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Abstract 

Recent applications in reinforced concrete columns, including strengthening and extreme 

loading events, necessitate the development of specialized nonlinear analysis methods to predict 

the confined interaction domain of axial force, shear, and bending moment in square and slightly 

rectangular concrete columns. Fiber-reinforced polymer (FRP) materials are commonly used in 

strengthening applications due to their superior properties such as high strength-to-weight ratio, 

high energy absorption and excellent corrosion resistance. FRP wrapping of concrete columns is 

done to enhance the ultimate strength due to the confinement effect, which is normally induced 

by steel ties. The existence of the two confinement systems changes the nature of the problem. 

Existing research focused on a single confinement system. Also, very limited research on 

rectangular sections was found in the literature. In this research, a model to estimate the 

combined behavior of the two systems in rectangular columns is proposed. The calculation of the 

effective lateral pressure is based on Lam and Teng model and Mander model for FRP wraps and 

steel ties, respectively. The proposed model introduces load eccentricity as a parameter that 

affects the compression zone size, and in turn the level of confinement engagement. Full 

confinement corresponds to zero eccentricity, while unconfined behavior corresponds to infinite 

eccentricity. The model then generates curves for eccentricities within these boundaries. The 

numerical approach developed has then been extended to account for shear interaction using the 

simplified modified compression field theory adopted by AASHTO LRFD Bridge Design 

Specifications 2014. Comparisons were then performed against experimental data and Response-

2000, an analytical analysis tool based on AASHTO 1999 in order to validate the interaction 

domain generated. Finally, the developed models were implemented in the confined analysis 

software “KDOT Column Expert” to add FRP confinement effect and shear interaction. 
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Section I: Combined FRP/Transverse Steel Confinement in 

Rectangular Concrete Columns 
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Chapter 1 - Introduction 

 Background 

Columns are structural members that are essential to most structures. Columns transfer 

loads mainly through axial compression. Recently, the need to increase the strength of reinforced 

concrete columns has become the subject that all civil engineers are interested to tackle. Of the 

many proposed solutions, Fiber-Reinforced Polymer (FRP) materials have attracted attention due 

to their superior properties such as high strength-to-weight ratio, high energy absorption and 

excellent corrosion resistance. FRP wrapping of concrete columns is done to enhance the 

capacity and ductility of the column due to the confinement effect, which is normally induced by 

steel ties. The analysis of columns under extreme loading events requires accounting for all 

possible factors that contribute to the column’s ultimate capacity, including the confinement 

effect. The existence of the two confinement systems changes the nature of the problem, thus 

necessitating specialized nonlinear analysis to obtain the column’s ultimate capacity. There is a 

need to develop a model that predicts the behavior of the combined confinement system, and 

provides engineers with reliable predictions for the ultimate capacity of confined concrete 

columns. 

 Objectives 

This part of the study aims to estimate the capacity of rectangular reinforced concrete 

columns confined with steel ties and FRP wraps. To achieve that, a model to estimate the 

combined behavior of the two systems is proposed. The calculation of the effective lateral 

pressure is based on Lam and Teng model and Mander model for FRP wraps and steel ties, 

respectively. The proposed model introduces load eccentricity as a parameter that affects the 

compression zone, and in turn the level of confinement engagement. Full confinement 

corresponds to zero eccentricity, while unconfined behavior corresponds to infinite eccentricity. 

The model then generates curves for eccentricities within these boundaries. Generalization of the 

moment of area approach is utilized based on proportional loading, finite layer procedure and the 

secant stiffness approach, to generate interaction diagrams for these columns accounting for the 

combined confinement effect. 
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 Scope 

This section consists of seven chapters that cover all the aspects involved in this study. 

The first chapter provides a brief introduction to the background and objectives of the study, in 

addition to the scope. Chapter two comprises reviews of previous work found in the literature 

related to models and experiments. Chapter three covers the finite element analysis that was 

conducted as a preliminary study. Chapter four covers the confined analysis of rectangular 

columns subjected to biaxial bending and axial compression. It includes the description of the 

proposed model and the formulations derived. Chapter five reports the results obtained from this 

study, including comparisons with experiments and a parametric study, in addition to the 

discussion. Chapter six presents KDOT Column Expert, the software that was developed to 

facilitate the confined analysis using the proposed approach. Chapter seven summarizes the 

conclusions of this study and provides recommendations for further future research work. 
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Chapter 2 - Literature Review 

 Confinement Models in Rectangular Columns 

 FRP Confinement Models 

In this section, a review of selected models proposed for rectangular columns confined 

with FRP only is presented chronologically. 

 Mirmiran et al. (1998) and Samaan et al. (1998) 

Mirmiran et al. (1998) investigated the effect of column parameters on FRP-confined 

concrete. One of the parameters they investigated was the shape effect. They proposed a 

modified confinement ratio (MCR) for noncircular sections. MCR is defined as follows: 

𝑀𝐶𝑅 =
2𝑟𝑐
𝐷
(
𝑓𝑙
𝑓𝑐𝑜′
) ( 2-1 ) 

𝑤ℎ𝑒𝑟𝑒 𝑟𝑐 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 

𝐷 = 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑛𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑏𝑦 𝐿𝑎𝑚 𝑎𝑛𝑑 𝑇𝑒𝑛𝑔 (2003) 

𝑓𝑙 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑓𝑐𝑜
′ = 𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

Samaan and his coauthors (1998) presented an empirical model to predict the behavior of 

concrete columns confined with FRP tubes only. Mirmiran et al. (1998) used the same equation 

for the compressive strength of confined concrete (fcc) in columns wrapped with FRP, as follows: 

𝑓𝑐𝑐 = 𝑓𝑐𝑜
′ + 6𝑓𝑙

0.7(𝑀𝑃𝑎) = 𝑓𝑐𝑜
′ + 3.38𝑓𝑙

0.7(𝑘𝑠𝑖) ( 2-2 ) 

Including the modification for the shape, the final compressive strength equation is 

obtained as follows: 

𝑓𝑐𝑐 = 𝑓𝑐𝑜
′ + 12

𝑟𝑐
𝐷
𝑓𝑙
0.7(𝑀𝑃𝑎) = 𝑓𝑐𝑜

′ + 6.76
𝑟𝑐
𝐷
𝑓𝑙
0.7(𝑘𝑠𝑖) ( 2-3 ) 

The authors noted that the MCR value affects the second branch of the bilinear response 

curve. They observed that an ascending second branch was not achieved for specimens with 

MCR < 0.15. For this case, the post peak stress (fccu) can be obtained as follows: 

𝑓𝑐𝑐𝑢 = (0.169 ln𝑀𝐶𝑅 + 1.32)𝑓𝑐𝑐 ( 2-4 ) 

Otherwise, for cases with MCR > 0.15, the authors recommended using Samaan et al. 

(1998) model to predict the stress-strain relationship. This model was based on the four-
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parameter relationship developed by Richard and Abbott (1975). The expression for the stress-

strain relationship is as follows: 

𝑓𝑐 =
(𝐸1 − 𝐸2)𝜀𝑐

(1 + (
(𝐸1 − 𝐸2)𝜀𝑐

𝑓𝑜
)
𝑛

)
1 𝑛⁄

+ 𝐸2𝜀𝑐 
( 2-5 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑐 , 𝜀𝑐 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝐸1, 𝐸2 = 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑛 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒 𝑐𝑢𝑟𝑣𝑒 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑓𝑜 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸2 𝑎𝑛𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑥𝑖𝑠) 

The first slope (E1) depends mainly on the unconfined concrete properties due to the 

passive nature of the FRP confinement. It is obtained from the expression provided by Ahmad 

and Shah (1982), which is as follows: 

𝐸1 = 3950√𝑓𝑐′ (𝑀𝑃𝑎) = 47.586√1000𝑓𝑐′ (𝑘𝑠𝑖) ( 2-6 ) 

The second slope (E2) depends mainly of the FRP, and thus is a function of its stiffness. 

The following expression is used to evaluate its value: 

𝐸2 = 245.61(𝑓𝑐
′)0.2 + 1.3456

𝐸𝑓𝑡𝑓

𝐷
 (𝑀𝑃𝑎)

= 52.411(𝑓𝑐
′)0.2 + 1.3456

𝐸𝑓𝑡f

𝐷
 (𝑘𝑠𝑖) 

( 2-7 ) 

The intercept stress (fo) is obtained as a function of both the unconfined strength and the 

confining pressure as follows: 

𝑓𝑜 = 0.872𝑓𝑐
′ + 0.371𝑓𝑙 + 6.258 (𝑀𝑃𝑎) = 0.872𝑓𝑐

′ + 0.371𝑓𝑙 + 0.908(𝑘𝑠𝑖) ( 2-8 ) 

Finally, the ultimate confined strain (εccu) is calculated from the slope of the second curve 

as follows: 

𝜀𝑐𝑐𝑢 =
𝑓𝑐𝑐 − 𝑓𝑜
𝐸2

 ( 2-9 ) 

 Campione and Miraglia (2003) 

Campione and Miraglia (2003) presented an analytical model to predict the behavior of 

concrete columns confined with FRP only under concentric compression. This model considered 

only square sections with and without rounded corners. The authors analyzed the force 

equilibrium in the section, and obtained the following expressions for the confining pressure: 
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𝑓𝑙 =
2𝑡𝑓𝑟
𝑏𝑐
 𝑓𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ( 2-10 ) 

𝑓𝑙 =
√2𝑡𝑓𝑓𝑢

𝑏𝑐
𝑘𝑖  𝑓𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ( 2-11 ) 

𝑤ℎ𝑒𝑟𝑒 𝑡𝑓 = 𝐹𝑅𝑃 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝑏𝑐 = 𝑐𝑜𝑟𝑒 𝑤𝑖𝑑𝑡ℎ 

𝑓𝑢 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐹𝑅𝑃 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

The stress in FRP for rounded sections (fr) is obtained from the following equation: 

𝑓𝑟 = 𝑓𝑢 (1 −
√2

2
𝑘𝑖)

2𝑟𝑐
𝑏𝑐
+ 𝑘𝑖

√2

2
 ( 2-12 ) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑖 = 𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.2121 

Due to the reduced confinement efficiency in square sections when compared to circular 

sections, the authors proposed an effectiveness coefficient (ke) to scale down the confinement 

pressure (fl) and then determined the effective confinement pressure (fl’) as expressed in the 

following equation: 

𝑓𝑙
′ = 𝑘𝑒𝑓𝑙 ( 2-13 ) 

For a square section with rounded corners, the factor is obtained as follows: 

𝑘𝑒 =

(𝑏𝑐
2 − 4(𝑟𝑐

2 −
𝜋𝑟2

4 )) −
2
3
(𝑏𝑐 − 2𝑟𝑐)

2

𝑏𝑐2 − 4(𝑟𝑐2 −
𝜋𝑟𝑐2

4 )
 ( 2-14 ) 

The derivation of the factor assumed a value of 1.0 for circular sections and 1/3 for 

square sections without rounded corners. Finally, after calculating all of the parameters indicated 

previously, the confined compressive strength is obtained from the following equation: 

𝑓𝑐𝑐 = 𝑓𝑐
′ + 2𝑓𝑙

′ ( 2-15 ) 

Additionally, Campione and Miraglia considered the determination of the ultimate 

confined strain in their model (2003). They based their method on the energy balance approach 

proposed by Mander et al. (1988). They extended the approach to account for the presence of 

FRP in the section. The energy balance is established by equating the ultimate strain energy per 

unit volume spent to break the FRP (Ust) to the difference in area between the confined (Ucc) and 

the unconfined (Uco) concrete stress-strain curves, in addition to the energy required to maintain 

the yielding of the longitudinal steel (Usl). This is expressed in the following equation: 
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𝑈𝑠𝑡 = 𝑈𝑐𝑐 +𝑈𝑠𝑙 − 𝑈𝑐𝑜 ( 2-16 ) 

Below are the expressions for each energy term: 

𝑈𝑠𝑡 = 𝜌𝑓𝐴𝑐∫ 𝑓𝑠𝑡𝑑𝜀𝑠𝑡

𝜀𝑢𝑠

0

 ( 2-17 ) 

𝑈𝑐𝑐 = 𝐴𝑐∫ 𝑓𝑐𝑑𝜀𝑐

𝜀𝑐𝑢

0

 ( 2-18 ) 

𝑈𝑠𝑙 = 𝜌𝑐𝑐𝐴𝑐∫ 𝑓𝑠𝑙𝑑𝜀𝑠𝑙

𝜀𝑐𝑢

0

 ( 2-19 ) 

𝑈𝑐𝑜 = 𝐴𝑐∫ 𝑓𝑢𝑐𝑑𝜀𝑐

2𝜀𝑜

0

 ( 2-20 ) 

Substituting back in the first equation, the ultimate strain could be determined if the full 

constitutive materials’ relations were known. The authors then derived a simplified approximate 

method to determine the ultimate confined strain by neglecting the longitudinal steel 

contribution. In the end, the following expression was given for the ultimate confined strain 

(εccu): 

𝜀𝑐𝑐𝑢 = 𝜀𝑐𝑜 + 𝜌𝑓
𝑓𝑟
2

𝐸𝑓(𝑓𝑐′ + 𝑘𝑒𝑓𝑙)
 ( 2-21 ) 

Finally, for the stress-strain relationship, the authors based their model on the Pinto and 

Giuffre model (1970). The relationship is as follows: 

𝑓𝑐
𝑓𝑐′
= 𝛽

𝜀𝑐
𝜀𝑐𝑜
+

((1 − 𝛽)
𝜀𝑐
𝜀𝑐𝑜
)

(1 + (
𝜀𝑐
𝜀𝑐𝑜
)
𝑅

)
1 𝑅⁄

 ( 2-22 ) 

𝑤ℎ𝑒𝑟𝑒 𝛽 = 𝑠𝑡𝑟𝑎𝑖𝑛 ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝐸2
𝐸1

 

𝐸ℎ =
𝑓𝑐𝑐 − 𝑓𝑐

′

𝜀𝑐𝑢 − 𝜀𝑐𝑜
 

𝐸1 = 𝑓𝑖𝑟𝑠𝑡 𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐸2 = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝑅 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = 3 

The authors concluded by stating that this relation provided good predictions for cases 

with effective confinement. Good predictions were not expected for cases where the presence of 

FRP has negligible effect on the strength. 
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 Pulido et al. (2002) 

Pulido and his coauthors (2002) presented a simplified model to predict the behavior of 

concrete columns confined with FRP only subjected to pure axial compression. The model 

consists of two linear segments that define the stress-strain relationship. The first point is taken 

to be the origin. The second point is defined at the break point which corresponds to an axial 

strain of 0.002. The stress at the point (fco) is calculated as follows: 

𝑓𝑐𝑜 = 57000√𝑓𝑐
′𝜀𝑐𝑜 (𝑝𝑠𝑖) = 4700√𝑓𝑐

′𝜀𝑐𝑜 (𝑀𝑃𝑎) ( 2-23 ) 

𝑤ℎ𝑒𝑟𝑒 𝜀𝑐𝑜 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 = 0.002 

In order to determine the ultimate point, the lateral pressure (fl) needs to be calculated 

first. Lateral pressure for rectangular sections is obtained as follows: 

𝑓𝑙 = 𝐾𝑒 (
𝐸𝑓𝜀𝑓𝑡𝑓

𝑑
+
𝐸𝑓𝜀𝑓𝑡𝑓

𝑏
) ( 2-24 ) 

𝑤ℎ𝑒𝑟𝑒 𝐾𝑒 = 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.75 

𝑏, 𝑑 = 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝐸𝑓 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝐹𝑅𝑃 

𝜀𝑓 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝐹𝑅𝑃 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑏𝑒𝑟𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑡𝑓 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑅𝑃 

The ultimate point consists of the ultimate confined strength and the ultimate confined 

strain. The ultimate confined compressive strength (fcc) is obtained using the following empirical 

equation: 

𝑓𝑐𝑐 = 𝑓𝑐
′ + 5.5𝑓𝑙

0.7(𝑘𝑠𝑖) = 𝑓𝑐
′ + 9.8𝑓𝑙

0.7(𝑀𝑃𝑎) ( 2-25 ) 

The ultimate confined strain (εccu) is computed based on the following empirical 

equation: 

𝜀𝑐𝑐𝑢 =
𝜀𝐶𝐹

0.09 − 0.23 ln (
𝑓𝑙
𝑓𝑐′
)

 
( 2-26 ) 

𝑤ℎ𝑒𝑟𝑒 𝜀𝐶𝐹 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐹𝑅𝑃 𝑠𝑡𝑟𝑎𝑖𝑛 𝑡𝑎𝑘𝑒𝑛 𝑎𝑠 50% 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑢𝑡𝑙𝑖𝑚𝑎𝑡𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 

The proposed model was derived for rectangular sections with no rounded corners. The 

model also does not consider the aspect ratio effect. A constant shape factor of 0.75 was 

provided for all rectangular sections.  
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 Lam and Teng (2003) 

Lam and Teng (2003) presented an empirical model to predict the behavior of concrete 

columns confined with FRP only under pure axial compression. Assessment performed by an 

ACI committee 440 task group (2007) showed that this model was the most reliable for 

predicting the ultimate compressive strength and strain for circular and rectangular columns. As 

a result, this model has been adopted by the ACI Committee 440 for use in the ACI440.2R-08 

guidelines (2008). This model is discussed in detail in Chapter 4 - . 

 FRP-Transverse Steel Combined Confinement Models 

In this section, a review of selected models proposed for rectangular columns confined 

with transverse steel and FRP is presented chronologically. 

 Restrepol and De Vino (1996) 

Restrepol and De Vino (1996) presented a model to predict the behavior of concrete 

columns confined with both transverse steel and FRP. They based the transverse steel 

confinement part in their model on the model of Mander et al. (1988). Based on the amount of 

transverse steel along each axis, the lateral confining pressure is calculated. As for the FRP, the 

lateral confining pressures were calculated as follows: 

𝑓𝑙𝑓𝑥 = 𝜌𝑓𝑥𝑘𝑒𝑓𝑓𝑓 ( 2-27 ) 

𝑓𝑙𝑓𝑦 = 𝜌𝑓𝑦𝑘𝑒𝑓𝑓𝑓 ( 2-28 ) 

𝜌𝑓𝑥 =
2𝑡𝑓

ℎ
 ( 2-29 ) 

𝜌𝑓𝑦 =
2𝑡𝑓

𝑏
 ( 2-30 ) 

𝑤ℎ𝑒𝑟𝑒 𝑏, ℎ = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑡𝑓 = 𝑡𝑜𝑡𝑎𝑙 𝐹𝑅𝑃 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝑓𝑓 = 𝐹𝑅𝑃 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

The effectiveness confinement coefficient (kef) is calculated as follows: 

𝑘𝑒𝑓 =
𝐴𝑒𝑓

𝐴𝑐
 ( 2-31 ) 

𝐴𝑒𝑓 = 𝑏ℎ −
(𝑤𝑓𝑥

′ )
2
+ (𝑤𝑓𝑦

′ )
2

3
− 𝐴𝑠 

( 2-32 ) 
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𝐴𝑐 = 𝑏ℎ − 𝐴𝑠 ( 2-33 ) 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑓𝑥
′ , 𝑤𝑓𝑦

′ = 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝐴𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑎𝑙 𝑠𝑡𝑒𝑒𝑙 

Wang and Restrepo (2001) clarified that the confining FRP stress (ff) should be obtained 

from the constitutive material properties as follows: 

𝑓𝑓 = {
𝐸𝑓𝜀𝑡, 𝑖f 0 ≤ 𝜀𝑡 ≤ 𝜀𝑓𝑢
0, 𝑖𝑓𝜀𝑡 > 𝜀𝑓𝑢 

 ( 2-34 ) 

𝑤ℎ𝑒𝑟𝑒 𝜀𝑓𝑢 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑡𝑒𝑛𝑠𝑖𝑡𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝐹𝑅𝑃 

𝜀𝑡 = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 

In order to obtain the transverse strain, it was assumed that Poisson’s ratio (ν) is 0.5. The 

transverse strain is then obtained by the following equation: 

𝜀𝑡 = 0.5𝜀𝑎 

𝑤ℎ𝑒𝑟𝑒 𝜀𝑎 = 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 

After obtaining the FRP confining pressure, the total pressure due to the dual 

confinement is calculated as follows: 

𝑓𝑙𝑥 = 𝑓𝑙𝑠𝑥 + 𝑓𝑙𝑓𝑥 ( 2-35 ) 

𝑓𝑙𝑦 = 𝑓𝑙𝑠𝑦 + 𝑓𝑙𝑓𝑦 ( 2-36 ) 

Finally, the compressive strength is obtained based on the iterative triaxial state of stress 

approach proposed by Mander et al. (1988). A closed form approximation can be made to obtain 

the confined compressive strength as follows: 

𝑓𝑐𝑐 = 𝛼1𝛼2f𝑐
′ ( 2-37 ) 

 

𝑤ℎ𝑒𝑟𝑒 𝛼1 = 1.25(1.8√1 +
7.94𝐹𝑙
𝑓𝑐′

−
1.6𝐹𝑙
𝑓𝑐′

− 1) 

𝛼2 = (
1.4𝑓𝑙
𝐹𝑙

− 0.6 (
𝑓𝑙
𝐹𝑙
)
2

− 0.8)√
𝐹𝑙
𝑓𝑐′
+ 1 

𝐹𝑙 , 𝑓𝑙 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑛𝑢𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

The model proposed by those authors predicted the confined strength only. No 

expressions were provided to predict the maximum confined strain or the stress-strain 

relationship. 
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 Chun and Park (2002) 

Chun and Park (2002) presented their Passive Confinement Model (PCM) to predict the 

behavior of concrete columns confined with both transverse steel and FRP. The model considers 

the change in the Poisson’s ratio of the confined concrete. This change will affect the expansion 

rate of the concrete, and thus the overall confinement. They based the transverse steel 

confinement part in their model on the model of Mander et al. (1988). Based on the amount of 

transverse steel along each axis, the lateral confining pressure is calculated. The method requires 

an iterative procedure. The first step is to choose an axial strain value (εc) for which the section is 

to be analyzed. Next, the Poisson’s ratio (ν) is calculated as follows: 

𝜈 = 𝜈𝑜(1 + 1.3763𝑥 − 5.36𝑥
2 + 8.586𝑥3) ≤  𝜈𝑢 ( 2-38 ) 

𝜈𝑢 = −0.2305 ln (
𝑓𝑙𝑑
𝑓𝑐𝑜′
) + 0.087 ( 2-39 ) 

𝑓𝑙𝑑 = (
2𝑓𝑓𝑢𝑡𝑓

𝐷
)𝑘𝑒 + (

𝐴𝑐
𝐴𝑔
)𝑓𝑙𝑠𝑢 ( 2-40 ) 

𝑥 =
𝜀𝑐
𝜀𝑐𝑐

 ( 2-41 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑙𝑑 = 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑓𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝜀𝑐𝑐

= 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑓𝑐𝑐)𝑝𝑒𝑟 𝑀𝑎𝑛𝑑𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 

𝜈𝑜 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
′𝑠 𝑟𝑎𝑡𝑖𝑜 

𝑘𝑒 = 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑀𝑎𝑛𝑑𝑒𝑟 𝑒𝑡 𝑎𝑙. (1988) 

𝑓𝑓𝑢 = 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐹𝑅𝑃 

𝑡𝑓 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑅𝑃 

𝐷 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑑𝑡ℎ 

𝐴𝑐 = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑎𝑟𝑒𝑎 𝑤𝑖𝑡ℎ𝑖𝑛 ℎ𝑜𝑜𝑝𝑠 

𝐴𝑔 = 𝑔𝑟𝑜𝑠𝑠 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑎𝑟𝑒𝑎 

𝑓𝑙𝑠𝑢 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑓𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 ℎ𝑜𝑜𝑝𝑠 𝑓𝑟𝑜𝑚 𝑀𝑎𝑛𝑑𝑒𝑟 𝑒𝑡 𝑎𝑙. (1988) 

The transverse strain (εt) is then obtained as follows: 

𝜀𝑡 = 𝜀𝑓 = 𝜈𝜀𝑐 ( 2-42 ) 

Next, the confining pressure (fl) is calculated as per the following equations: 
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𝑓𝑙 = {

2𝜀𝑓𝐸𝑓𝑡𝑓

𝐷
𝑘𝑒 , 𝑓𝑜𝑟 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑣𝑒𝑟

2𝜀𝑓𝐸𝑓𝑡𝑓

𝐷
𝑘𝑒 + 𝑓𝑙𝑠, 𝑓𝑜𝑟 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑟𝑒

 ( 2-43 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑙𝑠 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 ℎ𝑜𝑜𝑝𝑠 𝑓𝑟𝑜𝑚 𝑀𝑎𝑛𝑑𝑒𝑟 𝑒𝑡 𝑎𝑙. (1988) 

Now that the confining pressure has been determined, the confined strength (fcc) and its 

corresponding strain (εcc) is computed as follows: 

𝑓𝑐𝑐 = 𝑓𝑐
′ (2.254√1 + 7.94

𝑓𝑙
𝑓𝑐′
−
2𝑓𝑙
𝑓𝑐′
− 1.254) ( 2-44 ) 

𝜀𝑐𝑐 = 𝜀𝑐𝑜 (
5𝑓𝑐𝑐
𝑓𝑐′

− 4) ( 2-45 ) 

𝑤ℎ𝑒𝑟𝑒 𝜀𝑐𝑜 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑓𝑐
′ = 0.002 

The ultimate strain (εcc) is compared with the assumed strain value at the beginning. If 

the difference exceeds a defined tolerance (1% was defined by those authors), the new strain 

value is used as an initial value and the process is repeated until the desired tolerance is met. If 

convergence is attained, the stress-strain relationship can then be obtained from the following 

equation: 

𝑓𝑐 = 𝑓𝑐𝑐
𝜀𝑐
𝜀𝑐𝑐
(

𝑛

𝑛 − 1 + (
𝜀𝑐
𝜀𝑐𝑐
)
𝑛) ( 2-46 ) 

𝑤ℎ𝑒𝑟𝑒 𝑛 =
𝐸𝑐

𝐸𝑐 −
𝑓𝑐𝑐
𝜀𝑐𝑐

 

It should be noted that those authors did not specify what the calculated confinement 

pressure (fl) corresponded to in a noncircular section. It appears that the model only considers the 

confining pressure along the width of the section, and ignores the pressure provided by the FRP 

and transverse steel along the depth of the section. 

 Experimental Studies 

In this section, a review of selected experiments conducted on FRP-confined square and 

rectangular columns is presented. Further details on the specimens’ parameters and the 

experimental data points can be found in Table 5-1 and Table 5-2. 
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 Bousias et al. (2004) 

Bousias and his coworkers investigated the effect of bar corrosion of the effectiveness of 

the retrofitting of rectangular reinforced concrete columns. A total of twenty concrete columns, 

were prepared for testing. The specimens were all rectangular with the following dimensions: 25 

x 500 millimeters (mm). Longitudinal reinforcement consisted of four 18 mm diameter bars. 

Rectilinear ties were used to support the bars at the corners and were made with 8 mm diameter 

bars. Steel properties are provided in Table 2-1. Half of the specimens were subjected to salty 

water exposure for 3.5 months to induce corrosion. Both CFRP and GFRP wraps were used to 

confine the columns. Their properties including thickness (tf), weight, elastic modulus (Ef), 

failure strain (εf), and tensile strength (ffu) are presented in Table 2-2. 

Table 2-1: Steel Properties for Bousias et al. Specimens (2004). 

Rebar Type fy (MPa) fu (MPa) εu (%) 

Longitudinal 559.5 682 13 

Transverse 286 350 13 

 

Table 2-2: FRP Properties for Bousias et al. Specimens (2004). 

FRP tf (mm) Weight (kg/m2) Ef (GPa) εf (%) ffu (MPa) 

CFRP 0.13 0.23 230 1.5 3450 

GFRP 0.17 0.43 70 3.1 2170 

 

Displacement control was enforced, and the specimens were loaded along the strong or 

the weak axes, depending on their designation. One pair of specimens was taken to be the control 

specimens in each the strong and the weak directions, while all the remaining specimens were 

wrapped with FRP. All specimens failed in flexure control. It was concluded that the FRP jackets 

improved the deformation capacity. Columns wrapped with FRP experienced constant axial load 

until failure where the load was lost immediately. It was also observed that increasing the 

number of CFRP wraps from two to five did not significantly improve the deformation capacity 

and strength. FRP confinement effectiveness was observed to marginally better in specimens 

which were tested along the strong axis. For specimens that failed due to FRP fracture, 

deformation capacity was increased by 90% in specimens tested along the strong direction while 

it also increased by 50% for the specimens tested along the week direction. 
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 Harajli and Rteil (2004) 

Harajli and Rteil (2004) investigated the effect of FRP confinement on seismic 

performance of concrete columns. A total of 12 specimens were prepared for testing. The 

columns had a cross-section of 150 x 300 mm. The specimens were divided into two groups 

based on the longitudinal reinforcement. The first group had six #4 bars, while the second group 

had eight #5 bars. The yield stresses were 534 megapascals (MPa) and 565 MPa for the #4 and 

#5 bars, respectively. All specimens had rectilinear ties made of 8 mm diameter bars. The tie 

spacing was 150 mm except for two specimens, in which the ties were spaced at 75 mm. The 

sections were confined with CFRP, with properties provided in Table 2-3. 

Table 2-3: FRP Properties for Harajli and Rteil Specimens (2004). 

Fiber Type tf (mm) Ef (GPa) εf (%) ffu (MPa) 

CFRP 0.13 230 1.5 3500 

 

A constant axial load was applied to the columns with the help of a hydraulic jack. A 100 

tons dynamic capacity actuator was used to apply lateral load to the column. It was observed that 

splitting occurred along the spliced reinforcement. Cracks were concentrated at the column base 

for all specimens. In specimens with no FRP confinement, spliced reinforcement underwent 

significant bond deterioration, which led to significant strength degradation. CFRP wraps 

improved the behavior of the columns by increasing the capacity, reducing spalling and bond 

deterioration. It was also observed that increasing the amount of CFRP improved the seismic 

performance, albeit not proportionally. Finally, CFRP was shown to be more efficient in 

improving seismic performance compared to steel. 

 Memon and Sheikh (2005) 

Memon and Sheikh (2005) investigated the seismic resistance of GFRP-confined 

columns. A total of eight columns were prepared for testing. Seven columns were retrofitted with 

GFRP, while a single column was used as a control specimen. The tested sections were squares 

with the following dimensions: 305 x 305 x 1473 mm. Longitudinal reinforcement consisted of 

eight 20M bars. The lateral reinforcement consisted of both rectilinear and diamond ties made 

with #3 bars. Steel reinforcement properties are provided in Table 2-4.The tested sections were 

confined with GFRP, with properties provided in Table 2-5. 
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Table 2-4: Steel Properties for Memon and Sheikh Specimens (2005). 

Rebar Type Es (MPa) fy (MPa) εy (%) fu (MPa) εu (%) 

Longitudinal 202170 465 0.23 640 20.21 

Transverse 207730 457 0.22 739 14.11 

 

Table 2-5: FRP Properties for Memon and Sheikh Specimens (2005). 

Fiber Type tf (mm) Ef (GPa) εf (%) ffu (MPa) 

GFRP 1.25 19754 2.28 450 

 

Testing was conducted using a hydraulic jack with a capacity of 4450 kilonewtons (kN) 

for axial loading and an actuator with a capacity of 1000 kN for lateral loading. The specimens 

demonstrated an enhanced behavior when compared to unconfined sections. It was concluded 

that using FRP jackets was an appropriate approach to retrofitting structures and improving their 

performance during major earthquakes. 

 Wang and Hsu (2007) 

Wang and Hsu (2007) investigated the axial load strength of rectangular and square 

reinforced compression members confined with GFRP jackets and steel hoops. A total of six 

columns were prepared for testing. Three columns had a square section of 300 x 300 mm, and 

the remaining three had a rectangular section of 300 x 450 mm. Square sections had four 20 mm 

diameter grade 430 steel bars with a bar at each corner. The bars were supported by rectilinear 

ties made of 10 mm diameter grade 300 steel bars. The rectangular section had six 20 mm grade 

430 steel bars distributed uniformly. Rectilinear ties, made of 10 mm diameter grade 300 steel 

bars, supported bars at the corners, and connected the two bars at the midsection. Properties for 

the steel reinforcement are provided in Table 2-6. For each section type, there was an unconfined 

specimen (No FRP wraps), a section with two layers of FRP, and a section with six layers of 

FRP. Properties for the FRP jackets are provided in Table 2-7. 

Table 2-6: Steel Properties for Wang and Hsu Specimens (2007). 

Rebar Type Es (GPa) fy (MPa) εu (%) 

Longitudinal 200 439 6.67 

Transverse 203 365 19 
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Table 2-7: FRP Properties for Wang and Hsu Specimens (2007). 

Fiber Type tf (mm) Ef (GPa) εf (%) ffu (MPa) 

GFRP 1.27 20.5 2 375 

 

Testing was conducted using a 10 meganewton (MN) capacity electro-hydraulic universal 

testing machine. It was concluded that confinement provided by FRP has immensely improved 

the ultimate strength and strain. They were also efficient in impeding premature buckling of 

longitudinal bars. Specimens with two FRP layers failed by debonding, while specimens with six 

layers failed due to the splitting of the FRP at the corners. It was also observed that loading in 

square specimens maintained after the peak, while that was not the case for rectangular columns. 

The authors attributed that to the fact that FRP confinement effect is poorer is rectangular 

sections. 

 Darby et al. (2011) 

Darby and his coworkers investigated the behavior of small and large-scale FRP confined 

rectangular under both concentric and eccentric loading. A total of 18 columns were prepared for 

testing. The variables in this study were the dimensions of the cross-section and the eccentricity. 

Of the specimens, six columns were subjected to concentric loading, while the remaining 

columns were loaded eccentrically. Eccentricities were chosen so that three cases occurred as 

follows: 

 Uniform compression axial strain profile. 

 Linear strain profile starting from zero along an edge to the maximum strain on 

the opposite edge. 

 Linear strain profile with each half of the section under tension and compression. 

Three sizes of square columns were tested, 150 x 150, 300 x 300, and 450 x 450 (all in 

mm). The smaller two sections (150x150 mm and 300x300 mm) had a bar at each corner for a 

total of four bars. Bars with 12 mm and 25 mm diameter were provided in the 150x150 and 

300x300 mm columns, respectively. The 450x450 mm section had pairs of 25 mm diameter bars 

at each corner. The yield strength for all bars was 550 MPa. As for transverse reinforcement, the 

authors reported that minimum links were provided in the central region. The concentric 
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specimens were all pairs of unconfined and FRP confined columns. The eccentric specimens had 

pairs for only the 150x150 mm section, while the other sections were confined with FRP. The 

properties of FRP are provided in Table 2-8. 

Table 2-8: FRP Properties for Darby et al. Specimens (2011). 

Fiber Type tf (mm) Ef (GPa) εf (%) 

CFRP 0.16 214 1.45 

 

Displacement control was enforced, and testing was conducted using a 2000 kN, 5000 

kN, and 100000 kN loading rigs for the 150x150 mm, 300x300 mm, and 450x450 mm 

specimens, respectively. It was observed that the confined specimens have generally failed by 

rupture of the FRP. Specimens subject to high eccentricities failed due to the snapping of the 

steel on the tension side. No size-effect was observed on the capacity or overall behavior. It was 

concluded that small-scale columns and large-scale columns behaved in the same way. 

 ACI 440 Procedure for Plotting Interaction Diagrams 

In the ACI 440.2R-08 document (2008), the ACI committee 440 provides guidelines to 

obtain the interaction diagram for a reinforced concrete column confined with FRP. The 

following limitations are specified for members under combined axial compression and bending. 

The effective strain in the FRP jacket should not exceed the value obtained from the following 

equation. This limit is specified to ensure the shear integrity of the confined concrete (2008). 

𝜀𝑓𝑒 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(0.004, 𝜅𝜀𝜀𝑓𝑢) 

Another limitation is the strength enhancement is only accepted when the actual load 

point (Pu, Mu) is in the compression controlled failure region. This region is defined as the area 

above the line connecting the origin and the balance point (C) for the unconfined interaction 

diagram (see Figure 2-1). They cited Bank’s (2006) study which reported that strength 

enhancement is only considered of significance in remembers where compression failure 

controls. 

The ACI 440 committee procedure simplifies the compression-controlled region of the 

interaction diagram to two bilinear curves passing through three points (points A, B, C) as shown 

in Figure 2-1. The points can be calculated by satisfying the strain compatibility and force 
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equilibrium using the Lam and Teng model (2003) earlier and adopted by ACI for stress-strain 

behavior of FRP-confined concrete. 

 

Figure 2-1: Representative ACI 440 Interaction Diagram. 

Point A (Pn, 0), which is the point of pure compression, is obtained from the following 

formula. This formula is applicable for columns with steel ties and eccentricities less than 10% 

of the section’s depth (0.1h). 

𝑃𝑛 = 0.85[0.85𝑓𝑐𝑐
′ (𝐴𝑔 − 𝐴𝑠𝑡) + 𝑓𝑦𝐴𝑠𝑡 ( 2-47 ) 

Point B is obtained for a section with a strain distribution that corresponds to zero strain 

in the extreme tension steel fibers, and a compressive strain 𝜀𝑐𝑐𝑢 at the compression face. Point C 

is obtained for a section with a strain distribution that corresponds to a balanced failure (at which 

concrete compressive strain =  𝜀𝑐𝑐𝑢 and extreme tension steel strain = 𝜀𝑦). For these two points, 

the coordinates are obtained by similar triangles from the prescribed strain profiles, see Figure 

2-2. 
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Figure 2-2: Prescribed Strain Profiles for a) Point B. b) Point C. 

The following equations can be used to compute the coordinates of points B and C. 

𝑃𝑛 = 𝐴(𝑦𝑡)
3 + 𝐵(𝑦𝑡)

2 + 𝐶(𝑦𝑡) + 𝐷 +∑𝐴𝑠𝑖𝑓𝑠𝑖 ( 2-48 ) 

𝑀𝑛 = 𝐸(𝑦𝑡)
3 + 𝐹(𝑦𝑡)

3 + 𝐺(𝑦𝑡)
2 + 𝐻(𝑦𝑡) + 𝐼 +∑𝐴𝑠𝑖𝑓𝑠𝑖 𝑑𝑖 ( 2-49 ) 

𝑤ℎ𝑒𝑟𝑒: 𝐴 = −
𝑏(𝐸𝑐 − 𝐸2)

2

12𝑓𝑐′
(
𝜀𝑐𝑐𝑢
𝑐
)
2

 ( 2-50 ) 

𝐵 =
𝑏(𝐸𝑐 − 𝐸2)

2
(
𝜀𝑐𝑐𝑢
𝑐
) ( 2-51 ) 

𝐶 = −𝑏𝑓𝑐
′ ( 2-52 ) 

𝐷 = 𝑏𝑐𝑓𝑐
′ +
𝑏𝑐𝐸2
2
𝜀𝑐𝑐𝑢 ( 2-53 ) 

𝐸 =
−𝑏𝑐(𝐸𝑐 − 𝐸2)

2

16𝑓𝑐′
(
𝜀𝑐𝑐𝑢
𝑐
)
2

 ( 2-54 ) 
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𝐹 = 𝑏 (𝑐 −
ℎ

2
)
(𝐸𝑐 − 𝐸2)

2

12𝑓𝑐′
(
𝜀𝑐𝑐𝑢
𝑐
)
2

+
𝑏(𝐸𝑐 − 𝐸2)

3
(
𝜀𝑐𝑐𝑢
𝑐
) ( 2-55 ) 

𝐺 = (
𝑏

2
𝑓𝑐
′ + 𝑏 (𝑐 −

ℎ

2
)
(𝐸𝑐 − 𝐸2)

2
(
𝜀𝑐𝑐𝑢
𝑐
)) ( 2-56 ) 

𝐻 = 𝑏𝑓𝑐
′ (𝑐 −

ℎ

2
) ( 2-57 ) 

𝐼 =
𝑏𝑐2

ℎ
𝑓𝑐
′ − 𝑏𝑐𝑓𝑐

′ (𝑐 −
ℎ

2
) +

𝑏𝑐2𝐸2
3

𝜀𝑐𝑐𝑢 −
𝑏𝑐𝐸2
2
(𝑐 −

ℎ

2
) (𝜀𝑐𝑐𝑢) ( 2-58 ) 

In the previous equations, 𝑐 is the distance between the extreme compression fiber and 

the neutral axis, and 𝑦𝑡 is the vertical distance between the neutral axis and the fiber at which 

strain is equal to the transition strain (𝜀𝑡
′). These two parameters can be obtained as follows: 

𝑐 = {

𝑑…𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝐵

𝑑
𝜀𝑐𝑐𝑢

𝜀𝑦 + 𝜀𝑐𝑐𝑢
…𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝐶 ( 2-59 ) 

𝑦𝑡 = 𝑐
𝜀𝑡
′

𝜀𝑐𝑐𝑢
 ( 2-60 ) 
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Chapter 3 - Finite Element Modeling of Rectangular Columns 

Subjected to Concentric Loading 

As a preliminary study, confinement in rectangular concrete columns was modeled by 

finite element analysis. The main objectives of this study were to obtain stresses in the steel ties 

at different loading states, and to determine the effect of a section’s aspect ratio on the stress 

ratio in the steel in both transverse directions. To accomplish that, a concrete slice was modeled 

using Abaqus FEA software (2010). Different approaches were evaluated in the preliminary 

models. After validation, the most appropriate approach was then used to prepare the final 

models used to obtain the results for this study. 

 Preliminary Model Definition 

As a starting point, the full section was modeled in Abaqus in order ensure that the model 

behaves reasonably and functions properly. The geometric properties and steel specifications for 

the modeled slice are provided in Figure 3-1. The slice included 3 ties and had a thickness 6 

inches. 

 

Figure 3-1: Preliminary Model Slice Details. 
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As for materials definition, both elastic and plastic properties were provided. For 

concrete, a compressive strength (𝑓𝑐
′) of 4 kips per square inch (ksi) was assumed. Elastic 

parameters include the modulus of elasticity (𝐸) and a poisson’s ratio (𝜈). The value of poisson’s 

ratio was taken to be 0.2, while the modulus of elasticity was calculated using the following 

equation provided by the ACI 318 building code (2011), was obtained to be 3605 ksi. 

𝐸 = 57000√𝑓𝑐′ (𝑖𝑛 𝑝𝑠𝑖)  

For plasticity, two separate compression and tension behavior were defined. In 

compression, Hognestad’s parabola (1951) is used to provide the stress-strain (𝜎 − 𝜀) relation 

according to the following equation: 

𝜎 = 𝑓𝑐
′ (2 (

𝜀

𝜀𝑜
) + (

𝜀

𝜀𝑜
)
2

) ( 3-1 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑐
′ = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

𝜀𝑜 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑡 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 0.002 

As for tension, the concrete’s behavior was assumed to be elastic till rupture, following 

Hooke’s law (Ugural and Fenster, 2003): 

𝜎 = 𝐸𝜀 ( 3-2 ) 

After stress reaches the modulus of rupture of concrete (𝑓𝑟), it is assumed that the stress 

drops until the strain reaches 10 times the cracking strain (10𝜀𝑐𝑟) according to the following 

equation: 

𝜎 =
𝑓𝑟(10𝜀𝑐𝑟 − 𝜀)

9𝜀𝑐𝑟
 ( 3-3 ) 

Based on the equations provided above, the stress-strain relation is plotted in Figure 3-2. 
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Figure 3-2: Concrete Material Model Used in Abaqus. 

As for steel, it was defined as an elastic-perfectly plastic material. As a material, steel 

behavior in tension and compression is taken to be identical. The elastic parameters, the modulus 

of elasticity (𝐸) and poisson’s ratio (𝜈), were taken to be 29000 ksi and 0.3, respectively. Steel 

was assumed to be perfectly plastic after reaching yielding. The stress and strain values at 

yielding (𝑓𝑦, 𝜀𝑦) were taken to be 60 ksi and 0.16, respectively. The stress-strain relation is 

plotted in Figure 3-3. 

 

Figure 3-3: Steel Material Model Used in Abaqus. 
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Two types of elements were used in the analysis. Concrete was modeled using solid 

elements (C3D8R), which are described in Abaqus as 8-node linear bricks. Steel rebars were 

modeled in two different ways. In addition to solid elements, truss elements (T3D2), described 

by Abaqus as 2-node linear 3-D trusses, were used and compared. The comparison is provided 

later in this chapter. As for the mesh, Abaqus was utilized to automatically generate it. The 

approximate mesh size was specified as 0.5 inches. The generated mesh for the concrete slice 

and a bar (truss) are shown in Figure 3-4. 

 

 

Figure 3-4: Meshes Generated by Abaqus. 

In addition to the concrete and steel parts, two rigid plates were included in the model 

assembly. Displacement control was implemented by imposing 0.04 inches of deflection to a 

rigid loading plate. As for the boundary conditions, the loading plate was prevented from rotating 

around any axis. The rigid support plate’s rotational and translational degrees of freedom were 

restricted in all axes. Additionally, smooth plate interaction was assumed to occur between the 

rigid plates and the concrete slice. This was done in Abaqus by defining tangential surface to 

surface interaction between the contact surfaces. The coefficient of friction was taken to be 0.001 

for smooth behavior. Figure 3-5 illustrates the current model assembly in Abaqus. 
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Figure 3-5: Model Assembly with Imposed Boundary Conditions. 

 Triaxial State of Stress Verification 

In order to ensure that confinement effect is accounted for in the finite element analysis, a 

model of the concrete core only was created. This model utilized the concrete material model 

defined in the previous section. The upper surface was displaced in the z-direction. The lower 

surface was allowed to expand laterally, but prevented from displacement in the z-direction. To 

provide the confinement effect, lateral pressure corresponding to a specific tie spacing value was 

applied to the core, as shown in Figure 3-6. The analysis was conducted for a control case with 

no confinement, and two cases with tie spacing of 1 and 2 inches. 

 

Figure 3-6: Lateral Pressures Application on the Triaxial Verification Model. 
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From the finite element analysis, the stress-strain curve for each case was then obtained 

as shown in Figure 3-7 and Figure 2-1. Additionally, Figure 3-8 shows the deformed shape of the 

concrete core with a tie spacing of 2 inches. The stress contour plot was obtained at the 

compressive strength. 

 

Figure 3-7: Axial Stress-Strain curves for triaxial verification model. 

 

Figure 3-8: Stress contours at compressive strength for s=2 inches. 
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In order to validate these curves, the confined compressive strength (fcc) corresponding to 

each tie spacing case was calculated per the Mander transverse steel confinement model (1988). 

Detailed explanation on this model is provided in Chapter 4 - . Also, the compressive strength 

was obtained from the curves in Figure 3-7 and compared with the calculated values. Table 3-1 

below summarizes these results. 

Table 3-1: Summary of Triaxial Validation Results. 

Tie Spacing (in.) Mander fcc (ksi) FEA fcc (ksi) Error (%) 

1 5.86 5.6 4.44 

2 7.45 7.3 2.01 

 

As it can be seen in Table 3-1, the finite element analysis results provided good 

agreement with the compressive strength calculated using Mander’s model. This indicates that 

Abaqus is capable of modeling confinement and allowed us to proceed with further analyses. 

 Modeling Approaches for Steel Reinforcement 

Abaqus offers multiple ways to model steel reinforcement in the concrete. In order to 

determine the most appropriate approach, these approaches were tested and multiple models 

were created. As mentioned earlier, steel reinforcement can be modeled using either solid (3D) 

elements, or truss (1D) elements. As for embedment in the concrete, Abaqus offers the 

embedded region technique, which is a simple way to embed the reinforcement in the concrete 

(host region). Abaqus locates rebar nodes that lie within the concrete, and then constrains the 

embedded elements’ degrees of freedom to those in the host. The technique can be applied to 

both solid and truss elements. Additionally, solid elements could be modeled in the concrete by 

defining surface to surface interaction between the contact surfaces of the concrete and the steel. 

This approach necessitates removing the concrete at the locations where the steel bars are 

intended to be manually. In summary, the following approaches for reinforcement modeling 

were evaluated: 

 Approach 1: Solid elements for steel with surface to surface interaction. 

 Approach 2: Truss elements for steel with the embedded region technique. 

 Approach 3: Solid elements for steel with the embedded region technique. 
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The first case of solid elements with surface to surface interaction is illustrated in Figure 

3-9. For this case, the mesh for the steel cage which consists of the longitudinal bars and the ties 

were merged. The grooves created by the manual removal of concrete are also shown. 

 

 

Figure 3-9: Approach 1 A) Steel Cage Mesh B) Inner View of Concrete Grooves C) Wire-

Frame View of the Whole Model. 

Next, approaches 2 and 3 are illustrated in Figure 3-10. This approach is simpler due to 

the fact that Abaqus takes care of the process, and manual concrete removal is not required. 

 

Figure 3-10: Wire-Frame View of the Whole Model for A) Approach 2 B) Approach 3. 
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With the models fully prepared, analyses were then conducted. For each approach, the 

stress contour plots (in ksi) at the compressive strength were obtained for the concrete (Figure 

3-11) and the steel cage (Figure 3-12). 

 

 

Figure 3-11: Concrete Stress Contour Plots for A) Approach 1 B) Approach 2 C) Approach 

3. 
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Figure 3-12: Steel Cage Stress Contour Plots for A) Approach 1 B) Approach 2 C) 

Approach 3 

Figure 3-11 shows that similar behavior is observed in the three approaches. As expected, 

the core exhibited the largest stresses due to the confinement effect. It is also observed that 

arching action is more evident in approaches 1 and 3 i.e. when solid elements were used. The 

three plots were obtained at similar strains with an average value of 0.002. Figure 3-12 shows 

that in the three approaches, yielding has yet to occur in the lateral steel ties. Additionally, the 

axial stress-strain curves for the concrete core were plotted for the three approaches in Figure 

3-13 below. The compressive strength values obtained from each approach were very close, and 

their average was 4.29 ksi. It is observed that approaches 1 and 2 are very close, while approach 

3 reaches the compressive strength at a higher strain. Another observation is that the increase in 
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strength due to steel confinement is lower than expected. The unconfined strength was taken to 

be 4 ksi, while the average confined strength was obtained to be 4.29 ksi earlier. This is due to 

the fact that Concrete Damage Plasticity model (CDP) does not lend itself well to analyses with 

large confinement as per the Abaqus online documentation (2010) and research conducted by Yu 

et al. (2010). As the modification of the model is beyond of the scope of this work, the analyses 

was performed with the available model and considered conservative compared to the actual 

behavior. 

 

Figure 3-13: Axial Stress-Strain Curves Obtained from the FE Analysis. 

From the results obtained, it was shown that the three approaches provided similar 

results. As all models provided reasonable results and did not differ from each other, the simplest 

approach, approach 2, would be used for the final model. 

 Final Finite Element Model 

For the final model, the material models were the same as described for the preliminary 

models. As it was shown in the previous section, approach 2 with the truss elements for steel 

provided reasonable results and was chosen. Elements-wise, concrete was modeled using solid 

elements (C3D8r), while steel was modeled using truss elements (T3D2). The reinforcement was 

modeled using the embedded region technique. Further simplification was applied to this model 

based on the preliminary models’ results. Displacement was applied to the upper surface directly. 
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Symmetry was also utilized about both the x and y-axes, thus only quarter of the specimen was 

modeled. Figure 3-14 below provides the wire-frame view, mesh, and boundary conditions used 

for this model. 

 

 

Figure 3-14: Final Model a) Wire-Frame View b) Mesh c) Boundary Conditions. 

Multiple models were generated for the following aspect ratios (Width:Depth) that are 

shown in Figure 3-15: 

 1:1 

 1:2 

 1:3 

 1:4 
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Figure 3-15: Final Model Aspect Ratios. 

After running the analysis on the models, the core axial stress-strain curves were obtained 

as shown in Figure 3-16. The compressive strength values are summarized in Table 3-2. It is 

observed that the compressive strength decreases as the aspect ratio increases. This is reasonable 

as the effectiveness of confinement diminishes as the aspect ratio increases. 

 

Figure 3-16: Final Model’s Core Axial Stress-Strain Curves. 
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Table 3-2: Final Model Compressive Strength Values. 

Aspect Ratio 1:1 1:2 1:3 1:4 

fcc (ksi) 4.27 4.26 4.21 4.19 

 

Next, the stresses in the ties are shown in Figure 3-17. It is shown that the steel ties in all 

models have yielded by the end of the analysis. It is also observed that the stress in the ties along 

the x-axis did not vary with the aspect ratio. This is reasonable since the width was fixed in all 

models. Finally, it is noted that the stresses in the ties along the y-axis varied. In order to have a 

better view, a zoomed view of the later stages of loading is provided in Figure 3-18 for stresses 

in ties along the y-axis. It is observed that the ties in the model with the higher aspect ratios 

yielded first. Overall, for all aspect ratios, the ties yielded around the same time both along the x 

and y-axes. From this, it is concluded that steel ties will yield around the same time for aspect 

ratios up to four. Even though the concrete damage plasticity model did not fully capture the 

confinement effect in this case, the obtained results still hold, as it is expected that with the full 

effect of confinement accounted for, yielding will occur in the ties earlier. 

 

Figure 3-17: Final Model’s Tie Stress vs. Axial Strain Curves. 
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Figure 3-18: Zoomed View Of The Tie Stress Vs. Axial Strain Curves. 
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Chapter 4 - Rectangular Columns Subjected to Biaxial Bending and 

Axial Compression 

Confined column analysis is a very involved process. Many studies in the literature 

investigated the confinement effect of transverse steel and FRP independently, but not as many 

accounted for the combined effect. For that to be accomplished, a new combined confinement 

model is proposed and discussed in this chapter. This new model necessitated modifications to 

existing models, and the implementation of an updated procedure to obtain the confined 

compressive strength using the triaxial state of stress analysis. This shall be presented as well in 

this chapter. 

 Confinement Models for Concrete 

 Mander Model for Concrete Confined with Transverse Steel 

Mander et al. (1988) developed a stress-strain model for concrete confined with 

transverse steel. The model can be applied for members under static or dynamic loading that is 

applied either monotonically or cyclically. The model is based on effective lateral pressures 

which can be equal or unequal. This allows the model to accounts for the section’s geometry, and 

in turn renders it applicable to both circular and rectangular sections. 

Mander et al. based the stress-strain curve on equations suggested by Popovics (1973). 

The equations are as follows: 

𝑓𝑐 =
𝑓𝑐𝑐𝑥𝑟

𝑟 − 1 + 𝑥𝑟
 ( 4-1 ) 

𝑥 =
𝜀𝑐
𝜀𝑐𝑐

 ( 4-2 ) 

𝑟 =
𝐸𝑐

𝐸𝑐 − 𝐸𝑠𝑒𝑐
 ( 4-3 ) 

𝐸𝑠𝑒𝑐 =
𝑓𝑐𝑐
𝜀𝑐𝑐

 ( 4-4 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑐 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑓𝑐𝑐 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

𝜀𝑐𝑐 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 
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The strain at the compressive strength of confined concrete is obtained according to the 

following equation suggested by Richart et al (1928): 

𝜀𝑐𝑐 = 𝜀𝑐𝑜 (1 + 5 (
𝑓𝑐𝑐
𝑓𝑐′
− 1)) ( 4-5 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑐
′ = 𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

𝜀𝑐𝑜 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

 

Figure 4-1: Stress-strain model proposed by Mander et al. (1988) for confined concrete. 

Figure 4-1 illustrates the proposed stress-strain model. The confined concrete curve 

illustrates the behavior under concentric axial loading. The ascending branch has an initial slope 

equal to the modulus of elasticity of concrete (Ec) that decreases as the stress increases until the 

stress reaches its peak at the confined compressive strength (fcc). The slope becomes negative 

and the stress decreases until the occurrence of the first hoop fracture. The descending branch 

represents the ductile region of the curve. 

As stated earlier, effective lateral pressures were employed in this model. This approach 

was similar to the one used by Sheikh and Uzumeri (1982). Arching action leads to the 

development of portions of concrete in which confining stress is fully developed. Only on these 

portions can the maximum transverse pressure from the confining steel be exerted effectively. 
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The area of the confined concrete is assumed to be the area within the centerlines of the 

perimeter hoop (Acc). Figure 4-2 shows the effective confinement regions in rectangular sections. 

It assumed that the arching action acts in the form of parabolas with an initial slope of 45o. This 

action occurs vertically between the transverse steel layers and horizontally between longitudinal 

bars. 

 

Figure 4-2: Effectively Confined Core for Rectangular Hoop Reinforcement Proposed by 

Mander et al. (1988). 

Figure 4-2 above shows that the effective confined area is smaller than the core area, thus 

the effective lateral pressure (𝑓𝑙
′) is obtained as a percentage of the lateral pressure from the 

transverse reinforcement (𝑓𝑙) as follows: 

𝑓𝑙
′ = 𝑘𝑒𝑓𝑙 ( 4-6 ) 

𝑘𝑒 =
𝐴𝑒
𝐴𝑐𝑐

 ( 4-7 ) 
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𝐴𝑐𝑐 = 𝐴𝑐(1 − 𝜌𝑐𝑐) = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑟𝑒 ( 4-8 ) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑒 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝐴𝑒 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑟𝑒 

𝜌𝑐𝑐 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑒𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑒 

The effectively confined core area is obtained by deducting the area of the horizontal and 

vertical parabolas shown in Figure 4-2. The effective area (Ae) is obtained as follows: 

𝐴𝑒 = (𝑏𝑐𝑑𝑐 −∑
(𝑤𝑖

′)2

6

𝑛

𝑖=1

)(1 −
𝑠′

2𝑏𝑐
)(1 −

𝑠′

2𝑑𝑐
) ( 4-9 ) 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖
′ = 𝑖𝑡ℎ 𝑐𝑙𝑒𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑏𝑎𝑟𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑏𝑎𝑟𝑠 

Substituting back in the equation for the confinement effectiveness coefficient, the 

following equation is obtained: 

𝑘𝑒 =
(1 − ∑

(𝑤𝑖
′)2

6𝑏𝑐𝑑𝑐
𝑛
𝑖=1 ) (1 −

𝑠′

2𝑏𝑐
) (1 −

𝑠′

2𝑑𝑐
)

(1 − 𝜌𝑐𝑐)
 

( 4-10 ) 

The steel ratios in each transverse direction are obtained as follows: 

𝜌𝑥 =
𝐴𝑠𝑥
𝑠𝑑𝑐

 ( 4-11 ) 

𝜌𝑦 =
𝐴𝑠𝑦

𝑠𝑏𝑐
 ( 4-12 ) 

Next, the lateral confining pressures are obtained by: 

𝑓𝑙𝑥 = 𝜌𝑥𝑓𝑦ℎ ( 4-13 ) 

𝑓𝑙𝑦 = 𝜌𝑦𝑓𝑦ℎ ( 4-14 ) 

Finally, the effective pressures are obtained as follows: 

𝑓𝑙𝑥
′ = 𝑘𝑒𝜌𝑥𝑓𝑦ℎ ( 4-15 ) 

𝑓𝑙𝑦
′ = 𝑘𝑒𝜌𝑦𝑓𝑦ℎ ( 4-16 ) 

For strength determination, the constitutive model proposed by Willam and Warnke 

(1975) is used. Further details are provided in the Formulations section. 

Finally, for the determination of the ultimate confined strain Scott et al. (1982) proposed 

to set it at the point which first hoop fracture occurs. This is the point when the lateral pressure 

provided by the steel drops and in turn is the end of the meaningful region of the confined curve. 
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Mander (1984) proposed an energy balance approach to predict the ultimate confined strain. This 

is done by equating the ultimate strain energy capacity of the confining reinforcement per unit 

volume of concrete core (Ush) to the difference in area between the confined (Ucc) and the 

unconfined (Uco) concrete stress-strain curves, in addition to the energy required to maintain the 

yielding of the longitudinal steel (Usc). This is expressed in the following equation: 

𝑈𝑠ℎ = 𝑈𝑐𝑐 + 𝑈𝑠𝑐 − 𝑈𝑐𝑜 ( 4-17 ) 

Below are the expressions for each energy term. All equations are provided in SI units. 

The expressions for Ush and Uco were estimated from experiments by Mander et al: 

𝑈𝑠ℎ = 𝜌𝑠𝐴𝑐𝑐∫ 𝑓𝑠𝑑𝜀𝑠

𝜀𝑠𝑓

0

= 𝜌𝑠𝐴𝑐𝑐 ∗ 110 𝑀𝐽/𝑚
3 ( 4-18 ) 

𝑈𝑐𝑐 = 𝐴𝑐𝑐∫ 𝑓𝑐𝑑𝜀𝑐

𝜀𝑐𝑢

0

 ( 4-19 ) 

𝑈𝑠𝑐 = 𝜌𝑐𝑐𝐴𝑐𝑐∫ 𝑓𝑠𝑙𝑑𝜀𝑐

𝜀𝑐𝑢

0

 ( 4-20 ) 

𝑈𝑐𝑜 = 𝐴𝑐𝑐∫ 𝑓𝑐𝑑𝜀𝑐

𝜀𝑠𝑝

0

= 0.017√𝑓𝑐𝑜′  𝑀𝐽/𝑚
3 ( 4-21 ) 

Substituting back in the first equation, it simplifies to: 

110 𝜌𝑠 = ∫ 𝑓𝑐𝑑𝜀𝑐

𝜀𝑐𝑢

0

+∫ 𝑓𝑠𝑙𝑑𝜀𝑐

𝜀𝑐𝑢

0

− 0.017√𝑓𝑐𝑜′  𝑀𝐽/𝑚
3 ( 4-22 ) 

 Lam and Teng Model for Concrete Confined with FRP Wraps 

Lam and Teng (2003) developed a stress-strain model for concrete confined with Fiber 

Reinforced Polymer (FRP) wraps. Assessment performed by an ACI committee 440 task group 

(2007) showed that this model was the most reliable for predicting the ultimate compressive 

strength and strain for circular and rectangular columns. The equations for this model are as 

follows: 

𝑓𝑐 = {
𝐸𝑐𝜀𝑐 −

(𝐸𝑐 − 𝐸2)
2

4𝑓𝑐′
𝜀𝑐
2, 𝑓𝑜𝑟 0 ≤ 𝜀𝑐 ≤ 𝜀𝑡

′

𝑓𝑐
′ + 𝐸2𝜀𝑐,                             𝑓𝑜𝑟 𝜀𝑡

′ ≤ 𝜀𝑐 ≤ 𝜀𝑐𝑐𝑢

 ( 4-23 ) 

𝐸2 =
𝑓𝑐𝑐 − 𝑓𝑐

′

𝜀𝑐𝑐𝑢
 ( 4-24 ) 

𝜀𝑡
′ =

2𝑓𝑐
′

𝐸𝑐 − 𝐸2
 ( 4-25 ) 
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Figure 4-3: Stress-strain model proposed by Lam and Teng (2003) for confined concrete. 

Figure 4-3 illustrates Lam and Teng stress-strain model. The upper curve illustrates the 

behavior under concentric axial loading. The first branch is parabolic and its initial slope equal to 

the modulus of elasticity of concrete (Ec). The second branch is linear and starts at the transition 

strain (𝜀𝑡
′) calculated above. The curve is continuous at the transition point as there is no sudden 

change in the slope there. This behavior has been observed under sufficient FRP confinement. 

For that to hold, Lam and Teng (2003) set a minimum confinement ratio limit (𝑓𝑙𝑓 𝑓𝑐
′⁄ ) of 0.07, 

while the ACI committee 440 (2008) increased it to 0.08. Spoelstra and Monti (1999) were able 

to verify this limit for circular sections in their analytical model. In this work, ACI 440 

provisions were followed, thus the limit was taken to be 0.08. If the confinement ratio is below 

the limit, Mander model (descending second branch) is used instead. 

As for the ultimate axial strength and strain, Lam and Teng proposed the following 

equations: 

𝑓𝑐𝑐 = 𝑓𝑐
′ + 𝜓𝑓3.3𝜅𝑎𝑓𝑙 ( 4-26 ) 

𝜀𝑐𝑐𝑢 = 𝜀𝑐
′ (𝐴 + 12𝑘𝑏

𝑓𝑙
𝑓𝑐′
(
𝜀𝑓𝑒

𝜀𝑐′
)
0.45

) ≤ 0.01 ( 4-27 ) 

𝑤ℎ𝑒𝑟𝑒 𝜓𝑓 = {
1 (𝐿𝑎𝑚 𝑎𝑛𝑑 𝑇𝑒𝑛𝑔)

0.95 (𝐴𝐶𝐼 440.2𝑅 − 08)
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𝜅𝑎 =
𝐴𝑒
𝐴𝑐
(
𝑏

ℎ
)
2

 ( 4-28 ) 

𝜅𝑏 =
𝐴𝑒
𝐴𝑐
(
ℎ

𝑏
)
0.5

 ( 4-29 ) 

𝜀𝑓𝑒 = 0.586𝜀𝑓𝑢 ( 4-30 ) 

𝐴 = {
1.75 (𝐿𝑎𝑚 𝑎𝑛𝑑 𝑇𝑒𝑛𝑔)

1.5 (𝐴𝐶𝐼 440.2𝑅 − 08)
 

ACI Committee 440 added an additional reduction factor to the strength equation (𝜓𝑓) 

based on their judgment (2008). Similarly, a limitation on the value of ultimate strain was 

imposed by ACI 440.2R-08 to prevent excessive cracking which leads to the loss of concrete 

integrity. If this limit is exceeded, the ultimate strain will be set to 0.01, and the corresponding 

stress value will be set as the new ultimate strength. 

In order to extend their model to rectangular sections, Lam and Teng proposed the 

addition of shape factors (𝜅𝑎 and 𝜅𝑏). They also converted the rectangular section to an 

equivalent circular section as shown in Figure 4-4. The equivalent diameter is calculated as 

follows: 

𝐷 = √𝑏2 + ℎ2 ( 4-31 ) 
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Figure 4-4: Lam and Teng Equivalent Circular Section. 

The effectively confined concrete area was assumed to be transcribed by parabolas with 

an initial slope equal to that of the adjacent diagonal. The confined area ratio is obtained from the 

following expression: 

𝐴𝑒
𝐴𝑐
=

1 −

((
𝑏
ℎ
) (ℎ − 2𝑟𝑐)

2 + (
ℎ
𝑏
) (𝑏 − 2𝑟𝑐)

2)

3𝐴𝑔
− 𝜌𝑔

1 − 𝜌𝑔
 

( 4-32 ) 

𝑤ℎ𝑒𝑟𝑒 𝑟𝑐 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 

𝜌𝑔 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 

Lastly, the lateral pressure provided by the FRP confinement in the equivalent circular 

section is computed as follows: 

𝑓𝑙 =
2𝑛𝑡𝑓𝐸𝑓𝜀𝑓𝑒

𝐷
 ( 4-33 ) 
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  Combined Confinement Model 

As previously mentioned, Mander model (1988) was developed for concrete confined 

with transverse steel only, while Lam and Teng model (2003) was developed for concrete 

confined with FRP only. This limits their application in reinforced concrete columns in which 

both types of reinforcement exist. These columns are subjected to two different confining 

pressures from steel and FRP. To account for the interaction between the two confining systems, 

a model to estimate the combined behavior of the two systems is proposed. The proposed model 

combines the models proposed by Mander and Lam and Teng and allows for prediction of the 

confined strength of concrete columns confined with both transverse steel and FRP wraps. 

The expression for the lateral confinement pressure is replaced with two lateral pressures 

in the x and y directions. This formulation accounts for the contribution of both transverse steel 

and FRP inside the core (fle) and only FRP in the cover (flf) as shown in Figure 4-5. The 

expressions are as follows: 

𝑓𝑙𝑥𝑓 = 𝑘𝑓
2𝑛𝑡𝑓𝐸𝑓𝜀𝑓𝑒

ℎ
 ( 4-34 ) 

𝑓𝑙𝑦𝑓 = 𝑘𝑓
2𝑛𝑡𝑓𝐸𝑓𝜀𝑓𝑒

𝑏
 ( 4-35 ) 

𝑓𝑙𝑥𝑒 = 𝑘𝑓
2𝑛𝑡𝑓𝐸𝑓𝜀𝑓𝑒

ℎ
+ 𝑘𝑒𝜌𝑥𝑓𝑦ℎ ( 4-36 ) 

𝑓𝑙𝑦𝑒 = 𝑘𝑓
2𝑛𝑡𝑓𝐸𝑓𝜀𝑓𝑒

𝑏
+ 𝑘𝑒𝜌𝑦𝑓𝑦ℎ ( 4-37 ) 

𝑘𝑓 =

1 −

((
𝑏
ℎ
) (ℎ − 2𝑟𝑐)

2 + (
ℎ
𝑏
) (𝑏 − 2𝑟𝑐)

2)

3𝐴𝑔
− 𝜌𝑔

1 − 𝜌𝑔
 

( 4-38 ) 

𝑘𝑒 =
(1 − ∑

(𝑤𝑖
′)2

6𝑏𝑐𝑑𝑐
𝑛
𝑖=1 ) (1 −

𝑠′

2𝑏𝑐
) (1 −

𝑠′

2𝑑𝑐
)

(1 − 𝜌𝑐𝑐)
 

( 4-39 ) 
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Figure 4-5: Effective Horizontal Pressure of Confined Rectangular Section. 

The values of the ultimate confined strength of the core and the cover are then calculated 

based on the constitutive model developed by Willam and Warnke (1975). The procedure is 

described in detail in the next section. 

Under the framework of the combined model, the appropriate model (Mander model or 

Lam and Teng model) for the specific case is applied based on the confinement ratio provided by 

the FRP. If the ratio (𝑓𝑙𝑓 𝑓𝑐
′⁄ ) is greater than or equal to 0.08, the ascending second branch is 

confirmed and Lam and Teng model will be used to calculate the stress-strain curve’s parameters 

for the core and the cover. Otherwise, Mander model will be used to compute these parameters. 

The confinement ratio limit of 0.08 was provided by ACI 440.2R-08 (2008). 

After computing the appropriate model’s parameters, stresses are computed using the 

applied model’s equation for both the core and the cover. As the cover will always have a lower 

ultimate strain value due to its lower confinement pressure, in a few cases, there will be a strain 

level at which cover stress will be zero while the core is still active and sound. This is not 

reasonable because the existence of the FRP prevents concrete cover spalling. Additionally, a 

sudden drop in the stresses could cause convergence issues. In order to avoid this, it is assumed 

that the stress-strain curve remains flat after reaching the ultimate strain, i.e., when ultimate 

strain for the cover is exceeded, cover stress remains constant from that point until the ultimate 

strain value for the core is reached. This is only applicable to cases where Lam and Teng model 

is used. For Mander model, the ultimate confined strain value is obtained from equation 4.21, 

and is not dependent on the confining pressure values. As a result, the ultimate strain for both 

core and cover is obtained to be the same.  This behavior is illustrated in Figure 4-6. 

rc 

h 

b 

flxf h 

b 

bc 

hc flxe 
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Figure 4-6: Confinement Models for Core and Cover. 

 Formulations 

 Generalized Moment of Area Theorem 

First, the axial stress equation provided by Hardy Cross for an unsymmetric section 

subjected to an axial force and biaxial bending is as follows (1930): 

𝜎𝑧 =
𝑃

𝐴
+
𝑀𝑥𝐼𝑦 −𝑀𝑦𝐼𝑥𝑦

𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦2
𝑦 +

𝑀𝑦𝐼𝑥 −𝑀𝑥𝐼𝑥𝑦

𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦2
𝑥 ( 4-40 ) 

𝑤ℎ𝑒𝑟𝑒: 𝜎𝑧 = 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝑃 = 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑙𝑜𝑎𝑑 

𝐴 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 

𝑀𝑥 = 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠 

𝑀𝑦 = 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑦 − 𝑎𝑥𝑖𝑠 

𝐼𝑥 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠 

𝐼𝑦 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑦 − 𝑎𝑥𝑖𝑠 

𝐼𝑥𝑦 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑖𝑛 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 

𝑥 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

𝑦 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑦 − 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The equation is then rewritten to obtain the axial strain as follows: 

𝜀𝑧 =
𝑃

𝐸𝐴
+
𝑀𝑥𝐸𝐼𝑦 −𝑀𝑦𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝐸𝐼𝑦 − 𝐸𝐼𝑥𝑦2
𝑦 +

𝑀𝑦𝐸𝐼𝑥 −𝑀𝑥𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝐸𝐼𝑦 − 𝐸𝐼𝑥𝑦2
𝑥 ( 4-41 ) 

𝑤ℎ𝑒𝑟𝑒: 𝐸 = 𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
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In a linear elastic analysis, the modulus of elasticity is a constant. On the contrary, the 

modulus of elasticity varies along the section in the case of nonlinear analysis where the stress 

profile is nonlinear. As a result, Rasheed and Dinno (1994) proposed implementing the 

summation expressions ∑𝐸𝑖𝐴𝑖 and ∑𝐸𝑖𝐼𝑖 to account for this variation. The curvatures are 

obtained according to the following equations: 

𝜙𝑥 =
𝑀𝑥𝐸𝐼𝑦 −𝑀𝑦𝐸𝐼𝑥𝑦

𝛽2
 ( 4-42 ) 

𝜙𝑦 =
𝑀𝑦𝐸𝐼𝑥 −𝑀𝑥𝐸𝐼𝑥𝑦

𝛽2
 ( 4-43 ) 

𝑤ℎ𝑒𝑟𝑒: 𝛽 = 𝐸𝐼𝑥𝐸𝐼𝑦 − 𝐸𝐼𝑥𝑦
2  ( 4-44 ) 

𝜙𝑥 = 𝑥 − 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒. 

𝜙𝑦 = 𝑦 − 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒. 

Now, the axial strain equation can be simplified to the following equation: 

𝜀𝑧 =
𝑃

𝐸𝐴
+ 𝜙𝑥𝑦 + 𝜙𝑦𝑥 ( 4-45 ) 

Using this equation, the stain at the geometric centroid (𝜀𝑜 𝑎𝑡 𝑥 = 𝑦 = 0) is obtained 

below: 

𝜀𝑜 =
𝑃

𝐸𝐴
 ( 4-46 ) 

From the axial strain equation, an equation to determine the load (P) at the geometric 

centroid is obtained below: 

𝑃 = 𝐸𝐴𝜀�̅� − 𝐸𝐴�̅�𝜙𝑥 − 𝐸𝐴�̅�𝜙𝑦 ( 4-47 ) 

But: 

𝐸𝐴𝑀𝑥 = 𝐸𝐴�̅� ( 4-48 ) 

𝐸𝐴𝑀𝑦 = 𝐸𝐴�̅� ( 4-49 ) 

𝑤ℎ𝑒𝑟𝑒: �̅� = 𝑦𝑔 − 𝑦𝑐 

�̅� = 𝑥𝑔 − 𝑥𝑐 

𝑥𝑔: 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 

𝑦𝑔: 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑖𝑑𝑒 

𝑥𝑔: 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 

𝑦𝑔: 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑖𝑑𝑒 
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Using the previous expressions, the axial load equation is now simplified to the 

following: 

𝑃 = 𝐸𝐴𝜀�̅� − 𝐸𝐴𝑀𝑥𝜙𝑥 − 𝐸𝐴𝑀𝑦𝜙𝑦 ( 4-50 ) 

Next, the equation is generalized for moments of area about the geometric centroidal 

axes. Starting with moments about the x-axis, the moment is transferred from the inelastic 

centroid to the geometric centroid using the following equation: 

𝑀𝑥̅̅ ̅̅ = 𝑀𝑥 − 𝑃�̅� ( 4-51 ) 

The coupled equations of moments about the inelastic centroid are as follows: 

𝑀𝑥 = 𝐸𝐼𝑥𝜙𝑥 + 𝐸𝐼𝑥𝑦𝜙𝑦 ( 4-52 ) 

𝑀𝑦 = 𝐸𝐼𝑦𝜙𝑦 + 𝐸𝐼𝑥𝑦𝜙𝑥 ( 4-53 ) 

Substituting the moment about the inelastic equation and the axial load equation into the 

moment about the geometric centroid equation, the following is obtained: 

𝑀𝑥̅̅ ̅̅ = 𝐸𝐼𝑥𝜙𝑥 + 𝐸𝐼𝑥𝑦𝜙𝑦 − (𝐸𝐴𝜀�̅� − 𝐸𝐴𝑀𝑥𝜙𝑥 − 𝐸𝐴𝑀𝑦𝜙𝑦)�̅� ( 4-54 ) 

𝑀𝑥̅̅ ̅̅ = −𝐸𝐴𝑀𝑥𝜀�̅� + (𝐸𝐼𝑥 + 𝐸𝐴𝑀𝑥�̅�)𝜙𝑥 + (𝐸𝐼𝑥𝑦 + 𝐸𝐴𝑀𝑦�̅�)𝜙𝑦 ( 4-55 ) 

Similarly, the following expressions are obtained for the moment about the y-axis: 

𝑀𝑦̅̅ ̅̅ = 𝑀𝑦 − 𝑃�̅� ( 4-56 ) 

𝑀𝑦̅̅ ̅̅ = 𝐸𝐼𝑦𝜙𝑦 + 𝐸𝐼𝑥𝑦𝜙𝑥 − (𝐸𝐴𝜀�̅� − 𝐸𝐴𝑀𝑥𝜙𝑥 − 𝐸𝐴𝑀𝑦𝜙𝑦)�̅� ( 4-57 ) 

𝑀𝑦̅̅ ̅̅ = −𝐸𝐴𝑀𝑦𝜀�̅� + (𝐸𝐼𝑥𝑦 + 𝐸𝐴𝑀𝑥�̅�)𝜙𝑥 + (𝐸𝐼𝑦 + 𝐸𝐴𝑀𝑦�̅�)𝜙𝑦 ( 4-58 ) 

In the previous final expressions, the terms (𝐸𝐼𝑥 + 𝐸𝐴𝑀𝑥�̅�) and (𝐸𝐼𝑦 + 𝐸𝐴𝑀𝑦�̅�) are 

taken to represent 𝐸𝐼𝑥̅̅ ̅̅  and 𝐸𝐼𝑦̅̅ ̅̅̅, respectively. Also, the terms (𝐸𝐼𝑥𝑦 + 𝐸𝐴𝑀𝑦�̅�) and 

(𝐸𝐼𝑥𝑦 + 𝐸𝐴𝑀𝑥�̅�) are actually equal, since 𝐸𝐴𝑀𝑦�̅� = 𝐸𝐴�̅��̅� and 𝐸𝐴𝑀𝑥�̅� = 𝐸𝐴�̅��̅�, thus the term 

𝐸𝐼𝑥𝑦̅̅ ̅̅ ̅̅  is taken to represent them. Now, assembling the equations for the axial load and moments 

about the centroidal axes, the following generalized system of equations is obtained: 

[

𝑃
𝑀𝑥̅̅ ̅̅

𝑀𝑦̅̅ ̅̅
] = [

𝐸𝐴 −𝐸𝐴𝑀𝑥 −𝐸𝐴𝑀𝑦

−𝐸𝐴𝑀𝑥 𝐸𝐼𝑥̅̅ ̅̅ 𝐸𝐼𝑥𝑦̅̅ ̅̅ ̅̅

−𝐸𝐴𝑀𝑦 𝐸𝐼𝑥𝑦̅̅ ̅̅ ̅̅ 𝐸𝐼𝑦̅̅ ̅̅̅
] [

𝜀�̅�
𝜙𝑥
𝜙𝑦

] ( 4-59 ) 

Applying the obtained system at the inelastic centroid, moments of area are canceled, and 

the final system becomes partially uncoupled as follows: 
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[

𝑃
𝑀𝑥
𝑀𝑦

] = [

𝐸𝐴 0 0
0 𝐸𝐼𝑥 𝐸𝐼𝑥𝑦
0 𝐸𝐼𝑥𝑦 𝐸𝐼𝑦

] [

𝜀𝑜
𝜙𝑥
𝜙𝑦
] ( 4-60 ) 

Either system of equations could be applied. Equation 4-59 is used if forces are to be 

tracked at the geometric centroid, while equation 4-60 is used if forces are to be tracked at the 

inelastic centroid. 

 Confined Concrete Compressive Strength Determination 

 Constitutive Model 

The constitutive model developed by Willam and Warnke (1975) was chosen to 

determine the confined concrete compressive strength for rectangular columns in both Mander 

model and Lam and Teng model. Mander adopted the model and calibrated it using results from 

triaxial tests conducted by Schickert and Winkler (1977). The equations for the ultimate surface 

meridians are as follows: 

𝑇 = 0.069232 − 0.661091𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ − 0.04935(𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅)2 ( 4-61 ) 

𝐶 = 0.122965 − 1.150502𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ − 0.315545(𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅)2 ( 4-62 ) 

 On the other hand, Lam and Teng (2003) derived an empirical equation to determine the 

strength. ACI Committee 440 (2008) adopted this equation with the addition of a reduction 

factor (𝜓𝑓 = 0.95): 

𝑓𝑐𝑐 = 𝑓𝑐
′ + 𝜓𝑓3.3𝜅𝑎𝑓𝑙 ( 4-63 ) 

𝑤ℎ𝑒𝑟𝑒 𝜅𝑎 =
𝐴𝑒
𝐴𝑐
(
𝑏

ℎ
)
2

 ( 4-64 ) 

𝑓𝑙 = 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

The equation above was extended to rectangular sections by implementing the shape 

factor (𝜅𝑎) and the equivalent circular section lateral pressure (𝑓𝑙) as explained earlier. The 

problem with applying this approach for the analysis is that it causes a discontinuity in the 

combined model between having no FRP in the section and including FRP. The combined model 

utilizes Mander model when there is no FRP in the section. As stated earlier, Mander utilized the 

triaxial approach, which does not necessitate converting the section in an equivalent circular 

section. Upon including FRP, the combined model utilizes the Lam and Teng model if the 

confinement ratio exceeds 0.08, and at this time, using the equivalent circular section could 
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cause an unpredicted jump or drop in the ultimate strength. Additionally, as Lam and Teng 

model is based on analysis of a circular section, it is inherently limited to the C surface meridian 

(θ=60o) and assumes equal lateral stresses (σ2=σ3=fl), which is not the case in non-square 

columns. This prevents the model from capturing all possible states of stress. In order to avoid 

these issues, it was decided to implement Willam and Warnke (1975) model for all cases in the 

combined model. In order to evaluate the applicability of this approach, the compressive 

strengths for two specimens were obtained using Lam and Teng empirical equation (2003) and 

Willam and Warnke model based on Schickert and Winkler data (1977). Specimen SC has a 

square section and was based on tests by Darby et al. (2011), while specimen CR has a 

rectangular section and was based on tests by Wang and Hsu (2007). The number of FRP plies 

was varied between zero and five. More details on these specimens can be found in Chapter 5. 

The results are plotted in Figure 4-7 and Figure 4-8. 

 

 

Figure 4-7: Compressive Strength vs. Number of Plies for Specimen SC. 
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Figure 4-8: Compressive Strength vs. Number of Plies for Specimen CR. 

From Figure 4-7 and Figure 4-8, it is observed that the triaxial constitutive model 

overestimated the confined compressive strength when compared with Lam and Teng model. In 

order to improve the results, the triaxial constitutive model was recalibrated using Lam and 

Teng’s empirical equation for the square section case (SC). This is due to the fact that Lam and 

Teng empirical equation was heavily calibrated against experiments of columns wrapped with 

FRP. Next is an explanation of the procedure followed to recalibrate the model. 

The model defines two ultimate strength meridian surfaces for concrete, compression (C) 

and tension (T). The failure surface is obtained using interpolation between the two ultimate 

meridian surfaces. Five control points are used to define the ultimate meridian surfaces, which 

are the uniaxial compressive strength (f’co), the uniaxial tensile strength (f’t), the biaxial 

compression point (fcb), and the defined triaxial points on C and T curves. Calculation details for 

these points are provided by Elwi and Murray (1979) and are summarized in Table 4-1. Figure 

4-9 illustrates the ultimate curves on the octahedral plane and provides the locations of the 

control points. 
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Table 4-1: Surface Meridians Control Points Summary. 

Control Parameter 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ 𝜏𝑜𝑐𝑡̅̅ ̅̅ ̅ 

𝑓𝑐𝑜
′  −1/3 √2/3 

𝑓𝑡
′ 𝛼𝑡/3 √2𝛼𝑡/3 

𝑓𝑐𝑏
′  −2𝛼𝑐/3 √2𝛼𝑐/3 

Triaxial on C User Defined User Defined 

Triaxial on T User Defined User Defined 

 

 

Figure 4-9: Ultimate Strength Curves C and T on the Octahedral Plane. 

The present calibration was based on the experimental dataset KHR provided by Kupfer, 

Hilsdorf and Rüsch (1969).This dataset was chosen over Schickert and Winkler dataset (1977) 

because the specimens tested by Kupfer et al. had higher octahedral stresses, which is usually the 

case in FRP confined columns. FRP confinement effect is added to that of steel, which increases 

the octahedral stress. The properties and ultimate strength surfaces obtained by Elwi and Murray 

(1979) for this dataset are provided in Table 4-2. 

Table 4-2: KHR data properties and ultimate surfaces. 

𝑓𝑐𝑜
′ = 4.58 𝑘𝑠𝑖 𝛼𝑐 = 1.15 𝛼𝑡 = 0.091 

𝑇 = 0.063046 − 0.662701𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ − 0.049435(𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅)2 

𝐶 = 0.11356 − 1.173709𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ − 0.300524(𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅)2 
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For recalibration, the user defined triaxial point was obtained from Lam and Teng 

ultimate strength equation. This point is located on the C curve, as Lam and Teng model utilizes 

the equivalent circular section concept in which the lateral pressures are equal. The obtained C 

strength surface is shown in Figure 4-10. 

 

Figure 4-10: C Strength Surface Obtained Using Lam and Teng Equation. 

It is observed in Figure 4-10 that the surface can be represented using a bilinear curve. As 

the final point on the T curve cannot be obtained directly from Lam and Teng’s equation, the 

following procedure was formulated to obtain it: 

1. Determine the intercept of the original KHR data T surface. 

2. Fit the updated C surface based on the obtained T intercept, the uniaxial 

compressive strength and the triaxial point obtained from Lam and Teng’s 

equation. 

3. Calculate the new slope of the second branch of the C surface (𝑚𝐶
′ ) 

4. Determine the new slope of the second branch of the T surface (𝑚𝑇
′ ) using the 

original KHR slope ratio (R) as follows: 

𝑚𝑇
′ = 𝑚𝐶

′ ∗ 𝑅 ( 4-65 ) 

𝑤ℎ𝑒𝑟𝑒 𝑅 =  
𝑚𝑇

𝑚𝐶
 

5. Fit the updated T surface based on the uniaxial tensile strength, biaxial 

compression point, and the obtained triaxial point on T. 
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6. Verify the new T intercept matches the original. If not, repeat steps 2-6 using the 

updated T intercept. 

Based on the procedure above, the updated C and T surface equations were obtained. 

Figure 4-11 plots the following bilinear curves: 

𝐶 = {
0.107795 − 1.09083𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ , 𝑓𝑜𝑟 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ > −0.333 
0.336883 − 0.40357𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ , 𝑓𝑜𝑟 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ≤ −0.333

 ( 4-66 ) 

𝑇 = {
0.061898 − 0.62637𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ , 𝑓𝑜𝑟 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ > −0.767
0.229132 − 0.40824𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅, 𝑓𝑜𝑟 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ≤ −0.767

 ( 4-67 ) 

 

Figure 4-11: Recalibrated Ultimate Strength Surfaces C and T. 

Next, using the updated model, the compressive strength was recalculated for the two 

specimens as shown in Figure 4-12 and Figure 4-13. 
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Figure 4-12: Updated Compressive Strength vs. Number of Plies for Specimen SC 

 

Figure 4-13: Updated Compressive Strength vs. Number of Plies for Specimen CR. 

Figure 4-12 shows excellent matching between the updated constitutive model and Lam 

and Teng equation. This is expected as the calibration process was based on this section. Figure 

4-13 shows an immense improvement in the new model when compared to the original. This 

new calibration was adopted in this study for use within the framework of the combined model. 
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 Numerical Approach 

For the purpose of this study, a numerical procedure was implemented to determine the 

confined concrete strength. The procedure is summarized in the following steps: 

1. Determine 𝑓𝑙𝑥
′  and 𝑓𝑙𝑦

′  as described earlier. The values are then are converted to negative 

values that represent the major and intermediate principal stresses (σ1, σ2) so that σ1> σ2. 

2. Assume an initial value for the confined compressive strength (fcc), which represents the 

minor principal stress (σ3). 

3. Calculate the octahedral normal stress (σoct), octahedral shear stress (τoct), and the lode 

angle (θ) as follows: 

𝜎𝑜𝑐𝑡 =
1

3
(𝜎1 + 𝜎2 + 𝜎3)  ( 4-68 ) 

𝜏𝑜𝑐𝑡 =
1

3
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎1 − 𝜎3)

2]
1
2 ( 4-69 ) 

cos 𝜃 =
𝜎1 − 𝜎𝑜𝑐𝑡

√2𝜏𝑜𝑐𝑡
 ( 4-70 ) 

4. Determine the ultimate stress meridian surfaces, T (θ=0o) and C (θ=60o) using the 

equations for the bilinear curve derived in the previous section://DOLATER 

REFORMAT 

𝐼𝑓 |𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅| < 0.333: 

𝐶 = 0.107795 − 1.09083𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ( 4-71 ) 

𝐸𝑙𝑠𝑒: 

𝐶 = 0.336883 − 0.40357𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ( 4-72 ) 

𝐼𝑓 |𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅| < 0.767: 

𝑇 = 0.061898 − 0.62637𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ( 4-73 ) 

𝐸𝑙𝑠𝑒: 

𝑇 = 0.229132 − 0.40824𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ ( 4-74 ) 

𝑤ℎ𝑒𝑟𝑒 𝜎𝑜𝑐𝑡̅̅ ̅̅ ̅ = 𝜎𝑜𝑐𝑡/𝑓′𝑐 

5. Determine the octahedral shear stress (τoct) using the interpolation function obtained by 

Willam and Warnke (1975): 

𝜏𝑜𝑐𝑡̅̅ ̅̅ ̅ = 𝐶
0.5𝐷/ cos 𝜃 + (2𝑇 − 𝐶)(𝐷 + 5𝑇2 − 4𝑇𝐶)

1
2

𝐷 + (2𝑇 − 𝐶)2
 ( 4-75 ) 
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𝐷 = 4(𝐶2 − 𝑇2) cos2 𝜃 ( 4-76 ) 

𝜏𝑜𝑐𝑡 = 𝑓′𝑐𝜏𝑜𝑐𝑡̅̅ ̅̅ ̅ ( 4-77 ) 

6. Recalculate the confined compressive strength (fcc) as follows: 

𝑓𝑐𝑐 = 𝜎3 =
𝜎1 + 𝜎2
2

− √4.5𝜏𝑜𝑐𝑡
2 − 0.75(𝜎1 − 𝜎2)2 ( 4-78 ) 

7. If the value obtained at the end matches that of the assumed initial value then 

convergence is achieved. Otherwise, the obtained value is set as the initial value and the 

process is repeated until convergence is attained. 
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Chapter 5 - Results and Discussion 

The aforementioned procedure was implemented in KDOT Column Expert software, 

which was then used to generate interaction diagrams. The following two sections present the 

results obtained from the program for multiple cases. In the first section, experimental points 

found in the literature were used to compare with and validate the proposed approach. Then, in 

the second section, parametric studies were conducted and the results obtained are presented in 

this chapter. 

 Comparison with Experiments 

Rocca et al. (2009) assembled a database with results for FRP-confined reinforced 

concrete columns obtained from the literature. From this database, results obtained by Bousias et 

al. (2004), Memon and Sheikh (2005), and Harajli and Rteil (2004) were used to verify the 

proposed approach. Additionally, specimens tested by Darby et al. (2011) and Wang and Hsu 

(2007) were also included in the comparison. The specifications for these specimens are 

provided in Table 5-1 and Table 5-2 below. It is noted that Wang and Hsu’s rectangular 

specimens (CR) included an additional steel leg connecting the middle bars. Also, specimens 

SC3u and SC3 tested by Darby et al. had pairs of 25 mm (0.98 in) diameter bars. As it is not 

possible to input that to the program, they were replaced in the analysis with single bars that have 

an equivalent area of 1.52 in2. Finally, in cases where some properties were not provided by the 

authors, reasonable assumptions were made for these values such as minimum lateral 

reinforcement (#3 bars at maximum spacing permitted by ACI 318-11 (2011)), minimum radius 

of curvature (0.5 in), and lateral steel properties (E=29000 ksi, fy=60 ksi). The notations used for 

the specifications are provided in Table 5-3. 
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Table 5-1: Specimens’ Geometric and FRP Properties. 

Source Code FRP b h cc rc Ef εfu tf n flf/f'c Pmax Mmax 

Units (if applicable)   in in in in ksi % in ply  kip kip.ft 

Bousias et al. (2004) 

BO1-a None 9.84 19.69 2 0.52 - - - 0 - 193.95 224.35 

BO2-a CFRP 9.84 19.69 2 0.52 33350 1.5 0.005 2 0.104 186.75 264.20 

BO3-a CFRP 9.84 19.69 2 0.52 33350 1.5 0.005 5 0.263 194.63 279.70 

BO4-a GFRP 9.84 19.69 2 0.52 10150 3.1 0.007 5 0.207 193.05 240.59 

BO1-b None 19.69 9.84 2 0.52 - - - 0 - 189.68 81.18 

BO2-b CFRP 19.69 9.84 2 0.52 33350 1.5 0.005 2 0.104 186.75 82.66 

BO3-b CFRP 19.69 9.84 2 0.52 33350 1.5 0.005 5 0.263 194.63 90.04 

BO4-b GFRP 19.69 9.84 2 0.52 10150 3.1 0.007 5 0.207 193.05 88.56 

Harajli and Rteil (2004) 

HR1-a None 5.91 11.81 1 0.52 - - - 0 - 44.10 43.54 

HR2-a CFRP 5.91 11.81 1 0.52 33350 1.5 0.005 1 0.074 44.10 47.97 

HR1-b None 5.91 11.81 1 0.52 - - - 0 - 51.98 64.94 

HR2-b CFRP 5.91 11.81 1 0.52 33350 1.5 0.005 1 0.074 51.98 69.37 

Memon and Sheikh (2005) 

MS1 None 12.01 12.01 1 0.64 - - - 0 - 552.15 143.91 

MS2 GFRP 12.01 12.01 1 0.64 2864.33 2.28 0.049 2 0.072 326.03 184.50 

MS3 GFRP 12.01 12.01 1 0.64 2864.33 2.28 0.049 4 0.143 555.08 185.98 

MS4 GFRP 12.01 12.01 1 0.64 2864.33 2.28 0.049 2 0.071 560.93 171.22 

MS5 GFRP 12.01 12.01 1 0.64 2864.33 2.28 0.049 1 0.035 332.78 173.43 

MS6 GFRP 12.01 12.01 1 0.64 2864.33 2.28 0.049 3 0.104 569.70 211.07 

Wang and Hsu (2007) 

CS0 GFRP 11.81 11.81 1.18 1.18 - - - 0 - 478.58 0 

CS2 GFRP 11.81 11.81 1.18 1.18 2972.5 2 0.05 2 0.151 568.13 0 

CS6 GFRP 11.81 11.81 1.18 1.18 2972.5 2 0.05 6 0.454 905.63 0 

CR0 GFRP 11.81 17.72 1.18 1.18 - - - 0 - 735.30 0 

CR2 GFRP 11.81 17.72 1.18 1.18 2972.5 2 0.05 2 0.119 809.55 0 

CR6 GFRP 11.81 17.72 1.18 1.18 2972.5 2 0.05 6 0.356 1011.15 0 

Darby et al. (2011) 
SC1u None 5.91 5.91 1 0.79 - - - 0 - 172.35 0.06 

SC1 CFRP 5.91 5.91 1 0.79 31030 1.45 0.006 2 0.157 211.28 4.02 
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Source Code FRP b h cc rc Ef εfu tf n flf/f'c Pmax Mmax 

SC2u None 11.81 11.81 1 1.57 - - - 0 - 547.43 3.23 

SC2 CFRP 11.81 11.81 1 1.57 31030 1.45 0.006 4 0.219 813.83 22.66 

SC3u None 17.72 17.72 1 2.36 - - - 0 - 2050.20 16.16 

SC3 CFRP 17.72 17.72 1 2.36 31030 1.45 0.006 6 0.219 1656.90 40.77 

 

Table 5-2: Specimens’ Concrete and Steel Properties. 

Source Code f'c fy fyt El Et Bars in x Bars in y dl Al dt At s’ 

Units (If applicable)  ksi ksi ksi ksi ksi   in in2 in in2 in 

Bousias et al. (2004) BO1-a 2.65 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO2-a 2.62 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO3-a 2.60 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO4-a 2.71 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO1-b 2.60 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO2-b 2.62 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO3-b 2.60 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

BO4-b 2.71 81.2 41.47 29000 29000 2 2 0.71 0.394 0.31 0.078 7.87 

Harajli and Rteil (2004) HR1-a 2.94 77.43 60 29000 29000 2 3 0.50 0.200 0.31 0.078 5.91 

HR2-a 3.06 77.43 60 29000 29000 2 3 0.50 0.200 0.31 0.078 5.91 

HR1-b 2.94 81.93 60 29000 29000 2 3 0.63 0.310 0.31 0.078 5.91 

HR2-b 3.06 81.93 60 29000 29000 2 3 0.63 0.310 0.31 0.078 5.91 

Memon and Sheikh (2005) MS1 6.15 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

MS2 6.16 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

MS3 6.19 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

MS4 6.28 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

MS5 6.34 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

MS6 6.41 67.43 66.27 29314.65 30120.85 3 3 0.77 0.465 0.38 0.110 11.81 

Wang and Hsu (2007) CS0 2.76 63.66 52.93 29000 29435 2 2 0.79 0.487 0.39 0.122 7.09 
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Source Code f'c fy fyt El Et Bars in x Bars in y dl Al dt At s’ 

CS2 2.76 63.66 52.93 29000 29435 2 2 0.79 0.487 0.39 0.122 7.09 

CS6 2.76 63.66 52.93 29000 29435 2 2 0.79 0.487 0.39 0.122 7.09 

CR0 2.76 63.66 52.93 29000 29435 2 3 0.79 0.487 0.39 0.122 7.09 

CR2 2.76 63.66 52.93 29000 29435 2 3 0.79 0.487 0.39 0.122 7.09 

CR6 2.76 63.66 52.93 29000 29435 2 3 0.79 0.487 0.39 0.122 7.09 

Darby et al. (2011) SC1u 5.66 79.75 60 29000 29000 2 2 0.47 0.175 0.38 0.110 5 

SC1 5.08 79.75 60 29000 29000 2 2 0.47 0.175 0.38 0.110 5 

SC2u 3.63 79.75 60 29000 29000 2 2 0.98 0.761 0.38 0.110 11 

SC2 3.63 79.75 60 29000 29000 2 2 0.98 0.761 0.38 0.110 11 

SC3u 6.53 79.75 60 29000 29000 2 2 1.39 1.522 0.38 0.110 12 

SC3 3.63 79.75 60 29000 29000 2 2 1.39 1.522 0.38 0.110 12 

 

Table 5-3: Notations for Specifications. 

Symbol Description Symbol Description 

b Section width fy Longitudinal steel yield stress 

h Section height f'c Concrete compressive strength 

cc Clear cover fyt Transverse steel yield stress 

rc Radius of rounded corners El Longitudinal steel modulus of elasticity  

Ef FRP modulus of elasticity Et Transverse steel modulus of elasticity 

εfu FRP rupture strain dl Longitudinal bar diameter 

tf FRP ply thickness Al Longitudinal bar area 

n Number of FRP plies dt Transverse bar diameter 

flf/f'c Confinement ratio At Transverse bar area 

Pmax Maximum applied axial load s’ Clear tie spacing 

Mmax Maximum applied bending moment   
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In the next part, for each specimen, a sketch of the cross-section will be shown, and the 

interaction diagram obtained from the proposed approach using KDOT Column Expert will be 

provided. The experimental results will be shown as a point on the interaction diagram. 

 Memon and Sheikh Specimens (2005) 

 

Figure 5-1: Cross-section of MS Specimens by Memon and Sheikh (2005). 

 

Figure 5-2: Interaction Diagram for Specimen MS1. 
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Figure 5-3: Interaction Diagram for Specimen MS2. 

 

Figure 5-4: Interaction Diagram for Specimen MS3. 
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Figure 5-5: Interaction Diagram for Specimen MS4. 

 

Figure 5-6: Interaction Diagram for Specimen MS5. 
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Figure 5-7: Interaction Diagram for Specimen MS6. 

Figure 5-2-Figure 5-7 show the interaction diagrams obtained for specimens tested by 

Memon and Sheikh (2005). These specimens fell in the balanced failure region of the interaction 

diagram. The capacity was overestimated only in the case of MS1. For the remaining cases, the 

program provided conservative results. Overall, the results obtained showed good agreement and 

the proposed approach provided conservative estimates for the capacity. 
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 Bousias et al. Specimens (2004) 

 

Figure 5-8: Cross-section of B0x-a Specimens by Bousias et al. (2004). 

 

Figure 5-9: Interaction Diagram for Specimen B01-a. 
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Figure 5-10: Interaction Diagram for Specimen B02-a. 

 

Figure 5-11: Interaction Diagram for Specimen B03-a. 

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

A
xi

al
 F

o
rc

e
 (

ki
p

)

Resultant Moment (kip.ft)

BO2-a

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

A
xi

al
 F

o
rc

e
 (

ki
p

)

Resultant Moment (kip.ft)

BO3-a



68 

 

 

Figure 5-12: Interaction Diagram for Specimen B04-a. 

 

Figure 5-13: Cross-section of B0x-b Specimens by Bousias et al. (2004). 
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Figure 5-14: Interaction Diagram for Specimen B01-b. 

 

Figure 5-15: Interaction Diagram for Specimen B02-b. 
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Figure 5-16: Interaction Diagram for Specimen B03-b. 

 

Figure 5-17: Interaction Diagram for Specimen B04-b. 
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Figure 5-9 to Figure 5-17 show the interactions diagrams obtained for specimens tested 

by Bousias et al (2004). These specimens were tested about both the strong (B0x-a) and weak 

(B0x-b) axes. As the program does not allow the width to exceed the height, the Alpha angle (α) 

between the resultant moment and the moment about the x-axis was taken to be 90o for B0X-b 

specimens. All specimens fell in the balanced failure region of the interaction diagram. The 

program provided conservative results for all tested cases. Overall, the results obtained showed 

good agreement and the proposed approach provided conservative estimates for the capacity. 

 Harajli and Rteil Specimens (2004) 

 

Figure 5-18: Cross-section of HRx-a Specimens by Harajli and Rteil (2004). 
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Figure 5-19: Interaction Diagram for Specimen HR1-a. 

 

Figure 5-20: Interaction Diagram for Specimen HR2-a. 
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Figure 5-21: Cross-section of HRx-b Specimens by Harajli and Rteil (2004). 

 

Figure 5-22: Interaction Diagram for Specimen HR1-b. 

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

A
xi

al
 F

o
rc

e
 (

ki
p

)

Resultant Moment (kip.ft)

HR1-b



74 

 

 

Figure 5-23: Interaction Diagram for Specimen HR2-b. 

Figure 5-19 to Figure 5-23 show the interaction diagrams obtained for specimens tested 

by Harajli and Rteil (2004). These specimens fell in the tension failure region of the interaction 
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 Darby et al. Specimens (2011) 

 

Figure 5-24: Cross-section of SC1 Specimens by Darby et al. (2011). 

 

Figure 5-25: Interaction Diagram for Specimen SC1u. 
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Figure 5-26: Interaction Diagram for Specimen SC1. 

 

Figure 5-27: Cross-section of SC2 Specimens by Darby et al. (2011). 
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Figure 5-28: Interaction Diagram for Specimen SC2u. 

 

Figure 5-29: Interaction Diagram for Specimen SC2. 
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Figure 5-30: Cross-section of SC3 Specimens by Darby et al. (2011). 

 

Figure 5-31: Interaction Diagram for Specimen SC3u. 
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Figure 5-32: Interaction Diagram for Specimen SC3. 
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hand, decreasing the tie spacing will increase the effect of confinement. This will shift the 

confined curve upward, which will introduce even less conservative results. This issue could be 

due to an error in the provided specimens’ parameters. It could also be attributed to the 

experiments themselves; however, given the current information, a conclusion cannot be 

reached. 

 Wang and Hsu Specimens (2007) 

 

Figure 5-33: Cross-section of CS Specimens by Wang and Hsu (2007). 
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Figure 5-34: Interaction Diagram for Specimen CS0. 

 

Figure 5-35: Interaction Diagram for Specimen CS2. 
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Figure 5-36: Interaction Diagram for Specimen CS6. 

 

Figure 5-37: Cross-section of CR Specimens by Wang and Hsu (2007). 
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Figure 5-38: Interaction Diagram for Specimen CR0. 

 

Figure 5-39: Interaction Diagram for Specimen CR2. 
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Figure 5-40: Interaction Diagram for Specimen CR6. 
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Table 5-4: Common Properties for the Parametric Study. 

Property f'c (ksi) cc (in) rc (in) Tie size s' (in) fy (ksi) Es (ksi) Ef (ksi) εfu tf (in) 

Value 4 1 1 #3 1.5 60 29000 33350 0.0015 0.005 

 

The properties for the longitudinal reinforcement, which was one of the variables, are 

provided in Table 5-5. This table provides the sections’ dimensions, their bar sizes, their count 

along the x and y-axes and the steel ratio (ρ). 

Table 5-5: Section Geometry and Longitudinal Reinforcement Details. 

Section Bar size Bars in x Bars in y ρ 

12x12 #5 4 4 0.0258 

12x24 #4 4 5 0.0292 

12x36 #8 4 6 0.0293 

12x48 #8 4 8 0.0312 

16x16 #6 5 5 0.0275 

16x32 #8 5 6 0.0278 

16x48 #9 5 8 0.0286 

20x20 #6 6 6 0.022 

20x40 #8 6 8 0.0237 

20x48 #9 6 8 0.025 

25x25 #7 7 7 0.02 

25x48 #9 7 9 0.0233 

30x30 #8 8 8 0.0246 

30x48 #10 8 9 0.0265 

36x36 #10 8 8 0.0274 

36x48 #11 8 9 0.0271 

 

All sections listed above were analyzed while varying the number of FRP layers from 

zero to five. Detailed confined interaction diagram data was then obtained from the software. 

These data was then parsed for three key values, the ultimate axial capacity (Pn), the maximum 

moment at balance condition (Mmax), and the moment at pure tension (Mn). Additionally, the 

percentage increase in sections with FRP relative to the section with steel only (PD) was 

calculated. The results are provided in Table 5-6. 
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Table 5-6: Parametric Study Results. 

Sectio
n 

n Pn Mmax Mn PD 
Sectio

n 
n Pn Mmax Mn PD 

12x12 

0 932.37 128.70 84.02 - 

20x40 

0 4617.73 
2357.6

2 
1615.7

7 
- 

1 986.80 130.86 84.02 
0.0
6 

1 4666.66 
2359.4

6 
1615.7

7 
0.0
1 

2 
1027.6

2 
131.55 84.02 

0.1
0 

2 4691.12 
2360.4

2 
1615.7

7 
0.0
2 

3 
1050.3

0 
134.16 84.02 

0.1
3 

3 4715.59 
2361.4

3 
1615.7

7 
0.0
2 

4 
1063.9

0 
134.42 84.02 

0.1
4 

4 4715.59 
2361.4

3 
1615.7

7 
0.0
2 

12x24 

0 
1828.8

8 
551.13 407.26 - 

20x48 

0 5650.52 
3515.8

1 
2461.6

7 
- 

1 
1857.3

3 
551.76 407.26 

0.0
2 

1 5680.42 
3517.1

5 
2461.6

7 
0.0
1 

2 
1876.3

0 
552.19 407.26 

0.0
3 

2 5710.31 
3518.5

2 
2461.6

7 
0.0
1 

3 
1885.7

8 
552.41 407.26 

0.0
3 

3 5710.31 
3518.5

2 
2461.6

7 
0.0
1 

4 
1885.7

8 
552.41 407.26 

0.0
3 

4 5740.20 
3519.9

1 
2461.6

7 
0.0
2 

12x36 

0 
2646.2

8 
1239.2

9 
936.23 - 

25x25 

0 3694.99 
1172.1

0 
752.84 - 

1 
2660.5

2 
1239.6

3 
936.23 

0.0
1 

1 3789.67 
1126.7

7 
752.84 

0.0
3 

2 
2674.7

6 
1239.9

8 
936.23 

0.0
1 

2 3846.48 
1128.4

9 
752.84 

0.0
4 

3 
2674.7

6 
1239.9

8 
936.23 

0.0
1 

3 3922.22 
1130.9

0 
752.84 

0.0
6 

4 
2689.0

1 
1240.3

4 
936.23 

0.0
2 

4 3979.03 
1197.2

7 
752.84 

0.0
8 

12x48 

0 
3517.0

1 
2114.7

8 
1543.6

4 
- 

25x48 

0 6825.60 
4314.8

2 
2897.0

3 
- 

1 
3535.5

5 
2115.8

1 
1543.6

4 
0.0
1 

1 6898.61 
4319.9

1 
2897.0

3 
0.0
1 

2 
3535.5

5 
2115.8

1 
1543.6

4 
0.0
1 

2 6898.61 
4319.9

1 
2897.0

3 
0.0
1 

3 
3535.5

5 
2115.8

1 
1543.6

4 
0.0
1 

3 6935.12 
4306.4

1 
2897.0

3 
0.0
2 

4 
3535.5

5 
2115.8

1 
1543.6

4 
0.0
1 

4 6935.12 
4363.3

9 
2897.0

3 
0.0
2 

16x16 0 
1613.7

5 
323.26 218.31 - 30x30 0 5300.90 

2092.4
3 

1404.0
9 

- 
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Sectio
n 

n Pn Mmax Mn PD 
Sectio

n 
n Pn Mmax Mn PD 

1 
1679.7

2 
310.29 218.31 

0.0
4 

1 5412.35 
2027.2

0 
1404.0

9 
0.0
2 

2 
1729.2

0 
311.46 218.31 

0.0
7 

2 5495.94 
2029.8

9 
1404.0

9 
0.0
4 

3 
1778.6

8 
332.95 218.31 

0.1
0 

3 5579.53 
2032.6

8 
1404.0

9 
0.0
5 

4 
1828.1

7 
334.18 218.31 

0.1
3 

4 5635.25 
2034.6

0 
1404.0

9 
0.0
6 

16x32 

0 
3121.0

7 
1306.1

0 
951.75 - 

30x48 

0 8518.73 
5606.5

9 
3931.4

7 
- 

1 
3170.7

3 
1307.5

0 
951.75 

0.0
2 

1 8610.21 
5612.7

8 
3931.4

7 
0.0
1 

2 
3170.7

3 
1307.5

0 
951.75 

0.0
2 

2 8610.21 
5612.7

8 
3931.4

7 
0.0
1 

3 
3187.2

8 
1307.9

8 
951.75 

0.0
2 

3 8655.96 
5615.9

3 
3931.4

7 
0.0
2 

4 
3220.3

9 
1308.9

6 
951.75 

0.0
3 

4 8701.70 
5619.1

0 
3931.4

7 
0.0
2 

16x48 

0 
4699.6

6 
2969.8

9 
2184.0

9 
- 

36x36 

0 7747.06 
3876.2

3 
2716.4

0 
- 

1 
4724.7

8 
2963.5

6 
2184.0

9 
0.0
1 

1 7872.20 
3729.7

1 
2716.4

0 
0.0
2 

2 
4749.8

9 
2962.3

5 
2184.0

9 
0.0
1 

2 7955.63 
3732.3

4 
2716.4

0 
0.0
3 

3 
4749.8

9 
2962.3

5 
2184.0

9 
0.0
1 

3 8039.06 
3735.0

5 
2716.4

0 
0.0
4 

4 
4749.8

9 
3002.4

4 
2184.0

9 
0.0
1 

4 8122.49 
3737.8

4 
2716.4

0 
0.0
5 

20x20 

0 
2396.9

7 
586.49 360.65 - 

36x48 

0 
10235.3

2 
6793.5

6 
4809.5

5 
- 

1 
2480.5

5 
557.91 360.65 

0.0
3 

1 
10346.0

3 
6641.1

1 
4809.5

5 
0.0
1 

2 
2528.3

2 
559.24 360.65 

0.0
5 

2 
10401.3

9 
6723.3

3 
4809.5

5 
0.0
2 

3 
2588.0

2 
560.97 360.65 

0.0
8 

3 
10456.7

5 
6725.9

1 
4809.5

5 
0.0
2 

4 
2647.7

2 
595.78 360.65 

0.1
0 

4 
10512.1

0 
6728.5

2 
4809.5

5 
0.0
3 

 

At the first glance, it appears from the data shown in Table 5-6 that adding more FRP 

layers to some cases (shaded in gray in the table) does not increase the axial capacity of the 

section. In order to investigate, compressive strength values for both the core (fcce) and the cover 
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(fccf) were computed for two sample cases of 12x24 and 12x48. Extracted parameters are listed in 

Table 5-7. 

Table 5-7: Extracted Analysis Parameters. 

Section 12x24 12x48 

nf 3 4 1 2 3 4 

flf/f’c 0.082 0.109 0.015 0.03 0.044 0.059 

fcce (ksi) 5.19 5.16 4.65 4.657 4.664 4.66 

fccf (ksi) 4.13 4.17 4.009 4.018 4.026 4.034 

 

Before proceeding, it is observed that the confined compressive strength has dropped for 

the first case from 5.19 ksi to 5.16 ksi, and for the second case from 4.664 ksi to 4.66 ksi as the 

number of FRP layers has increased from 3 to 4 layers in each case. This occurred even though 

the confining pressure has increased since the number of FRP layers increased. The cause of this 

issue is the restriction on the ultimate strain imposed by ACI 440.2R-08 (2008). In these two 

instances, the strain obtained exceeded 0.01, and thus a new fcc value corresponding to this 

ultimate strain is calculated. 

For the first case, as the confinement ratio (flf/f’c) is greater than 0.08, the model used is 

Lam and Teng model with an ascending second branch. Detailed calculations will be provided to 

verify the results obtained from the program for this case. The areas are calculated as follows: 

𝑏𝑐 = 𝑏 − 2𝑐𝑐 − 𝑑𝑡 = 12 − 2 − 0.375 = 9.625 𝑖𝑛 

ℎ𝑐 = ℎ − 2𝑐𝑐 − 𝑑𝑡 = 24 − 2 − 0.375 = 21.625 𝑖𝑛 

𝐴𝑐𝑜𝑟𝑒 = 𝑏𝑐 ∗ ℎ𝑐 − 𝑛 ∗ 𝐴𝑠 = 208.141 − 14 ∗ 0.6 = 199.741 𝑖𝑛
2 

𝐴𝑐𝑜𝑣𝑒𝑟 = 𝑏 ∗ ℎ − 𝑏𝑐 ∗ ℎ𝑐 = 288 − 208.141 = 79.859 𝑖𝑛
2 

𝑤ℎ𝑒𝑟𝑒 𝑏𝑐 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑟𝑒 𝑤𝑖𝑑𝑡ℎ 

ℎ𝑐 = 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑟𝑒 𝑑𝑒𝑝𝑡ℎ 

𝑐𝑐 = 𝑐𝑙𝑒𝑎𝑟 𝑐𝑜𝑣𝑒𝑟 

𝑑𝑡 = 𝑡𝑖𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑎𝑙 𝑏𝑎𝑟𝑠 

𝐴𝑠 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑎𝑙 𝑏𝑎𝑟 𝑎𝑟𝑒𝑎 

𝑓𝑦 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 



89 

 

Using the extracted value from Table 5-7 and the calculated areas, the axial capacity is 

calculated as follows: 

𝑃𝑛 = 𝑓𝑐𝑐𝑒 ∗ 𝐴𝑐𝑜𝑟𝑒 + 𝑓𝑐𝑐𝑓 ∗ 𝐴𝑐𝑜𝑣𝑒𝑟 + 𝑓𝑦 ∗ 𝑛 ∗ 𝐴𝑠 

𝑃3 = 5.19 ∗ 199.741 + 4.13 ∗ 79.859 + 60 ∗ 14 ∗ 0.6 = 1870.47 𝑘𝑖𝑝 

𝑃4 = 5.16 ∗ 199.741 + 4.17 ∗ 79.859 + 60 ∗ 14 ∗ 0.6 = 1867.68 𝑘𝑖𝑝 

𝑤ℎ𝑒𝑟𝑒 𝑃3 = 𝑎𝑥𝑖𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 3 𝑙𝑎𝑦𝑒𝑟𝑠 

𝑃4 = 𝑎𝑥𝑖𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 4 𝑙𝑎𝑦𝑒𝑟𝑠 

As it can be seen from the calculation, the capacity has actually dropped when the 

number of FRP layers was increased. The values are very close (percentage difference is 0.15%), 

and are smaller than the step size used by the incremental solver, which caused the program to 

provide the same results for both sections. Similarly, for the second case, the change in fcc values 

is very small due to the high aspect ratio. In this case, Mander model is used since the 

confinement ratio is below 0.08. The small change in fcc is not significant enough for solver, and 

results in an axial capacity difference that is smaller than the step size. This again causes the 

program to output the same interaction diagram for all sections under this case. Calculation 

details for the second case are shown below: 

𝑏𝑐 = 𝑏 − 2𝑐𝑐 − 𝑑𝑡 = 12 − 2 − 0.375 = 9.625 𝑖𝑛 

ℎ𝑐 = ℎ − 2𝑐𝑐 − 𝑑𝑡 = 48 − 2 − 0.375 = 45.625 𝑖𝑛 

𝐴𝑐𝑜𝑟𝑒 = 𝑏𝑐 ∗ ℎ𝑐 − 𝑛 ∗ 𝐴𝑠 = 439.141 − 20 ∗ 0.79 = 423.341 𝑖𝑛
2 

𝐴𝑐𝑜𝑣𝑒𝑟 = 𝑏 ∗ ℎ − 𝑏𝑐 ∗ ℎ𝑐 = 576 − 439.141 = 136.859 𝑖𝑛
2 

𝑃3 = 4.664 ∗ 423.341 + 4.026 ∗ 136.859 + 60 ∗ 20 ∗ 0.79 = 3473.457 𝑘𝑖𝑝 

𝑃4 = 4.66 ∗ 423.341 + 4.034 ∗ 136.859 + 60 ∗ 20 ∗ 0.79 = 3472.858 𝑘𝑖𝑝 

It is concluded that this is not an issue with the program, and is just part of the process. 

This occurrence is expected in section with high aspect ratio, where the addition of FRP layers 

does not immensely increase the confined compressive strength of the section. 

Additionally, for the sections with width of 12 in, the interaction diagrams were obtained 

for multiple Alpha angles (α). For illustration purposes, two interaction diagrams are provided. 

Figure 5-41 and Figure 5-42 correspond to section 12x12 and 12x36, respectively. For the square 

section, the interaction diagrams for α=0o and α=90o were identical, which is reasonable for a 

square section where the width and the height are equal. For α=45o, the interaction diagram was 

inside the previous two. This is again reasonable due to the existence of two moment 
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components in this case. As for the 12x36 section, it was observed that the moment at pure 

tension decreased as the angle Alpha increased, which was expected. This shows that the 

program behavior is consistent with different angles. 

 

Figure 5-41: Interaction Diagram for Multiple Alpha Angles for Section 12x12. 
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Figure 5-42: Interaction Diagram for Multiple Alpha Angles for Section 12x36. 

Overall, the obtained results shown in Table 5-6 were reasonable. Generally, the axial 

capacity has mostly increased as the number of FRP layers increased. It is observed that the 

increase in axial capacity due to the addition of FRP is diminished in sections with higher aspect 

ratios. This is expected because the FRP confinement effect is highly dependent on the aspect 

ratio. It is concluded that the program is functioning properly and the proposed approach 

provides reasonable results. Additional interaction diagrams are provided hereafter for 

illustration purposed (Figure 5-43 to Figure 5-47). 
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Figure 5-43: Interaction Diagrams for Section 12x12. 

 

Figure 5-44: Interaction Diagrams for Section 16x16. 
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Figure 5-45: Interaction Diagrams for Section 16x32. 

 

Figure 5-46: Interaction Diagrams for Section 20x40. 
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Figure 5-47: Interaction Diagrams for Section 36x48. 
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Chapter 6 - Computer Software Development 

 Introduction 

In order to facilitate the involved process of confined analysis of reinforced concrete 

columns, Abd El Fattah (2012) developed KDOT Column Expert computer software. This 

software was developed using C# programming language for use in Microsoft Windows 

operating system environment. Object Oriented Programming (OOP) principles were applied in 

the development of this software to enhance flexibility and facilitate future expansions. The 

program capabilities include confinement analysis for circular columns with FRP, and 

confinement analysis for rectangular columns with steel only. 

The author implemented the previously described proposed approach to confinement 

analysis of rectangular concrete columns with FRP into KDOT Column Expert version 5.0. Next, 

the general interface and new additions to the rectangular module will be presented. 

 Graphical User Interface (GUI) 

When the program is first started, the user is presented with the section selection dialog 

box. The program is divided into two modules, circular and rectangular analysis modules. This 

dialog is shown in Figure 6-1. 

 

Figure 6-1: Section Selection Dialog Box. 
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After the user makes the selection, the appropriate interface is then loaded. As this report 

involved square and slightly rectangular sections, only the rectangular module will be presented 

hereafter. Figure 6-2 shows the interface running after the program is loaded. 

 

Figure 6-2: KDOT Column Expert Rectangular Module Interface. 

The program interface is divided into four columns. The first column has input boxes for 

all necessary inputs, including geometric, concrete and steel properties. A new addition to this 

version is an option to use custom bars for both longitudinal and lateral steel. Upon checking the 

“Cust.” Option, the user is presented with a dialog box requesting the custom bar’s diameter and 

area. Due to the structure of the program, custom longitudinal bars will override bar size #18, 

while custom ties will override bar size #3. This was necessitated by the structure of the 

program. The selection of these bar sizes was done to minimize the chance for conflicts. 
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Figure 6-3: Custom Bar Dialog Box. 

Column two provides sketches for the cross-section and elevation views. These graphics 

aid in the visualization of the analyzed columns and can help in detecting mistakes in data input. 

Next, a seek bar (slider) is provided to specify required accuracy. It works by varying the number 

of filament layers used in the analysis. The seek bar allows adjustment between 15 and 35 layers. 

The default setting is set at middle with 25 layers. The final setting available on this column, 

which is a new addition to this version, is the FRP switch. Setting this to “ON” opens a dialog 

box for the user to input the FRP properties into. The dialog box is shown in Figure 6-4. 

 

Figure 6-4: FRP Properties Dialog Box. 

The user is required to input the modulus of elasticity, rupture strain, thickness, number 

of layer, and the radius of rounded corners. The user also has the option of choosing predefined 

FRP properties for several commercially available FRP products. 

The third column has the main plot and the action buttons. The plotting area shows the 

interaction diagrams obtained from the analysis as requested. The action buttons specify which 

interaction diagrams are plotted. The program can plot the confined, unconfined, and design 
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interaction diagrams. Upon the completion of the new analysis, the user is prompted to select an 

angle Alpha (α) to display the interaction diagram for. This angle is defined as the angle between 

the resultant moment and the moment about the x-axis. The program can also plot a 3D 

interaction diagram, which is shown in a new window (Figure 6-5). Finally, the last column 

allows the user to input data points to plot on the interaction diagram. The points are 

immediately plotted on the interaction diagram corresponding to the appropriate angle (α). Up to 

25 points can be plotted on the same diagram. These points can be saved to an external file and 

loaded using the action buttons. 

 

Figure 6-5: 3D Diagram Window. 
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Chapter 7 - Conclusions and Recommendations 

 Conclusions 

In this study, a model was proposed to combine FRP and steel confinement in rectangular 

reinforced concrete columns. From previously conducted research, Mander model was found to 

be the most suitable confinement model for steel. Based on the conducted literature review and 

the recommendations of ACI committee 440 (2007), Lam and Teng model was found to be the 

most suitable confinement model for FRP. The eccentricity-based modeling approach was 

applied to the developed combined model. The proposed model and procedure were then 

implemented in “KDOT Column Expert” software version 6.0. The software was then used to 

generate interaction diagrams, which were compared with experiments found in the literature. 

The proposed model results showed good agreement with the experimental data. Additionally, 

the results were shown to be conservative for many of the cases tested. Furthermore, a 

parametric study was conducted after validating the proposed model. The objective of the 

parametric study was to examine the behavior of the model for cases beyond what was validated 

with experiments, and ensure its consistency. The model provided reasonable results, and its 

consistency was validated based on them. It is concluded that the combined confinement model 

and the software in which it was implemented, KDOT Column Expert, are viable tools to 

accurately model confinement in rectangular concrete columns with both transverse steel and 

FRP. 

 Recommendations 

The following points could be done to extend this research, address some of the issues 

encountered, and improve the quality of the results: 

 It is recommended that more experimental studies be conducted on reinforced 

concrete sections with high aspect ratios, as literature is currently lacking these 

results. 

 As a few of the specimens tested had points very close to the generated interaction 

diagram, it is recommended that a factor for design purposes is introduced in 

order to generate more conservative curves. 
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 For future work, the proposed model could be expanded to include columns with 

multispiral lateral reinforcement configuration. 
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Section II: Shear Force-Flexure-Axial Force Interaction in 

Rectangular Concrete Columns 

  



105 

 

Chapter 8 - Introduction 

 Background 

Columns are structural members that are essential to most structures. Columns transfer 

loads mainly through axial compression. Under extreme conditions, columns can be subjected to 

the effect of combined axial load, bending moment, and shear. The knowledge of the full 

interaction domain is very important in light of the extreme load event imposed by AASHTO 

LRFD. The analysis of columns under extreme loading events requires accounting for all 

possible factors that contribute to the column’s ultimate capacity, including the confinement 

effect. This necessitates the extension of the developed confined analysis procedure to account 

for shear interaction. There is a need to develop a tool that provides engineers with reliable 

prediction for the ultimate capacity of confined concrete columns under these extreme loading 

conditions. 

 Objectives 

This part of the study aims to estimate the shear capacity of rectangular reinforced 

concrete columns under axial load and bending moment. To achieve that, a procedure based on 

AASHTO LRFD Bridge Design Specifications (2014) provisions and the simplified modified 

compression field theory (Bentz et al., 2006) is formulated. The developed procedure shall 

provide predictions for axial load-shear-bending moment interaction domain. The procedure will 

then be implemented in “KDOT Column Expert” analysis software to facilitate the process of 

obtaining the full interaction domain. 

 Scope 

This section consists of five chapters that cover all the aspects involved in this part of the 

study. Chapter eight provides a brief introduction to the background and objectives of the study, 

in addition to the scope. Chapter nine comprises reviews of building codes and experimental 

work found in the literature. Chapter ten includes the formulation part, in which all equations 

used in the procedure are provided and described, and the implementation part, in which the 

proposed procedure is explained in detail. Chapter eleven reports on the results obtained from 

this study, including comparisons with experiments and sectional analysis software “Response-
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2000” (Bentz, 2000), in addition to the discussion. Chapter twelve summarizes the conclusions 

of this study and provides recommendations for further future research work.  
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Chapter 9 - Literature Review 

 Review of Building Codes 

In this section, a review of the shear analysis provisions from selected building codes is 

presented. The focus of this review will be on guidelines for rectangular non prestressed 

reinforced concrete columns subjected to combined axial, shear and flexure. 

 Japanese Code (2007) 

The JSCE code (2007) assumes the shear resistance is provided by concrete (Vc) and 

steel (Vs). The steel contribution is calculated based on the truss theory assuming 45o inclined 

compression struts. The equations provided next all utilize SI units (i.e. MPa for stresses, 

Newton for forces, mm for distances). The equations are as follows: 

V = Vc + 𝑉𝑠 ( 9-1 ) 

Vc =
𝛽𝑑𝛽𝑝𝛽𝑛𝑓𝑣𝑐𝑑𝑏𝑑

1.3
 ( 9-2 ) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑣𝑐𝑑 = 0.2√𝑓𝑐′
3

≤ 0.72 

𝛽𝑑 = √
1000

𝑑

4

 

𝛽𝑝 = √100𝜌𝑤
3

 

𝜌𝑤 =
𝐴𝑠
𝑏𝑑

 

𝛽𝑛 = {
1 +

2𝑀𝑜
𝑀

≤ 2, 𝑖𝑓 𝑃 ≥ 0

1 +
4𝑀𝑜
𝑀

≥ 0, 𝑖𝑓 𝑃 < 0

 

𝑀𝑜 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑡𝑜 𝑐𝑎𝑛𝑐𝑒𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑖𝑏𝑒𝑟. 

Vs =
Av𝑓𝑦𝑡(sin(𝛼) + cos(𝛼))𝑑

1.1 ∗ 1.15
 ( 9-3 ) 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑥𝑖𝑠. 

The code specifies that for cases where shear reinforcement is necessary, the spacing 

between stirrups shall not exceed neither half the effective depth, nor 300 mm. 
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Additionally, the code specifies an amount of shear reinforcement, which is required even 

if calculations deem shear reinforcement unnecessary. The minimum amount of shear 

reinforcement is obtained according to the following equation: 

Av,min = 0.0015(𝑏. 𝑠) ( 9-4 ) 

For this case, the spacing should not exceed neither three quarters of the effective depth, 

nor 400 mm. 

 Eurocode 2 (2004) 

The Eurocode 2 part 1 provides separate procedures for shear design in members based 

on the need for shear reinforcement. The equations provided next all utilize SI units (i.e. MPa for 

stresses, Newton for forces, mm for distances). For members no requiring shear reinforcement, 

the shear resistance is obtained as follows: 

𝑉 = (0.12𝑘(100𝜌𝑙(𝑓𝑐
′ − 1.6))

1
3 − 0.15𝜎𝑐𝑝)𝑏𝑑 ( 9-5 ) 

𝑤ℎ𝑒𝑟𝑒 𝜌𝑙 =
𝐴𝑠𝑙
𝑏𝑑
≤ 0.02 

𝜎𝑐𝑝 =
𝑃

𝐴𝑐
 

𝑘 = 1 + √
200

𝑑
≤ 2 

𝐴𝑠𝑙 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 

For this case, the shear value should not be taken less than the minimum obtained as 

follows: 

𝑉𝑚𝑖𝑛 =

(

 
 
0.035(1 + √

200

𝑑
)

3
2

(𝑓𝑐
′ − 1.6)

1
2 − 0.15𝜎𝑐𝑝

)

 
 
𝑏𝑑 ( 9-6 ) 

For members requiring shear reinforcement, the code utilizes a truss model with variable 

angles. The angle of inclined struts is limited as follows: 

1 ≤ cot(𝜃) ≤ 2.5 ( 9-7 ) 

The shear resistance is calculated as follows: 



109 

 

𝑉 =
𝐴𝑣
𝑠
𝑧𝑓𝑦𝑡 cot(𝜃) ≤

𝜐1𝑓𝑦𝑡

cot(𝜃) + tan(𝜃)
𝑏𝑧 ( 9-8 ) 

𝑤ℎ𝑒𝑟𝑒 𝜐1 = 0.6 (1 −
𝑓𝑐
′ − 1.6

250
) 

𝑧 = 𝑖𝑛𝑛𝑒𝑟 𝑙𝑒𝑣𝑒𝑟 𝑎𝑟𝑚 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡. 

The maximum spacing of legs in a series of shear links should not exceed the value 

obtained from the following equation: 

𝑠𝑚𝑎𝑥 = 0.75𝑑 ≤ 600 𝑚𝑚 ( 9-9 ) 

It should be noted that the German code DIN 1045-1(2001) had been compiled in parallel 

to the Eurocode (Hawkins et al., 2005)). As a result, the provisions in both are similar. Some 

differences exist as the national values for some parameters might differ from those 

recommended in the Eurocode. 

 ACI 318-11 (2011) 

The ACI 318-11 building code (2011) provisions determines the shear strength based on 

an average shear stress on the full effect cross section. For transversely reinforced members, it is 

assumed that a portion of the shear strength (Vn) is provided by the concrete (Vc), with the 

remainder provided by the transverse steel (Vs), as per the following equation: 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 ( 9-10 ) 

The concrete contribution (Vc) for members subjected to combined axial (P), shear (V) 

and flexure (M) is obtained from the following equation: 

𝑉𝑐 = 2(1 +
𝑃

2000𝐴𝑔
) 𝜆√𝑓𝑐′𝑏𝑑 ( 9-11 ) 

Additionally, the code allows for a more detailed calculation of the shear in concrete, as 

per the following equations: 

𝑉𝑐 = (1.9𝜆√𝑓𝑐′ + 2500𝜌𝑤
𝑉𝑑

𝑀𝑚
) 𝑏𝑑 ( 9-12 ) 

𝑀𝑚 = 𝑀 − 𝑃
4ℎ − 𝑑

8
 ( 9-13 ) 

𝑉𝑐 ≤ 3.5𝜆√𝑓𝑐′𝑏𝑑√1 +
𝑃

500𝐴𝑔
 ( 9-14 ) 
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The steel contribution is calculated from the following equation below. The limit on the 

maximum value was established to prevent concrete crushing. A larger section should be 

selected if this limit is exceeded. 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑡(sin(𝛼) + cos(𝛼) 𝑑

𝑠
≤ 8√𝑓𝑐′𝑏𝑑 ( 9-15 ) 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑥𝑖𝑠. 

The code provisions specify a minimum amount of transverse reinforcement to prevent 

sudden failure due to rapid formation of inclined cracking. The minimum amount required is 

computed from the following equation: 

𝐴𝑣,𝑚𝑖𝑛 = 0.75√𝑓𝑐′
𝑏𝑠

𝑓𝑦𝑡
≤
50𝑏𝑠

𝑓𝑦𝑡
 ( 9-16 ) 

The code imposes limits on the maximum spacing of transverse reinforce, which depends 

on the shear resistance portion resisted by steel. The spacing limits are provided next: 

𝑠𝑚𝑎𝑥 = {
min (

𝑑

2
, 24 𝑖𝑛)  𝑖𝑓 𝑉𝑠 ≤ 4√𝑓𝑐′𝑏𝑑

min (
𝑑

4
, 12 𝑖𝑛)  𝑖𝑓 𝑉𝑠 > 4√𝑓𝑐′𝑏𝑑

 ( 9-17 ) 

 AASHTO LRFD Bridge Design Specifications (2014) 

The provisions adopted by AASHTO LRFD Bridge Design Specifications (2014) are 

based on the simplified modified compression field theory (Bentz et al., 2006). In their paper, 

Bentz and his coauthors proposed their method, and compared it with experimental results and 

predictions from ACI equations. They showed excellent matching with the experimental data, 

and that the predictions from the ACI equations were inconsistent. Hawkins and his coauthors 

(2005) evaluated multiple shear models, and found that the overall performance of the AASHTO 

LRFD provisions were good to reasonable in all evaluation categories. Their recommended 

method based purely on performance was the AASHTO LRFD approach. As the theory proved 

to be very accurate, it was the method of choice to determine the shear capacity of rectangular 

concrete columns in this study. It is noted that the Canadian Standards Association’s Design of 

concrete structures CSA A23.3-04 standard (2004) is also based on the simplified compression 

field theory, and thus provides similar provisions. Further details on this theory will be provided 

in Chapter 10.  
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 Experimental Studies 

In this section, a review of selected experiments conducted on square and rectangular 

reinforced concrete columns is presented. Further details on the selected specimens’ parameters 

and the experimental results can be found in Table 11-1 and Table 11-2, respectively. 

 Umehara and Jirsa (1982) 

Umehara and Jirsa (1982) investigated shear failure in short reinforced concrete columns. 

In their study, a series of ten short columns with rectangular cross-section of 9 x 16 in section 

were tested and compared with square columns with 12 x 12 in cross-section tested previously. 

The main variables in their experiments were the loading direction, history and level of axial 

load. The cross-section was a 2/3 scale model of a prototype column. Longitudinal reinforcement 

consisted of ten #6 bars in order to ensure that the flexural capacity in both the strong and weak 

directions were in excess of the shear capacity. The capacity calculations were performed in 

accordance to the ACI 1977 building code. Transverse reinforcement was provided by deformed 

6 mm bars (diameter = 0.24 in) spaced at 3.5 in. Large blocks monolithically casted bounded the 

ends of the test specimens. These blocks provided anchorage for the longitudinal bars and 

facilitated the attachment of loading systems to the specimens. High slump concrete was used to 

allow it to fill all voids due to the congestion of reinforcement. To compare with previous 

studies, an axial load of 120 kip, which corresponds to 40% of the axial load at balanced strain 

condition was applied. Two loading rams were used to apply lateral loads, and one for axial load. 

Loads cells attached to the rams measured the loads applied. The authors observed that for short 

columns, the angle of shear cracks at failure was less than 45o. They stated that for specimens 

with diagonal unidirectional loading, the capacity could be estimated by an interaction line 

between the maximum capacities of columns under unidirectional loading along the principal 

axes. 

 Aboutaha et al. (1999) 

Aboutaha et al. (1999) conducted an experimental program on the use of rectangular steel 

jackets to rehabilitate shear critical concrete columns. A total of 11 large rectangular columns 

with a cross-section of 18 x 36 in were tested. Eight columns were loaded in the weak direction 

and three columns were loaded in the strong axis. Four of these specimens were prepared as 

reference specimens; thus, they were not retrofitted with steel jackets. The longitudinal 
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reinforcement consisted of 16 #8 bars. For ties, #3 bars were spaced at 16 in. For the selected 

specimens, three transverse cross ties were provided at every other longitudinal bar along the 

height of the columns. Lateral loads were applied in increment of 10 kip. These columns were 

not subjected to axial loading. The detailing of the columns’ reinforcement was based on ACI 

318-56 and ACI-63 building codes. Testing showed that all unretrofitted specimens 

demonstrated shear failure. Column SC3, loaded in the weak direction, developed major shear 

cracks over the full height of the column at a lateral load of 90 kip. The column lost its lateral 

resistance due to the diagonal shear failure followed by concrete compression shear failure. 

Column, SC9, loaded in the strong direction, developed major shear cracks at 110 kip. The 

column exhibited compression shear failure at 130 kip. Both columns did not develop their 

nominal flexural capacity by failure. 

 Priestley et al. (1994) 

Priestley et al. (1994a and 1994b) conducted two test programs. The first program 

included four reference circular columns and four columns retrofitted with steel jackets. The 

second program included three reference rectangular columns and three steel jacketed columns. 

As the scope defined for this research covers rectangular columns, the focus will be on the 

second test program. The rectangular columns had a cross- section of 16 x 24 in. Longitudinal 

reinforcement consisted of 22 #6 bars. Transverse reinforcement was provided by #2 ties at 

spacing of 5 in. The columns were subjected to an axial load of 114 kip. The columns exhibited 

brittle shear failure. Column R3A did not achieve its flexural strength. The angle of shear cracks 

reached 29o from the column’s axis at failure. Column R5A developed flexure shear cracks from 

both top and bottom of the column. The major shear crack was inclined at an angle of 25o to the 

column’s axis. Comparisons with prediction provided from ACI 318-89 design equations showed 

that actual shear capacity was more than 100% higher than these predictions. 

 Ousalem et al. (2003) 

Ousalem et al. (2003) conducted an experimental program that consisted of seven 

rectangular concrete columns. The specimens were scaled to 1/3 of the actual columns. All 

specimens had a square cross-section with a side length of 11.81 in. The selected specimens had 

a total of 16 D13 (diameter = 0.5 in) bars. Transverse reinforcement provided by ties of D6 

(diameter = 0.25 in) spaced at 1.97 in. The selected specimens were design to fail in shear. 
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Independent axial and lateral loads were applied to the specimens. For all specimens, the axial 

load was fixed at 121.4 kip. The failure in the selected specimens was based on truss mechanism. 

Collapse was observed to occur along inclines planes. Ousalem et al. investigated the effect of 

the lateral load pattern on the response of the columns. The observed that a larger number of 

cracks developed, and that the shear strength degradation was more pronounced under lateral 

loading with many hysteretic reversals. 

 Wight and Sozen (1973) 

Wight and Sozen (1973) conducted experiments to investigate the mode of failure for 

reinforced concrete columns subjected to several reversals of loading. Twelve specimens were 

prepared with a cross-section of 6 x 12 in. The longitudinal reinforcement consisted of 4 #6 

deformed bars. Transverse reinforcement was provided by either plain #2 bars or deformed #3 

bars. Ties spacing varied between 2.5 in to 5 in depending on the specimen. The main variables 

in testing were the axial load, transverse reinforcement ratio, and required deflection ductility. A 

servoram was attached to the end of the specimen to apply a constant axial load. The axial load 

varied between 0 and 40 kip, depending on the specimen. A pair of hydraulic jacks applied the 

lateral displacement. It was observed that specimens with axial loads had higher ultimate shear 

capacities. Failure mechanism observed included yielding of the transverse reinforcement, 

spalling of the concrete cover, and crushing of concrete along inclined shear cracks. 

 Yarandi (2007) 

Yarandi (2007) conducted an experimental program to evaluate the use of an external 

prestressing retrofitting system for concrete columns. The experiments included five 

unstrengthened rectangular concrete columns. The cross-section for the selected specimens was 

13.78 x 27.56 in. Longitudinal reinforcement consisted of 12 #20 (diameter = 0.77 in) bars. 

Transverse reinforcement was provided by ties made of 6.35 mm bars (diameter = 0.25 in) for 

specimen RRC, and #10 hoop (diameter = 0.44 in) for specimen SRC. The transverse 

reinforcement was spaced at 11.81 in for all specimens. Axial loads applied were 291 kip and 

339 kip for specimens RRC and SRC, respectively. Specimen SRC developed flexural cracks 

perpendicular to the direction of loading, followed by propagation of inclined shear cracks into 

the sides. Concrete cover spalled off near the base of the column. Shear cracks propagation 

continues into the sides with the formation of new diagonal cracks. Both longitudinal and 
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transverse reinforcement yielded. Specimen RRC developed flexural cracks that propagated 

towards the sides with an angle of inclination. The angle of inclination for one crack was 

obtained to be 45o. New cracks formed as the propagation continued towards the sides. Both 

types of reinforcement reached yielding in this specimen. Failure was attributed to insufficient 

transverse reinforcement. 

 Wehbe et al. (1998) 

Wehbe et al. (1998) performed experimental testing to examine the ductility capacity of 

rectangular reinforced concrete bridge columns. Four model bridge columns specimens were 

designed and tested. The variables considered in their study were the amount of transverse steel 

reinforcement, and the axial load applied. All specimens had a rectangular cross-section of 15 x 

24 in. Longitudinal reinforcement consisted of 18 #6 rebars in each specimen. Transverse 

reinforcement was provided by #2 perimeter hoop, #2 cross ties in the long direction, and #3 

cross ties in the weak direction. The specimens were divided into two groups based on the 

transverse reinforcement spacing. Group A had a tie spacing of 4.25 in, while group B had a tie 

spacing of 3.25 in. Specimens were subjected to a constant axial load and lateral load reversals in 

the strong direction. The specified axial load was applied first, then unidirectional lateral loading 

in the strong direction was then applied. The axial loads varied between 135 kip and 340 kip. 

 Pujol (2002) 

Pujol (2002) conducted an experimental program that consisted of eight assemblies. Each 

test assembly consisted of two specimens joined by a center stub. Each specimen represented a 

cantilever column under axial load and a point transverse load applied at its end. All specimens 

had a rectangular cross-section of 6 x 12 in. Longitudinal reinforcement consisted of four #6 

bars. Transverse reinforcement was provided by #2 hoops. The main variables in the tests were 

the spacing of transverse reinforcement, axial load, and displacement history. Spacing of 

transverse reinforcement was varied between 1.5 in and 3 in. The specimens were subjected to an 

axial load of either 30 kip or 60 kip. All specimens initially developed cracks perpendicular to 

the column axis. As the lateral load increased, the flexural cracks started deviating from the 

vertical. Yielding and light spalling of the concrete were observed. Columns with higher axial 

loads exhibited concrete spalling over a larger area. Failure was characterized by expansion and 

disintegration of the concrete close to the column base. It was observed that concrete within the 



115 

 

plastic hinge region was reduced to broken fragments. These fragments could still carry some 

loads due to the friction between them and the confinement supplied from the reinforcement 

cage. 

 Melek and Wallace (2004) 

Melek and Wallace (2004) conducted an experimental program to investigate the 

behavior of full-scale columns with lap splices subjected to axial load and cyclic lateral load. Six 

square cantilever columns with a side length of 18 in were designed and tested. Longitudinal 

reinforcement consisted of eight #8 bars distributed uniformly along the sides of the section. 

Transverse reinforcement was provided by #3 hoops spacing at 18 in. The main test variables 

were the axial load level, column shear demand, and applied displacement history. The 

specimens were subjected to an axial load of either 120 kip, 240 kip, or 360 kip. From the test 

results, it was observed that flexural cracking initiated at the base of the column. These cracks 

propagated to the middle of the height of the column. Initial hairline shear cracks were observed, 

which increased as the load increased. Concrete crushing and concrete cover spalling were 

observed at failure. 
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Chapter 10 - Formulation and Implementation 

In this chapter, the developed procedure based on the simplified modified compression 

field theory (Bentz et al., 2006) as adopted by AASHTO LRFD Bridge Design Specifications 

(2014) is presented. In the formulation part, the equations used will be presented and explained. 

In the implementation part, the procedure followed will be presented and clarified in detail. It 

should be noted that the equations presented are for non prestressed rectangular concrete 

columns. 

 Formulation 

This section includes the equations provided in AASHTO LRFD (2014) that were used in 

the procedure. The limits imposed by the specification will also be presented and discussed. 

 Effective Section Dimensions 

The simplified modified compression field theory assumes that the concrete shear 

stresses are uniformly distributed over an effective area defined by the two effective section 

dimensions. The effective web width (bv) is defined as the minimum web width parallel to the 

neutral axis. For rectangular sections, which are the focus of this work, the effective web width is 

taken equal to the section width (b). 

𝑏𝑣 = 𝑏 ( 10-1 ) 

As for the effective shear depth, it is defined as the distance perpendicular to the neutral 

axis between the resultants of tensile and compressive forces induced in the section due to 

flexure only. The effective shear depth is obtained as follows: 

𝑑𝑣 =
𝑀𝑛
𝐴𝑠𝑓𝑦

> max(0.9𝑑𝑒 , 0.72ℎ) ( 10-2 ) 

𝑑𝑒 = 𝑑𝑠 (𝑓𝑜𝑟 𝑛𝑜𝑛𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠) ( 10-3 ) 

𝑤ℎ𝑒𝑟𝑒 𝑀𝑛 = 𝑝𝑢𝑟𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 

𝐴𝑠 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 (𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑). 

𝑓𝑦 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑖𝑛𝑔 𝑏𝑎𝑟𝑠. 

ℎ = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡. 

𝑑𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑖𝑏𝑒𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑟𝑒𝑖𝑛𝑓.  
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 Minimum Transverse Reinforcement 

In order to control the propagation of diagonal cracks and improve the ductility of the 

section, a minimum amount if transverse reinforcement is necessary. This amount increases as 

the concrete strength (f’c) increases, as is obtained from the following equation: 

𝐴𝑣,𝑚𝑖𝑛 = 0.0316√𝑓𝑐′
𝑏𝑣𝑠

𝑓𝑦𝑡
 ( 10-4 ) 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑣,𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑖𝑛𝑣𝑜𝑓𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠. 

𝑓𝑐
′ = 𝑢𝑛𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ. 

𝑠 = 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡. 

𝑓𝑦𝑡 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑏𝑎𝑟𝑠. 

𝑓𝑦𝑡 ≤ 100 𝑘𝑠𝑖. 

The amount of the transverse reinforcement affects the calculations. The case where 

transverse reinforcement available is greater than the minimum will be referred to as Case I. 

Otherwise, sections with less than the minimum will be referred to as Case II. 

 Maximum Spacing of Transverse Reinforcement 

In order to provide sufficient crack control, sections with high shear stress (vu) require 

closely spaced transverse reinforcement. The maximum allowable transverse reinforcement 

spacing (smax) is determined as follows: 

𝑠𝑚𝑎𝑥 = {
min(0.8𝑑𝑣, 24 𝑖𝑛)  𝑖𝑓 𝑣𝑢 < 0.125𝑓𝑐

′

min(0.4𝑑𝑣, 12 𝑖𝑛)  𝑖𝑓 𝑣𝑢 ≥ 0.125𝑓𝑐
′ ( 10-5 ) 

𝑣𝑢 =
𝑉

𝑏𝑣𝑑𝑣
 ( 10-6 ) 

𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

This limit is known as the spacing limit hereafter, and shall be checked to ensure that the 

section satisfies AASHTO LRFD (2014) requirements. 

 Determination of the Longitudinal Tensile Strain 

Longitudinal tensile strain (εs) is obtained for the section at the centroid of tension 

reinforcement. Its value is obtained from the following expression: 
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𝜀𝑠 =

|𝑀|
𝑑𝑣
+ 0.5𝑁 + 𝑉

𝐸𝑠𝐴𝑠
≤ 0.006 

( 10-7 ) 

𝑤ℎ𝑒𝑟𝑒 𝑀 = 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡. 

𝑁 = 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒. 

𝑉 = 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 (𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝 𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛). 

𝐸𝑠 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑡𝑦 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙. 

If the longitudinal strain value is obtained to be negative, this indicates that the section is 

in compression, and concrete area can be included in the calculations as follows: 

𝜀𝑠 =

|𝑀|
𝑑𝑣
+ 0.5𝑁 + 𝑉

𝐸𝑠𝐴𝑠 + 𝐸𝑐𝐴𝑐𝑡
≥ −0.0004 

( 10-8 ) 

𝑤ℎ𝑒𝑟𝑒 𝐸𝑐 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒. 

𝐴𝑐𝑡 = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑎𝑟𝑒𝑎 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑖𝑑𝑒 (𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑). 

A limit on the value of moment is enforced for this equation, hereafter known as the 

minimum moment limit. The minimum value of moment to be taken in the analysis is expressed 

in the following equation: 

𝑀𝑚𝑖𝑛 = 𝑉. 𝑑𝑣 ( 10-9 ) 

 Determination of Diagonal Compressive Stress Inclination 

The angle of inclination of diagonal compressive stresses (θ), also taken as the angle 

between a strut and the longitudinal axis of the member, is obtained according to the following 

expression: 

𝜃 = 29 + 3500𝜀𝑠 ≤ 75 (𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) ( 10-10 ) 

This angle corresponds to inclination of the shear cracks developed in the section. 

 Determination of Cracked Concrete’s Ability to Transmit Tension and Shear 

The parameter (β) indicates the ability of diagonally cracked concrete to transfer tension 

and shear. Determining this parameter depends on the amount of transverse reinforcement, 

equation ( 10-1 ). For case I, the following equation can be used: 

𝛽 =
4.8

1 + 750𝜀𝑠
 ( 10-11 ) 
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In Case II, where the transverse reinforcement is below the minimum required by 

AASHTO LRFD (2014), the crack spacing parameter (sxe) is added to the equation as follows: 

𝛽 =
4.8

(1 + 750𝜀𝑠)

51

(39 + 𝑠𝑥𝑒)
   ( 10-12 ) 

𝑠𝑥𝑒 = 𝑠𝑥
1.38

𝑎𝑔 + 0.63
 ( 10-13 ) 

𝑠𝑥 = min(𝑑𝑣, 𝑠𝑙) ( 10-14 ) 

𝑤ℎ𝑒𝑟𝑒 𝑎𝑔 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑠𝑖𝑧𝑒. 

𝑠𝑙 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑎𝑙 𝑐𝑟𝑎𝑐𝑘 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡. 

For longitudinal crack control reinforcement, the area in each layer (Al) is limited by the 

following equation: 

𝐴𝑙 ≥ 0.003𝑏𝑣𝑠𝑥 ( 10-15 ) 

 Nominal Shear Resistance 

The shear resistance of a concrete member is obtained by summing the concrete 

component (Vc) and the steel component (Vs). The shear resistance may not exceed an upper 

limit, in order to prevent crushing of concrete before yielding of transverse reinforcement. This 

limit will be referred to as the crushing limit hereafter. 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 ≤ 0.25 𝑓𝑐
′𝑏𝑣𝑑𝑣 ( 10-16 ) 

The concrete contribution relies on the tensile and shear stresses induced in the concrete, 

while the shear contribution relies on the tensile stresses that develop in the transverse 

reinforcement. These components are obtained as follows: 

𝑉𝑐 = 0.0316𝛽√𝑓𝑐′𝑏𝑣𝑑𝑣 ( 10-17 ) 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣(cot(𝜃) + 𝑐𝑜𝑡(𝛼)) sin(𝛼)

𝑠
 ( 10-18 ) 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡. 

𝐴𝑣 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑐𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠. 

For sections with closed stirrups, the steel component expression simplifies to: 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣 cot(𝜃)

𝑠
 ( 10-19 ) 
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 Yielding Limit 

The shear resistance was obtained from equation ( 10-16 ). This value does not consider 

the stress in longitudinal reinforcement bars. In order to determine the force induced in these 

bars, the equilibrium in the free body diagram (Figure 10-1) was examined by taking moments 

about point O. 

 

Figure 10-1: Free Body Diagram for Yielding Limit Derivation. 

The resulting expression for the force in the longitudinal bars (Fl) after simplification is 

as follows: 

𝐹𝑙 = 𝑇 =
𝑀

𝑑𝑣
+
𝑃

2
+ 𝑉 cot(𝜃) − 0.5𝑉𝑠 cot(𝜃) ≤ 𝐴𝑠𝑓𝑦 ( 10-20 ) 

If the force computed exceeds the yielding force, the shear is recalculated so that this 

limit is not exceeded per the following expression: 

𝑉 =
(𝐴𝑠𝑓𝑦 −

𝑀
𝑑𝑣
−
𝑃
2 + 0.5𝑉𝑠 cot

(𝜃))

cot(𝜃)
 

( 10-21 ) 

 Implementation 

In this section, the procedure implemented will be described in light of the equations 

provided in the formulation part. First, an overview of the procedure will be presented. This part 

will explain how everything ties together. Then, details on calculations involved in each part will 

be presented in their respective sections. 
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 Overview of the Procedure 

To start the analysis, specific input parameters are required. These include parameters 

related to the section geometry, concrete, and longitudinal and transverse steel reinforcement. 

The parameters required are listed below: 

 Geometric properties: This includes the width (b), height (h), clear cover (cc). 

 Concrete properties: This includes the compressive strength (f’c). 

 Longitudinal steel properties: This includes the modulus of elasticity (Es), yield 

strength (fy), number of bars along the width, number of bars along the height, 

and steel bar diameter (dl). 

 Transverse steel properties: This includes the modulus of elasticity (Es), yield 

strength (fyt), ties spacing (s’), number of extra legs along the width, number of 

extra legs along the height, and tie bar diameter (dt). 

After providing the input parameters, the axial load (Pinp), which the section is subjected 

to, and for which the shear analysis is required, is input. The section is then analyzed under axial 

load and bending moment to obtain its interaction diagram at zero shear based on the procedure 

described by Abd El Fattah (2012). This procedure was developed to predict the axial force-

bending moment interaction domain for confined sections, in which the moment is equal or 

greater than that in unconfined sections. The procedure implemented in KDOT Column Expert 

has been validated extensively. Two critical points are extracted from this analysis, which are the 

pure axial point (Pmax) and the maximum moment at the input axial point level (Mmax). The input 

axial load value must not exceed the maximum pure axial capacity of the section, as expressed 

below: 

𝑃𝑖𝑛𝑝 ≤ 𝑃𝑚𝑎𝑥 ( 10-22 ) 

Next, the effective shear area is determined. These parameters include the effective web 

width (bv) and the effective shear depth (dv), which are evaluated according to equations ( 10-1 ) 

and ( 10-2 ), respectively. After that, the minimum amount of transverse reinforcement (Av,min) is 

computed from equation ( 10-4 ), and compared to the amount of transverse reinforcement 

available in the section. Based on the comparison, the case number, which mainly affects the 

calculation of the factor (β), is determined. The concrete crushing limit is calculated from 

equation ( 10-16 ) at this stage as its value does not change for the same section. Next, the 

maximum value of shear (Vmax) is determined. The minimum moment limit is crucial in this part 
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of the calculation which controls the first segment of the interaction diagram (Figure 10-2). 

Further details about the calculation of the maximum shear will be provided in the next section. 

If from the analysis, the moment value (Mmin) specified by the AASHTO LRFD (2014) 

provisions exceeds the maximum moment capacity of the section at the applied axial load level 

(Mmax), the analysis is stopped here, and the interaction diagram will consists of a straight line 

until the maximum moment value is reached. Otherwise, moment is incremented between the 

initial moment and maximum values, and the shear capacity is obtained at each increment. This 

calculation affects the inclined segment of the interaction diagram. The slope of this segment 

could change depending whether analysis limits are reached. As mentioned earlier, analysis is 

stopped when the moment applied reaches the maximum moment capacity of the section at the 

applied axial load level. Detailed explanation of the calculations involved in this step will be 

provided later in this chapter. A flowchart of this overview is provided in Figure 10-3. 

 

Figure 10-2: Sample Shear-Bending Moment Interaction Diagram. 
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Figure 10-3: Flowchart for Overview of Shear Calculation Procedure. 

 General Shear Capacity Calculation Procedure 

This procedure applies for all points after the moment applied exceeds the minimum 

moment (Mmin) obtained from equation ( 10-9 ). The analysis is initiated with the last point 

obtained from the initial shear capacity procedure (Mmin, Vmax). The moment (M) is incremented 

between the minimum moment and the maximum moment for the section. This moment in 

addition to the previous shear value (Vinp) and the applied axial load (Pinp) are used to determine 

the axial strain from equation ( 10-8 ). After that, the inclination angle (θ) is computed from 

equation ( 10-10 ).Next, the amount of transverse reinforcement is compared to the minimum 

specified by AASHTO from equation ( 10-4 ). Case I corresponds to sections with an amount 

greater than the minimum, and for that, the transmissibility factor (β) is computed from equation 

 



124 

 

( 10-11 ). Otherwise, Equations ( 10-12 ), ( 10-13 ) and ( 10-14 ) are used. In this case, the 

maximum aggregate size (ag) is required as an input in equation ( 10-13 ). With the parameters θ 

and β known, the shear resistance provided by the concrete (Vc) and steel (Vs) can be calculated 

from equations ( 10-17 ) and ( 10-18 ), respectively. The shear resistance is then obtained from 

equation ( 10-16 ). The equation sets a maximum limit on the shear capacity to prevent 

premature crushing of concrete before yielding has occurred in the transverse reinforcement. The 

next limit to check for is the yielding tension limit. The force in the longitudinal bars (Fl) is 

calculated from equation ( 10-20 ), and compared to the maximum force at yielding. If the force 

computed exceeds the limit, the shear is recalculated so that the limit is not exceeded according 

to equation ( 10-21 ). The value obtained for shear (Vout) is compared with the input shear (Vinp). 

It is said that the calculation converges when the difference between the two shears does not 

exceed the specified tolerance. 

|𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛𝑝| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ( 10-23 ) 

If convergence is achieved, the final shear value is taken as the section’s shear capacity in 

combination with the current moment increment and the applied axial force. The moment is then 

increased, and the analysis is repeated until the maximum moment (Mmax) is reached. In the case 

convergence is not achieved, the last output shear value is taken to be the new input value, and 

the analysis is then repeated until convergence is reached for that point. The resulting set of 

points is then used to plot the bending moment-shear force interaction diagram under the applied 

axial force. The described procedure is summarized in the flowchart shown in Figure 10-4. 
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Figure 10-4: Flowchart for General Procedure. 

 Maximum Shear Capacity Calculation Procedure 

For the first segment of the interaction diagram, the procedure to calculate the shear 

capacity differs from the general procedure due to the fact that no initial estimate for the shear 

capacity is available to calculate the longitudinal strain (εs) and base the new shear value on it. 

To accommodate that, the inclination angle is assumed (θ) to be 45o. This value is plugged into 

equation ( 10-10 ) to obtain the axial strain as follows: 

𝜀𝑠 =
𝜃 − 29

3500
= 4.57 × 10−3 ( 10-24 ) 
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Next, depending on the present case, the shear transmission factor (β) is determined. For 

case I, it is obtained from equation ( 10-11 ) as follows: 

 𝛽 =
4.8

1 + 750𝜀𝑠
= 1.084 ( 10-25 ) 

Otherwise, the factor is obtained from equation ( 10-12 ) accounting for the effect of bar 

spacing and aggregate size. The concrete’s and steel’s contributions to the shear capacity are 

then obtained from equations ( 10-17 ) and ( 10-18 ), respectively. The obtained shear capacity is 

then compared with the crushing limit as shown in equation ( 10-16 ). The minimum of the two 

is then taken to be the initial estimate of the shear capacity. This value is then taken as an input 

for the general procedure explained earlier, and a new axial strain value is computed. From that, 

a new estimate for the shear capacity is obtained after comparing with all of the applicable limits 

explained earlier. The iterations continue until the difference between the input and output shear 

values is within the defined tolerance. The value obtained after convergence is taken to be initial 

shear value (Vinit). Using this value, the minimum moment (Mmin) to be considered in the 

analysis is calculated from equation ( 10-9 ). This minimum moment is compared against the 

pure moment capacity of the section to ensure it does not exceed it. Now, the general procedure 

is applied to obtain the shear capacity at the minimum moment, using the initial shear value as 

the input shear. Iterations are performed until convergence is reached, and the new shear capacity 

is then taken to be the maximum shear capacity of the section (Vmax). The initial shear value is 

then discarded. With this, two points have been calculated on the interaction diagram: (0, Vmax) 

and (Mmin, Vmax). If the maximum moment capacity is reached, the analysis is then halted and the 

interaction diagram will consist of a horizontal line connecting the two points and a vertical line 

going down to (Mmax, 0). Otherwise, the maximum shear is then taken as the input shear in the 

general procedure for the first point on the inclined portion of the interaction diagram. The 

calculations involved have been detailed in the previous section. Figure 10-5 provides a 

flowchart that summarizes the procedure. 
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Figure 10-5: Flowchart for Maximum Shear Capacity Calculation 

  

 



128 

 

Chapter 11 - Results and Discussion 

The aforementioned procedure was implemented in KDOT Column Expert software, 

which was then used to generate axial force-shear force-bending moment interaction diagrams. 

In the first section, a brief overview of the analysis program Response-2000 is provided (Bentz, 

2000).The second section includes the validation of the proposed approach against Response-

2000 and experimental points found in the literature. 

 Response-2000 

Response-2000 is a sectional analysis program that was developed by Evan C. Bentz in a 

project supervised by Professor Michael P. Collins. (2000). The GUI-based software was written 

for Windows and is provided for free by the author. The software can calculate the strength and 

ductility of a reinforced concrete cross-section subjected to shear, moment, and axial load. The 

interaction domain is obtained based on the modified compression field theory (Vecchio and 

Collins, 1986). The program provides the shear-flexure interaction diagram based on AASHTO 

1999 provisions under a constant axial load. In this work, the proposed procedure was based on 

the simplified modified compression field theory (Bentz, 2006) and AASHTO LRFD (2014) 

provisions. The interaction diagrams obtained were compared to those obtained from Response-

2000 in the following section. 

 Experimental Validation 

Sivaramakrishnan (2010) assembled a database of rectangular concrete columns based on 

the Pacific Earthquake Engineering Research center (PEER) structural database (Berry et al., 

2004) and based on additional reports and manuscripts. From this database (Ghannoum and 

Sivaramakrishnan, 2012), the results obtained by Umehara and Jirsa (1982), Aboutaha et al. 

(1999), Priestley et al. (1994a and 1994b), Ousalem et al. (2003), Wight and Sozen (1973), 

Yarandi (2007), Wehbe et al. (1998), Pujol (2002), and Melek and Wallace (2004) were used to 

verify the proposed approach. The specifications for these specimens are provided in Table 11-1, 

while the experimental results are shown in Table 11-2. It should be noted that the x-axis was 

taken parallel to the width of the section, lateral loads were applied perpendicular to the x-axis, 

and only extra transverse reinforcement legs parallel to the lateral load (along y-axis) were 

reported, as traverse reinforcement in the other direction does not contribute to the shear 
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capacity. Finally, the database included columns that were tested in different configurations 

including single cantilever, double cantilever and double curvature. The induced bending 

moment for every configuration was calculated as follows: 

𝑀𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 ∗ 𝑎 

𝑤ℎ𝑒𝑟𝑒 𝑀𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 

𝑉𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑜𝑎𝑑 (𝑠ℎ𝑒𝑎𝑟) 

𝑎 = 𝑠ℎ𝑒𝑎𝑟 𝑠𝑝𝑎𝑛 
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Table 11-1: Specimens’ Properties. 

Source Code b h cc a dl 
Bars 
in x 

Bars 
in y 

dt s' 
Extra legs 

in x 
f'c fy fyt 

Units (If 
Applicable) 

 in in in in in   in in  psi ksi ksi 

Umehara and Jirsa 
(1982) 

CUS 9.00 16.00 0.98 17.91 0.75 2 5 0.24 3.50 0 5060.50 63.95 60.03 

CUW 16.00 9.00 0.98 17.91 0.75 5 2 0.24 3.50 2 5060.50 63.95 60.03 

Aboutaha et al. 
(1999) 

SC3 36.00 18.00 1.50 48.00 0.98 8 2 0.37 16.00 3 3175.50 62.93 58.00 

SC9 18.00 36.00 1.50 48.00 0.98 2 8 0.37 16.00 0 2320.00 62.93 58.00 

Priestley et al. 
(1994a) 

UnitR3A 24.00 16.00 0.87 48.00 0.75 8 5 0.25 5.00 0 5001.05 68.01 47.00 

UnitR5A 24.00 16.00 0.87 48.00 0.75 8 5 0.25 5.00 0 4700.90 68.01 47.00 

Ousalem et al. 
(2003) 

D13 11.81 11.81 1.08 17.72 0.50 5 5 0.25 1.97 0 3784.50 64.82 57.71 

D14 11.81 11.81 1.08 17.72 0.50 5 5 0.25 1.97 0 3784.50 64.82 57.71 

Wight and Sozen 
(1973) 

WI_40_033aE 6.00 12.00 1.38 34.49 0.75 2 2 0.25 5.00 0 5031.50 71.92 50.03 

WI_40_048E 6.00 12.00 1.38 34.49 0.75 2 2 0.25 3.50 0 3784.50 71.92 50.03 

WI_25_033_E 6.00 12.00 1.38 34.49 0.75 2 2 0.25 5.00 0 4872.00 71.92 50.03 

WI_0_048W 6.00 12.00 1.38 34.49 0.75 2 2 0.25 3.50 0 3749.70 71.92 50.03 

WI_40_147_E 6.00 12.00 1.25 34.49 0.75 2 2 0.37 2.52 0 4857.50 71.92 45.97 

WI_40_092_E 6.00 12.00 1.25 34.49 0.75 2 2 0.37 4.02 0 4857.50 71.92 45.97 

Yarandi (2007) 
RRC 13.78 27.56 1.77 59.06 0.77 4 4 0.25 11.81 0 5075.00 58.00 58.00 

SRC 13.78 27.56 1.78 59.06 0.77 4 4 0.44 11.81 0 6090.00 58.00 58.00 

Wehbe et al. 
(1998) 

A1 15.00 24.00 1.10 91.93 0.75 4 7 0.24 4.25 2 3944.00 64.96 62.06 

A2 15.00 24.00 1.10 91.93 0.75 4 7 0.24 4.25 2 3944.00 64.96 62.06 

B1 15.00 24.00 0.98 91.93 0.75 4 7 0.24 3.25 2 4074.50 64.96 62.06 

B2 15.00 24.00 0.98 91.93 0.75 4 7 0.24 3.25 2 4074.50 64.96 62.06 

Pujol (2002) 

10-2-3N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 3.00 0 4888.73 65.68 59.58 

10-3-1.5N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 1.50 0 4658.79 65.68 59.58 

10-3-3N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 3.00 0 4338.87 65.68 59.58 

10-3-2.25N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 2.25 0 3968.97 65.68 59.58 

20-3-3N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 3.00 0 5278.63 65.68 59.58 
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Source Code b h cc a dl 
Bars 
in x 

Bars 
in y 

dt s' 
Extra legs 

in x 
f'c fy fyt 

10-1-2.25N 6.00 12.00 1.00 27.00 0.75 2 2 0.25 2.25 0 5292.50 65.69 59.58 

Melek and Wallace 
(2004) 

S10MI 18.00 18.00 1.50 72.00 1.00 3 3 0.38 18.00 0 5255.00 74.00 69.70 

S20MI 18.00 18.00 1.50 72.00 1.00 3 3 0.38 18.00 0 5255.00 74.00 69.70 

S30MI 18.00 18.00 1.50 72.00 1.00 3 3 0.38 18.00 0 5255.00 74.00 69.70 

S20HI 18.00 18.00 1.50 66.00 1.00 3 3 0.38 18.00 0 5125.00 74.00 69.70 

S20HIN 18.00 18.00 1.50 66.00 1.00 3 3 0.38 18.00 0 5125.00 74.00 69.70 

S30XI 18.00 18.00 1.50 60.00 1.00 3 3 0.38 18.00 0 5125.00 74.00 69.70 

 

Table 11-2: Experimental Results. 

Source Code P Vmax Mmax 

Units (If Applicable)  kip kip kip.ft 

Umehara and Jirsa (1982) 
CUS 120.15 72.53 108.27 

CUW 120.15 59.16 88.31 

Aboutaha et al. (1999) 
SC3 0.00 101.19 404.76 

SC9 0.00 144.49 577.97 

Priestley et al. (1994b) 
UnitR3A 114 141.10 564.40 

UnitR5A 114 169.70 678.80 

Ousalem et al. (2003) 
D13 121.39 59.77 88.25 

D14 121.39 66.47 98.14 

Wight and Sozen (1973) 

WI_40_033aE 42.49 22.20 63.81 

WI_40_048E 40.01 23.51 67.57 

WI_25_033_E 24.95 19.76 56.78 

WI_0_048W 0.00 22.11 63.54 

WI_40_147_E 40.01 26.92 77.38 

WI_40_092_E 40.01 27.24 78.29 

Yarandi (2007) 
RRC 290.89 116.24 572.07 

SRC 339.00 128.50 632.36 
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Source Code P Vmax Mmax 

Wehbe et al. (1998) 

A1 138.25 82.82 634.50 

A2 338.32 89.98 689.34 

B1 135.10 85.41 654.32 

B2 340.35 96.87 742.07 

Pujol (2002) 

10-2-3N 30.00 25.52 57.42 

10-3-1.5N 30.00 26.08 58.69 

10-3-3N 30.00 25.52 57.42 

10-3-2.25N 30.00 25.65 57.70 

20-3-3N 60.00 29.38 66.11 

10-1-2.25N 30.00 26.47 59.56 

Melek and Wallace 
(2004) 

S10MI 120.00 45.60 273.60 

S20MI 240.00 52.50 315.00 

S30MI 360.00 64.10 384.60 

S20HI 240.00 60.60 333.30 

S20HIN 240.00 60.10 330.55 

S30XI 360.00 76.60 383.00 

 

Table 11-3: Notations for Specifications and Results. 

Symbol Description Symbol Description 

b Section width f'c Concrete compressive strength 

h Section height fy Longitudinal steel yield stress 

cc Clear cover fyt Transverse steel yield stress 

a Shear span P Applied axial load 

dl Longitudinal bar diameter Vmax Maximum applied lateral load 

dt Transverse bar diameter Mmax Maximum induced bending moment 

s’ Clear tie spacing   



133 

 

In the next part, the shear-moment interaction diagram for each specimen at a constant 

axial load obtained from KDOT Column Expert and Response-2000 will be provided. The 

experimental data point corresponding to each specimen will be plotted as a point on the 

interaction diagram. 

 Umehara and Jirsa (1982) 

 

Figure 11-1: Interaction Diagram for Specimen CUS by Umehara and Jirsa (1982). 
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Figure 11-2: Interaction Diagram for Specimen CUW by Umehara and Jirsa (1982). 

Figure 11-1 and Figure 11-2 show the shear-moment interaction diagrams obtained for 

specimens tested by Umehara and Jirsa (1982) using both Response-2000 and KDOT Column 

Expert. The axial load level was maintained at 120 kip for these specimens. The two specimens 

had identical properties, with the only difference being the direction of loading. Specimen CUS 

was loaded so that moment was induced about the strong axis, while specimen CUW was loaded 

so that moment was induced about the weak axis. For both specimens, the results from the two 

programs were conservative. It is observed that the curves were close to each other, except at the 

level of zero shear for specimen CUS. Response-2000 predicted higher moment capacity (219 

k.ft) compared to the value obtained from KDOT Column Expert (165 k.ft). As described in , the 

formulation chapter, KDOT Column Expert was initially developed to predict the axial force-

bending moment interaction domain for confined sections, in which the moment is equal or 

greater than that in unconfined sections. The procedure implemented in KDOT Column Expert 

has been validated extensively. Unfortunately, as the source code of Response-2000 was not 

available, further investigation was not possible. Overall, this case showed good agreement 

between the present procedure and experimental results. 
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 Aboutaha et al. (1999) 

 

Figure 11-3: Interaction Diagram for Specimen SC3 by Aboutaha et al. (1999). 

 

Figure 11-4: Interaction Diagram for Specimen SC9 by Aboutaha et al. (1999). 

Figure 11-3 and Figure 11-4 show the shear-moment interaction diagrams obtained for 

specimens tested by Aboutaha et al. (1999) using both Response-2000 and KDOT Column 
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properties except for their compressive strength. Specimen SC3 was loaded so that moment was 

induced about the weak axis, while specimen SC9 was loaded so that moment was induced about 

the strong axis. For both specimens, the results from the two programs were conservative, 

especially for specimen SC9 as shown in Figure 11-4. KDOT Column Expert provided higher 

values for both shear and moment compared to Response-2000. Overall, this case showed good 

agreement between the present procedure and experimental results. 

 Priestley et al. (1994b) 

 

Figure 11-5: Interaction Diagram for Specimen UnitR3A by Priestley et al. (1994b). 
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Figure 11-6: Interaction Diagram for Specimen UnitR5A by Priestley et al. (1994b). 

Figure 11-5 and Figure 11-6 show the shear-moment interaction diagrams obtained for 

specimens tested by Priestley et al. (1994b) using both Response-2000 and KDOT Column 

Expert. The axial load was fixed at 114 kip for these specimens. The two specimens had identical 

properties except for their compressive strength. Both specimens were loaded so that moment 

was induced about the weak axis. For both specimens, the results from the two programs were 

conservative. KDOT Column Expert provided marginally higher values for both shear and 

moment compared to Response-2000. Overall, this case showed good agreement between the 

present procedure and experimental results. 
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 Ousalem et al. (2003) 

 

Figure 11-7: Interaction Diagram for Specimens D13 and D15 by Ousalem et al. (2003). 

Figure 11-7 shows the shear-moment interaction diagrams obtained for specimens tested 

by Ousalem et al. (2003) using both Response-2000 and KDOT Column Expert. The axial load 

was fixed at 121.39 kip for these specimens. As the two specimens had identical properties, the 

experimental points are shown on the same figure. For both specimens, the results from the two 

programs were conservative. Again, a discrepancy in the moment capacity at zero shear is 

observed. Response-2000 predicted higher moment capacity (125 k.ft) compared to the value 

obtained from KDOT Column Expert (100 k.ft). Further investigation was not possible as the 

source code for Response-2000 was not available. Overall, this case showed good agreement 

between the present procedure and experimental results. 
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 Wight and Sozen (1973) 

 

Figure 11-8: Interaction Diagram for Specimen WI_40_033aE by Wight and Sozen (1973). 

 

Figure 11-9: Interaction Diagram for Specimen WI_40_048E by Wight and Sozen (1973). 
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Figure 11-10: Interaction Diagram for Specimen WI_25_033_E by Wight and Sozen (1973). 

 

Figure 11-11: Interaction Diagram for Specimen WI_0_048W by Wight and Sozen (1973). 
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Figure 11-12: Interaction Diagram for Specimen WI_40_147_E by Wight and Sozen (1973). 

 

Figure 11-13: Interaction Diagram for Specimen WI_40_092_E by Wight and Sozen (1973). 
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WI_40_033aE, WI_40_048E, WI_25_033_E, and WI_0_048W. The stirrups for the first group 

were made of #2 bars. The second group includes specimens WI_40_147_E and WI_40_092_E, 

and their stirrups were made of #3 bars. All specimens were loaded so that moment was induced 

about the strong axis. The axial load applied was different for each specimen and ranged from 

zero (specimen WI_0_048W) to 42.5 kip (specimen WI_40_033aE). The aforementioned figures 

show that the results from both programs were conservative. For these specimens, the curves 

obtained were close to each other, with Response-2000 values being marginally higher for both 

shear and moment compared to KDOT Column Expert. The only considerable difference is 

observed in the first portion of the curve for specimen WI_40_147_E. The shear value obtained 

from KDOT Column Expert was 40.47 kip, while the value obtained from Response-2000 was 

50.65 kip. Further investigation into the discrepancy is provided next. 

As described earlier in the implementation chapter, the first step is to determine an initial 

value for the shear at the prescribed axial load level with zero bending moment applied. This 

value was determined to be 60.65 kip. The effective shear depth was calculated to be 9 in, which 

agreed with the value provided by Response-2000. The minimum moment was then calculated 

per equation ( 10-9 ) as follows: 

𝑀𝑚𝑖𝑛 = 60.65 ∗  9 =  545.85 𝑘. 𝑖𝑛 = 45.49 𝑘. 𝑓𝑡 

The procedure is repeated with the new moment value included in the calculations. The 

shear for this case was obtained as 46.66 kip, however, the force induced in the longitudinal steel 

due to this combination per equation ( 10-20 ) was 70.41 kip, which was higher than the 

maximum force of 63.29 kip obtained in the yielding case. Due to the yielding limit, the shear 

had to be decreased to the value provided by equation ( 10-21 ), which came out to be 40.47 kip. 

This point is on both curves provided by KDOT Column Expert and Response-2000. As this 

point is the one that corresponds to the minimum value of moment (45.49 k.ft) specified by 

AASHTO LRFD (2014), the shear value cannot exceed the one obtained from this calculation. It 

appears that Response-2000 is allowing the moment to drop until the value of 39.15. As the 

source code is not available, further examination is not possible. Overall, this case showed good 

agreement between the proposed procedure and experimental results. 
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 Yarandi (2007) 

 

Figure 11-14: Interaction Diagram for Specimen RRC by Yarandi (2007). 

 

Figure 11-15: Interaction Diagram for Specimen SRC by Yarandi (2007). 
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compressive strength. Specimen RRC and specimen SRC were subjected to axial load of 291 kip 

and 339 kip, respectively. The curves for both specimen showed similar behavior and were 

conservative. Response-2000 provided higher values for shear capacity before the minimum 

moment limit imposed by AASHTO LRFD (2014) was reached, after which KDOT Column 

Expert provided higher predictions for the shear capacity. Overall, these cases showed good 

agreement between the present procedure and experimental results. 

 Wehbe et al. (1998) 

 

Figure 11-16: Interaction Diagram for Specimen A1 by Wehbe et al. (1998). 
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Figure 11-17: Interaction Diagram for Specimen A2 by Wehbe et al. (1998). 

 

Figure 11-18: Interaction Diagram for Specimen B1 by Wehbe et al. (1998). 
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Figure 11-19: Interaction Diagram for Specimen B2 by Wehbe et al. (1998). 
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 Pujol (2002) 

 

Figure 11-20: Interaction Diagram for Specimen 10-2-3N by Pujol (2002). 

 

Figure 11-21: Interaction Diagram for Specimen 10-3-1.5N by Pujol (2002). 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

Sh
ea

r 
(k

ip
)

Moment (kip.ft)

Axial Force = 30 kip

Response-2000 KDOT Column Expert Experiment

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

Sh
ea

r 
(k

ip
)

Moment (kip.ft)

Axial Force = 30 kip

Response-2000 KDOT Column Expert Experiment



148 

 

 

Figure 11-22: Interaction Diagram for Specimen 10-3-3N by Pujol (2002). 

 

Figure 11-23: Interaction Diagram for Specimen 10-3-2.25N by Pujol (2002). 
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Figure 11-24: Interaction Diagram for Specimen 20-3-3N by Pujol (2002). 

 

Figure 11-25: Interaction Diagram for Specimen 10-1-2.25N by Pujol (2002). 
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other specimens were subjected to an axial load of 30 kip. For all the specimens, the curves 

obtained were conservative. The curves for specimen 10-2-3N and specimen 10-3-1.5N (Figure 

11-20 and Figure 11-21) behaved similarly. It was observed that the behavior close to zero 

moment level and zero shear level was close between KDOT Columns Expert and Response-

2000. The major difference was observed after the moment exceeded the minimum allowed by 

AASHTO LRFD (2014). At this point the shear values provided by KDOT Column Expert were 

higher, however, they were still in agreement with the experimental results. Next, curves for 

specimen 10-3-3N and specimen 10-3-2.25N (Figure 11-22 and Figure 11-23) exhibited similar 

behavior. In this case, the results obtained from Response-2000 were higher. The experimental 

points were very close to the Response-2000 curve, and actually on the curve for specimen 10-3-

2.25N. KDOT Column Expert provided more conservative results. The moment at zero shear 

demonstrated the discrepancy pointed out earlier in previous cases. Specimen 20-3-3N (Figure 

11-24) showed similar behavior to the first two specimens, and both curves were conservative, 

with KDOT Column Expert predicting higher values for shear capacity. Finally, Figure 11-25 for 

specimen 10-1-2.25N showed that both curves were conservative, with KDOT Column Expert 

calculating larger values for the maximum moment on the section, which correlated very well 

with the experimental. For this case, the moment capacity of the section was reached before this 

value. Further examination showed similar behavior to that encountered in Wight and Sozen 

(1973) specimens, where the constant shear calculated as per AASHTO LRFD (2014) provisions 

induced a force in longitudinal bars that exceeded the yielding limit. This necessitated lowering 

the shear value so that the stress in the longitudinal bars would not exceed the yield stress. 

Overall, these cases showed good agreement between the present procedure and experimental 

results. 
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 Melek and Wallace (2004) 

 

Figure 11-26: Interaction Diagram for Specimen S10MI by Melek and Wallace (2004). 

 

Figure 11-27: Interaction Diagram for Specimen S20MI by Melek and Wallace (2004). 
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Figure 11-28: Interaction Diagram for Specimens S30MI and S30XI by Melek and Wallace 

(2004). 

 

Figure 11-29: Interaction Diagram for Specimens S20HI and S20HIN by Melek and 

Wallace (2004). 
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Expert. These specimens had the same cross-section and reinforcement, but differed in the 

compressive strength. S10, S20, S30 specimens were subjected to axial force of 120 kip, 240 kip, 

360 kip, respectively. All curves showed similar behavior. As it can be seen in Figure 11-26 and 

Figure 11-27 S10MI and S20MI, the results provided from KDOT Column Expert were slightly 

on the unconservative side for these cases, however, the experimental points were close to the 

present curve. For the rest of the figures, every two specimens that shared the same axial loading 

are shown on the same figure. As it can be seen in Figure 11-28 and Figure 11-29, the results 

obtained from both Response-2000 and KDOT Column Expert were reasonably conservative, 

with KDOT Column Expert providing higher values for shear capacity. Overall, these cases 

showed good agreement between the present procedure and experimental results. 
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Chapter 12 - Conclusions and Recommendations 

 Conclusions 

In this study, a procedure to determine the shear capacity of rectangular reinforced 

concrete columns under combined axial load and bending moment was formulated. The 

procedure was based on AASHTO LRFD (2014) provisions, which were established according 

to the simplified modified compression field theory. The developed procedure was then 

implemented in “KDOT Column Expert” confined analysis software version 6.0. The software is 

currently capable of generating the axial load-shear force-bending moment interaction domain. 

The software was then used to generate interaction diagrams, which were compared to 

“Response-2000” software (Bentz, 2000) and experimental values. The present model’s results 

showed good agreement with the experimental data. Additionally, the results were shown to be 

conservative for many of the cases tested. It is concluded that the present procedure and the 

software in which it was implemented, KDOT Column Expert, are viable tools to accurately 

predict the combined axial load, shear and bending moment behavior in rectangular concrete 

columns. 

 Recommendations 

The following topics could be extended to the augment of this research, address some of 

the issues encountered, and improve the quality of the results: 

 It is recommended that more experimental studies be conducted on reinforced 

concrete sections with high aspect ratios, as literature is currently lacking these 

results. 

 For future work, the present procedure could be extended to account for biaxial 

shear and bending moment. Currently, the simplified modified compression field 

theory does not account for that. 

 Fore future work, the proposed procedure could be extended to include sections 

confined with FRP with regards to shear capacity contribution. As FRP 

confinement does not affect the shear capacity of the section, it is postulated that 

the simplified compression field theory would still apply, pending experimental 

verification.  
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