The automated aeration system also allows users 

to select how long the corn will be held and the desired moisture of corn when delivering it to 

market. Small amounts of moisture can be added to the grain using the same method of calculating 

the ambient temperature and relative humidity conditions outside the bin that will achieve the 

desired grain moisture and temperature within the bin.  
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CHAPTER II: LITERATURE REVIEW 

2.1 On-the-farm Gain Storage 

On-the-farm grain storage has increased by 1 billion bushels over the last 5 years 

(National Agricultural Statistics Service 2009-2013) (Figure 2.1). On-the-farm corn storage 

allows farmers the flexibility to market their grain at different times during the year and permits 

farmers to harvest earlier. The aeration of corn is a key component of keeping the stored corn in 

good condition, so the maximum price can be realized when the corn is eventually sold. 

Research defines the optimal amount of aeration so that corn taken out of storage will be of high 

quality and appropriate moisture. Determining when to run aeration fans has been confusing and 

some farmers resort to running aeration systems continuously to regulate temperature and 

moisture. A new technology has emerged that automates bin aeration, and is being used to 

determine the length to run aeration fans. This technology can regulate temperature and moisture 

of the corn to obtain the maximum value during sale. This literature review will describe how 

aeration is used to maintain corn in a storage bin, how grain aeration techniques are decided 

upon, and how the automated aeration system works.  
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Figure 2.1: On-Farm Grain Storage Capacity in Billions of Bushels  

 
(National Agricultural Statistics Service 2009-2013) 
 

2.2 Defining Aeration 

The aeration of grain is described as passing ambient air through a stored grain mass to 

change the physical (moisture and temperature) properties of the grain. The air to pass through 

the grain is generated through an axial or centrifugal fan. The air then passes through a series of 

distribution lines or duct work. From the duct work, the air enters the grain mass through 

perforated flooring and perforated duct work. Figure 2.2 shows different types of bin/storage 

floors or plenums. Each type of plenum system allows air to penetrate the grain mass. Aeration 

fan and ductwork selection is important because different grains have different air resistances. A 

rule of thumb is if a person’s goal is to dry grain using an aeration system, it is important to have 

a fan and motor that can generate at least 1-3 cubic feet per minute per bushel of grain (CFM/bu) 

for proper aeration (Maier, K-State Distance Education Program GEAPS 520 Lecture 6 Fan 

Selection, Sizing and Operating Strategies 2013). As aeration fans run, ambient air is pushed 
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through the gain mass in levels shown in Figure 2.3. The air front carries the temperature and 

vapor pressure of ambient air being passed through it. It is important that the grain masses have 

consistent temperatures during its time in storage. Difference in temperature can cause spoilage.  

Other important considerations for grain aeration are the height of the structure, width of 

the structure, grain consistency, whether the grain has been leveled, and ventilation in the roof of 

the grain storage structure. A storage structure has to be designed appropriately to correctly 

aerate the grain inside of it.  

2.3 Equilibrium Moisture Content 

 If the system is designed correctly, air passes through the grain mass. Then the 

temperature and the relative humidity from the ambient air and moisture from the grain react and 

cause an equilibrium moisture content (EMC) of the grain/corn in storage (Aeration 

Management). The EMC is described as, “moisture content which the internal vapor pressure of 

the grain is in the equilibrium with the vapor pressure of the environment” (Maier, K-State 

Distance Education Program GEAPS 521 Lecture 2 Air and Grain Properties 2013). When 

aerating, the ambient air can be used to manipulate the moisture content of the grain mass. If the 

ambient air passing through the grain has less vapor pressure than the grain in the storage bin, 

prolonged exposure to this air will cause the moisture content of the grain to drop. The reverse is 

true if the ambient air vapor pressure is higher than that of the grain in storage. Aeration is used 

to lengthen storage periods through reducing the moisture and temperature of the grain through 

the EMC process. Proper aeration results in deterring mold, insects, and spoilage, while 

maintaining grain moisture of a constant rate (Maier, 2013). Improper aeration results in spoiled 

grain, mold issues, insect problems, and unwanted final moisture content upon removing grain 

from storage. 
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Figure 2.2: Plenums and Grain Floor Aeration Designs 

 

(Cloud and Morey n.d.) 

Figure 2.3: Grain Aeration Front Movement  

 

(Farms.com 2015) 
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2.4 Methods of Aeration 

Historically, farmers have used multiple methods for aerating grain. One method is 

manually turning aeration fans on, climbing to the top of the bin and feeling the air coming of the 

grain. When the air feels cool and doesn’t fog your glasses (less humid), the fans are ready to be 

turned off. This process can take months of aeration/fan running and depends on the ambient 

conditions outside the bin, the aeration system design, and fan size. Typically, farmers leave fans 

on when the daytime temperatures drop and when relative humidity is the lowest. This decreases 

the temperature and moisture of the grain, but wastes energy and reduces moisture reduction 

control, due to lack of monitoring capabilities. 

Another method that farmers use is a probe system. A probe collects grain samples from 

multiple points in a grain storage bin. The probe is inserted in the middle of the grain bin and 

samples are removed and tested to give accurate moisture and temperature of the storage bin. 

The decisions can then be made to aerate the grain further or not. While this process is accurate, 

this method takes time and labor to complete. Farmers with a large amount of farm acres find it 

difficult to allocate the time and effort needed to probe multiple bins. Another issue with this 

method is that probing is only a point in time and decisions are made from that single 

observation. Relative humidity and temperatures can change in a matter of hours in the Midwest. 

Not reacting to these changes quickly can cause adverse grain storage properties.  

Some farmers choose to only aerate grain to a predetermined temperature and then don’t 

aerate the bin afterwards. This method is done by running the fans when the desired temperature 

is ambient outside of a storage structure. Farmers then insert a temperature probe in the top or 

bottom of the bin (whichever is the air output). The probe displays if the temperature front has 

made it through the gain mass. This method of aeration is adequate if the moisture content of 
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grain is at or below the delivery dockage point. If grain moisture is above the dockage point a 

farmer will lose money due to drying costs and shrink.  

The final type of aeration control method is an automated aeration system. This system 

uses temperature cables sensors within the grain mass, a moisture sensor within the grain mass, 

sensors to monitor ambient conditions outside of the bin, and can have relative humidity sensors 

in the head space or plenum of the bin. The system then processes all data points and calculates 

when the optimum time is to operate the system naturally drying the grain without gas and 

minimizing shrink and spoilage ( OPI-integris Advanced Grain Management 2014). 

2.5 Automated Grain Aeration System 

There are two main brands of automated grain aeration systems used in Central Nebraska. 

The OPI Integris Pro system and the IntelliAir™ BinManager™ use data from ambient air and 

monitors within a grain mass to make decisions on when to turn aeration fans on/off, alarm 

farmers if temperatures spike, and record data on a predetermined schedule. Systems can be 

monitored from the grain site or via radio or cellular signals.  

While the OPI IntegrisPro and IntelliAir™ BinManager™ were created to achieve the 

same results, there are differences between the two. The OPI IntegrisPro system has more 

computer hardware and software requirements. Figure 2.4 shows the operations screen for the 

OPI Integris Pro. The dedicated hardware allows OPI IntegrisPro users to examine real-time data 

from their bin systems. The IntelliAir™ BinManager™ system sends all bin information to a 

remote cloud server, where any device can access, control, and retrieve data via internet. Figure 

2.5 shows the operation screen and basic IntelliAir™ BinManager™ setup. The drawback to 

sending information to the cloud is the IntelliAir™ BinManager™ systems records readings 

hourly but only upload to the cloud once daily, at a prescribed time.  
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The IntelliAir™ BinManager™ system was chosen for the study because it had 

accessible data through Nebraska Salt and Grain. IntelliAir™ BinManager™ is also serviced and 

sold at Ag Horizon in Gothenburg, Nebraska. Ag Horizon was able to provide installation and 

maintenance cost information.  
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Figure 2.4: Diagram of OPI IntegrisPro Automated Grain Aeration System  

 

 

(OPI‐Integris Systems 2014)  
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Figure 2.5: Diagram of IntelliAir™ BinManager™ Automated Grain Aeration System  

 

 

 

( IntelliAirBinManager 2011) 
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CHAPTER III: THEORETICAL MODEL 

3.1 Introduction 

As farms consolidate and on-the farm storage capacity grows, it is important that farmers 

use technology to manage corn while in storage. Maintaining the quality of corn in storage is 

imperative to extend its value until final sale. Over the last few decades, computers and control 

programs have allowed humans to make complex decisions after inputting parameters into a 

computer program. Using a computer program to automatically aerate and monitor grain attributes 

adds value by ensuring grain moisture and temperature are at proper levels for the sale of the grain. 

The purpose of this study is to estimate the net present value of an investment in an automated 

grain aeration system. This analysis will help farmers understand the profitability of an investment 

in an automated aeration system. 

3.2 Net Present Value 

A central concept of net present value is the time value of money. This concept means a 

dollar today is worth more than a dollar tomorrow. Therefore, when investing in projects, cash 

inflows and outflows need to be treated in terms of the time value of money.  

To understand how the cash flows are discounted, the assumption of the opportunity cost is 

important. The opportunity cost is the opportunity given up by an investor making the investment. 

This opportunity cost is typically a stock or other investment with similar risk characteristics 

(Investopedia 2014). In the case of a farmer, the investment that they give up could be used for 

land purchase or payments. In Figure 3.1, the net present value equation is defined. It uses the net 

cash inflows, the opportunity costs, number of periods, and the initial investment to determine net 

present value of an investment. 
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Figure 3.1: Formula for Calculating NPV 
 

 ∑  

 
 	 	 	 	 	  
 
 	  
 
 	 ,  
 
 	 	  
 (Investopedia 2014) 
 
3.3 Net Present Value Assumptions 

There are assumptions necessary to determine net present value. The first assumption is the 

cash generated by a project is reinvested to generate a return at a rate that is equal to the discount 

rate used in present value analysis ( OPI-integris Advanced Grain Management 2014). This may 

not always be the case.  

The second assumption is the inflow and outflow of cash other than initial investment 

occur at the end of each period. To make it simple, outflows and inflows are accounted for at the 

end of a determined period. Sometimes these cash flows don’t occur at the same time every period 

in the real world. Cash flows are not always predictable. In the case of aerating grain from higher 

moisture to target moisture, the energy consumption savings between drying and aerating is the 

positive cash flow. Predicting what the cash flow without assumptions is not possible because corn 

moisture is dependent on weather patterns.  
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CHAPTER IV: METHODS AND RESULTS 

4.1 Objective 

 The objective of this thesis is to analyze whether the energy and shrink savings generated 

from an automated aeration system used to remove moisture provide a positive net present value 

compared to reducing the temperature and storing shelled corn after harvest of a higher moisture 

content in Central Nebraska.  

4.2 Bin Dimensions and Aeration System Design 

 The four bins used for collecting project data each have 60,000 bushel capacities and are 

located at the same location. They have a diameter of 48 feet and a height, including the cone, of 

50 feet. Each storage bin has a full-aeration floor and a 21,000 Cubic Feet per Meter (CFM) 

centrifugal fan, run by a 20 H.P. motor (GEAPS recommends a 0.05 - 0.25 CFM per bushel for 

aeration of grain). This system has 0.35 CFM per bushel. All four bins have six IntelliAir™ 

temperature cables with sensors located every four feet, a single moisture cable with sensors every 

four feet, an ambient temperature/RH sensor, and a plenum sensor connected to the IntelliAir™ 

BinManager™ controller.  

4.3 Net Present Value Formula 

 The equation in chapter 3 (Figure 3.1) was used to determine whether the energy savings 

from using an automated aeration system versus reducing the temperature and storing corn for six 

months results in a positive net present value.  

4.4 Energy Savings Assumptions and Calculations 

Energy use was calculated by using data from input bin moistures and output bin moistures. 

The input moistures in Table 4.1 were used to calculate dryer charges and shrink, of delivering the 

corn, and holding moisture constant at the time of harvest or later. The output bin moistures in 

Table 4.2 were used to analyze the energy costs of running an automated aeration system, dryer 
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charges to reach target moisture, and shrink at least 6 months after harvest. The IntelliAir™ 

BinManager™ was set to a target moisture upper limit of 15% and a lower limit of 14% for each 

bin. Drying charges were calculated by subtracting the mean moisture from the target moisture of 

14 percent, and multiplying by a $0.035 per bushel drying charge, and finally multiplying by the 

amount of shrunk bushels per corn bin.  

Electricity costs were collected from IntelliAir™ BinManager™ system. The system 

records total number of fan hours for each bin. To find the amount of energy consumed by the 

aeration system the 20 HP fan motors were converted to kilowatt and multiplied by the number of 

hours used. The kilowatt hours were multiplied by Nebraska Public Power Department electricity 

utility cost of $0.10 kW/hr. Table 4.3 shows drying charges for the grain moisture sample placed in 

the bin at the time of 2013 harvest. Table 4.4 shows drying and aerations costs when the corn was 

removed from bin September 2014.  

4.5 Shrink and Drying Charge Calculations. 

Shrink is the calculated percentage of water loss from an amount of grain after aeration or 

drying. If grain moistures are higher than contracted amounts, grain purchasers deduct the 

percentage of water weight and handling fees that will be removed during drying. For this thesis, 

the corn will be deducted by 1.4% per point of moisture above 14%, during delivery. If a grower 

delivers below the targeted grain moisture because the grain is too dry, they lose money due to 

reduced water weight. It is therefore important for growers to not over dry or under dry corn. 

The target moisture for the corn was 14 percent. Shrink was calculated subtracting the 

mean moisture from the target and then multiplying by 1.4 (elevator shrink for handling grain). 

Finally, one is subtracted from that amount and multiplied by 60,000 bushel. Shrink is shown in 

both Tables 4.3 and 4.4. Below is an example of how the shrink loss, dryer charges, and aeration 

costs were calculated for bin 1. 
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Figure 4.1: Formulas for Calculating Shrink Loss, Dryer Charges and Aeration Costs 

 
	 	 		 	 	 	 	

	1	 	 	 	16.47%

	 	14% 	x	Elevator	Shrink	Constant	1.4 * 

Bin	1	Total	Initial	Bushels	60,000  

 

	 	 	 	 	 	 	 100

	 	 	 	 	 	 .

	 	 	 	 	 .
∗ 100

Bin	1	Output	Mean	Moisture	14.95%‐Moisture	Target	14% 	x	Elevator	Shrink	Constant	1.4

* Bin	1	Total	Initial	Bushels	60,000   

 

Bin	1	Input	Corn	Dryer	Charges Bin	1	Input	Mean	Moisture	16.47%‐Moisture	Target	14%  

*$.035	Dryer	Charge* Total	Bushels	60,000‐Bin	1	Input	Corn	Shrink	Loss	2,075	Bushels  

 

Bin	1	Output	Corn	Dryer	Charges Bin	1	Output	Mean	Moisture	14.95%‐Moisture	Target	14%  

*$.035	Dryer	Charge* Total	Bushels	60,000‐Bin	1	Output	Corn	Shrink	Loss	1,856	Bushels  

 

Bin	1	Output	Corn	Aeration	Costs Bin	1	Aeration	Fan	Hours	500 * 

20H.P.	Aeration	Fan	Motor*0.735	kW	per	HP *	$0.10	per	kW	Hour	
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Table 4.1: Input Corn Moisture Statistics Harvest October 2013  
 Moisture % 

Bin 1 
Moisture % 
Bin 2 

Moisture % 
Bin 3 

Moisture % 
Bin 4 

Total Bushels 60,000 60,000 60,000 60,000 
Mean  16.47 16.43 16.35 16.16 
Maximum 18.0 18.0 18.0 17.9 
Minimum 14.5 13.4 13.8 13.7 
Range 3.5 4.6 4.2 4.2 
Standard 
Deviation  

1.28 1.20 1.20 1.44 

 

Table 4.2: Output Corn Moisture Statistics September 2014 
 Moisture % 

Bin 1 
Moisture % 
Bin 2 

Moisture % 
Bin 3 

Moisture % 
Bin 4 

Mean  14.95 14.42 14.57 14.04 
Maximum 15.70 15.30 15.5 14.9 
Minimum 14.10 13.70 14.1 13.5 
Range 1.60 1.60 1.4 1.4 
Standard 
Deviation  

0.39 0.46 0.32 0.28 

Aeration Fan 
Hours 

500 420 610 300 

Moisture 
Removed 

1.52 2.01 1.78 2.12 

 

Table 4.3: Input Corn Moisture Drying Charges and Shrink per Bin  
 Drying  

Charges $ 
Shrink  
Loss (bu) 

Bin 1 $5,007 2,075 
Bin 2 $4,929 2,042 
Bin 3 $4,772 1,974 
Bin 4 $4,398 1,815 
Total $19,108 7,906 
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Table 4.4 Output Corn Moisture Drying Charges, Aeration Costs, and Shrink per Bin 
 Drying  

Charges 
Aeration 
Costs 

Shrink 
Loss Bu 

Bin 1 $1,968 $736 1,856 
Bin 2 $876 $618 1,754 
Bin 3 $1,187 $897 1,719 
Bin 4 $83 $441 1,513 
Total $4,116 $2,692 6,841 
 
 
4.5 Corn Price Assumptions 

Table 4.5 shows corn price assumption from 2014 to 2024. Years 1 through 4 assumptions 

are based upon corn future quotes from the CME Group (CME Group 2015). Figure 4.1 was used 

to determine corn cash price for years 5 through 10. Blue lines on the Figure 4.1 represent 

forecasted pricing by the USDA in 10 year increments. Each of the 10 year forecasts tend to stay in 

a steady-state meaning, they tend to follow a semi-flat linear line. The exception to these forecast 

are periods of large supply/demand causing price variations (Irwin and Good 2014). The magenta 

line represents the 10 year corn price forecast from 2014/2015 to 2024/2025. A flat price of $4.30 

was used for years 5 through 10 in the NPV model.  
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Figure 4.2: USDA 10-Year Baseline Price Forecasts for Corn and Actual Marketing Year 
Average Prices 1996/97 – 2024/25 

 
(Irwin and Good 2014) 

Table 4.5 10 Year Corn Price Assumptions 

Year 
Corn 
Price 

2014 $4.05  
2015 $3.99  
2017 $4.43  
2018 $3.50  
2019 $3.50  
2020 $3.50  
2021 $3.50  
2022 $3.60  
2023 $3.75  
2024 $4.00  

  
(CME Group 2015) (Irwin and Good 2014) 
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4.6 IntelliAir™ BinManager™ Online Subscription and Service 

The IntelliAir™ BinManager™ system has an annual subscription of $20 dollars a month 

per bin equaling $240 dollars per bin. The subscription provides data tracking, grain out of 

condition alarms, and the ability to change grain moisture/temperature targets through the internet 

daily. All data is stored in the IntelliAir™ Cloud. There are no annual maintenance costs for the 

system.  

4.7 Depreciation Schedule 

The depreciation schedule for the system is based on a 7-year recovery Modified 

Accelerated Cost Recovery System (MACRS) for equipment. Salvage value for the equipment is 

$0. Table 4.6 shows the schedule in its entirety. The $55,000 investment includes materials for 

each of the four storage systems including temperature cables, a moisture cable, plenum 

temperature sensor, master controller, weather station, and wireless transmitter. Labor to install 

electrical wiring and cable was also included in the initial investment. The $55,000 is divided by 

four to calculate each the NPV’s for the 60,000 bushel storage bins.  

4.8 Marginal Tax Rate 

A marginal tax rate of 34.84% was used which combines the state of Nebraska and Federal 

tax rates (the state of Nebraska tax bracket was 6.84% and the Federal bracket was 28%). 

4.9 Opportunity Costs 

The opportunity cost used for this project was 9%. The 9% was used because that is the 

opportunity costs used by my company to justify investments. The opportunity costs for the 

majority of farmers is the opportunity to invest and purchase land.  

4.10 Net Present Value Calculations 

Each bin has separate net present value calculations. Table 4.1 shows inputs of corn 

moisture statistics during corn harvest for the corn storage bins. Table 4.2 shows the storage bin 

corn moisture statistics and how much moisture was removed compared to the input moistures. 
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Data were collected from trucks during delivery and removal of corn via a probe sampler. The cash 

inflow calculations represent the total amount of savings calculated by finding the difference 

between shrink and energy gains from Tables 4.3 and 4.4. The savings of the system were 

calculated based upon the difference of not using the aeration system (Table 4.3) and using the 

aeration system (Table 4.4)  

Corn cash prices for shrink calculations are based upon the futures markets and the USDA 

10-year baseline price forecasts for corn shown in Figure 4.1. The prices used for the life of the 

project are shown in Table 4.5. Tables 4.7 through 4.10 are set up accordingly; the initial 

investment for each bin is inputted in year zero. The only cash outflow per year is the $20 a month 

wireless fee to upload data into the cloud. Cash inflow per year is calculated by inputting the 

difference between running the automated aeration system and not running the aeration system, 

assuming moisture inputs were similar to the data (based on Tables 4.3 and 4.4). Taxes were 

calculated by subtracting cash inflow from cash outflow, and depreciation then multiplied by the 

marginal tax rate. Operating cashflow after tax is calculated by subtracting cash inflow from cash 

outflow and tax. Discounted cashflow is calculated using the NPV equation. Each of the bins 

shows a positive NPV.  

The project provides sufficient savings, compared to the opportunity cost of 9%. 

Surprisingly, each NPV table has a different value. Bin 1 (Table 4.7) has the lowest NPV. This can 

be explained by an increased amount of wet corn in the bin, causing higher drying charges, energy 

costs, and shrunk pounds. What is peculiar is that bin 1 (Table 4.7) has the highest initial mean 

moisture, but has smallest amount of moisture reduction reducing drying charges and making it the 

largest NPV value. Table 4.10 shows that bin 4 was the most profitable. This can be explained due 

to it having the lowest initial mean moisture and greatest moisture removal of all the systems. All 
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bins have NPV calculations greater than zero meaning that the investment was profitable for each 

bin. 

4.11 Cash Inflow Calculation 

Cash inflows were calculated by finding the difference between the input drying costs and 

shrink associated with the price of corn in that year, and the output drying costs, aeration costs, and 

shrink associated with the price of corn in that year. Below is an example of the 2014 cash inflow 

calculations for bin 1 in figure 4.3.  

Figure 4.3: Formula for Calculating NPV Cash Inflow 

 
	 	 	 	 	 	 	

Input	Corn	Shrink	Loss	1,856	Bushels	– 	Output	Corn	Shrink	Loss	2,075	Bushels

∗ 2014	Corn	Price	Assumption	$4.05

Input	Dryer	Charge	$5,008	–	 Output	Corn	Dryer	Charge	$1,856

Aeration	Costs	$736 		 
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Table 4.6 Depreciation 
Initial  
Investment: $55,000 
Year Tax 

Depreciation 
Percentage 

Dollar 
Amount 

1 14.29% $7,860  
2 24.49% $13,470 

3 17.49% $9,620 

4 12.49% $6,870  

5 8.93% $4,912  

6 8.92% $4,906  

7 8.93% $4,912  

8 4.46% $2,453  

Total 100% $55,000 

 

Table 4.7 Corn Bin 1 Net Present Value Calculations and Cash Flow  
 

Initial 
Investment 

Cash 
Outflow 

Cash 
Inflow Taxes 

Operating 
Cash Flow 
After Tax Net CF DCF 

Cumm. 
DCF 

0 $13,750 $240  -$84 -$156 -$13,906 -$13,906 -$13,750 
1  $240 $3,226 $356 $2,630 $2,630 $2,413 -$11,337 
2  $240 $3,212 -$138 $3,110 $3,110 $2,618 -$8,720 
3  $240 $3,309 $231 $2,837 $2,837 $2,191 -$6,528 
4  $240 $3,105 $400 $2,465 $2,465 $1,746 -$4,782 
5  $240 $3,105 $570 $2,295 $2,295 $1,491 -$3,291 
6  $240 $3,105 $571 $2,294 $2,294 $1,368 -$1,923 
7  $240 $3,105 $570 $2,295 $2,295 $1,255 -$667 
8  $240 $3,127 $792 $2,095 $2,095 $1,051 $384 
9  $240 $3,160 $1,017 $1,903 $1,903 $876 $1,260 
10  $240 $3,215 $1,036 $1,938 $1,938 $819 $2,079 
 NPV $1,922 
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Table 4.8 Corn Bin 2 Net Present Value Calculations and Cash Flow  

Initial 
Investment 

Cash 
Outflow 

Cash 
Inflow Taxes 

Operating 
Cash Flow 
After Tax Net CF DCF 

Cumm. 
DCF 

0 $13,750 $240  -$84 -$156 -$13,906 -$13,906 -$13,750 
1  $240 $4,623 $842 $3,540 $3,540 $3,248 -$10,502 
2  $240 $4,606 $348 $4,018 $4,018 $3,382 -$7,120 
3  $240 $4,732 $727 $3,765 $3,765 $2,907 -$4,213 
4  $240 $4,464 $873 $3,351 $3,351 $2,374 -$1,839 
5  $240 $4,464 $1,044 $3,180 $3,180 $2,067 $228 
6  $240 $4,464 $1,044 $3,180 $3,180 $1,896 $2,124 
7  $240 $4,464 $1,044 $3,180 $3,180 $1,740 $3,864 
8  $240 $4,493 $1,268 $2,985 $2,985 $1,498 $5,362 
9  $240 $4,536 $1,497 $2,800 $2,800 $1,289 $6,651 
10  $240 $4,608 $1,522 $2,846 $2,846 $1,202 $7,853 

NPV $7,697 
 

Table 4.9 Corn Bin 3 Net Present Value Calculations and Cash Flow  
 

Initial 
Investment 

Cash 
Outflow 

Cash 
Inflow Taxes 

Operating 
Cash Flow 
After Tax Net CF DCF 

Cumm. 
DCF 

0 $13,750 $240  -$84 -$156 -$13,906 -$13,906 -$13,750 
1  $240 $3,745 $537 $2,969 $2,969 $2,724 -$11,026 
2  $240 $3,730 $43 $3,447 $3,447 $2,902 -$8,125 
3  $240 $3,842 $417 $3,185 $3,185 $2,460 -$5,665 
4  $240 $3,605 $574 $2,791 $2,791 $1,977 -$3,688 
5  $240 $3,605 $745 $2,621 $2,621 $1,703 -$1,985 
6  $240 $3,605 $745 $2,620 $2,620 $1,562 -$422 
7  $240 $3,605 $745 $2,621 $2,621 $1,434 $1,011 
8  $240 $3,631 $968 $2,423 $2,423 $1,216 $2,227 
9  $240 $3,669 $1,195 $2,234 $2,234 $1,029 $3,256 
10  $240 $3,733 $1,217 $2,276 $2,276 $961 $4,217 
 NPV $4,061 
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Table 4.10 Corn Bin 4 Net Present Value Calculations and Cash Flow  

Initial 
Investment 

Cash 
Outflow 

Cash 
Inflow Taxes 

Operating 
Cash Flow 
After Tax Net CF DCF 

Cumm. 
DCF 

0 $13,750 $240  -$84 -$156 -$13,906 -$13,906 -$13,750 
1  $240 $5,101 $1,009 $3,852 $3,852 $3,534 -$10,216 
2  $240 $5,083 $514 $4,329 $4,329 $3,643 -$6,573 
3  $240 $5,216 $896 $4,080 $4,080 $3,150 -$3,423 
4  $240 $4,934 $1,037 $3,657 $3,657 $2,591 -$832 
5  $240 $4,934 $1,208 $3,487 $3,487 $2,266 $1,434 
6  $240 $4,934 $1,208 $3,486 $3,486 $2,079 $3,513 
7  $240 $4,934 $1,208 $3,487 $3,487 $1,907 $5,420 
8  $240 $4,965 $1,432 $3,292 $3,292 $1,652 $7,072 
9  $240 $5,010 $1,662 $3,108 $3,108 $1,431 $8,504 
10  $240 $5,086 $1,688 $3,157 $3,157 $1,334 $9,837 

NPV $9,681 
 

4.11 Soft Savings 

Along with the NPV analysis for each bin there are soft cost savings. The IntelliAir™ 

BinManager™ system monitors the temperature and moisture of the grain within the bin. The 

farmer doesn’t need to travel to the bin site and check the bins. Therefore, there are saving of fuel 

and labor. Also, if there are increases in temperature of the bin, such as a hotspot, the system 

alarms the farmer. If the farmer didn’t receive the alarm, they would run the chance of spoiling the 

entire bin. The automated aeration system gives farmers peace of mind that their grain is of good 

quality. If an issue is identified, the farmer can empty the bin and salvage the grain before it is 

spoiled.  
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CHAPTER V: SENSITIVITY ANALYSIS 

5.1 Sensitivity Analysis Objective 

The NPV analysis in the previous chapter is presented with forecast data. The objective of 

this chapter is to provide sensitivity analyses to show the effects of changing certain variables on 

the NPV analysis for each bin. The three variables I changed are corn prices, moisture percentage 

of the corn, and the costs difference between continuous and automatic fan operation.  

5.2 Sensitivity Analysis Increase/Decrease in Demand 

The USDA has forecasted corn prices from 2014 to 2024 in Figure 4.1. The magenta line 

shows a positive weak trend for that period of time. During the 2011 corn growing season, global 

demand for corn grew because of drought in the United States. Likewise, after 2011 corn prices 

decreased. Table 5.1 represents how the NPV analysis would affect each bin each if the price 

average increased $1.00. Table 5.1 shows that each bin would have a positive NPV values even if 

average prices were $2.00 per bushel during a 10-year average. Positive NPV’s at $2.00 per bushel 

corn makes the investment profitable and valuable even when farm prices are low. 

Table 5.1 NPV Sensitivity Analysis of Increase/Decrease in Price of Corn    
$ per Bushel of Corn 

 $2.00 $3.00 $4.00 $5.00 $6.00 
Bin 1 $262 $1,178 $2,093 $3,009 $3,924 
Bin 2 $5,511 $6,716 $7,922 $9,127 $10,333 
Bin 3 $2,127 $3,193 $4,260 $5,326 $6,393 
Bin 4 $7,387 $8,652 $9,917 $11,182 $12,447 
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5.2 Sensitivity Analysis of No Aeration Drying 

Since data is not available for energy use for corn input moistures above or below the data 

collected, I chose to show a sensitivity analysis representing a model with 1 to 5 years of no 

aeration drying. I chose alternating years starting with 2015. Table 5.2 shows that the NPV values 

are negative and positive values in each of the five years analyzed. The only bin with a negative 

NPV in the first year was bin 1. This can be explained because bin 1 had the lowest NPV value 

during the initial analysis. The sum NPV stays positive until the third year without need of 

aeration. When there are 5 years of no aeration drying, all bins have a negative NPV. Looking at 

the Gothenburg Frito Lay Corn Facilities historical data, there has only been 1 year out of the last 

10 where corn hasn’t needed drying during harvest. Therefore it would be logical to assume that 

the automated aeration system would be a profitable investment in our region. 

Table 5.2 NPV Sensitivity Analysis of No Aeration Drying 
Years With No Aeration 

 1 Year 2 Years 3 Years 4 Years 5 Years 
Bin 1 -$6 -$1,671 -$2,986 -$4,092 -$5,041 
Bin 2 $4,933 $2,552 $662 -$930 -$2,291 
Bin 3 $1,822 -$112 -$1,638 -$2,923 -$4,024 
Bin 4 $6,632 $4,007 $1,918 $159 -$1,344 

 

5.3 Continuous Aeration versus Automated Aeration System Sensitivity Analysis 

Running aeration fans continuously for a determined period of time is another option to 

remove moisture from corn compared to the automated aeration system. For this analysis, I used 

the Purdue University’s Energy Estimator for Grain Drying. This energy estimator can be used to 

evaluate energy use for different heat sources including; electric heat, natural gas, and continuous 

aeration grain drying. The grain drying tool was developed by Purdue University, Agricultural & 

Biological Engineering Department through a USDA-NRCS Conservation Innovation Grant (CIG) 
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(Purdue University Agricultural & Biological Engineering Department, USDA n.d.). The energy 

estimator allows a user to input characteristics to analyze grain drying energy costs under the 

entered conditions (Figure 5.1). An important feature this tool has is the ability to use historical 

weather conditions to predict the effects of aeration on a grain mass and energy usage. For my 

analysis, I chose to study the effects of initial moisture percentage versus cubic feet per meter 

(CFM) per bushel. Table 5.3 shows predicted yellow corn moisture percentages after 92 days of 

continuous (except for the 1 CFM per bushel row total days were approximately 30). Table 5.4 

shows the anticipated energy costs of operating an aeration system with the initial moisture inputs 

and CFM per bushel for a 60,000 bushel storage bin. Inputs held constant for the analysis are 

shown in Figure 5.1. To calculate aeration costs savings, the initial input grain moistures and 

output grain moistures from Table 5.3 were used to calculate dryer charges and shrink loss 

described in Figures 4.1 and 4.3 holding the price of corn constant at $4.05. Table 5.5 shows the 

predicted costs savings of running aeration fans continuously. While there are savings from 0.1 to 

0.30 CFM per bushel at most initial moisture, the savings decreased as the initial moistures 

decreased. It is harder to remove moisture from corn as it gets closer to the target moisture of 14%. 

If the continuous aeration estimates and automated system data are compared at the initial moisture 

content of 16% and 0.35 CFM per bushel, the automated system produces more savings than the 

continuous aeration estimate.  
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Figure 5.1: Energy Estimator’s Input Examples 
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Table 5.3: The Effects of CFM per Bushel on Initial Grain Moisture After 92 Days of 
Continuous Aeration Fan Operation 

 Initial Grain Moisture 
 20% 19% 18% 17% 16% 

C
FM

 p
er

 B
u 

0.10 18.6% 17.7% 16.8% 16.1% 15.3% 
0.15 18.4% 17.5% 16.7% 16.0% 15.3% 
0.20 17.9% 17.2% 16.5% 15.8% 15.2% 
0.25 17.5% 16.8% 16.2% 15.7% 15.2% 
0.30 17.1% 16.4% 16.0% 15.5% 15.1% 
0.35 16.6% 16.0% 15.7% 15.4% 15.1% 
0.50 15.3% 15.1% 15.1% 15.0% 15.1% 
0.75 14.0% 14.0% 14.3% 12.7% 12.3% 
1.00 11.9% 11.7% 11.5% 11.6% 11.0% 
 

Table 5.4: The Cost of Energy per Bushel at Different CFM per Bushel and Initial Grain 
Moisture After 92 Days of Continuous Aeration Fan Operation 

 Initial Grain Moisture 
 20% 19% 18% 17% 16% 

C
FM

 p
er

 B
u 

0.10 0.004 0.004 0.004 0.004 0.004 
0.15 0.010 0.010 0.010 0.010 0.010 
0.20 0.020 0.020 0.020 0.020 0.020 
0.25 0.030 0.030 0.030 0.030 0.030 
0.30 0.050 0.050 0.050 0.040 0.040 
0.35 0.070 0.070 0.070 0.060 0.060 
0.50 0.160 0.160 0.150 0.150 0.140 
0.75 0.330 0.340 0.420 0.170 0.140 
1.00 0.340 0.310 0.280 0.250 0.230 
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Table 5.5: Drying, Aeration Costs, and Shrink Loss Savings at Different CFM per Bushel 
and Initial Grain Moisture After 92 Days of Continuous Aeration Fan Operation 

Initial Grain Moisture 
 20% 19% 18% 17% 16% 

C
FM

 p
er

 B
u 

0.10 $3,272 $2,981 $2,632 $2,196 $1,699 
0.15 $3,313 $3,280 $2,758 $2,095 $1,286 
0.20 $3,990 $3,465 $2,773 $1,806 $791 
0.25 $4,391 $3,750 $2,787 $1,672 $374 
0.30 $4,316 $3,537 $2,099 $1,590 $10 
0.35 $4,366 $3,374 $1,718 $700 -$1,112 
0.50 $2,111 $222 -$1,497 -$3,846 -$6,092 
0.75 -$4,800 -$7,753 -$15,939 -$6,060 -$5,990 
1.00 -$10,763 -$11,889 -$12,881 -$13,628 -$11,318 
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CHAPTER V: SUMMARY AND CONCLUSION 

6.1 Summary of Results 

Each of the NPV analyses performed on the corn bins using the automated aeration system 

exhibited positive NPV values. The first sensitivity analysis used to determine how fluctuations in 

corn prices would affect estimated NPV values determined NPV would continue to be positive at 

low corn prices and increase as corn prices increased. To conclude, the final sensitivity analysis 

displayed how the NPV analysis would be affected if the corn didn’t need to be dried using the 

automated aeration system from one to five years. The results showed that all bins maintained 

positive NPV’s for the first two years. Years three, four, and five resulted in mixed positive and 

negative NPV’s for the four bins.  

 
6.2 Recommendation 

Based upon the NPV of the grain bins and the sensitivity analysis, corn growers should 

consider installing an automated aeration system. There are some uncertainties with regards to the 

profitability of using the aeration system at different moistures, but historical data and under most 

scenarios suggest that this would be a valuable investment. 

The risks associated with this project are increased chance of corn spoiling, uncertainty of 

weather patterns, or failure of the automated aeration system company. In the past decades, many 

technology companies have consolidated or failed because the sector is changing rapidly and 

businesses find it hard to keep up with hardware and software changes. Microsoft purchased 

FoxPro (a data base company) and after purchase, FoxPro was dismantled and the software was no 

longer supported. 
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6.3 Future Study 

Future studies could focus on how much energy an automated aeration system would save 

using an array of different moistures, locations, and bin sizes. This would help justify the 

installation of automated aeration systems for different sized operations in different regions.  
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