
FÚTBOL STRATEGIES APPLIED TO OPTIMIZE COMBINATORTIAL PROBLEMS

TO CREATE EFFICIENT RESULTS – THE SOCCER HEURISTIC

by

KRISTA M. KUBIK

B.S., Kansas State University 2015

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2015

Approved by:

Major Professor

Dr. Todd Easton

CORE Metadata, citation and similar papers at core.ac.uk

Provided by K-State Research Exchange

https://core.ac.uk/display/33355024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Heuristics are often implemented to find better solutions to computationally

challenging problems. Heuristics use varying techniques to search for quality solutions.

Several optimization heuristics have drawn inspiration from real world practices. Ant

colony optimization mimics ants in search of food. Genetic algorithms emulate traits

being passed from a parent to a child. Simulated annealing imitates annealing metal.

This thesis presents a new variable neighborhood search optimization heuristic,

fútbol Strategies applied to Optimize Combinatorial problems to Create Efficient Results,

which is called the SOCCER heuristic. This heuristic mimics fútbol and the closest player

to the ball performs his neighborhood search and players are assigned different

neighborhoods. The SOCCER heuristic is the first application of variable neighborhood

search heuristic that uses a complex structure to select neighborhoods.

The SOCCER heuristic can be applied to a variety of optimization problems. This

research implemented the SOCCER heuristic for job shop scheduling problems. This

implementation focused on creating a quality schedule for a local limestone company.

A small computational study shows that the SOCCER heuristic can quickly solve

complex job shop scheduling problems with most instances finishing in under an half an

hour. The optimized schedules reduced the average production time by 7.27%. This is

roughly a 2 day decrease in the number of days required to produce a month’s worth of

orders. Thus, the SOCCER heuristic is a new optimization tool that can aid companies

and researchers find better solutions to complex problems.

iii

Table of Contents

List of Figures ... v

List of Tables ... vi

Dedication ... vii

Acknowledgments.. viii

1. Introduction ... 1

1.1. Job Shop Scheduling ... 3

1.2. Research Motivation ... 3

1.3. Research Contribution .. 4

1.4. Outline... 5

2. Background ... 7

2.1. Job Shop Scheduling ... 7

2.2. Heuristics and Neighborhoods .. 9

 2.2.1. Common heuristics ... 12

 2.2.2. Hill Climbing .. 12

 2.2.3. Simulated Annealing ... 14

 2.2.4. Tabu Search .. 15

2.3. Variable Neighborhood Search Heuristic ... 17

3. The SOCCER Heurisitc .. 19

3.1. Fútbol ... 19

3.2. Transforming Fútbol into a Variable Neighborhood Search Heuristic 23

4. The Fútbol heuristic for Job Shop Scheduling .. 35

4.1. Problem Specifics ... 35

iv

4.2. The Fútbol Optimization heuristic to Job Shop Scheduling 36

4.3. Computational Study .. 41

5. Conclusion .. 50

5.1. Future Research .. 51

References ... 53

v

List of Figures

Figure 2.1 Graph of Optimality .. 13

Figure 2.2 Tabu Search ... 16

Figure 3.1 Fútbol Formations .. 21

vi

List of Tables

Table 2.1. Example Problem ... 10

Table 2.2. Initial Production Schedule .. 11

Table 2.3. New Production Schedule .. 11

Table 4.1. Various Iterations for 50 Customers .. 43

Table 4.2. Various Iterations for 100 Customers .. 44

Table 4.3. Various Iterations for 500 Customers ... 45

Table 4.4. Success Rate of Offensive Players.. 46

Table 4.5. Success Rate and Goals ... 46

Table 4.6. Celebration Statistics ... 47

Table 4.7. Summary Statistics .. 48

vii

Dedication

This thesis is dedicated to my parents, Richard and Elaine, and my siblings,

Lauren, Kalen, and Rachel.

viii

Acknowledgments

I would like to acknowledge Dr. Todd Easton. Without his patience and

knowledge this research would not have been possible. I would also like to recognize my

father, Richard Kubik, whose insight and advice concerning program architecture was an

invaluable tool for implementing such a complex system.

1

Chapter 1: Introduction

Fútbol, called soccer in the United States, is the most popular sport in the world.

During the 2010 FIFA World Cup over 3.2 billion people watched at least one minute of

a game [25]. With 22 players on the field, determining the best method to achieve the

most goals, while still prohibiting the other team from scoring, is intellectually

challenging. The result is numerous formations with different players having different

responsibilities. This complex nature of fútbol enables it to be an excellent framework for

a new optimization heuristic. The primary contribution of this thesis is the development

of fútbol Strategies applied to Optimize Combinatorial problems to Create Efficient

Results, the SOCCER heuristic, and applying this heuristic to a job shop scheduling

problem.

Heuristics are often implemented in order to find better solutions to

computationally challenging problems. This is typically done by moving between

neighboring solutions. If two solutions are similar according to some well-defined

measure, they are neighbors. Heuristics report the best found solution, but do not

guarantee optimality. The method of moving between solutions determines the type of

heuristic.

 One common heuristic used in optimization problems is simulated annealing.

This heuristic mimics the processes of annealing metal. When annealing metal, the best

results are obtained when the initial temperature is high and the metal cools slowly over

time. In the heuristic, one starts with a transition probability. This probability determines

the likelihood of one accepting worse solutions. As the number of iterations increases, the

probability decreases. Simulated annealing has been used numerous times to solve

2

various problems [33] including job shop scheduling problems. For instance, it has been

used to schedule maintenance work at power plants [32], job shop scheduling problems

[39], and class scheduling [4].

Genetic algorithms have also been used in a multitude of optimization problems.

This heuristics mimics evolution. When parents have children, some of their genes are

passed onto their child. For a genetic algorithm, certain traits from a solution are passed

on to the new child solution. Genetic algorithms have been used in numerous instances

[17], including job shop scheduling [5], [40].

Another common heuristic is ant colony optimization. This search is based on

how ants search for food. As an ant moves, it lays down a pheromone trail. A different

ant is not likely to take the same path if only one set of pheromones have been laid

because the ant that laid them did not return. However, if the ant returned on the same

path, twice the pheromones exist on the path and more ants are drawn to that path. This

heuristic uses this idea to reinforce certain searches, while discouraging others. The

heuristic has been used to solve a wide range of problems, including job shop scheduling

[35].

 Heuristics are valuable tools which can provide quality solutions to complex

problems. Each of the heuristics mentioned have different applications and use various

methods. This research provides a new heuristic, which is based on a fútbol game and the

way players move. To show the value of the heuristic, it is applied to job shop

scheduling.

3

1.1. Job Shop Scheduling

Manufacturing facilities have been used for centuries to produce goods. Typically,

a factory is either modelled as a flow shop or a job shop. A flow shop facility processes

each job on all machines in the same route. A standard flow shop operation is an

assembly line. For job shops, each job has a specified processing route. These routes

vary based on the product produced. Furthermore, the route must be completed in a set

sequential order.

A complete job shop schedule is an assignment of all jobs to machines at

specified times. This assignment must follow each job’s processing route. Furthermore,

the time each job is assigned to each machine must be equal to the time it takes to process

the job. It is important to note that a machine can only process one job at a given time.

 Numerous heuristics have been used to find quality solutions to job shop

scheduling problems. Some common heuristics which have been applied to job shop

scheduling are simulated annealing [39], tabu search [6], and ant colony optimization

[35].

1.2. Research Motivation

 This research started when a local limestone company asked for help with its

scheduling method. Its manufacturing facility is a job shop. The company produces a

large number of standard products and has numerous machines for processing. Due to the

variations in products and processes, scheduling proves to be complex.

After researching a number of heuristics, it was decided that variable

neighborhood search heuristic should be considered for this job shop scheduling problem.

Variable neighborhood search heuristic is another heuristic used in optimization

4

problems. This method finds good solutions by searching through various neighborhoods.

This allows for a wide variety of search techniques to be used in a single problem. It also

allows one to escape from a local optimal solution, which is important when searching

for quality solutions. Variable neighborhood search heuristic has been applied to job shop

scheduling on numerous occasions [21], [1], [30].

 The downfall with variable neighborhood search heuristic is the method for

switching between neighborhoods. Two methods are commonly used for determining the

neighborhood. The first method is to randomly select a neighborhood. Then, after a

random number of instances, a new random neighborhood is selected. The second

method has a set initial neighborhood. Then, after a set number of iterations, the next

neighborhood is selected. This continues and cycles back to the initial neighborhood.

These two methods simply bounce between neighborhoods randomly. Since many

heuristics draw inspiration from real world situations as previously discussed, it was

decided that variable neighborhood search heuristics should also be based on a real world

phenomenon.

1.3. Research Contribution

This thesis presents a new heuristic, fútbol Strategies applied to Optimize

Combinatorial problems to Create Efficient Results – the SOCCER heuristic. The

SOCCER heuristic was inspired by fútbol. The current solution corresponds to the fútbol

ball. All 22 players on the field have a position, speed, and a location on the field. Each

position has neighborhood associated with it.

The players move about the field in pursuit of the ball and the two teams seek to

move the ball in opposing directions. The offensive team seeks to move the ball towards

5

the goal, while the defense seeks to prevent it. The player who can reach the ball the

quickest is provided with the opportunity to kick the ball. The time needed for each

player to reach the ball is calculated using his speed and proximity to the ball. Once the

player is determined, he uses his neighborhood to find a new solution. This corresponds

to an attempted kick. If the player is on the offensive team, his solution is accepted if it is

better than the previous solution. Solutions found by the defensive team are accepted if

worse than the previous solution. The defensive team is used to escape local optimal

solutions.

 The SOCCER heuristic has a generic structure that could be applied to numerous

optimization problems. In this research, the SOCCER heuristic was tailored and built to

create quality job shop scheduling solutions. To test the quality of this heuristic, it was

applied to data from a limestone company.

The SOCCER heuristic is capable of scheduling production for 24 days in

approximately 14 minutes. This heuristic improves the production schedules by about 2

days per month’s work of data. Thus, the SOCCER heuristic is a quality optimization

tool that can aid companies and researchers find better solutions to complex problems.

1.4. Outline

 Chapter 2 is a literature of previous research pertaining to optimization problems.

The first section explains job shop scheduling. Then, neighborhoods are explained to

better understand the searches used in meta-heuristics. Next, common meta-heuristics are

presented. Then background on variable neighborhood search heuristic and its

applications are discussed.

6

 Chapter 3 introduces the SOCCER heuristic. First, it explains fútbol. Detail is

provided on the player’s positions and characteristics. Next, the SOCCER heuristic is

presented. The pseudo-code for this heuristic is also provided.

 Chapter 4 details the SOCCER heuristic’s application to job shop scheduling. It

starts by providing background information on the limestone company, which provided

the data for this heuristic. Then, the fútbol heuristic is converted to fit the limestone

company’s job shop scheduling. The computational study shows that the SOCCER

heuristic can save the company almost 2 days’ worth of production for every month’s

worth of orders. Implementing the SOCCER heuristic will allow the limestone company

to produce approximately 24 additional days’ worth of production per year.

 Chapter 5 is a summary of this thesis. The chapter begins with the key

contributions of this thesis. Then, computational results are summarized. The chapter

concludes by presenting possible directions for future research.

7

Chapter 2: Background

This chapter contains the background information necessary to understand the

contributions of this research. The first section of the chapter explains the job shop

scheduling problem. The second section explains neighborhoods and some common

meta-heuristics used to find quality solutions to optimization problems. The final section

discusses variable neighborhood search heuristic techniques.

2.1. Job Shop Scheduling

Factories have been used for centuries to produce a variety of goods. In the past,

parts were manufactured on an individual basis. Over time, the complexities of the

processes increased as technology advanced. With the innovations of interchangeable

parts and the assembly line, factories vastly changed operations. Today numerous

different types of factories exist.

For over a century, industrial engineers have attempted to make factories more

efficient. A common industrial engineering technique is to model these factories as

scheduling problems. Factories produce orders and these orders are called jobs in the

scheduling models.

The simplest scheduling models have a single machine. Other models have

machines running in parallel. Parallel machines allow for a job to be processed on any

machine of a given subset, which allows more flexibility. However, having parallel

machines complicates finding the optimal schedule.

Large facilities are typically modeled as flow shop [18] or job shop [37]. A flow

shop facility processes each job on all machines in the same route. A standard flow shop

example is a factory that is an assembly line. For job shops, each job has a specified

8

processing route. This route can contain one or more machines. Furthermore, the route

must be completed in a set sequential order. A limestone company is a job shop and the

focus of this thesis is on job shop scheduling. The remainder of the thesis focuses on job

shop scheduling.

The input to a job shop scheduling problem (JSS) is a set of n jobs, 𝐽 =

{𝑗1, 𝑗2, … , 𝑗𝑛} and a set of q machines M= {𝑚1, 𝑚2, … , 𝑚𝑞}. Each job has a processing

route or steps which are denoted as 𝑅𝑗𝑖
= (𝑚′

1
𝑖
, 𝑚′

2
𝑖

, … , 𝑚′
𝑟
𝑖
) where each 𝑚′𝑙

𝑖 є M for all l

= 1,…,r and i = 1,…,n. Each job also has a processing time on each machine in its route

which is denoted as (𝑝1
𝑖 , 𝑝2

𝑖 , … , 𝑝𝑟
𝑖).

A feasible solution to a JSS is an assignment of jobs to machines at given times.

This assignment must complete every job and the steps must be completed in the order of

the processing route. Furthermore, the time each job is assigned to each machine must be

equal to its processing time and no machine can work on more than one job at the same

time.

 Numerous variations of JSS are available. A common assumption is that the

machine must finish an entire process. Occasionally, machines are allowed to preempt a

job. The machine stops working on an existing job prior to completing it and begins

working on a different job [15]. Some JSS have release dates and due dates. Jobs cannot

begin to be processed prior to release dates and should be finished prior to due dates [9].

Many other variations exist in the literature [30].

Various objectives are used to judge the quality of a schedule. A common

objective is to minimize the total completion time or the time of completion of the last

job. This objective is referred to as the makespan [19]. The goal of this criterion is to

9

process all jobs quickly and minimize the downtime or idle times on machines. Other

objectives include minimize maximum lateness [24] and minimizing the number of tardy

jobs [26]. Various weighted versions of these objectives are also common [21].

Regardless of the chosen objective, the objective value is typically denoted as z with z*

being the optimal solution

JSS problems are NP-complete and some of the most complex problems to find

optimal solutions [10]. Some research has been done on finding the optimal solution.

These methods typically use integer programming. Integer programs are difficult to solve

for JSS instances and typically run for an exponential amount of time. Although

heuristics cannot guarantee optimality, they are often used for job shop scheduling

problems [3], [8]. This thesis creates a new heuristic based on fútbol which can be

applied to JSS as well as other optimization problems.

2.2. Heuristics and Neighborhoods

Heuristics frequently use neighborhood searches to derive quality solutions. A

neighborhood search encompasses a region of solutions commonly referred to as

neighboring solutions or neighbors. A neighbor is a solution which was found by altering

the previous instance. One typically uses neighborhoods to navigate through the search

space in problems to hopefully find good solutions.

Formally, let X be the feasible solutions to an optimization problem ∏. Each

feasible solution x є X is assigned an objective value z(x) where z: XR. An optimal

solution to a maximization problem ∏ is an x* є X such that z(x*) ≥ z(x) for all x є X.

In many optimization problems, feasible solutions may be similar. Two such

similar solutions are called neighbors. Formally, let x’ є X and x” є X be such that

10

||x’-x’’||R < ԑ where || ||R is defined by some set of rules and ԑ is well-defined according

to these rules. Define the neighborhood of x’, NR,ԑ(x’) = {xєX: ||x’-x’’||R < ԑ}. An x’ is a

local optimal solution to a maximization problem ∏ if z(x’) ≥ z(x) for all x є NR,ԑ (x’).

A wide range of problems use neighborhoods to search for optimal solutions.

Typically, neighborhoods either move jobs to a new location or switch jobs. Small

neighborhoods perform minimal changes while large neighborhoods consist of several

jobs being altered.

Consider a JSS problem with three jobs and two machines. Table 2.1 provides the

routes for each job and processing times on each machines. The processing times are

provided in hours. The goal of this problem is to minimize idle time.

Table 2.1 Example Problem

 The jobs are scheduled on both machines according to the initial processing order.

Machine 1 has an initial processing order of job 1, job 2, job 3, job 1. Machine 2 has a

processing order job 1, job 2, job 3, job 3. A job cannot be processed on a machine until

its previous process has been completed. This means that machine 2 cannot process job 1

until machine 1 has processed job 1 for 3 hours. This initial production schedule has an

idle time of 21 hours and is shown in Table 2.2.

Machine 1 2 1

Time 3 4 2

Machine 2 1

Time 3 4

Machine 2 1 2

Time 2 4 1

Job 1

Job2

Job 3

11

Table 2.2 Initial Production Schedule

The chosen neighborhood is a small neighborhood. It selects two adjacent jobs on the

same machine and swaps them. In this case, machine 2 was selected. Job 1 and job 2

were switched. This changes the processing order on machine 2 to job 2, job 1, job 3, job

3. The order of jobs on machine 1 was not altered. This solution and the previous solution

are considered neighbors. The new production schedule is shown in Table 2.3.

Table 2.3 New Production Schedule

 The new production schedule reduced the idle time to 7 hours. It was also able to

complete the three jobs 7 hours sooner than the initial. This process typically continues

for the desired number of iterations.

At times some heuristics may allow infeasible solutions. In these situations, x’’ is

an infeasible neighbor of x’ if ||x’-x’’||R ≤ ԑ and x” є W / X where W is the set of all

possible solutions to a non-constrained instance of ∏, || ||R is defined by some set of rules

and ԑ is well-defined according to these rules.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Machine 1

Machine 2 Job 3

Job 1Job 2Job 1

Job 1 Job 2 Job 3

Job 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Machine 1

Machine 2 Job 1 Job 3 Job 3Job 2

Job 1 Job 2 Job 3 Job 1

12

One common use of infeasible solutions is ejection structures such as chains [23],

trees [28], and pools [29]. The goal of these ejection methods is to improve the schedule

by making moves to an infeasible solution. The group of removed solutions is stored in

an ejection structure. Then some of the solutions are re-inserted into the schedule. If the

reinserted job interferes with a job, this job is removed and placed in the ejection

structure. This process continues until all jobs from the ejection structure are scheduled

and a feasible solution is found.

2.2.1. Common Heuristics

Researchers have created several meta-heuristics to aid in the search for quality

solutions. This section discusses the meta-heuristics hill climbing, simulated annealing,

and tabu search.

2.2.2. Hill Climbing

The simplest meta-heuristic is called hill climbing. The analogy is taken from a

hiker trying to reach the summit on an incredibly foggy day. The hiker looks around in

search of rising terrain. If she sees ground higher than her current location she steps there.

She continues to step towards higher ground. If there is no direction to go up, she

declares herself at the summit. Upon termination, she is locally optimal, but may not

necessarily have reached the highest point on the mountain.

Hill climbing heuristic follows a similar process. It starts with an initial solution.

Then the neighborhood of the solution is searched until an improving solution is found.

Once the solution is improved, the algorithm moves to this new solution and repeats until

there are no more improving solutions in the current solutions neighborhood. Thus, the

solution is a local optimal solution.

13

Several researchers have used hill climbing to find quality solutions to scheduling

problems. Hill climbing has been applied to scheduling traveling tournaments for various

sporting events [22], exam time tabling problem for universities [2], and ground station

scheduling [38].

 The downfall of hill climbing is that it does not guarantee global optimality

because hill climbing only searches neighboring solutions. Therefore, the initial solution

determines the likelihood of the local optimal solution also being the global optimal. If

the wrong initial solution is chosen, the solution will remain in a sub-neighborhood

unable to reach the global optimal due to the neighborhood and the initial solution

selected. Because of this, it is not likely for hill climbing to reach global optimality. An

example of this is shown in Figure 2.1.

Figure 2.1 Graph of Optimality [14]

14

In Figure 2.1, a series of nodes are near the point (1.5, 2). These show the

different solutions searched. The graph peaks at this point. The peak value represents the

local optimal solution found using hill climbing. However, this is not the highest point on

the trend. The global optimal is at point (6.5, 3). Using hill climbing would not provide

one with the optimal solution unless the initial x value was between 5.9 and 7.2. This is

due to only accepting a new solution if it is better than the current solution. If a worse

solution is found, the heuristic ceases to search in the direction regardless of more

optimal searches past the low point. To increase the chances of optimality, one could run

hill climbing multiple times starting with a variety of initial solutions. The best value is

reported.

By implementing a hill climbing heuristic one can find a local optimal solution in

a short period of time, but cannot guarantee global optimality. Therefore, hill climbing is

often used in conjunction with other heuristics. Once a different heuristic has been

performed, hill climbing is frequently used to check the surrounding solutions and to

guarantee that the reported solution is a locally optimal solution.

2.2.3. Simulated Annealing

Another common meta-heuristic is simulated annealing. Simulated annealing is

named after annealing metal. When annealing metal, the strongest metal occurs when the

temperature is high and the metal is cooled slowly over time. The simulated annealing

algorithm takes its inspiration from this process.

In application, simulated annealing starts with an initial solution. The solution is

then compared to a neighboring solution. If the new solution is better than the previous, it

is accepted. If the new solution is worse than the previous solution, it is accepted based

15

on a transition probability. When a solution is rejected, a new neighbor solution is found

and the process repeats.

Typically, the transition probability is a function based on the number of

iterations. As the iterations increase, the probability decreases. Therefore, when the

model starts, the probability is high and the algorithm is more likely to accept a worse

solution than to reject it. As the process continues, the transition probability decreases

and more inferior solutions are rejected. This transition probability is often represented as

𝑒−𝑇𝑜(𝑡) where T0 is the initial temperature and t is the number of iterations. The

exponential function is chosen because metal cools according to an exponential function.

Researchers have used simulated annealing to find quality solutions to scheduling

problems. For instance, simulated annealing is used to schedule maintenance work at

power plants [32], job shop scheduling problems [36], [39], and class scheduling [4].

In theory, if simulated annealing ran forever, it would explore the entire state

space and the optimal solution would be found. The downfall of this method is that the

duration depends on the initial solution and the parameters used for the transition

probability. A slight change in the initial probability could drastically change the

effectiveness of the model. Also, the search could take an infinite amount of time

depending on the complexity. In practice, simulated annealing does not guarantee an

optimal solution.

2.2.4. Tabu Search

 The final meta-heuristic discussed here is tabu search. This heuristic starts with an

initial solution. Then, a neighbor solution is obtained. Tabu search does not judge the

solution based on its perceived quality. Instead, tabu search judges the solution based on

16

whether or not it has already found the solution. If the neighbor solution is new, it

becomes the new solution. If it is a repeated solution, it is consider tabu and rejected.

 The goal for tabu search is never to repeat the same solution. To minimize the

computational effect, the previous k solutions are stored. When a new solution is found, it

is added to the chain and the oldest solution is removed. This process can be seen in the

Figure 2.2.

Figure 2.2 Tabu Search [16]

 Researchers have used tabu search heuristics to find quality solutions for a variety

of scheduling problems. For instance, tabu search has been used to schedule shifts for

nurses and constrain solutions based on the number of shifts a nurse has worked as well

as the number of nurses needed at a given time [7]. Tabu search has also been used to

schedule tournaments for various sports leagues. For this application, the number of

17

home games versus the number of away games must be balanced for every team. In

addition, constraints are needed to see if the chosen teams and facility are all available at

the specified time [12]. Tabu search has also been used in job shop scheduling [6].

 For tabu search, the downfall is storage. If not enough storage is provided in the list

of solutions the model may backtrack or create a loop. If too many solutions are stored

the process becomes time consuming. The time will also increase if the stored data has a

complex data structure. Simplifying the string of data will decrease the time, but increase

the chances of looping. One must find a balance between the two to obtain quality results.

2.3. Variable Neighborhood Search Heuristic

The heuristic created in this thesis is a new type of variable neighborhood search

heuristic (VNS). VNS is used to escape the local optimal solution by using various

neighborhood searches. It was suggested by Mladenovi´c and Hansen in 1997 [27]. With

this method the heuristic cycles between searches by changing the neighborhood. This

allows for a wide variety of search techniques to be used in a single problem. The goal of

VNS is to escape the less optimal peaks and valleys by changing neighborhoods.

VNS can be applied to a variety of instances [13], [20], [31], [34]. For instance,

VNS can be applied in a hill climbing setting. To initialize the search, one must start in a

given neighborhood. A neighborhood is denoted as k with k = 1..kmax. For k <= kmax the

same steps are followed. Next, a random solution denoted by x’ must be found in

neighborhood k. Then, a local search should determine the local optimal denoted as x’’.

Finally, the solution is judged. If x’’ is better than x’, x’ = x’’ and the search continues

with the new x’ neighborhood. If x’’ is worse than x’, then the neighborhood is increased

by one (k=k+1) and the process continues.

18

VNS has been applied to single machine shops. For this case, the researchers used

two neighborhoods in order to have faster computation. The neighborhoods were swap

and insertion. Swap randomly locates two jobs and switches each location for the other.

Insertion also identifies two random jobs. Then, it places one of the jobs directly before

the other job [21].

Variable neighborhood search heuristic has also been applied to JSS. In this

instance, the researchers used three neighborhoods. Each neighborhood was a different

insertion method. The insertion point is based on random numbers and the heuristic

cycles through the neighborhoods as local optimal solutions are found [30]

VNS can be altered to fit any scenario. To apply VNS, three things should be

determined. First, how many neighborhood structures should be used. If one is looking to

minimize the computation time, fewer neighborhoods should be used. Second, in what

order should the neighborhood searches be performed. Lastly, what strategy should be

used to change the neighborhood. Since the applications for this heuristic are vast, the

complexity and optimality of the solution will depend on the individual instances.

A primary weakness of VNS techniques is the lack of structure to select which

neighborhood should find the next solution. The next chapter introduces a new technique

to switch between neighborhood searches. This switching is based upon the progression

of the ball and players in a fútbol game.

19

Chapter 3: The SOCCER Heuristic

Based on the author’s research, variable neighborhood search heuristic has

switched between neighborhoods primarily based upon random or cyclic selections and

lacks a complex structure for picking neighborhoods. The SOCCER heuristic - fútbol

Strategies applied to Optimize Combinatorial problems to Create Efficient Results - is a

new framework to perform variable neighborhood search heuristic and mimics a fútbol

game. Instead of randomly choosing neighborhoods, neighborhoods are selected based on

fútbol players, their positions, and the ball’s position on the field. This chapter begins

with an explanation of fútbol with the intention of motivating an optimization heuristic.

The final section discusses how to transform fútbol into a variable neighborhood search

heuristic for an optimization problem.

3.1. Fútbol

It is assumed that the reader is familiar with the game of fútbol, which is called

soccer in the United States. Therefore, only limited information regarding the game is

presented here. In fútbol, the objective is to score more than the opposing team. In order

to score, one must get the ball past the goal line and inside of the goal. Several methods

can be used to move the ball. The primary methods are dribbling, passing, clearing and

punting.

The purpose of dribbling is for a player to move the ball with the intention of that

player being the next player to touch the ball. The majority of dribbles are short kicks.

From a strategic standpoint more dribbling occurs near the opponent’s goal than near

one’s own goal.

20

The purpose of passing is to play the ball with the intent of another player on the

same team being the next player to touch the ball. One primarily passes the ball with the

feet or head. If one passes the ball with his head it is called a header. The majority of

passing occurs in the midfield.

The purpose of clearing is to move the ball as far away from one’s own goal as

possible. Thus, a player clearing a ball either kicks or heads the ball as far as possible.

No consideration is given as to whom may receive this ball. Clearing is primarily done

on the defensive end of the field.

Only the goalie can punt the ball since the goalie is the only player that can touch

a ball with his hands. To punt, the goalie drop kicks the ball and the result is a long kick.

Typically, the goalie punts the ball after catching the opposing team’s attempt to score.

Scoring a goal only requires the ball to cross the end line inside of the goal.

Players may dribble, pass, clear, or punt the ball into the goal. Occasionally a player may

even score on their own team, which is the humiliating own goal. Goals are hard to come

by in fútbol and a goal typically has a substantial celebration.

For professional fútbol, each team has eleven players on the field. The positions

are defender, midfielder, striker, and goalie. A player’s method for moving the ball is

highly dependent on the assigned position since each position has a certain responsibility.

The manager’s strategy largely determines the number of players assigned to each

position.

Some of the typical team formations are shown in Figure 3.1. However, before

one can understand the formations one must first understand the field. In the image

below, there are three fields. Standard fútbol fields have the same lines asthe fields

21

depicted in the image. Anything outside the scope of the field is considered out of

bounds. The top most edge of the image is the end line. The goal is centered on the field

and adjacent to the end line. The small box located at the top center of the field is the 6

yard box. The larger box is the 18 yard box. The line across the center of the field is

called midfield. The bottom half of the image is simply a mirrored version of the top half

and are referenced the same way.

Figure 3.1 Fútbol Formations [11]

 In fútbol, there are several different formations managers typically use. Three

example formations are shown in Figure 3.1. Each formation has a corresponding three-

digit number. The first number is the number of defenders per team, the second is the

midfielders, and the third is the strikers. The goalie is neglected when providing this

22

number formation. To further explain the formations, each player is discussed below

according to a 4 3 3 formation.

The player at the top of the image is the goalie. Each team has one goalie. The

goalie can only use his hands inside of the 18-yard box. Thus, the goalie is not likely to

move far and is considered a slow player. A goalie’s job is to block shots and prevent the

other team from scoring. If the opposing team takes a shot and the goalie catches it, then

the goalie punts the ball.

 The next set of players is the defenders. Four defenders are used per team with

this formation. Defenders are located between the opposing team’s end line and midfield.

When the ball is close, defenders are quick. However, defenders are relatively slow when

the ball is far away. Their objective is to stop opposing players from scoring and to move

the ball to the other end of the field. When defenders become desperate, they clear the

ball.

The next tier is the midfielders. For this strategy, each team consists of three

midfielders. These players are typically located between the 18-yard boxes. Midfielders

move at an average pace, which is fairly constant regardless of the ball’s location. Their

job is to move the ball from the defensive end to the offensive end. Typically this is done

by passing the ball.

The final set of players is the strikers. On the field, strikers are located near the

opposing team’s defenders. Strikers are incredibly fast when the ball is close, but are

slow and often lazy when the ball is farther away. Typically they dribble the ball.

Strikers are also more likely to score than the other positions.

23

3.2. Transforming Fútbol into an Variable Neighbor Search Heuristic

The SOCCER heuristic - fútbol Strategies applied to Optimize Combinatorial

problems to Create Efficient Results - is inspired by fútbol and is a new type of variable

neighborhood search heuristic. The heuristic mimics a fútbol game. The ball’s location

is related to the objective function of the current solution. Each player is assigned a

neighborhood. When a player approaches the ball he is given the opportunity to use his

neighborhood search. The offensive team performs neighborhood searches in hopes of

improving the solution, while the defensive team performs searches in hopes of finding

worse solutions. The defensive team and their pursuit of worse solutions helps the

SOCCER heuristic avoid being stuck at a locally optimal solution. A goal is scored if a

new best solution is found.

Fútbol was chosen as inspiration for this heuristic because of the dynamic aspects

it allows. With two opposing teams, one is able to search for quality solutions while

occasionally accepting worse solutions, thus escaping local optimal solutions. It also

allows for a variety of neighborhood searches to be used. The neighborhood search

selected is based on each player’s proximity to the ball and speed. This allows for a more

flexible search instead of simply cycling through neighborhoods as variable

neighborhood search heuristic techniques have done in the past. The SOCCER heuristic

explained here assumes one is seeking to minimize the objective function. The reader can

make the obvious changes for a maximization problem.

The SOCCER heuristic starts by initializing the players and their characteristics.

Then, it searches for new solutions. Each time the ball is kicked, the players move since

24

fútbol players are rarely stationary. When a new best solution is found, a goal is scored

and a celebration dance occurs.

The SOCCER heuristic requires that each team is given q players. The offensive

team is denoted by O = {p1,…, pq} and the defensive team is D = {pq+1,…, p2q}. Each

player is provided with a starting width location (wi), and a starting height scalar (αi), an

athletic ability consisting of a slow (vsi
) and fast (vfi

) velocity, and a neighborhood (Ni).

The height scalars are typically constant among similar positional players such that 0 ≤

αgoaliedefense < αdefenderdefense
 < αmidfielderdefense

 < αstrikerdefense
 < 1 = αstrikeroffense < αmidfielderoffense <

αdefenderoffense < αgoalieoffense
. These characteristics should be based upon the player’s

position: goalie, defender, midfielder, and striker.

The SOCCER heuristic begins with a feasible solution and a corresponding z

value. The y location of the ball is always the z value of the current solution. The x

location can be based upon other criteria and here the x location is the difference between

the z values of the two most recent solutions. To start, the ball is placed at location (0,z).

Observe that the ball may go negative in the x direction and this merely indicates that the

ball is on the left side of the field.

 The first player discussed is the offensive goalie. The goalie’s initial position is

(0, zαgoalieoffense
). A goalie is the team’s last defense before a goal is scored. This player

uses either an extremely large neighborhood or may find a new starting solution that is

not related to the current solution. A goalie solution is always taken whether or not the

solution is better. This neighborhood search occurs when the defensive team kicked the

ball too many times and the ball needs to move to a new solution. For this reason, the

25

goalie is only allowed to play the ball if the ball is closer than some threshold to their

starting position.

The four defenders are located on the defensive end of the field away from quality

solutions (xi, zαdefenderoffense
). Since there are four defenders, the xi values typically have

two negative and two positive values with an average of 0. Defenders are often fast

players when near the ball, yet slow when away from the ball. This type of player has a

large neighborhood, which corresponds to a clearance. This means that the change

between solutions is significant.

Midfielders start with the coordinates (xi, zαmidfielderoffense
). Since there are three

midfielders, these xi values typically have one negative, one positive and a 0 value with

an average of 0. This type of player is of average speed, but is not slow either.

Midfielders should have medium sized neighborhoods, which corresponds to a pass.

Strikers start with the coordinates (xi, zαstrikeroffense
). Since there are three strikers,

these xi values typically have one negative, one positive and a 0 value with an average of

0. Strikers are typically fast and extra slow. Thus, their vfi
 should be among the fastest on

the team, but the vsi
 should be slower than most, which translates into the lazy striker

adage. Strikers have small neighborhoods, which corresponds to a dribble.

The defensive team has the same types of players and the same neighborhoods as

mentioned above. The starting locations are similar except that the y values are smaller

than z. This means that these players have initial locations, which are better than the best

known solution. Therefore, the offensive team is trying to move the ball towards the

defensive end. Since the defensive team is attempting to find worse solutions, their

speeds should be slower than the speed of the offensive team and thus they should play

26

the ball less frequently. One never desires the defensive goalie to drastically move from

an extremely good solution, so the defensive goalie’s fast and slow speed are both 0.

The main step of the SOCCER heuristic involves players kicking the ball. The

first step in this process is to determine which player approaches the ball first. This player

is selected based on each player’s proximity to the ball and each player’s fast velocity.

The player who can reach the ball in the shortest time is selected. Next, he attempts to

kick the ball. This attempt is accomplished by finding a new solution according to the

player’s neighborhood.

For an offensive player, if the z value of the neighboring solution is better than the

current solution, the ball is kicked. With this kick, the current solution and z values are

updated to equal this new solution. Then, the new solution is compared to the best

solution. If it is better, the best solution is updated to be the current solution and a goal

has been scored. When a goal is scored, The Celebrate Goal subroutine is called.

For a defensive player, the ball is kicked if the z value of the neighboring solution

is worse than the current solution. If this occurs, the current solution and z values are

updated to this neighboring solution. In some instances, a defensive player’s

neighborhood search will result in a better z value than the best solution. If this is the

case, an own goal was scored. The best solution is updated to equal its values and a

celebration by the offense occurs.

If the new solution was not accepted, the current player miss handled the ball. As

such, another player attempts to kick the ball. To achieve this, the first player to reach

the ball is marked. This mark is simply to track which players have already missed the

ball. The first unmarked player to approach the ball is selected and this entire process

27

continues. If all players except the goalies are marked without successfully kicking the

ball, the marks are cleared and the process continues.

Once a player, say pj, is identified as having kicked the ball, all players’ positions

are first updated. In fútbol players adjust their position according to the location of the

ball. Thus, players are moved before the location of the ball is updated. The act of the

player kicking the ball is one iteration.

The first step in moving players is to determine the time required by the kicking

player to reach the ball. This is merely the distance between the player and the ball

divided by the players fast velocity, time =
√(𝑏𝑥− 𝑥𝑗)2+ (𝑏𝑦− 𝑦𝑗)2

vfj
. Every player moves

toward the ball according to either their fast or slow speed. If the player is closer to the

ball than a specified threshold, the player’s fast velocity (vfi
) is used. Otherwise, the slow

velocity (vsi
) is used. Thus, the player’s current xi position becomes

xi +time(v)

𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

 ,

and the yi location is updated to

y i + time(v)

𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

.

where v is either the fast or slow velocity. This repositioning may imply that a player

over ran the ball.

When all players have moved, the balls x and y location is updated. The y

location becomes the z value of the neighboring solution. Various options are available

for an x location. If there exists a secondary objective function, this would be an

excellent candidate for an x value. If this does not exist, it is recommended to let the

28

ball’s x location be the difference between objective value of the current solution and the

objective value of the neighboring solution. This strategy tends to have the defensive try

to keep the ball on the left side of the field and the offense keeps the ball on the right side

of the field.

When the team scores a goal, a celebration occurs. The celebration is used to

check various neighboring solutions to see if a better solution is nearby. This celebration

is a short hill climbing heuristic that seeks to find a locally optimal solution near the new

best solution. Some players are selected to celebrate. Each player can cheer for a short

duration or an extended amount of time. The celebrating player finds a neighboring

solution and if this is better than the best, the player carries the ball to this new solution.

Once the current player is done celebrating, the next player in the celebration does their

dance. Any player can join the celebration and players may celebrate multiple times. At

the end of the goal celebration the best solution becomes the current solution and the field

(ball and players) is reset according to the initial parameters. That is, for offensive

players, all strikers are returned to their initial position of (xi, zαstrikeroffense
), midfielders to

(xi, zαmidfielderoffense
), defenders to (xi, zαdefenderoffense

), and the goalie to (xi, zαgoalieoffense z).

The defensive players return to their initial positions as well. Please observe that the

length of the field has changed with this repositioning.

Several inputs are needed for the SOCCER heuristic. Each fútbol player needs

five characteristics – a starting width (wi), a scaling height (αi), a well-defined

neighborhood (Ni), a fast velocity (vfi
), and a slow velocity (vsi

). Several other parameters

are needed as input. These parameters include: Threshold, MaxIterations, Number of

Celebrating Players, and Number of Celebrations.

29

The width, scaling height and speed values of the players should be chosen to

mimic a fútbol alignment. Thus, the average widths for all strikers, midfielders,

defenders and goalies on each team should be 0. The scaling heights for the defensive

players should follow the relationship, 0 ≤ αgoaliedefense < αdefenderdefense
 < αmidfielderdefense

 <

αstrikerdefense
 < 1. The scaling heights for the offensive players should follow the

relationship, 1 ≤ αstrikeroffense < αmidfielderoffense < αdefenderoffense < αgoalieoffense
. The

neighborhoods should also mimic the player’s responsibilities with strikers, midfielders,

defenders and goalies having small, medium, large and extremely large neighborhoods,

respectively.

The pseudocode for the SOCCER heuristic is as follows.

Fútbol Strategies applied to Optimize Combinatorial problems to

Create Efficient Results (The SOCCER Heuristic)

Let X be a feasible solution with objective value z.

Let ball be an initial position (bx, by) (0,z) of the ball.

X*
 X, z* z, zold z, iterations 0

Position Players (z)

While iterations<MaxIterations Do

 Kick 0, Unmark all players

 Mark defensive goalie

If √(𝑥𝐺𝑜𝑎𝑙𝑖𝑒𝑂𝑓𝑓𝑒𝑛𝑠𝑒
− 𝑏𝑥)2 + (𝑦𝐺𝑜𝑎𝑙𝑖𝑒𝑂𝑓𝑓𝑒𝑛𝑠𝑒

− 𝑏𝑦)2 > Threshold Then

Mark offensive goalie

30

End If

While (Kick = 0) do

Let pi be the quickest unmarked player to the ball
√(𝑏𝑥− 𝑥𝑖)2+ (𝑏𝑦− 𝑦𝑖)2

vfi

 Time
√(𝑏𝑥− 𝑥𝑖)2+ (𝑏𝑦− 𝑦𝑖)2

vfi

 Let X’є Npi
(X) with objective value z’

 If pi is on offense and z’ ≤ 𝑏𝑦 Then

Move Players (Time, ball)

X X’, by z’, bx z’ - zold

zold
 z’

 Kick 1

If z’ < z*
 Then

X*
 X, z* z’

Celebrate Goal (X*)

Position Players (z*)

zold
 z*

End If

End If

 If pi is on defense and z’ ≥ zx Then

Move Players (Time, ball)

X X’, by z’, bx z’ - zold

zold
 z’

 Kick 1

31

 End IF

If pi is on defense and If z’ < z*
 Then

X*
 X, z* z’

Celebrate Goal (X*)

Position Players (z*)

zold
 z*

Kick 1

 End If

 If Kick = 0 Then

Mark player pi

If all player’s marked, Then

Unmark all players except the goalies

End If

End If

End While

iterations iterations+1

 End While

 Report X*, z*

The SOCCER heuristic subroutine Position Player (z) initializes each player’s

starting location on the field. The inputs necessary for this subroutine are the starting

widths of the players and the scaling height coefficients of the players. This function is

called during the initialization and after celebrating a goal. This function requires the

32

current z value and thus the starting position of the players improves each time a goal is

scored. Therefore, this fútbol field is not static in size.

Position Players (z)

For i = 1 to 2q

xi wi

yi αi z

 End For

Report xi, yi for each player pi

The next subroutine provides the pseudo-code for moving player. Players are

moved based on their speed and the time allowed for the move. If the player is within the

specified Threshold, he moves according to his fast velocity. Otherwise, he moves

according to his slow velocity. Each player moves in the direction of the ball and may

even run past it. Each of these parameters may be altered to fit various optimization

problems. The pseudocode is provided next.

Move Players (time, ball)

For i = 1 to number players begin

If √(𝑥𝑖 − 𝑏𝑥)2 + (𝑦𝑖 − 𝑏𝑦)2 > Threshold Then

 xi xi +time * vsi
𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

 yi yi +time * vsi
𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

33

Else

 xi xi +time * vfi
𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

 yi yi +time * vfi
𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2

End If

End For

Report xi, yi for each player pi

 In fútbol, few goals are scored. Therefore, when a goal is scored, a celebration

dance occurs. The player that scored the goal dances first. The number of dances per

celebrating participants and the number of participants is determined by the user. The

optimization goal is to search several neighboring solutions in an effort to find an even

better best solution that is locally optimal. The pseudocode for this sub routine is as

follows.

Celebration Dance (X*)

For i = 1 to Number of Celebrating Players Begin

For j = 1 to Number of Celebrations Begin

 Let X’є Npi
(X*) with objective value z’.

 If z’ < z*
 Then

X*
 X’, z* z’

End If

 End For

34

End For

Report X*, z*

 The SOCCER heuristic can be altered to fit a variety of optimization problems.

By following the steps above, one could implement this heuristic on numerous classes of

optimization problems. One would simply have to alter the parameters and objective

function to customize the heuristic to the scenario. In the next chapter, the SOCCER

heuristic is transformed into a job shop scheduling heuristic.

35

Chapter 4: The SOCCER Heuristic for Job Shop Scheduling

Chapter 4 starts by providing background information on a job shop scheduling

instance occurring at a limestone company. The next section converts the SOCCER

heuristic into the SOCCER heuristic for a job shop scheduling problem. This conversion

uses assumptions based on machines and processes that are relevant to the limestone

company. The chapter concludes with a computational study and results for randomized

JSS instances.

4.1 Problem Specifics

The limestone company has many quarries throughout the Midwest and a

centralized manufacturing facility. As the company continues to grow, production

scheduling has become increasingly complex. This section explains this job shop

scheduling so one can better understand the steps taken and the computational

complications of this instance.

The limestone company has numerous standard product types. Each of which is

offered in varying dimensions, finishes, and stone colors. The finishes offered provide the

customer with the desired texture and aesthetic appearance for the stone product. The

available finishes include brushed, blasted, bush hammered, tumbled, honed, and split.

The stone colors can also be specified. These colors consist of cottonwood, plaza grey,

prairie shell, and numerous others. Each standard product has a predetermined processing

route based on the product type and the desired finish. Some examples of standard

products are landscape blocks, thin veneer, and pavers. In total, over 1.2 million standard

product combinations exist.

36

Custom products are also available. These products range in size and shape,

according to the customer’s desire. Examples of custom pieces include a kitchen sink and

a cross for a church. One can even add a desired finish or vary the stone type for further

customizations of the piece. Since each custom piece is vastly different, the processing

route must be created for each piece. This path must be created before the piece can be

scheduled.

The limestone company has seven areas for production in its facility. Every

product starts in the belt saw area. The belt saws convert rough stone into slabs with

rough edges. The factory moves the equivalent of one slab to different areas according to

the processing route of the product. These seven areas have between one machine and

four parallel machines. Thus, a schedule consists of an assignment of customers’ slabs to

machines to be processed between certain times.

The information above provides a base knowledge of the limestone company and

its production facility. This information is needed as framework before implementing the

SOCCER heuristic for this company. The next section converts the SOCCER heuristic to

fit job shop scheduling instances.

4.2 The SOCCER Heuristic to JSS

The SOCCER heuristic starts by finding a feasible solution X. This feasible

solution is created by scheduling each job in sequential order. This means that the job for

the first customer is scheduled first, then the job for the second customer. This continues

until every slab for every customer has been scheduled.

To schedule jobs, the number of slabs needed per order is first determined. This

process starts by generating a random block. Each dimension is generated uniformly

37

between the specified measurements. The width of the product is then subtracted from the

length of the block. This cut stone is referred to as a slab. Slabs are cut from this block

until the square footage requirement for the order has been met or the block is no longer

wide enough to meet the requirement. For the latter, a new block is generated and the

process continues. This process determines the number of slabs needed to fill the order.

During production, slabs are cut further to produce pieces. The pieces have the

dimensions of the final product. A slab can contain between one and 100 pieces;

therefore, all pieces associated with a given slab move through the facility together.

Slabs move through production based on its predetermined product processing

route. Typically, a product starts on the belt saw. This limestone company currently has

three belt saws running in parallel. Slabs are scheduled on the machine with the earliest

available start time. This methodology is used for all areas with parallel machines.

The processing time for a slab varies for each area. The slab’s processing time in

an area is based on the dimensions of the slab, the dimensions of the end product, the

product type, and the stone type. In some instances, the processing time may even vary

between machines in the same area.

Once a slab is completed on a machine, it incurs an estimated five minute transit

time. Therefore, the slab’s earliest possible start time on the next machine is the end time

from the previous process plus five minutes. If a machine is available, the slab can be

scheduled for that time. If all machines in the area are being utilized, the slab is scheduled

on the machine with the earliest available start time. If there is only one machine in the

area, the slab is scheduled immediately after the last currently scheduled slab on the

38

machine finishes production. It is important to note that a slab can only be scheduled on

one machine at a time and each machine can only process one slab at a time.

As mentioned in Chapter 2, numerous objective functions exist for JSS instances.

In this instance, the objective function is to minimize the makespan. The makespan is the

time when the last slab is completed. Thus, every machine is idle. This objective

function also minimizes the cumulative amount of idle time on all machines. This

objective function is denoted as z, which is reported in minutes.

 Once the initial solution is created, the heuristics uses the ball and players to alter

the solution. The ball represents the initial solution with an initial x location of 0 and an

initial y location of z. Each team has eleven players. All players have a neighborhood,

starting x and y locations, a slow velocity and a fast velocity. The characteristics for each

player are based on the position on the field. The positions are goalie, defender,

midfielder, and striker.

Each team has one goalie. The offensive goalie has an initial x position of 0 and

an initial y position of 1.75 times the z value. Typically, the goalie does not move very

far. For this scenario, the offensive goalie should only kick the ball if the solution is very

bad and is not improving. Therefore, his slow speed is set to 0 and the fast speed is set to

3. This prohibits the goalie from drifting towards quality solutions.

The offensive goalie’s neighborhood is a scramble of jobs which corresponds to

the goalie punting the ball far away from its current location. This neighborhood search

is used if too many worse solutions are found; therefore, an offensive goalie’s new

solution is always accepted regardless of the z value. In this search, the order of

customers in the customer list is shuffled by randomly swapping each customer with a

39

different customer. Then, the jobs are scheduled based on this random order of the

customers, thus providing a new solution and corresponding z-value.

On offense, the four defenders have starting x positions of -75, -25, 25, and 75.

Their starting y positions are 1.5 times the current z value. They have a slow speed of 4

and a fast speed 16.

The defender’s neighborhood randomly selects two areas. For each of these areas,

a selection of slabs is moved on every machine in the area. The set of slabs is chosen

based on the largest idle time between scheduled slabs. The selected slab and all

consecutive slabs following it for that customer are moved. The slabs may be inserted on

any machine in the area. The entry point is the earliest available time on the machine with

the most idle time. This is a large neighborhood and corresponds to a clearance.

On offense, the three midfielders are in a line centered across the width of the

field. Their starting x positions are -50, 0, and 50. The initial y positions are 1.25 times

the z value. The slow speed for these players is 7 and their fast speed is 12.

The midfielder’s neighborhood randomly selects one area. Then, a set of slabs is

identified and moved. The chosen slab is one which has the largest idle time between it

and the previous slab. This slab and all consecutive slabs following it for the customer are

selected. Then, this selection of jobs is moved to the machine with the most idle time and

inserted at the first available time. This would be a small neighborhood. To make this a

medium neighborhood, which is equivalent to a pass, this is repeated for each machine in

the area.

40

For offensive strikers, the starting x locations are -30, 0, and 30. The starting y

location for each player is equal to 1.1 times the z value. The slow speed of each is 5 and

the fast speed is 20.

The striker’s neighborhood randomly selects an area and a machine. Then, for the

specified machine in the given area, the slab with the largest idle time between it and the

previous slab is chosen. The slab and all consecutive slabs following it for the same

customer are selected with a maximum of 30 slabs selected. The slabs are inserted in the

first available time on the same machine they were removed from. If the removed and

inserted slab locations are the same, a new area and machine are selected. This small

neighborhood mimics dribbling.

For the defensive team, the goalie has an initial x position of 0. His initial y

position is 0.25 z. Since goalies typically do not move far, this goalie has a fast and slow

speed of 0. If the solution is close to this goalie’s position, he does not act. This would be

a very good solution and one does not want to move far away from here. Therefore, the

defensive goalie is not given a speed or a neighborhood search.

For defensive players, defenders have starting x locations of -75, -25, 25, and 75.

The initial y location is 0.5 times the initial z value. Defensive players are slower than

offensive players; therefore, defenders on defense have a slow speed of 3 and a fast speed

of 12. Defenders have the same neighborhood regardless of the team.

The midfielders on defense have starting x positions of -50, 0, and 50. The initial

y positions are 0.75 times the current z value. Since defensive players are slower, the slow

speed for midfielders is 6 and the fast speed is 10. Midfielders on defense have the same

neighborhood search as the midfielders on offense.

41

The defensive strikers have starting x locations of -30, 0, and 30. The starting y

positions are 0.9 times the current z value. They have a slow speed of 4 and a fast speed

of 14. The strikers on defense have the same neighborhood as those on offense.

A goal is scored when the solution found is better than the best solution. Once a

goal is scored, a celebration dance occurs. This dance consists of four celebrating players.

Each player dances ten times. Each dance is a different iteration of the player’s

neighborhood search. If a better solution is found, the next dance starts with this solution.

The purpose of the celebration dance is to find a locally optimal solution in the current

region. This is viewed as a hill climbing routine.

4.3. Computational Study

 To test the SOCCER heuristic, small, medium and large instances were created.

The small instances each had 50 customers, the medium had 100 and the large had 500

customers. The instances were randomly created and to avoid random anomalies 20

instances in each class were created. The template for these random instances followed a

limestone company’s product line.

The following method was used to generate a random instance. Each customer

randomly selected one of the 1.2 million product combinations. The number of pallets

was selected by randomly generating an integer between one and fifty. This number

corresponds to the number of pallets in the order. The route that this customer’s product

takes through the factory is dependent upon the product ordered. Some paths only

required a single area and the longest path visits 7 different areas. There were no release

dates and any of the orders could be started at any time. The objective is to minimize the

makespan, which also reduces idle time.

42

To determine the importance of the length of the fútbol game, each instance was

run with 100, 1,000 and 10,000 kicks. Eventually, the ball will be kicked, but it may take

several attempts as offensive players may find worse solutions and defensive players find

a better, but not a new best, solution. Each kick equates to one iteration.

All runs were performed on a PC with a 3.4 GHz Intel Core i7-2600 CPU that had

4 GB of RAM. The primary statistics recorded for each run is the makespan for the

initial schedule, the makespan for the best schedule, and the time in seconds required for

the SOCCER heuristic. Tables 4.1-4.3 provide these numbers for all 20 instances of each

data set. Thus, the SOCCER heuristic was tested on 180 instances.

The data collected for 50 customers is in Table 4.1 with the z value represented in

minutes and the time required by the SOCCER heuristic provided in seconds. For this

data set, when set to run for 100 kicks, solution improved 60% of the time. In the

remaining 40% the best solution was the initial solution. The SOCCER heuristic ran with

an average 1.9 seconds per data set and had an average 6.24% improvement. For 1,000

kicks, 85% of the solutions improved. On average, it took 20.3 seconds to complete one

data set. The solutions improved by an average of 8.42%. When the SOCCER heuristic

was run for 10,000 kicks, 95% of the solutions were improved. It took an average of 3.6

minutes to complete one instance and had an average 9.17% improvement.

43

Table 4.1 Various Iterations for 50 Customers

The data collected from the 100 customers’ data is in Table 4.2. When set to run for

100 kicks, the initial solution improved 80% of the time. The data set took an average of 7.35

seconds to run and had an average improvement of 4.83%. When set to run for 1,000 kicks,

90% of the solutions improved. On average, it took 77 seconds to complete one data set. The

solutions improved by an average of 7.02%. When the SOCCER heuristic was set to run for

10,000 kicks, 90% of the solutions improved. It took an average of 14 minutes to complete

one instance and had an average 8.67% improvement.

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 3,097 3,097 0.00% 0 2,921 5.68% 7 2,834 8.49% 81

2 5,797 5,503 5.07% 2 5,503 5.07% 26 5,369 7.38% 333

3 5,459 5,103 6.52% 3 5,103 6.52% 23 5,103 6.52% 242

4 38,458 36,440 5.25% 3 36,328 5.54% 47 36,328 5.54% 502

5 4,748 4,748 0.00% 2 4,604 3.03% 20 4,604 3.03% 227

6 6,030 5,922 1.79% 2 5,244 13.03% 23 5,132 14.89% 236

7 3,654 3,654 0.00% 0 3,297 9.77% 6 3,245 11.19% 70

8 5,582 5,088 8.85% 2 4,870 12.76% 17 4,773 14.49% 146

9 2,173 1,928 11.27% 0 1,727 20.52% 4 1,727 20.52% 39

10 5,138 5,138 0.00% 2 5,138 0.00% 15 5,138 0.00% 159

11 4,631 4,631 0.00% 2 4,631 0.00% 22 4,576 1.19% 225

12 4,200 4,197 0.07% 2 4,094 2.52% 14 4,067 3.17% 151

13 4,395 4,395 0.00% 1 4,395 0.00% 10 4,279 2.64% 127

14 8,048 5,612 30.27% 1 5,612 30.27% 15 5,334 33.72% 164

15 6,650 6,121 7.95% 3 5,983 10.03% 29 5,937 10.72% 295

16 4,940 4,555 7.79% 2 3,705 25.00% 16 3,705 25.00% 155

17 5,483 5,483 0.00% 1 5,025 8.35% 15 4,902 10.60% 171

18 51,795 47,968 7.39% 7 47,896 7.53% 70 47,896 7.53% 852

19 3,344 3,344 0.00% 1 3,177 4.99% 10 3,050 8.79% 92

20 5,582 5,088 8.85% 2 4,870 12.76% 17 4,773 14.49% 146

Total 179,204 168,015 6.24% 1.9 164,123 8.42% 20.3 162,772 9.17% 220.65

50 Customers

100 Kicks 1,000 Kicks 10,000 Kicks

44

Table 4.2 Various Iterations for 100 Customers

Table 4.3 presents the data collected for the 500 customers’ data sets. When set to

run for 100 kicks, the initial solution improved 90% of the time. The data set took an

average of 2.67 minutes to run and had an average improvement of 6.47%. When set to

run for 1,000 kicks, 100% of the solutions improved. On average, it took 29 minutes to

complete one data set. The solutions improved by an average of 7.77%. When the

SOCCER heuristic was set to run for 10,000 kicks, 100% of the solutions improved. It

took an average of 5.37 hours to complete one instance and had an average 8.02%

improvement.

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 10,524 9,884 6.08% 7 9,861 6.30% 62 9,706 7.77% 718

2 48,087 47,011 2.24% 15 47,011 2.24% 196 47,011 2.24% 1,981

3 10,446 10,446 0.00% 9 10,367 0.76% 93 10,320 1.21% 1,207

4 7,313 7,091 3.04% 4 6,549 10.45% 45 6,549 10.45% 476

5 22,948 19,412 15.41% 14 19,347 15.69% 126 19,347 15.69% 1,184

6 9,914 9,474 4.44% 5 8,909 10.14% 70 8,360 15.67% 663

7 8,538 8,485 0.62% 4 8,435 1.21% 42 8,258 3.28% 580

8 9,479 9,022 4.82% 9 8,865 6.48% 93 8,353 11.88% 918

9 7,081 6,807 3.87% 3 6,605 6.72% 35 6,437 9.09% 410

10 10,939 10,939 0.00% 8 9,409 13.99% 76 9,201 15.89% 755

11 59,106 59,106 0.00% 14 59,106 0.00% 133 59,106 0.00% 1,523

12 15,639 10,695 31.61% 11 10,682 31.70% 85 10,682 31.70% 843

13 9,217 8,845 4.04% 4 8,820 4.31% 45 8,734 5.24% 533

14 10,264 10,058 2.01% 6 9,938 3.18% 84 9,933 3.22% 988

15 9,714 9,581 1.37% 7 9,197 5.32% 63 9,108 6.24% 587

16 7,697 7,697 0.00% 4 7,697 0.00% 40 7,697 0.00% 487

17 6,977 6,916 0.87% 3 6,916 0.87% 35 6,916 0.87% 386

18 8,939 8,399 6.04% 6 8,244 7.77% 71 7,915 11.46% 715

19 8,935 8,453 5.39% 5 8,318 6.91% 54 8,083 9.54% 625

20 9,479 9,022 4.82% 9 8,865 6.48% 93 8,353 11.88% 918

Total 291,236 277,343 4.77% 7.35 273,141 6.21% 77.05 270,069 7.27% 824.85

100 Customers

100 Kicks 1,000 Kicks 10,000 Kicks

45

Table 4.3 Various Iterations for 500 Customers

Although not reported in the tables, additional data was collected. These included

the success rate of players, percent of successful kicks for both offense and defense, the

number of goals for both offense and defense, the amount of successful celebrations, and

various other objectives. This data is presented in Tables 4.4 – 4.7.

The success rate of a player is the percentage of times he successfully kicked a

ball. This data was collected for each offensive position and presented for each number of

kicks. Since the offensive goalie’s solution is accepted 100% of the time, this player was

omitted from the table. The data can be seen in Table 4.4. The SOCCER heuristic

performs over a half million kicks. For these kicks, strikers performed successful kicks

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 47,837 47,568 0.56% 166 47,345 1.03% 2,078 47,345 1.03% 23,722

2 44,184 44,184 0.00% 124 43,871 0.71% 1,306 43,871 0.71% 16,408

3 39,882 39,882 0.00% 90 38,370 3.79% 1,269 38,275 4.03% 14,285

4 135,826 133,328 1.84% 288 133,328 1.84% 3,365 133,328 1.84% 35,548

5 55,338 53,404 3.49% 146 51,808 6.38% 1,814 51,794 6.40% 18,801

6 43,677 43,420 0.59% 164 43,029 1.48% 1,552 43,029 1.48% 17,360

7 66,969 51,117 23.67% 149 50,055 25.26% 1,401 48,258 27.94% 15,438

8 63,486 56,269 11.37% 214 56,269 11.37% 1,936 56,269 11.37% 18,143

9 79,694 57,952 27.28% 272 57,952 27.28% 2,577 57,952 27.28% 26,933

10 41,285 40,298 2.39% 109 40,194 2.64% 1,354 40,102 2.87% 16,627

11 42,511 42,308 0.48% 149 42,308 0.48% 1,840 42,073 1.03% 20,394

12 36,807 34,790 5.48% 110 34,256 6.93% 1,112 34,256 6.93% 14,298

13 38,579 38,521 0.15% 109 38,348 0.60% 1,094 38,156 1.10% 14,577

14 46,688 42,170 9.68% 153 41,858 10.35% 1,588 41,624 10.85% 19,167

15 77,309 72,769 5.87% 275 72,769 5.87% 3,241 72,769 5.87% 30,170

16 40,367 39,840 1.31% 108 39,840 1.31% 1,208 39,840 1.31% 15,136

17 35,606 34,787 2.30% 95 34,475 3.18% 997 34,475 3.18% 11,904

18 39,595 39,283 0.79% 131 39,283 0.79% 1,354 39,197 1.01% 16,390

19 67,287 66,644 0.96% 128 58,854 12.53% 1,562 58,818 12.59% 16,879

20 63,486 56,269 11.37% 214 56,269 11.37% 2,010 56,269 11.37% 24,564

Total 1,106,413 1,034,803 6.47% 159.7 1,020,481 7.77% 1732.9 1,017,700 8.02% 19,337.20

500 Customers

100 Kicks 1,000 Kicks 10,000 Kicks

46

5.90% of the time, midfielders had a success rate of 4.19%, and defenders had a success

rate of 9.16%.

Table 4.4 Success Rate of Offensive Players

 Table 4.5 provides the overall success rate of the offensive and the defensive teams,

as well as the average number of goals scored by each team. The recorded statistics show

that the success rate for each team is fairly constant. The offensive team is successful less

than 10% of the time and the defensive team is successful approximately 28% of the

time. This indicates that the offensive team found more solutions, which were worse than

the current solution. Thus, the SOCCER heuristic spends the majority of its effort

searching in the proximity of quality solutions.

 As expected, the number of goals for each team increases as the number of

iterations increases. This is because there are more opportunities to score. Typically, the

offensive team scores; however, the defense occasionally scores an own goal.

Table 4.5 Success Rate and Goals

Striker Midfielder Defender

100 Kicks 8.43% 6.88% 12.19%

1,000 Kicks 7.03% 5.16% 10.10%

10,000 Kicks 5.77% 4.08% 9.05%

Overall 5.90% 4.19% 9.16%

Success Rate

Offense Defense Offense Defense

100 Kicks 9.43% 31.14% 2.05 0.53

1,000 Kicks 7.77% 28.69% 3.5 0.57

10,000 Kicks 6.61% 28.15% 4.71 0.62

Average 6.73 28.22 3.42 0.57

% Successful Goals

47

 The celebration statistics are presented in Table 4.6. The offensive team celebrates

when a goal is scored. For this application, all three offensive strikers and one midfielder

were selected to celebrate. During celebrations, on average, striker neighborhoods were

searched 103 times per data set. Of those, 2.3% were successful. Midfielders performed

an average of 34 neighborhood searches per data set with 1.11% successful. Thus, the

celebration dance is important for improving solutions.

Table 4.6 Celebration Statistics

 Table 4.7 provides the average improvement and average time for each combination

of the number of customers and the number of kicks. The success rate for each number of

kicks increases as the number of customers increase. The success rate of each customer

data set increases as the number of kicks increase and the percent improvement for each

data set also increases as the number of kicks increase. However, the running time of the

heuristic also increases with the number of kicks. The smallest combination – 50

customers for 100 kicks – can run one data set in approximately 2 seconds. The largest

combination – 500 customers for 10,000 kicks – takes an average of 5.37 hours per data

set.

Iterations Success Rate Iterations Success Rate

100 Kicks 85 2.30% 28 0.83%

1,000 Kicks 100 1.96% 33 0.70%

10,000 Kicks 124 2.54% 41 1.64%

Average 103 2.29% 34 1.11%

Striker Midfielder

48

Table 4.7 Summary Statistics

As one can see, there is a trade-off between percent improvement and time per

data set. Therefore, when determining the settings for the heuristic one should consider

these two points.

For small data sets, a large number of kicks should be used. This will yield the

best results and the required time is small. In the instances tested, a quality solution for 50

customers was found in less than four minutes when the SOCCER heuristic was run for

10,000 iterations.

For medium data sets, the SOCCER heuristic should be run for a large number of

iterations. For the instances tested, it took an average of 14 minutes to find a quality

solution with 10,000 kicks. This is not a significant amount of time when one considers

the added value of the improved solution.

For large data sets, the best results are found when the heuristic is run for a large

number of kick. However, this is not always feasible since it may take hours to create a

quality solution. Therefore, one should find the desired balance between required time

and the quality of the solution.

For the limestone company, one month of production equates to roughly 100

customers. Therefore, this company should run the SOCCER heuristic for 100 customers

and 10,000 kicks. With these settings, the limestone company will have a quality

Improvement Success Time Improvement Success Time Improvement Success Time

50 Customers 6.24% 60% 2 8.42% 85% 20.3 9.17% 95% 220.65

100 Customers 4.77% 80% 7.35 6.21% 90% 77.05 7.27% 90% 824.85

500 Customers 6.47% 90% 159.7 7.77% 100% 1,732.90 8.02% 100% 19,337.20

Total 6.12% 77% 56.32 7.54% 92% 610.08 7.99% 95% 6,018.07

100 Kicks 1,000 Kicks 10,000 Kicks

49

schedule in less than 14 minutes. With these settings, the SOCCER heuristic improved

their production schedules by an about 2 days per month. This is an additional month’s

worth of production per year.

50

Chapter 5: Conclusion

Variable neighborhood search heuristic is a heuristic commonly used in

optimization problems. With this method the heuristic cycles between searches by

changing the neighborhood. It allows for a wide variety of search techniques to be used in

a single problem. It also allows one to escape from a local optimal solution, which is

important when searching for quality solutions.

 The downfall with variable neighborhood search heuristic is the method for

switching between neighborhoods. Typical variable neighborhood search heuristic

instances switch between neighborhoods cyclically or randomly. Variable neighborhood

search heuristics need a structure or method to switch between neighborhoods.

This thesis presents a new heuristic, fútbol Strategies applied to Optimize

Combinatorial problems to Create Efficient Results – the SOCCER heuristic, which was

inspired by fútbol. For this heuristics, the current solution corresponds to the fútbol ball.

Each player on the field has a position, speed, and location. Every player has

neighborhood search associated with him. The player who can reach the ball in the least

amount of time performs his neighborhood search. The time it takes a player to reach the

ball is calculated using each player’s speed and proximity to the ball.

 The competing teams in fútbol are also important to this heuristic. The teams

seek to move the ball in opposing directions. The offense attempts to move the ball

forward towards the goal (better solutions), while the defense seeks to prevent it. For the

heuristic, this means that the offensive team’s solution is accepted if it is better than the

previous solution. Solutions found by the defensive team are accepted if worse than the

51

previous solution. Thus, the defensive team keeps the heuristic from being stuck at a

locally optimal solution.

 This thesis applies the SOCCER heuristic to a job shop scheduling instance. The

SOCCER heuristic is capable of scheduling production for 24 days in approximately 14

minutes. In the instances tested, the heuristic improved the production schedules by an

about 2 days. This is an additional month of production per year. By implementing the

SOCCER heuristic, the limestone company will incur a large increase in profits.

5.1 Future Research

The SOCCER heuristic provides the preliminary research for numerous other

research topics. This section provides other researchers with brief ideas on only a few of

these research topics. Since the SOCCER heuristic could be applied to numerous other

optimization problems, this section merely focuses on improvements related to JSS and

the reader should extend these comments to any optimization problem.

Foremost, minimal effort was spent customizing and optimizing the SOCCER

heuristic and this heuristic has numerous settings that could improve its performance.

One could perform additional research into the initial settings, such as the speed of the

offense versus the defense, the starting locations and the threshold. Additionally, the

length of celebrations should also be optimized.

Future customization could also be performed on the neighborhoods assigned to

each position. In the current heuristic, all players in same position have the same

neighborhood. It would be interesting to vary the neighborhoods within each position and

52

see if certain neighborhoods yield better results. This would allow a deeper analysis of

neighborhoods and allow one to analyze the importance of selecting neighborhoods.

One could attempt to better mimic a fútbol game. Limits could be set on players

so that a center back defender could never play a striker’s ball. Additionally an out of

bounds could be incorporated. Briefly, the ball is out of bounds if a solution is infeasible.

Therefore, when the ball is kicked out of bounds, a new solution could be found using a

different search technique, such as ejection structures. Once the solution returns to

feasibility, the ball has been thrown in bounds and the search continues. This would allow

further manipulation of possible solutions and may lead to better results.

An exciting extension of the SOCCER heuristic is to expand it into multicriteria

optimization. Imagine a JSS instance that wanted to minimize the makespan and also

minimize the tardiest order. This would allow the field to be multi-dimensional and one

would correspond to the x coordinate to the makespan and the maximum tardiness to the

y coordinate. One would accept an offensive kick if either objective value is better than

the existing. In all likelihood, one would maintain any Pareto optimal solution. This

concept could be expanded beyond a two dimensional field and into an arbitrary number

of criteria.

 In summary, my view of fútbol will forever be distorted. When a player

mishandles a ball, I will yell, “Find a neighborhood that is improving.” If a celebration is

weak, I will know that they could have found a better solution with more dancing. If a

player is beaten, he should run at his fastest speed to save the goal. This knowledge will

enable me to gain more enjoyment out of watching a fútbol game.

53

References

[1]. Adibi, M., Zandieh, M., Amiri, M. (2010). Multi-objective scheduling of dynamic

job shop using variable neighborhood search. Expert Systems with Applications, v 37, n

1, pp. 282-287.

[2]. Alzaqebah, M. and Abdullah, S. (2014). An adaptive artificial bell colony and late-

acceptance hill-climbing algorithm for examination timetabling. Journal of Scheduling, v

17, pp. 249-269.

[3]. Asano, M. and Ohta, H. (2002). A heuristic for job shop scheduling to minimize

total weighted tardiness. Computers and Industrial Engineering, v 42, n 2-4, pp 137-147.

[4]. Ceschia, S., Gaspero, L., and Shaerf, A. (2012). Design engineering and experimental

analysis of a simulated annealing approach to the post-enrollment course timetabling

problem. Computers and Operations Research, v 39, n 7, pp. 1615–1624

[5]. Davis, Lawrence. (1985). Job shop scheduling with genetic algorithm research.

Proceedings of an International Conference on Genetic Algorithms, pp. 136-140.

[6]. Dell'Amico, M. and Trubian, M. (1993). Applying tabu search to the job-shop

scheduling problem. Annals of Operations Research, v 41, n 1-4, pp. 231-252.

[7]. Dowsland, K. A. and Thompson, J.M. (2000). Solving a nurse scheduling problem

with knapsacks, networks and tabu search. Journal of the Operational Research Society,

v 51, n 7, pp. 825-833.

[8]. El-Bouri, A., Azizi, N., and Zolfaghari, S. (2006). A comparative study of a new

heuristic based on adaptive memory programming and simulated annealing: The case of

job shop scheduling. European Journal of Operational Research, v 177, n 3, pp. 1894 –

1910.

54

[9]. Feng, X., Leung, H., and Tang, L. (2005). An effective algorithm based on GENET

neural network for job shop scheduling with release dates and due dates. Advances in

Neural Networks – ISNN 2005. Second International Symposium on Neural Networks.

Proceedings, Part 1, v 1, pp. 776-781.

[10]. Gonzalez, T. and Sahni, S. (1978). Flowshop and jobshop schedules: complexity

and approximation. Operations Research, v 26, n 1, pp. 36-52.

[11]. Got Soccer, LLC. (2015). The end of 4-4-2? Retrieved from

http://home.gotsoccer.com/magazine.aspx?PageID=146

[12]. Hamiez, J. P. and Hao, J.K. (2001). Solving the sports league scheduling problem

with tabu search. Lecture Notes in Computer Science, v 2148, pp. 24-26.

[13]. Hansen, P., Mladenovic, N., and Urosevic, D. (2006). Variable neighborhood search

and local branching. Computers & Operations Research, v 33, n 10, pp 3034 – 3045.

[14]. Humphrys, M. (1987). A population of hill-climbers. Dublin City University :

School of Computing. Retrieved from

http://computing.dcu.ie/~Humphrys/Notes/GA/evolution.html

[15]. Jiang, Y., Dong, J., and Ji, M. (2013). Preemptive scheduling on two parallel

machines with a single server. Computers & Industrial Engineering, v 66, n 2, pp. 514-

518.

[16]. Klusáček, D. (2013). Applied solution techniques. Retrieved from:

http://www.fi.muni.cz/~xklusac/index.php?page=en-grid.

[17]. Koubi, S. and Shalaby, N. (2008). The combined use of a genetic

algorithm and the hill-climbing algorithm to find difference triangle sets. Journal of

Combinatorial Mathematics and Combinatorial Computing, v 66, pp. 289-296.

http://www.fi.muni.cz/~xklusac/

55

[18]. Langston, M. (1987). Interstage transportation planning in the deterministic flow-

shop environment. Operations Research, v 35, n 4, pp. 556-564.

[19]. Lei, D. (2011). Scheduling stochastic job shop subject to random breakdown to

minimize. International Journal of Advanced Manufacturing Technology, v 55, n 9-12,

pp. 1183-1192.

[20]. Liang, Y and Chuang, C. (2013). Variable neighborhood search for multi-objective

resource allocation problems. Robotics and Computer-Integrated Manufacturing, v 29, n

3, pp. 73-78.

[21]. Liao, C. J., and Cheng, C. C. (2007). A variable neighborhood search for

minimizing single machine weighted earliness and tardiness with common due date.

Computers and Industrial Engineering, v 52, n 4, pp. 404–413.

 [22]. Lim, A., Rodrigues, B, and Zhang, X. (2005). A simulated annealing and hill-

climbing algorithm for the traveling tournament problem. European Journal of

Operational Research, v 174, n 3, pp. 1459-1478.

[23]. Lim, A. and Xingwen, Z. (2005). A two-stage for the vehicle routing problem with

time windows and a limited number of vehicles. Proceedings of the Annual Hawaii

International Conference on System Sciences, pp. 82.

[24]. Ling-Huey, S and Pei-Chann, C. (1998). A heuristic for scheduling general job

shops to minimize maximum lateness. Mathematical and Computer Modelling, v 27, n 1,

pp. 1-15.

56

[25]. Lipka, Michael. (2014). 5 facts about the World Cup – and the people who are

watching. Pew Reseach Center. Retrieved from http://www.pewresearch.org/fact-

tank/2014/06/16/5-facts-about-the-world-cup-and-the-people-who-are-watching/

[26]. Mattfeld, D.C. and Bierwirth, C. (2004). An efficient genetic algorithm for job shop

scheduling with tardiness objectives. European Journal of Operational Research, v 155,

n 3, pp. 616-630.

[27]. Mladenovi´c, N., Hansen, P. (1997). Variable neighborhood search.

Computers and Operations Research, v 24, n 11, pp. 1097–1100.

[28]. Muggy, L. and Easton, T. (2012). Generating class schedules within a complex

modular environment with application to secondary schools. Journal of Scheduling.

[29]. Nagata, Y. and Tojo, S. (2009). Guided ejection search for job shop scheduling

problem. Lecture Notes in Computer Science, v 5482, pp. 168-179.

[30]. Roshanaei, V., Naderi, B., Jolai, F., Khalili, M. (2008). A variable

neighborhood search for job shop scheduling with set-uptimes to minimize makespan.

Future Generation Computer Systems, 2009, v 25, n 6, pp. 654-661.

[31]. Samorani, M., Laguna, M. (2012). Data-mining-driven neighborhood search.

Journal on Computing, v24, n2, pp. 210-227.

[32]. Satoh, T. and Nara, K. (1991). Maintenance scheduling by using simulated

annealing method [for power plants]. IEEE Transactions on Power System, v 6, n 2, pp.

850-857.

[33]. Schöpflin, R., Teif, V., Müller, O., Weinberg, C., Rippe, K., and Wedemann, G.

(2013). Modeling nucleosome position distributions from experimental nucleosome

positioning maps. Bioinformatics, v 29, n 19, pp. 2380-2386.

57

[34]. Steinhofel, K., Albrecht, A., Wong, C.K., 2003. An experimental analysis of local

minima to improve neighborhood search. Computers and Operations Research, v 30,n

14, pp. 2157–2173.

[35]. Turguner, C. and Sahingoz, O.K. (2014). Solving job shop scheduling problem with

ant colony optimization. IEEE 15th International Symposium on Computational

Intelligence and Informatics, pp. 385-389.

[36]. Van Laarhoven PJM, Aarts EHL, Lenstra JK.(1992). Job shop scheduling by

simulated annealing. Operations Research, v 40, n 1, pp.113–25.

[37]. Yang, C., Chuang, S., and Hsu, T. (2011). A genetic algorithm for dynamic facility

planning in job shop manufacturing. International Journal of Advanced Manufacturing

Technology, v52, n 1-4, pp. 303-309.

[38]. Xhafa, F., Herrero, X., Barolli, A., and Takizawa, M. (2013). A hill climbing

algorithm for ground station scheduling. Lecture Notes in Electrical Engineering, v 253,

pp. 131-139.

[39]. Zhang, R. and Wu, C. (2007). A hybrid immune simulated annealing algorithm

for the job shop scheduling problem. Applied Soft Computing Journal, v 10, n 1, pp. 79-

89.

[40]. Zhao, X., Zhang, A., Sun, W., and Liang, J. (2009). An improved genetic algorithm

for multiple-machine scheduling problem. 2009 International Conference on

Management and Service Science (MASS), pp. 4.

