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Abstract 

Heuristics are often implemented to find better solutions to computationally 

challenging problems.  Heuristics use varying techniques to search for quality solutions. 

Several optimization heuristics have drawn inspiration from real world practices. Ant 

colony optimization mimics ants in search of food. Genetic algorithms emulate traits 

being passed from a parent to a child. Simulated annealing imitates annealing metal. 

This thesis presents a new variable neighborhood search optimization heuristic, 

fútbol Strategies applied to Optimize Combinatorial problems to Create Efficient Results, 

which is called the SOCCER heuristic. This heuristic mimics fútbol and the closest player 

to the ball performs his neighborhood search and players are assigned different 

neighborhoods. The SOCCER heuristic is the first application of variable neighborhood 

search heuristic that uses a complex structure to select neighborhoods. 

The SOCCER heuristic can be applied to a variety of optimization problems. This 

research implemented the SOCCER heuristic for job shop scheduling problems.  This 

implementation focused on creating a quality schedule for a local limestone company.  

A small computational study shows that the SOCCER heuristic can quickly solve 

complex job shop scheduling problems with most instances finishing in under an half an 

hour.  The optimized schedules reduced the average production time by 7.27%. This is 

roughly a 2 day decrease in the number of days required to produce a month’s worth of 

orders. Thus, the SOCCER heuristic is a new optimization tool that can aid companies 

and researchers find better solutions to complex problems.  
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Chapter 1:  Introduction 

Fútbol, called soccer in the United States, is the most popular sport in the world.  

During the 2010 FIFA World Cup over 3.2 billion people watched at least one minute of 

a game [25]. With 22 players on the field, determining the best method to achieve the 

most goals, while still prohibiting the other team from scoring, is intellectually 

challenging. The result is numerous formations with different players having different 

responsibilities. This complex nature of fútbol enables it to be an excellent framework for 

a new optimization heuristic.  The primary contribution of this thesis is the development 

of fútbol Strategies applied to Optimize Combinatorial problems to Create Efficient 

Results, the SOCCER heuristic, and applying this heuristic to a job shop scheduling 

problem.      

Heuristics are often implemented in order to find better solutions to 

computationally challenging problems. This is typically done by moving between 

neighboring solutions. If two solutions are similar according to some well-defined 

measure, they are neighbors. Heuristics report the best found solution, but do not 

guarantee optimality. The method of moving between solutions determines the type of 

heuristic.   

 One common heuristic used in optimization problems is simulated annealing. 

This heuristic mimics the processes of annealing metal. When annealing metal, the best 

results are obtained when the initial temperature is high and the metal cools slowly over 

time. In the heuristic, one starts with a transition probability. This probability determines 

the likelihood of one accepting worse solutions. As the number of iterations increases, the 

probability decreases. Simulated annealing has been used numerous times to solve 
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various problems [33] including job shop scheduling problems. For instance, it has been 

used to schedule maintenance work at power plants [32], job shop scheduling problems 

[39], and class scheduling [4].  

Genetic algorithms have also been used in a multitude of optimization problems. 

This heuristics mimics evolution. When parents have children, some of their genes are 

passed onto their child. For a genetic algorithm, certain traits from a solution are passed 

on to the new child solution. Genetic algorithms have been used in numerous instances 

[17], including job shop scheduling [5], [40].  

Another common heuristic is ant colony optimization. This search is based on 

how ants search for food.  As an ant moves, it lays down a pheromone trail. A different 

ant is not likely to take the same path if only one set of pheromones have been laid 

because the ant that laid them did not return. However, if the ant returned on the same 

path, twice the pheromones exist on the path and more ants are drawn to that path. This 

heuristic uses this idea to reinforce certain searches, while discouraging others. The 

heuristic has been used to solve a wide range of problems, including job shop scheduling 

[35].   

 Heuristics are valuable tools which can provide quality solutions to complex 

problems. Each of the heuristics mentioned have different applications and use various 

methods. This research provides a new heuristic, which is based on a fútbol game and the 

way players move. To show the value of the heuristic, it is applied to job shop 

scheduling.  
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1.1. Job Shop Scheduling 

Manufacturing facilities have been used for centuries to produce goods. Typically, 

a factory is either modelled as a flow shop or a job shop. A flow shop facility processes 

each job on all machines in the same route.  A standard flow shop operation is an 

assembly line.  For job shops, each job has a specified processing route. These routes 

vary based on the product produced. Furthermore, the route must be completed in a set 

sequential order.  

A complete job shop schedule is an assignment of all jobs to machines at 

specified times. This assignment must follow each job’s processing route. Furthermore, 

the time each job is assigned to each machine must be equal to the time it takes to process 

the job. It is important to note that a machine can only process one job at a given time.  

  Numerous heuristics have been used to find quality solutions to job shop 

scheduling problems. Some common heuristics which have been applied to job shop 

scheduling are simulated annealing [39], tabu search [6], and ant colony optimization 

[35].   

1.2. Research Motivation 

 This research started when a local limestone company asked for help with its 

scheduling method. Its manufacturing facility is a job shop. The company produces a 

large number of standard products and has numerous machines for processing. Due to the 

variations in products and processes, scheduling proves to be complex.  

After researching a number of heuristics, it was decided that variable 

neighborhood search heuristic should be considered for this job shop scheduling problem. 

Variable neighborhood search heuristic is another heuristic used in optimization 
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problems. This method finds good solutions by searching through various neighborhoods. 

This allows for a wide variety of search techniques to be used in a single problem. It also 

allows one to escape from a local optimal solution, which is important when searching 

for quality solutions. Variable neighborhood search heuristic has been applied to job shop 

scheduling on numerous occasions [21], [1], [30].   

 The downfall with variable neighborhood search heuristic is the method for 

switching between neighborhoods. Two methods are commonly used for determining the 

neighborhood. The first method is to randomly select a neighborhood. Then, after a 

random number of instances, a new random neighborhood is selected. The second 

method has a set initial neighborhood. Then, after a set number of iterations, the next 

neighborhood is selected. This continues and cycles back to the initial neighborhood. 

These two methods simply bounce between neighborhoods randomly. Since many 

heuristics draw inspiration from real world situations as previously discussed, it was 

decided that variable neighborhood search heuristics should also be based on a real world 

phenomenon.  

1.3. Research Contribution 

This thesis presents a new heuristic, fútbol Strategies applied to Optimize 

Combinatorial problems to Create Efficient Results – the SOCCER heuristic. The 

SOCCER heuristic was inspired by fútbol. The current solution corresponds to the fútbol 

ball. All 22 players on the field have a position, speed, and a location on the field. Each 

position has neighborhood associated with it.  

The players move about the field in pursuit of the ball and the two teams seek to 

move the ball in opposing directions. The offensive team seeks to move the ball towards 
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the goal, while the defense seeks to prevent it. The player who can reach the ball the 

quickest is provided with the opportunity to kick the ball. The time needed for each 

player to reach the ball is calculated using his speed and proximity to the ball. Once the 

player is determined, he uses his neighborhood to find a new solution. This corresponds 

to an attempted kick. If the player is on the offensive team, his solution is accepted if it is 

better than the previous solution. Solutions found by the defensive team are accepted if 

worse than the previous solution. The defensive team is used to escape local optimal 

solutions.   

 The SOCCER heuristic has a generic structure that could be applied to numerous 

optimization problems. In this research, the SOCCER heuristic was tailored and built to 

create quality job shop scheduling solutions.  To test the quality of this heuristic, it was 

applied to data from a limestone company.  

The SOCCER heuristic is capable of scheduling production for 24 days in 

approximately 14 minutes. This heuristic improves the production schedules by about 2 

days per month’s work of data.  Thus, the SOCCER heuristic is a quality optimization 

tool that can aid companies and researchers find better solutions to complex problems.    

1.4. Outline 

 Chapter 2 is a literature of previous research pertaining to optimization problems. 

The first section explains job shop scheduling. Then, neighborhoods are explained to 

better understand the searches used in meta-heuristics. Next, common meta-heuristics are 

presented. Then background on variable neighborhood search heuristic and its 

applications are discussed.  
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 Chapter 3 introduces the SOCCER heuristic. First, it explains fútbol. Detail is 

provided on the player’s positions and characteristics. Next, the SOCCER heuristic is 

presented. The pseudo-code for this heuristic is also provided.  

 Chapter 4 details the SOCCER heuristic’s application to job shop scheduling. It 

starts by providing background information on the limestone company, which provided 

the data for this heuristic. Then, the fútbol heuristic is converted to fit the limestone 

company’s job shop scheduling. The computational study shows that the SOCCER 

heuristic can save the company almost 2 days’ worth of production for every month’s 

worth of orders. Implementing the SOCCER heuristic will allow the limestone company 

to produce approximately 24 additional days’ worth of production per year.   

 Chapter 5 is a summary of this thesis. The chapter begins with the key 

contributions of this thesis. Then, computational results are summarized. The chapter 

concludes by presenting possible directions for future research.  
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Chapter 2: Background 

This chapter contains the background information necessary to understand the 

contributions of this research.  The first section of the chapter explains the job shop 

scheduling problem.  The second section explains neighborhoods and some common 

meta-heuristics used to find quality solutions to optimization problems.  The final section 

discusses variable neighborhood search heuristic techniques. 

2.1. Job Shop Scheduling 

Factories have been used for centuries to produce a variety of goods. In the past, 

parts were manufactured on an individual basis. Over time, the complexities of the 

processes increased as technology advanced. With the innovations of interchangeable 

parts and the assembly line, factories vastly changed operations. Today numerous 

different types of factories exist. 

For over a century, industrial engineers have attempted to make factories more 

efficient. A common industrial engineering technique is to model these factories as 

scheduling problems. Factories produce orders and these orders are called jobs in the 

scheduling models.   

The simplest scheduling models have a single machine. Other models have 

machines running in parallel.  Parallel machines allow for a job to be processed on any 

machine of a given subset, which allows more flexibility.  However, having parallel 

machines complicates finding the optimal schedule.   

Large facilities are typically modeled as flow shop [18] or job shop [37]. A flow 

shop facility processes each job on all machines in the same route.  A standard flow shop 

example is a factory that is an assembly line.  For job shops, each job has a specified 
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processing route. This route can contain one or more machines.  Furthermore, the route 

must be completed in a set sequential order. A limestone company is a job shop and the 

focus of this thesis is on job shop scheduling. The remainder of the thesis focuses on job 

shop scheduling.  

The input to a job shop scheduling problem (JSS) is a set of n jobs, 𝐽 =

{𝑗1, 𝑗2, … , 𝑗𝑛} and a set of q machines M= {𝑚1, 𝑚2, … , 𝑚𝑞}. Each job has a processing 

route or steps which are denoted as 𝑅𝑗𝑖
= (𝑚′

1
𝑖
, 𝑚′

2
𝑖

, … , 𝑚′
𝑟
𝑖
) where each 𝑚′𝑙

𝑖 є M for all l 

= 1,…,r and i = 1,…,n.  Each job also has a processing time on each machine in its route 

which is denoted as (𝑝1
𝑖 , 𝑝2

𝑖 , … , 𝑝𝑟
𝑖 ).  

A feasible solution to a JSS is an assignment of jobs to machines at given times.  

This assignment must complete every job and the steps must be completed in the order of 

the processing route.  Furthermore, the time each job is assigned to each machine must be 

equal to its processing time and no machine can work on more than one job at the same 

time.   

  Numerous variations of JSS are available.  A common assumption is that the 

machine must finish an entire process. Occasionally, machines are allowed to preempt a 

job.  The machine stops working on an existing job prior to completing it and begins 

working on a different job [15]. Some JSS have release dates and due dates.  Jobs cannot 

begin to be processed prior to release dates and should be finished prior to due dates [9]. 

Many other variations exist in the literature [30]. 

Various objectives are used to judge the quality of a schedule. A common 

objective is to minimize the total completion time or the time of completion of the last 

job.  This objective is referred to as the makespan [19]. The goal of this criterion is to 
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process all jobs quickly and minimize the downtime or idle times on machines.  Other 

objectives include minimize maximum lateness [24] and minimizing the number of tardy 

jobs [26].  Various weighted versions of these objectives are also common [21]. 

Regardless of the chosen objective, the objective value is typically denoted as z with z* 

being the optimal solution 

JSS problems are NP-complete and some of the most complex problems to find 

optimal solutions [10]. Some research has been done on finding the optimal solution. 

These methods typically use integer programming. Integer programs are difficult to solve 

for JSS instances and typically run for an exponential amount of time. Although 

heuristics cannot guarantee optimality, they are often used for job shop scheduling 

problems [3], [8]. This thesis creates a new heuristic based on fútbol which can be 

applied to JSS as well as other optimization problems.  

2.2. Heuristics and Neighborhoods 

Heuristics frequently use neighborhood searches to derive quality solutions. A 

neighborhood search encompasses a region of solutions commonly referred to as 

neighboring solutions or neighbors. A neighbor is a solution which was found by altering 

the previous instance. One typically uses neighborhoods to navigate through the search 

space in problems to hopefully find good solutions.  

Formally, let X be the feasible solutions to an optimization problem ∏.  Each 

feasible solution x є X is assigned an objective value z(x) where z: XR. An optimal 

solution to a maximization problem ∏ is an x* є X such that z(x*) ≥ z(x) for all x є X. 

In many optimization problems, feasible solutions may be similar.  Two such 

similar solutions are called neighbors.  Formally, let x’ є X and x” є X be such that          



10 

 

||x’-x’’||R < ԑ where || ||R is defined by some set of rules and ԑ is well-defined according 

to these rules.  Define the neighborhood of x’, NR,ԑ(x’) = {xєX: ||x’-x’’||R < ԑ}.  An x’ is a 

local optimal solution to a maximization problem ∏ if z(x’) ≥ z(x) for all x є NR,ԑ (x’). 

A wide range of problems use neighborhoods to search for optimal solutions. 

Typically, neighborhoods either move jobs to a new location or switch jobs. Small 

neighborhoods perform minimal changes while large neighborhoods consist of several 

jobs being altered.  

Consider a JSS problem with three jobs and two machines.  Table 2.1 provides the 

routes for each job and processing times on each machines.  The processing times are 

provided in hours. The goal of this problem is to minimize idle time.   

 

Table 2.1 Example Problem   

 

 

 The jobs are scheduled on both machines according to the initial processing order. 

Machine 1 has an initial processing order of job 1, job 2, job 3, job 1. Machine 2 has a 

processing order job 1, job 2, job 3, job 3. A job cannot be processed on a machine until 

its previous process has been completed. This means that machine 2 cannot process job 1 

until machine 1 has processed job 1 for 3 hours. This initial production schedule has an 

idle time of 21 hours and is shown in Table 2.2.  

Machine 1 2 1

Time 3 4 2

Machine 2 1

Time 3 4

Machine 2 1 2

Time 2 4 1

Job 1

Job2

Job 3
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Table 2.2 Initial Production Schedule   

 

 

The chosen neighborhood is a small neighborhood. It selects two adjacent jobs on the 

same machine and swaps them. In this case, machine 2 was selected. Job 1 and job 2 

were switched. This changes the processing order on machine 2 to job 2, job 1, job 3, job 

3. The order of jobs on machine 1 was not altered. This solution and the previous solution 

are considered neighbors. The new production schedule is shown in Table 2.3.  

 

Table 2.3 New Production Schedule  

 

 

 The new production schedule reduced the idle time to 7 hours. It was also able to 

complete the three jobs 7 hours sooner than the initial. This process typically continues 

for the desired number of iterations.  

At times some heuristics may allow infeasible solutions.  In these situations, x’’ is 

an infeasible neighbor of x’ if ||x’-x’’||R ≤ ԑ and x” є W / X where W is the set of all 

possible solutions to a non-constrained instance of ∏, || ||R is defined by some set of rules 

and ԑ is well-defined according to these rules. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Machine 1

Machine 2 Job 3

Job 1Job 2Job 1

Job 1 Job 2 Job 3

Job 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Machine 1

Machine 2 Job 1 Job 3 Job 3Job 2

Job 1 Job 2 Job 3 Job 1
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One common use of infeasible solutions is ejection structures such as chains [23], 

trees [28], and pools [29]. The goal of these ejection methods is to improve the schedule 

by making moves to an infeasible solution. The group of removed solutions is stored in 

an ejection structure. Then some of the solutions are re-inserted into the schedule. If the 

reinserted job interferes with a job, this job is removed and placed in the ejection 

structure. This process continues until all jobs from the ejection structure are scheduled 

and a feasible solution is found.  

2.2.1. Common Heuristics 

Researchers have created several meta-heuristics to aid in the search for quality 

solutions. This section discusses the meta-heuristics hill climbing, simulated annealing, 

and tabu search.   

2.2.2. Hill Climbing 

The simplest meta-heuristic is called hill climbing. The analogy is taken from a 

hiker trying to reach the summit on an incredibly foggy day. The hiker looks around in 

search of rising terrain. If she sees ground higher than her current location she steps there. 

She continues to step towards higher ground. If there is no direction to go up, she 

declares herself at the summit. Upon termination, she is locally optimal, but may not 

necessarily have reached the highest point on the mountain.  

Hill climbing heuristic follows a similar process. It starts with an initial solution. 

Then the neighborhood of the solution is searched until an improving solution is found.  

Once the solution is improved, the algorithm moves to this new solution and repeats until 

there are no more improving solutions in the current solutions neighborhood.  Thus, the 

solution is a local optimal solution.   
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Several researchers have used hill climbing to find quality solutions to scheduling 

problems. Hill climbing has been applied to scheduling traveling tournaments for various 

sporting events [22], exam time tabling problem for universities [2], and ground station 

scheduling [38].     

 The downfall of hill climbing is that it does not guarantee global optimality 

because hill climbing only searches neighboring solutions. Therefore, the initial solution 

determines the likelihood of the local optimal solution also being the global optimal. If 

the wrong initial solution is chosen, the solution will remain in a sub-neighborhood 

unable to reach the global optimal due to the neighborhood and the initial solution 

selected. Because of this, it is not likely for hill climbing to reach global optimality. An 

example of this is shown in Figure 2.1.  

 

 

Figure 2.1 Graph of Optimality [14]    



14 

 

In Figure 2.1, a series of nodes are near the point (1.5, 2). These show the 

different solutions searched. The graph peaks at this point. The peak value represents the 

local optimal solution found using hill climbing. However, this is not the highest point on 

the trend. The global optimal is at point (6.5, 3). Using hill climbing would not provide 

one with the optimal solution unless the initial x value was between 5.9 and 7.2. This is 

due to only accepting a new solution if it is better than the current solution. If a worse 

solution is found, the heuristic ceases to search in the direction regardless of more 

optimal searches past the low point. To increase the chances of optimality, one could run 

hill climbing multiple times starting with a variety of initial solutions. The best value is 

reported. 

By implementing a hill climbing heuristic one can find a local optimal solution in 

a short period of time, but cannot guarantee global optimality. Therefore, hill climbing is 

often used in conjunction with other heuristics. Once a different heuristic has been 

performed, hill climbing is frequently used to check the surrounding solutions and to 

guarantee that the reported solution is a locally optimal solution. 

2.2.3. Simulated Annealing 

Another common meta-heuristic is simulated annealing. Simulated annealing is 

named after annealing metal. When annealing metal, the strongest metal occurs when the 

temperature is high and the metal is cooled slowly over time. The simulated annealing 

algorithm takes its inspiration from this process.  

In application, simulated annealing starts with an initial solution. The solution is 

then compared to a neighboring solution. If the new solution is better than the previous, it 

is accepted. If the new solution is worse than the previous solution, it is accepted based 
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on a transition probability. When a solution is rejected, a new neighbor solution is found 

and the process repeats. 

Typically, the transition probability is a function based on the number of 

iterations. As the iterations increase, the probability decreases. Therefore, when the 

model starts, the probability is high and the algorithm is more likely to accept a worse 

solution than to reject it. As the process continues, the transition probability decreases 

and more inferior solutions are rejected. This transition probability is often represented as  

𝑒−𝑇𝑜(𝑡) where T0 is the initial temperature and t is the number of iterations. The 

exponential function is chosen because metal cools according to an exponential function.  

Researchers have used simulated annealing to find quality solutions to scheduling 

problems.  For instance, simulated annealing is used to schedule maintenance work at 

power plants [32], job shop scheduling problems [36], [39], and class scheduling [4].  

In theory, if simulated annealing ran forever, it would explore the entire state 

space and the optimal solution would be found. The downfall of this method is that the 

duration depends on the initial solution and the parameters used for the transition 

probability. A slight change in the initial probability could drastically change the 

effectiveness of the model. Also, the search could take an infinite amount of time 

depending on the complexity.  In practice, simulated annealing does not guarantee an 

optimal solution.  

2.2.4. Tabu Search 

 The final meta-heuristic discussed here is tabu search. This heuristic starts with an 

initial solution. Then, a neighbor solution is obtained. Tabu search does not judge the 

solution based on its perceived quality. Instead, tabu search judges the solution based on 
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whether or not it has already found the solution. If the neighbor solution is new, it 

becomes the new solution. If it is a repeated solution, it is consider tabu and rejected.  

 The goal for tabu search is never to repeat the same solution. To minimize the 

computational effect, the previous k solutions are stored. When a new solution is found, it 

is added to the chain and the oldest solution is removed. This process can be seen in the 

Figure 2.2. 

 

Figure 2.2 Tabu Search  [16] 

 

   Researchers have used tabu search heuristics to find quality solutions for a variety 

of scheduling problems.  For instance, tabu search has been used to schedule shifts for 

nurses and constrain solutions based on the number of shifts a nurse has worked as well 

as the number of nurses needed at a given time [7]. Tabu search has also been used to 

schedule tournaments for various sports leagues. For this application, the number of 
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home games versus the number of away games must be balanced for every team. In 

addition, constraints are needed to see if the chosen teams and facility are all available at 

the specified time [12]. Tabu search has also been used in job shop scheduling [6].    

 For tabu search, the downfall is storage. If not enough storage is provided in the list 

of solutions the model may backtrack or create a loop. If too many solutions are stored 

the process becomes time consuming. The time will also increase if the stored data has a 

complex data structure. Simplifying the string of data will decrease the time, but increase 

the chances of looping. One must find a balance between the two to obtain quality results. 

2.3. Variable Neighborhood Search Heuristic 

The heuristic created in this thesis is a new type of variable neighborhood search 

heuristic (VNS). VNS is used to escape the local optimal solution by using various 

neighborhood searches. It was suggested by Mladenovi´c and Hansen in 1997 [27]. With 

this method the heuristic cycles between searches by changing the neighborhood. This 

allows for a wide variety of search techniques to be used in a single problem. The goal of 

VNS is to escape the less optimal peaks and valleys by changing neighborhoods.   

VNS can be applied to a variety of instances [13], [20], [31], [34]. For instance, 

VNS can be applied in a hill climbing setting. To initialize the search, one must start in a 

given neighborhood. A neighborhood is denoted as k with k = 1..kmax. For k <= kmax the 

same steps are followed. Next, a random solution denoted by x’ must be found in 

neighborhood k. Then, a local search should determine the local optimal denoted as x’’. 

Finally, the solution is judged. If x’’ is better than x’, x’   = x’’ and the search continues 

with the new x’ neighborhood. If x’’ is worse than x’, then the neighborhood is increased 

by one (k=k+1) and the process continues. 
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VNS has been applied to single machine shops. For this case, the researchers used 

two neighborhoods in order to have faster computation. The neighborhoods were swap 

and insertion. Swap randomly locates two jobs and switches each location for the other. 

Insertion also identifies two random jobs. Then, it places one of the jobs directly before 

the other job [21].  

Variable neighborhood search heuristic has also been applied to JSS. In this 

instance, the researchers used three neighborhoods. Each neighborhood was a different 

insertion method. The insertion point is based on random numbers and the heuristic 

cycles through the neighborhoods as local optimal solutions are found [30] 

VNS can be altered to fit any scenario. To apply VNS, three things should be 

determined. First, how many neighborhood structures should be used. If one is looking to 

minimize the computation time, fewer neighborhoods should be used. Second, in what 

order should the neighborhood searches be performed. Lastly, what strategy should be 

used to change the neighborhood. Since the applications for this heuristic are vast, the 

complexity and optimality of the solution will depend on the individual instances. 

A primary weakness of VNS techniques is the lack of structure to select which 

neighborhood should find the next solution.  The next chapter introduces a new technique 

to switch between neighborhood searches.  This switching is based upon the progression 

of the ball and players in a fútbol game.   
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Chapter 3: The SOCCER Heuristic 

Based on the author’s research, variable neighborhood search heuristic has 

switched between neighborhoods primarily based upon random or cyclic selections and 

lacks a complex structure for picking neighborhoods. The SOCCER heuristic - fútbol 

Strategies applied to Optimize Combinatorial problems to Create Efficient Results - is a 

new framework to perform variable neighborhood search heuristic and mimics a fútbol 

game. Instead of randomly choosing neighborhoods, neighborhoods are selected based on 

fútbol players, their positions, and the ball’s position on the field. This chapter begins 

with an explanation of fútbol with the intention of motivating an optimization heuristic. 

The final section discusses how to transform fútbol into a variable neighborhood search 

heuristic for an optimization problem.   

3.1. Fútbol  

It is assumed that the reader is familiar with the game of fútbol, which is called 

soccer in the United States. Therefore, only limited information regarding the game is 

presented here. In fútbol, the objective is to score more than the opposing team. In order 

to score, one must get the ball past the goal line and inside of the goal. Several methods 

can be used to move the ball. The primary methods are dribbling, passing, clearing and 

punting.    

The purpose of dribbling is for a player to move the ball with the intention of that 

player being the next player to touch the ball.  The majority of dribbles are short kicks.  

From a strategic standpoint more dribbling occurs near the opponent’s goal than near 

one’s own goal.   
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The purpose of passing is to play the ball with the intent of another player on the 

same team being the next player to touch the ball.  One primarily passes the ball with the 

feet or head. If one passes the ball with his head it is called a header.  The majority of 

passing occurs in the midfield.   

The purpose of clearing is to move the ball as far away from one’s own goal as 

possible.  Thus, a player clearing a ball either kicks or heads the ball as far as possible.  

No consideration is given as to whom may receive this ball.  Clearing is primarily done 

on the defensive end of the field.  

Only the goalie can punt the ball since the goalie is the only player that can touch 

a ball with his hands.  To punt, the goalie drop kicks the ball and the result is a long kick.  

Typically, the goalie punts the ball after catching the opposing team’s attempt to score.   

Scoring a goal only requires the ball to cross the end line inside of the goal.  

Players may dribble, pass, clear, or punt the ball into the goal.  Occasionally a player may 

even score on their own team, which is the humiliating own goal.  Goals are hard to come 

by in fútbol and a goal typically has a substantial celebration.      

For professional fútbol, each team has eleven players on the field. The positions 

are defender, midfielder, striker, and goalie. A player’s method for moving the ball is 

highly dependent on the assigned position since each position has a certain responsibility. 

The manager’s strategy largely determines the number of players assigned to each 

position.  

Some of the typical team formations are shown in Figure 3.1. However, before 

one can understand the formations one must first understand the field. In the image 

below, there are three fields. Standard fútbol fields have the same lines asthe fields 
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depicted in the image. Anything outside the scope of the field is considered out of 

bounds. The top most edge of the image is the end line. The goal is centered on the field 

and adjacent to the end line. The small box located at the top center of the field is the 6 

yard box. The larger box is the 18 yard box. The line across the center of the field is 

called midfield. The bottom half of the image is simply a mirrored version of the top half 

and are referenced the same way. 

 

 

Figure 3.1 Fútbol Formations [11]  

 

 In fútbol, there are several different formations managers typically use. Three 

example formations are shown in Figure 3.1. Each formation has a corresponding three-

digit number. The first number is the number of defenders per team, the second is the 

midfielders, and the third is the strikers. The goalie is neglected when providing this 
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number formation. To further explain the formations, each player is discussed below 

according to a 4 3 3 formation.  

The player at the top of the image is the goalie. Each team has one goalie. The 

goalie can only use his hands inside of the 18-yard box. Thus, the goalie is not likely to 

move far and is considered a slow player. A goalie’s job is to block shots and prevent the 

other team from scoring.  If the opposing team takes a shot and the goalie catches it, then 

the goalie punts the ball.  

 The next set of players is the defenders. Four defenders are used per team with 

this formation. Defenders are located between the opposing team’s end line and midfield. 

When the ball is close, defenders are quick. However, defenders are relatively slow when 

the ball is far away. Their objective is to stop opposing players from scoring and to move 

the ball to the other end of the field. When defenders become desperate, they clear the 

ball.  

The next tier is the midfielders. For this strategy, each team consists of three 

midfielders. These players are typically located between the 18-yard boxes. Midfielders 

move at an average pace, which is fairly constant regardless of the ball’s location. Their 

job is to move the ball from the defensive end to the offensive end.  Typically this is done 

by passing the ball.  

The final set of players is the strikers. On the field, strikers are located near the 

opposing team’s defenders. Strikers are incredibly fast when the ball is close, but are 

slow and often lazy when the ball is farther away. Typically they dribble the ball.  

Strikers are also more likely to score than the other positions.   
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3.2. Transforming Fútbol into an Variable Neighbor Search Heuristic 

The SOCCER heuristic - fútbol Strategies applied to Optimize Combinatorial 

problems to Create Efficient Results - is inspired by fútbol and is a new type of variable 

neighborhood search heuristic.  The heuristic mimics a fútbol game.  The ball’s location 

is related to the objective function of the current solution.  Each player is assigned a 

neighborhood. When a player approaches the ball he is given the opportunity to use his 

neighborhood search. The offensive team performs neighborhood searches in hopes of 

improving the solution, while the defensive team performs searches in hopes of finding 

worse solutions. The defensive team and their pursuit of worse solutions helps the 

SOCCER heuristic avoid being stuck at a locally optimal solution. A goal is scored if a 

new best solution is found.   

Fútbol was chosen as inspiration for this heuristic because of the dynamic aspects 

it allows. With two opposing teams, one is able to search for quality solutions while 

occasionally accepting worse solutions, thus escaping local optimal solutions. It also 

allows for a variety of neighborhood searches to be used. The neighborhood search 

selected is based on each player’s proximity to the ball and speed. This allows for a more 

flexible search instead of simply cycling through neighborhoods as variable 

neighborhood search heuristic techniques have done in the past. The SOCCER heuristic 

explained here assumes one is seeking to minimize the objective function. The reader can 

make the obvious changes for a maximization problem.  

The SOCCER heuristic starts by initializing the players and their characteristics. 

Then, it searches for new solutions. Each time the ball is kicked, the players move since 
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fútbol players are rarely stationary. When a new best solution is found, a goal is scored 

and a celebration dance occurs. 

The SOCCER heuristic requires that each team is given q players. The offensive 

team is denoted by O = {p1,…, pq} and the defensive team is D = {pq+1,…, p2q}.  Each 

player is provided with a starting width location (wi), and a starting height scalar (αi), an 

athletic ability consisting of a slow (vsi
) and fast (vfi

) velocity, and a neighborhood (Ni).  

The height scalars are typically constant among similar positional players such that 0 ≤ 

αgoaliedefense < αdefenderdefense
 < αmidfielderdefense

 < αstrikerdefense
 < 1 = αstrikeroffense < αmidfielderoffense < 

αdefenderoffense < αgoalieoffense
. These characteristics should be based upon the player’s 

position: goalie, defender, midfielder, and striker.   

The SOCCER heuristic begins with a feasible solution and a corresponding z 

value.  The y location of the ball is always the z value of the current solution.  The x 

location can be based upon other criteria and here the x location is the difference between 

the z values of the two most recent solutions.  To start, the ball is placed at location (0,z).  

Observe that the ball may go negative in the x direction and this merely indicates that the 

ball is on the left side of the field.  

 The first player discussed is the offensive goalie. The goalie’s initial position is 

(0, zαgoalieoffense
). A goalie is the team’s last defense before a goal is scored. This player 

uses either an extremely large neighborhood or may find a new starting solution that is 

not related to the current solution. A goalie solution is always taken whether or not the 

solution is better. This neighborhood search occurs when the defensive team kicked the 

ball too many times and the ball needs to move to a new solution. For this reason, the 
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goalie is only allowed to play the ball if the ball is closer than some threshold to their 

starting position.   

The four defenders are located on the defensive end of the field away from quality 

solutions (xi, zαdefenderoffense
).  Since there are four defenders, the xi values typically have 

two negative and two positive values with an average of 0.  Defenders are often fast 

players when near the ball, yet slow when away from the ball. This type of player has a 

large neighborhood, which corresponds to a clearance. This means that the change 

between solutions is significant.   

Midfielders start with the coordinates (xi, zαmidfielderoffense
).  Since there are three 

midfielders, these xi values typically have one negative, one positive and a 0 value with 

an average of 0. This type of player is of average speed, but is not slow either.  

Midfielders should have medium sized neighborhoods, which corresponds to a pass.   

Strikers start with the coordinates (xi, zαstrikeroffense
). Since there are three strikers, 

these xi values typically have one negative, one positive and a 0 value with an average of 

0. Strikers are typically fast and extra slow.  Thus, their vfi
 should be among the fastest on 

the team, but the vsi
 should be slower than most, which translates into the lazy striker 

adage.  Strikers have small neighborhoods, which corresponds to a dribble.  

The defensive team has the same types of players and the same neighborhoods as 

mentioned above. The starting locations are similar except that the y values are smaller 

than z. This means that these players have initial locations, which are better than the best 

known solution. Therefore, the offensive team is trying to move the ball towards the 

defensive end. Since the defensive team is attempting to find worse solutions, their 

speeds should be slower than the speed of the offensive team and thus they should play 
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the ball less frequently.  One never desires the defensive goalie to drastically move from 

an extremely good solution, so the defensive goalie’s fast and slow speed are both 0.    

The main step of the SOCCER heuristic involves players kicking the ball. The 

first step in this process is to determine which player approaches the ball first. This player 

is selected based on each player’s proximity to the ball and each player’s fast velocity. 

The player who can reach the ball in the shortest time is selected. Next, he attempts to 

kick the ball. This attempt is accomplished by finding a new solution according to the 

player’s neighborhood.   

For an offensive player, if the z value of the neighboring solution is better than the 

current solution, the ball is kicked. With this kick, the current solution and z values are 

updated to equal this new solution. Then, the new solution is compared to the best 

solution. If it is better, the best solution is updated to be the current solution and a goal 

has been scored.  When a goal is scored, The Celebrate Goal subroutine is called.  

For a defensive player, the ball is kicked if the z value of the neighboring solution 

is worse than the current solution. If this occurs, the current solution and z values are 

updated to this neighboring solution. In some instances, a defensive player’s 

neighborhood search will result in a better z value than the best solution. If this is the 

case, an own goal was scored.  The best solution is updated to equal its values and a 

celebration by the offense occurs.  

If the new solution was not accepted, the current player miss handled the ball.  As 

such, another player attempts to kick the ball.  To achieve this, the first player to reach 

the ball is marked. This mark is simply to track which players have already missed the 

ball.  The first unmarked player to approach the ball is selected and this entire process 
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continues.  If all players except the goalies are marked without successfully kicking the 

ball, the marks are cleared and the process continues.   

Once a player, say pj, is identified as having kicked the ball, all players’ positions 

are first updated.  In fútbol players adjust their position according to the location of the 

ball.  Thus, players are moved before the location of the ball is updated.  The act of the 

player kicking the ball is one iteration.   

The first step in moving players is to determine the time required by the kicking 

player to reach the ball.  This is merely the distance between the player and the ball 

divided by the players fast velocity, time =  
√(𝑏𝑥− 𝑥𝑗 )2+ (𝑏𝑦− 𝑦𝑗 )2 

vfj
.  Every player moves 

toward the ball according to either their fast or slow speed.  If the player is closer to the 

ball than a specified threshold, the player’s fast velocity (vfi
) is used. Otherwise, the slow 

velocity (vsi
) is used.  Thus, the player’s current xi position becomes  

xi +time(v)
   

𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 

 ,  

and the yi location is updated to  

y i + time(v)
   

𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 

.  

where v is either the fast or slow velocity.  This repositioning may imply that a player 

over ran the ball.  

When all players have moved, the balls x and y location is updated.  The y 

location becomes the z value of the neighboring solution.  Various options are available 

for an x location.  If there exists a secondary objective function, this would be an 

excellent candidate for an x value.  If this does not exist, it is recommended to let the 
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ball’s x location be the difference between objective value of the current solution and the 

objective value of the neighboring solution.  This strategy tends to have the defensive try 

to keep the ball on the left side of the field and the offense keeps the ball on the right side 

of the field.   

When the team scores a goal, a celebration occurs.  The celebration is used to 

check various neighboring solutions to see if a better solution is nearby.  This celebration 

is a short hill climbing heuristic that seeks to find a locally optimal solution near the new 

best solution.  Some players are selected to celebrate.  Each player can cheer for a short 

duration or an extended amount of time.  The celebrating player finds a neighboring 

solution and if this is better than the best, the player carries the ball to this new solution.   

Once the current player is done celebrating, the next player in the celebration does their 

dance.  Any player can join the celebration and players may celebrate multiple times.  At 

the end of the goal celebration the best solution becomes the current solution and the field 

(ball and players) is reset according to the initial parameters. That is, for offensive 

players, all strikers are returned to their initial position of (xi, zαstrikeroffense
), midfielders to 

(xi, zαmidfielderoffense
), defenders to (xi, zαdefenderoffense

), and the goalie to (xi, zαgoalieoffense z). 

The defensive players return to their initial positions as well.  Please observe that the 

length of the field has changed with this repositioning.     

Several inputs are needed for the SOCCER heuristic. Each fútbol player needs 

five characteristics – a starting width (wi), a scaling height (αi), a well-defined 

neighborhood (Ni), a fast velocity (vfi
), and a slow velocity (vsi

).  Several other parameters 

are needed as input.  These parameters include: Threshold, MaxIterations, Number of 

Celebrating Players, and Number of Celebrations.  
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The width, scaling height and speed values of the players should be chosen to 

mimic a fútbol alignment.  Thus, the average widths for all strikers, midfielders, 

defenders and goalies on each team should be 0.  The scaling heights for the defensive 

players should follow the relationship, 0 ≤ αgoaliedefense < αdefenderdefense
 < αmidfielderdefense

 < 

αstrikerdefense
 < 1. The scaling heights for the offensive players should follow the 

relationship, 1 ≤ αstrikeroffense < αmidfielderoffense < αdefenderoffense < αgoalieoffense
.  The 

neighborhoods should also mimic the player’s responsibilities with strikers, midfielders, 

defenders and goalies having small, medium, large and extremely large neighborhoods, 

respectively.  

The pseudocode for the SOCCER heuristic is as follows. 

 

Fútbol Strategies applied to Optimize Combinatorial problems to 

Create Efficient Results (The SOCCER Heuristic) 

Let X be a feasible solution with objective value z. 

Let ball be an initial position (bx, by)  (0,z) of the ball. 

X*
 X, z*  z, zold  z, iterations  0 

Position Players (z) 

While iterations<MaxIterations Do 

 Kick  0, Unmark all players  

 Mark defensive goalie 

If √(𝑥𝐺𝑜𝑎𝑙𝑖𝑒𝑂𝑓𝑓𝑒𝑛𝑠𝑒
− 𝑏𝑥)2 + (𝑦𝐺𝑜𝑎𝑙𝑖𝑒𝑂𝑓𝑓𝑒𝑛𝑠𝑒

− 𝑏𝑦)2 > Threshold Then 

Mark offensive goalie 
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End If 

While (Kick = 0) do 

Let pi be the quickest unmarked player to the ball 
√(𝑏𝑥− 𝑥𝑖 )2+ (𝑏𝑦− 𝑦𝑖 )2 

vfi
 

  Time  
√(𝑏𝑥− 𝑥𝑖 )2+ (𝑏𝑦− 𝑦𝑖 )2 

vfi
 

  Let X’є Npi
(X) with objective value z’  

  If pi is on offense and z’ ≤ 𝑏𝑦 Then  

Move Players (Time, ball) 

X X’, by  z’, bx  z’ - zold 

zold
 z’ 

   Kick  1 

If z’ < z*
  Then 

X*
 X, z*  z’ 

Celebrate Goal (X*) 

Position Players (z*) 

zold
 z* 

End If 

End If 

  If pi is on defense and z’ ≥ zx Then  

Move Players (Time, ball) 

X X’, by  z’, bx  z’ - zold 

zold
 z’ 

   Kick  1 
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  End IF 

If pi is on defense and If  z’ < z*
  Then 

X*
 X, z*  z’ 

Celebrate Goal (X*) 

Position Players (z*) 

zold
 z* 

Kick  1 

  End If 

   If Kick = 0 Then 

Mark player pi 

If all player’s marked, Then  

Unmark all players except the goalies 

End If 

End If 

End While 

iterations iterations+1 

 End While 

 Report X*, z* 

 

The SOCCER heuristic subroutine Position Player (z) initializes each player’s 

starting location on the field.  The inputs necessary for this subroutine are the starting 

widths of the players and the scaling height coefficients of the players.  This function is 

called during the initialization and after celebrating a goal.  This function requires the 
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current z value and thus the starting position of the players improves each time a goal is 

scored.  Therefore, this fútbol field is not static in size.   

 

Position Players (z) 

For i = 1 to 2q  

xi  wi 

yi αi z 

 End For 

Report xi, yi for each player pi 

 

The next subroutine provides the pseudo-code for moving player. Players are 

moved based on their speed and the time allowed for the move. If the player is within the 

specified Threshold, he moves according to his fast velocity. Otherwise, he moves 

according to his slow velocity. Each player moves in the direction of the ball and may 

even run past it. Each of these parameters may be altered to fit various optimization 

problems. The pseudocode is provided next. 

 

Move Players (time, ball) 

For i = 1 to number players begin 

If √(𝑥𝑖 − 𝑏𝑥)2 + (𝑦𝑖 − 𝑏𝑦)2 > Threshold Then 

  xi xi +time * vsi   
𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 

 

  yi yi +time * vsi     
𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 
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Else 

  xi xi +time * vfi   
𝑏𝑥− 𝑥𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 

 

  yi yi +time * vfi   
𝑏𝑦− 𝑦𝑖

√(𝑥𝑖−𝑏𝑥)2+(𝑦𝑖−𝑏𝑦)2 

 

End If 

End For 

Report xi, yi for each player pi 

 

 In fútbol, few goals are scored. Therefore, when a goal is scored, a celebration 

dance occurs. The player that scored the goal dances first. The number of dances per 

celebrating participants and the number of participants is determined by the user.  The 

optimization goal is to search several neighboring solutions in an effort to find an even 

better best solution that is locally optimal.  The pseudocode for this sub routine is as 

follows.  

 

Celebration Dance (X*) 

For i = 1 to Number of Celebrating Players Begin 

For j = 1 to Number of Celebrations Begin  

  Let X’є Npi 
(X*) with objective value z’. 

  If z’ < z*
  Then 

X*
 X’, z*  z’ 

End If 

 End For 
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End For  

Report X*, z* 

 

 The SOCCER heuristic can be altered to fit a variety of optimization problems. 

By following the steps above, one could implement this heuristic on numerous classes of 

optimization problems. One would simply have to alter the parameters and objective 

function to customize the heuristic to the scenario. In the next chapter, the SOCCER 

heuristic is transformed into a job shop scheduling heuristic.  
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Chapter 4: The SOCCER Heuristic for Job Shop Scheduling 

Chapter 4 starts by providing background information on a job shop scheduling 

instance occurring at a limestone company. The next section converts the SOCCER 

heuristic into the SOCCER heuristic for a job shop scheduling problem.  This conversion 

uses assumptions based on machines and processes that are relevant to the limestone 

company.  The chapter concludes with a computational study and results for randomized 

JSS instances.  

4.1 Problem Specifics 

The limestone company has many quarries throughout the Midwest and a 

centralized manufacturing facility. As the company continues to grow, production 

scheduling has become increasingly complex. This section explains this job shop 

scheduling so one can better understand the steps taken and the computational 

complications of this instance. 

The limestone company has numerous standard product types. Each of which is 

offered in varying dimensions, finishes, and stone colors. The finishes offered provide the 

customer with the desired texture and aesthetic appearance for the stone product.  The 

available finishes include brushed, blasted, bush hammered, tumbled, honed, and split. 

The stone colors can also be specified. These colors consist of cottonwood, plaza grey, 

prairie shell, and numerous others. Each standard product has a predetermined processing 

route based on the product type and the desired finish. Some examples of standard 

products are landscape blocks, thin veneer, and pavers. In total, over 1.2 million standard 

product combinations exist.  
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Custom products are also available. These products range in size and shape, 

according to the customer’s desire. Examples of custom pieces include a kitchen sink and 

a cross for a church. One can even add a desired finish or vary the stone type for further 

customizations of the piece. Since each custom piece is vastly different, the processing 

route must be created for each piece. This path must be created before the piece can be 

scheduled.  

The limestone company has seven areas for production in its facility.  Every 

product starts in the belt saw area.  The belt saws convert rough stone into slabs with 

rough edges.  The factory moves the equivalent of one slab to different areas according to 

the processing route of the product.  These seven areas have between one machine and 

four parallel machines.  Thus, a schedule consists of an assignment of customers’ slabs to 

machines to be processed between certain times.   

The information above provides a base knowledge of the limestone company and 

its production facility. This information is needed as framework before implementing the 

SOCCER heuristic for this company. The next section converts the SOCCER heuristic to 

fit job shop scheduling instances.  

4.2 The SOCCER Heuristic to JSS 

The SOCCER heuristic starts by finding a feasible solution X.  This feasible 

solution is created by scheduling each job in sequential order. This means that the job for 

the first customer is scheduled first, then the job for the second customer. This continues 

until every slab for every customer has been scheduled.  

To schedule jobs, the number of slabs needed per order is first determined. This 

process starts by generating a random block. Each dimension is generated uniformly 



37 

 

between the specified measurements. The width of the product is then subtracted from the 

length of the block. This cut stone is referred to as a slab. Slabs are cut from this block 

until the square footage requirement for the order has been met or the block is no longer 

wide enough to meet the requirement. For the latter, a new block is generated and the 

process continues. This process determines the number of slabs needed to fill the order. 

During production, slabs are cut further to produce pieces. The pieces have the 

dimensions of the final product. A slab can contain between one and 100 pieces; 

therefore, all pieces associated with a given slab move through the facility together.  

Slabs move through production based on its predetermined product processing 

route. Typically, a product starts on the belt saw. This limestone company currently has 

three belt saws running in parallel. Slabs are scheduled on the machine with the earliest 

available start time. This methodology is used for all areas with parallel machines.  

The processing time for a slab varies for each area. The slab’s processing time in 

an area is based on the dimensions of the slab, the dimensions of the end product, the 

product type, and the stone type. In some instances, the processing time may even vary 

between machines in the same area.  

Once a slab is completed on a machine, it incurs an estimated five minute transit 

time. Therefore, the slab’s earliest possible start time on the next machine is the end time 

from the previous process plus five minutes. If a machine is available, the slab can be 

scheduled for that time. If all machines in the area are being utilized, the slab is scheduled 

on the machine with the earliest available start time. If there is only one machine in the 

area, the slab is scheduled immediately after the last currently scheduled slab on the 
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machine finishes production.  It is important to note that a slab can only be scheduled on 

one machine at a time and each machine can only process one slab at a time. 

As mentioned in Chapter 2, numerous objective functions exist for JSS instances.  

In this instance, the objective function is to minimize the makespan. The makespan is the 

time when the last slab is completed.  Thus, every machine is idle.  This objective 

function also minimizes the cumulative amount of idle time on all machines.  This 

objective function is denoted as z, which is reported in minutes.   

 Once the initial solution is created, the heuristics uses the ball and players to alter 

the solution. The ball represents the initial solution with an initial x location of 0 and an 

initial y location of z. Each team has eleven players. All players have a neighborhood, 

starting x and y locations, a slow velocity and a fast velocity. The characteristics for each 

player are based on the position on the field. The positions are goalie, defender, 

midfielder, and striker.  

Each team has one goalie. The offensive goalie has an initial x position of 0 and 

an initial y position of 1.75 times the z value.  Typically, the goalie does not move very 

far. For this scenario, the offensive goalie should only kick the ball if the solution is very 

bad and is not improving. Therefore, his slow speed is set to 0 and the fast speed is set to 

3. This prohibits the goalie from drifting towards quality solutions.  

The offensive goalie’s neighborhood is a scramble of jobs which corresponds to 

the goalie punting the ball far away from its current location.  This neighborhood search 

is used if too many worse solutions are found; therefore, an offensive goalie’s new 

solution is always accepted regardless of the z value. In this search, the order of 

customers in the customer list is shuffled by randomly swapping each customer with a 
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different customer. Then, the jobs are scheduled based on this random order of the 

customers, thus providing a new solution and corresponding z-value.  

On offense, the four defenders have starting x positions of -75, -25, 25, and 75. 

Their starting y positions are 1.5 times the current z value. They have a slow speed of 4 

and a fast speed 16.  

The defender’s neighborhood randomly selects two areas. For each of these areas, 

a selection of slabs is moved on every machine in the area. The set of slabs is chosen 

based on the largest idle time between scheduled slabs. The selected slab and all 

consecutive slabs following it for that customer are moved. The slabs may be inserted on 

any machine in the area. The entry point is the earliest available time on the machine with 

the most idle time.  This is a large neighborhood and corresponds to a clearance.  

On offense, the three midfielders are in a line centered across the width of the 

field. Their starting x positions are -50, 0, and 50. The initial y positions are 1.25 times 

the z value. The slow speed for these players is 7 and their fast speed is 12.  

The midfielder’s neighborhood randomly selects one area. Then, a set of slabs is 

identified and moved. The chosen slab is one which has the largest idle time between it 

and the previous slab. This slab and all consecutive slabs following it for the customer are 

selected. Then, this selection of jobs is moved to the machine with the most idle time and 

inserted at the first available time. This would be a small neighborhood. To make this a 

medium neighborhood, which is equivalent to a pass, this is repeated for each machine in 

the area.  
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For offensive strikers, the starting x locations are -30, 0, and 30. The starting y 

location for each player is equal to 1.1 times the z value. The slow speed of each is 5 and 

the fast speed is 20.  

The striker’s neighborhood randomly selects an area and a machine. Then, for the 

specified machine in the given area, the slab with the largest idle time between it and the 

previous slab is chosen. The slab and all consecutive slabs following it for the same 

customer are selected with a maximum of 30 slabs selected.  The slabs are inserted in the 

first available time on the same machine they were removed from. If the removed and 

inserted slab locations are the same, a new area and machine are selected. This small 

neighborhood mimics dribbling.  

For the defensive team, the goalie has an initial x position of 0. His initial y 

position is 0.25 z.  Since goalies typically do not move far, this goalie has a fast and slow 

speed of 0. If the solution is close to this goalie’s position, he does not act. This would be 

a very good solution and one does not want to move far away from here. Therefore, the 

defensive goalie is not given a speed or a neighborhood search.  

For defensive players, defenders have starting x locations of -75, -25, 25, and 75. 

The initial y location is 0.5 times the initial z value. Defensive players are slower than 

offensive players; therefore, defenders on defense have a slow speed of 3 and a fast speed 

of 12. Defenders have the same neighborhood regardless of the team. 

The midfielders on defense have starting x positions of -50, 0, and 50. The initial 

y positions are 0.75 times the current z value. Since defensive players are slower, the slow 

speed for midfielders is 6 and the fast speed is 10. Midfielders on defense have the same 

neighborhood search as the midfielders on offense.  
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The defensive strikers have starting x locations of -30, 0, and 30. The starting y 

positions are 0.9 times the current z value. They have a slow speed of 4 and a fast speed 

of 14. The strikers on defense have the same neighborhood as those on offense.  

A goal is scored when the solution found is better than the best solution. Once a 

goal is scored, a celebration dance occurs. This dance consists of four celebrating players. 

Each player dances ten times. Each dance is a different iteration of the player’s 

neighborhood search. If a better solution is found, the next dance starts with this solution. 

The purpose of the celebration dance is to find a locally optimal solution in the current 

region. This is viewed as a hill climbing routine. 

4.3. Computational Study 

 To test the SOCCER heuristic, small, medium and large instances were created.  

The small instances each had 50 customers, the medium had 100 and the large had 500 

customers.  The instances were randomly created and to avoid random anomalies 20 

instances in each class were created.  The template for these random instances followed a 

limestone company’s product line.   

The following method was used to generate a random instance.  Each customer 

randomly selected one of the 1.2 million product combinations.  The number of pallets 

was selected by randomly generating an integer between one and fifty. This number 

corresponds to the number of pallets in the order.  The route that this customer’s product 

takes through the factory is dependent upon the product ordered.  Some paths only 

required a single area and the longest path visits 7 different areas.  There were no release 

dates and any of the orders could be started at any time.  The objective is to minimize the 

makespan, which also reduces idle time.     
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To determine the importance of the length of the fútbol game, each instance was 

run with 100, 1,000 and 10,000 kicks. Eventually, the ball will be kicked, but it may take 

several attempts as offensive players may find worse solutions and defensive players find 

a better, but not a new best, solution. Each kick equates to one iteration. 

All runs were performed on a PC with a 3.4 GHz Intel Core i7-2600 CPU that had 

4 GB of RAM.  The primary statistics recorded for each run is the makespan for the 

initial schedule, the makespan for the best schedule, and the time in seconds required for 

the SOCCER heuristic. Tables 4.1-4.3 provide these numbers for all 20 instances of each 

data set.  Thus, the SOCCER heuristic was tested on 180 instances. 

The data collected for 50 customers is in Table 4.1 with the z value represented in 

minutes and the time required by the SOCCER heuristic provided in seconds. For this 

data set, when set to run for 100 kicks, solution improved 60% of the time. In the 

remaining 40% the best solution was the initial solution. The SOCCER heuristic ran with 

an average 1.9 seconds per data set and had an average 6.24% improvement.  For 1,000 

kicks, 85% of the solutions improved. On average, it took 20.3 seconds to complete one 

data set. The solutions improved by an average of 8.42%. When the SOCCER heuristic 

was run for 10,000 kicks, 95% of the solutions were improved. It took an average of 3.6 

minutes to complete one instance and had an average 9.17% improvement.  
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Table 4.1 Various Iterations for 50 Customers 

 

 

The data collected from the 100 customers’ data is in Table 4.2. When set to run for 

100 kicks, the initial solution improved 80% of the time. The data set took an average of 7.35 

seconds to run and had an average improvement of 4.83%.  When set to run for 1,000 kicks, 

90% of the solutions improved. On average, it took 77 seconds to complete one data set. The 

solutions improved by an average of 7.02%. When the SOCCER heuristic was set to run for 

10,000 kicks, 90% of the solutions improved. It took an average of 14 minutes to complete 

one instance and had an average 8.67% improvement.  

 

 

 

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 3,097 3,097 0.00% 0 2,921 5.68% 7 2,834 8.49% 81

2 5,797 5,503 5.07% 2 5,503 5.07% 26 5,369 7.38% 333

3 5,459 5,103 6.52% 3 5,103 6.52% 23 5,103 6.52% 242

4 38,458 36,440 5.25% 3 36,328 5.54% 47 36,328 5.54% 502

5 4,748 4,748 0.00% 2 4,604 3.03% 20 4,604 3.03% 227

6 6,030 5,922 1.79% 2 5,244 13.03% 23 5,132 14.89% 236

7 3,654 3,654 0.00% 0 3,297 9.77% 6 3,245 11.19% 70

8 5,582 5,088 8.85% 2 4,870 12.76% 17 4,773 14.49% 146

9 2,173 1,928 11.27% 0 1,727 20.52% 4 1,727 20.52% 39

10 5,138 5,138 0.00% 2 5,138 0.00% 15 5,138 0.00% 159

11 4,631 4,631 0.00% 2 4,631 0.00% 22 4,576 1.19% 225

12 4,200 4,197 0.07% 2 4,094 2.52% 14 4,067 3.17% 151

13 4,395 4,395 0.00% 1 4,395 0.00% 10 4,279 2.64% 127

14 8,048 5,612 30.27% 1 5,612 30.27% 15 5,334 33.72% 164

15 6,650 6,121 7.95% 3 5,983 10.03% 29 5,937 10.72% 295

16 4,940 4,555 7.79% 2 3,705 25.00% 16 3,705 25.00% 155

17 5,483 5,483 0.00% 1 5,025 8.35% 15 4,902 10.60% 171

18 51,795 47,968 7.39% 7 47,896 7.53% 70 47,896 7.53% 852

19 3,344 3,344 0.00% 1 3,177 4.99% 10 3,050 8.79% 92

20 5,582 5,088 8.85% 2 4,870 12.76% 17 4,773 14.49% 146

Total 179,204 168,015 6.24% 1.9 164,123 8.42% 20.3 162,772 9.17% 220.65

50 Customers

100 Kicks 1,000 Kicks 10,000 Kicks
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Table 4.2 Various Iterations for 100 Customers 

 

 

Table 4.3 presents the data collected for the 500 customers’ data sets. When set to 

run for 100 kicks, the initial solution improved 90% of the time. The data set took an 

average of 2.67 minutes to run and had an average improvement of 6.47%.  When set to 

run for 1,000 kicks, 100% of the solutions improved. On average, it took 29 minutes to 

complete one data set. The solutions improved by an average of 7.77%. When the 

SOCCER heuristic was set to run for 10,000 kicks, 100% of the solutions improved. It 

took an average of 5.37 hours to complete one instance and had an average 8.02% 

improvement.  

 

 

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 10,524 9,884 6.08% 7 9,861 6.30% 62 9,706 7.77% 718

2 48,087 47,011 2.24% 15 47,011 2.24% 196 47,011 2.24% 1,981

3 10,446 10,446 0.00% 9 10,367 0.76% 93 10,320 1.21% 1,207

4 7,313 7,091 3.04% 4 6,549 10.45% 45 6,549 10.45% 476

5 22,948 19,412 15.41% 14 19,347 15.69% 126 19,347 15.69% 1,184

6 9,914 9,474 4.44% 5 8,909 10.14% 70 8,360 15.67% 663

7 8,538 8,485 0.62% 4 8,435 1.21% 42 8,258 3.28% 580

8 9,479 9,022 4.82% 9 8,865 6.48% 93 8,353 11.88% 918

9 7,081 6,807 3.87% 3 6,605 6.72% 35 6,437 9.09% 410

10 10,939 10,939 0.00% 8 9,409 13.99% 76 9,201 15.89% 755

11 59,106 59,106 0.00% 14 59,106 0.00% 133 59,106 0.00% 1,523

12 15,639 10,695 31.61% 11 10,682 31.70% 85 10,682 31.70% 843

13 9,217 8,845 4.04% 4 8,820 4.31% 45 8,734 5.24% 533

14 10,264 10,058 2.01% 6 9,938 3.18% 84 9,933 3.22% 988

15 9,714 9,581 1.37% 7 9,197 5.32% 63 9,108 6.24% 587

16 7,697 7,697 0.00% 4 7,697 0.00% 40 7,697 0.00% 487

17 6,977 6,916 0.87% 3 6,916 0.87% 35 6,916 0.87% 386

18 8,939 8,399 6.04% 6 8,244 7.77% 71 7,915 11.46% 715

19 8,935 8,453 5.39% 5 8,318 6.91% 54 8,083 9.54% 625

20 9,479 9,022 4.82% 9 8,865 6.48% 93 8,353 11.88% 918

Total 291,236 277,343 4.77% 7.35 273,141 6.21% 77.05 270,069 7.27% 824.85

100 Customers

100 Kicks 1,000 Kicks 10,000 Kicks
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Table 4.3 Various Iterations for 500 Customers 

 

 

Although not reported in the tables, additional data was collected.  These included 

the success rate of players, percent of successful kicks for both offense and defense, the 

number of goals for both offense and defense, the amount of successful celebrations, and 

various other objectives.  This data is presented in Tables 4.4 – 4.7. 

The success rate of a player is the percentage of times he successfully kicked a 

ball. This data was collected for each offensive position and presented for each number of 

kicks. Since the offensive goalie’s solution is accepted 100% of the time, this player was 

omitted from the table. The data can be seen in Table 4.4. The SOCCER heuristic 

performs over a half million kicks. For these kicks, strikers performed successful kicks 

Data Initial Z Best % Improvement Time Best % Improvement Time Best % Improvement Time

1 47,837 47,568 0.56% 166 47,345 1.03% 2,078 47,345 1.03% 23,722

2 44,184 44,184 0.00% 124 43,871 0.71% 1,306 43,871 0.71% 16,408

3 39,882 39,882 0.00% 90 38,370 3.79% 1,269 38,275 4.03% 14,285

4 135,826 133,328 1.84% 288 133,328 1.84% 3,365 133,328 1.84% 35,548

5 55,338 53,404 3.49% 146 51,808 6.38% 1,814 51,794 6.40% 18,801

6 43,677 43,420 0.59% 164 43,029 1.48% 1,552 43,029 1.48% 17,360

7 66,969 51,117 23.67% 149 50,055 25.26% 1,401 48,258 27.94% 15,438

8 63,486 56,269 11.37% 214 56,269 11.37% 1,936 56,269 11.37% 18,143

9 79,694 57,952 27.28% 272 57,952 27.28% 2,577 57,952 27.28% 26,933

10 41,285 40,298 2.39% 109 40,194 2.64% 1,354 40,102 2.87% 16,627

11 42,511 42,308 0.48% 149 42,308 0.48% 1,840 42,073 1.03% 20,394

12 36,807 34,790 5.48% 110 34,256 6.93% 1,112 34,256 6.93% 14,298

13 38,579 38,521 0.15% 109 38,348 0.60% 1,094 38,156 1.10% 14,577

14 46,688 42,170 9.68% 153 41,858 10.35% 1,588 41,624 10.85% 19,167

15 77,309 72,769 5.87% 275 72,769 5.87% 3,241 72,769 5.87% 30,170

16 40,367 39,840 1.31% 108 39,840 1.31% 1,208 39,840 1.31% 15,136

17 35,606 34,787 2.30% 95 34,475 3.18% 997 34,475 3.18% 11,904

18 39,595 39,283 0.79% 131 39,283 0.79% 1,354 39,197 1.01% 16,390

19 67,287 66,644 0.96% 128 58,854 12.53% 1,562 58,818 12.59% 16,879

20 63,486 56,269 11.37% 214 56,269 11.37% 2,010 56,269 11.37% 24,564

Total 1,106,413 1,034,803 6.47% 159.7 1,020,481 7.77% 1732.9 1,017,700 8.02% 19,337.20

500 Customers

100 Kicks 1,000 Kicks 10,000 Kicks
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5.90% of the time, midfielders had a success rate of 4.19%, and defenders had a success 

rate of 9.16%.  

Table 4.4 Success Rate of Offensive Players 

 

 

 Table 4.5 provides the overall success rate of the offensive and the defensive teams, 

as well as the average number of goals scored by each team. The recorded statistics show 

that the success rate for each team is fairly constant. The offensive team is successful less 

than 10% of the time and the defensive team is successful approximately 28% of the 

time. This indicates that the offensive team found more solutions, which were worse than 

the current solution.  Thus, the SOCCER heuristic spends the majority of its effort 

searching in the proximity of quality solutions.   

 As expected, the number of goals for each team increases as the number of 

iterations increases. This is because there are more opportunities to score. Typically, the 

offensive team scores; however, the defense occasionally scores an own goal.  

 

Table 4.5 Success Rate and Goals  

 

Striker Midfielder Defender

100 Kicks 8.43% 6.88% 12.19%

1,000 Kicks 7.03% 5.16% 10.10%

10,000 Kicks 5.77% 4.08% 9.05%

Overall 5.90% 4.19% 9.16%

Success Rate

Offense Defense Offense Defense

100 Kicks 9.43% 31.14% 2.05 0.53

1,000 Kicks 7.77% 28.69% 3.5 0.57

10,000 Kicks 6.61% 28.15% 4.71 0.62

Average 6.73 28.22 3.42 0.57

% Successful Goals
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 The celebration statistics are presented in Table 4.6. The offensive team celebrates 

when a goal is scored. For this application, all three offensive strikers and one midfielder 

were selected to celebrate. During celebrations, on average, striker neighborhoods were 

searched 103 times per data set. Of those, 2.3% were successful. Midfielders performed 

an average of 34 neighborhood searches per data set with 1.11% successful. Thus, the 

celebration dance is important for improving solutions. 

 

Table 4.6 Celebration Statistics 

 

 

 Table 4.7 provides the average improvement and average time for each combination 

of the number of customers and the number of kicks. The success rate for each number of 

kicks increases as the number of customers increase. The success rate of each customer 

data set increases as the number of kicks increase and the percent improvement for each 

data set also increases as the number of kicks increase. However, the running time of the 

heuristic also increases with the number of kicks. The smallest combination – 50 

customers for 100 kicks – can run one data set in approximately 2 seconds. The largest 

combination – 500 customers for 10,000 kicks – takes an average of 5.37 hours per data 

set.  

 

Iterations Success Rate Iterations Success Rate

100 Kicks 85 2.30% 28 0.83%

1,000 Kicks 100 1.96% 33 0.70%

10,000 Kicks 124 2.54% 41 1.64%

Average 103 2.29% 34 1.11%

Striker Midfielder
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Table 4.7 Summary Statistics 

 

 

As one can see, there is a trade-off between percent improvement and time per 

data set. Therefore, when determining the settings for the heuristic one should consider 

these two points. 

For small data sets, a large number of kicks should be used. This will yield the 

best results and the required time is small. In the instances tested, a quality solution for 50 

customers was found in less than four minutes when the SOCCER heuristic was run for 

10,000 iterations.  

For medium data sets, the SOCCER heuristic should be run for a large number of 

iterations. For the instances tested, it took an average of 14 minutes to find a quality 

solution with 10,000 kicks. This is not a significant amount of time when one considers 

the added value of the improved solution. 

For large data sets, the best results are found when the heuristic is run for a large 

number of kick. However, this is not always feasible since it may take hours to create a 

quality solution. Therefore, one should find the desired balance between required time 

and the quality of the solution.  

For the limestone company, one month of production equates to roughly 100 

customers. Therefore, this company should run the SOCCER heuristic for 100 customers 

and 10,000 kicks. With these settings, the limestone company will have a quality 

Improvement Success Time Improvement Success Time Improvement Success Time

50 Customers 6.24% 60% 2 8.42% 85% 20.3 9.17% 95% 220.65

100 Customers 4.77% 80% 7.35 6.21% 90% 77.05 7.27% 90% 824.85

500 Customers 6.47% 90% 159.7 7.77% 100% 1,732.90 8.02% 100% 19,337.20

Total 6.12% 77% 56.32 7.54% 92% 610.08 7.99% 95% 6,018.07

100 Kicks 1,000 Kicks 10,000 Kicks



49 

 

schedule in less than 14 minutes. With these settings, the SOCCER heuristic improved 

their production schedules by an about 2 days per month. This is an additional month’s 

worth of production per year. 
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Chapter 5: Conclusion 

Variable neighborhood search heuristic is a heuristic commonly used in 

optimization problems. With this method the heuristic cycles between searches by 

changing the neighborhood. It allows for a wide variety of search techniques to be used in 

a single problem. It also allows one to escape from a local optimal solution, which is 

important when searching for quality solutions.  

 The downfall with variable neighborhood search heuristic is the method for 

switching between neighborhoods. Typical variable neighborhood search heuristic 

instances switch between neighborhoods cyclically or randomly. Variable neighborhood 

search heuristics need a structure or method to switch between neighborhoods.  

This thesis presents a new heuristic, fútbol Strategies applied to Optimize 

Combinatorial problems to Create Efficient Results – the SOCCER heuristic, which was 

inspired by fútbol. For this heuristics, the current solution corresponds to the fútbol ball. 

Each player on the field has a position, speed, and location. Every player has 

neighborhood search associated with him. The player who can reach the ball in the least 

amount of time performs his neighborhood search. The time it takes a player to reach the 

ball is calculated using each player’s speed and proximity to the ball.  

 The competing teams in fútbol are also important to this heuristic. The teams 

seek to move the ball in opposing directions. The offense attempts to move the ball 

forward towards the goal (better solutions), while the defense seeks to prevent it. For the 

heuristic, this means that the offensive team’s solution is accepted if it is better than the 

previous solution. Solutions found by the defensive team are accepted if worse than the 
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previous solution.  Thus, the defensive team keeps the heuristic from being stuck at a 

locally optimal solution. 

  This thesis applies the SOCCER heuristic to a job shop scheduling instance. The 

SOCCER heuristic is capable of scheduling production for 24 days in approximately 14 

minutes. In the instances tested, the heuristic improved the production schedules by an 

about 2 days. This is an additional month of production per year. By implementing the 

SOCCER heuristic, the limestone company will incur a large increase in profits.  

 

5.1 Future Research 

The SOCCER heuristic provides the preliminary research for numerous other 

research topics.  This section provides other researchers with brief ideas on only a few of 

these research topics.  Since the SOCCER heuristic could be applied to numerous other 

optimization problems, this section merely focuses on improvements related to JSS and 

the reader should extend these comments to any optimization problem.          

Foremost, minimal effort was spent customizing and optimizing the SOCCER 

heuristic and this heuristic has numerous settings that could improve its performance.  

One could perform additional research into the initial settings, such as the speed of the 

offense versus the defense, the starting locations and the threshold.  Additionally, the 

length of celebrations should also be optimized.   

Future customization could also be performed on the neighborhoods assigned to 

each position. In the current heuristic, all players in same position have the same 

neighborhood. It would be interesting to vary the neighborhoods within each position and 
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see if certain neighborhoods yield better results.  This would allow a deeper analysis of 

neighborhoods and allow one to analyze the importance of selecting neighborhoods. 

One could attempt to better mimic a fútbol game.  Limits could be set on players 

so that a center back defender could never play a striker’s ball.  Additionally an out of 

bounds could be incorporated.  Briefly, the ball is out of bounds if a solution is infeasible. 

Therefore, when the ball is kicked out of bounds, a new solution could be found using a 

different search technique, such as ejection structures. Once the solution returns to 

feasibility, the ball has been thrown in bounds and the search continues. This would allow 

further manipulation of possible solutions and may lead to better results.  

An exciting extension of the SOCCER heuristic is to expand it into multicriteria 

optimization.  Imagine a JSS instance that wanted to minimize the makespan and also 

minimize the tardiest order.  This would allow the field to be multi-dimensional and one 

would correspond to the x coordinate to the makespan and the maximum tardiness to the 

y coordinate.  One would accept an offensive kick if either objective value is better than 

the existing.  In all likelihood, one would maintain any Pareto optimal solution.  This 

concept could be expanded beyond a two dimensional field and into an arbitrary number 

of criteria.   

 In summary, my view of fútbol will forever be distorted.  When a player 

mishandles a ball, I will yell, “Find a neighborhood that is improving.”  If a celebration is 

weak, I will know that they could have found a better solution with more dancing.  If a 

player is beaten, he should run at his fastest speed to save the goal.  This knowledge will 

enable me to gain more enjoyment out of watching a fútbol game.    
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