
 

 
 
 
 
 
 
Horos, R. et al. (2019) The small non-coding vault RNA1-1 acts as a riboregulator of 
autophagy. Cell, 176(5), 1054-1067.e12. 

 
   
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/222056/          
      

 
 
 
 
 
 

Deposited on: 12 August 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

  

http://eprints.gla.ac.uk/222056/
http://eprints.gla.ac.uk/


1 
 

The small non-coding vault RNA1-1 acts as a riboregulator of autophagy 1 

 2 

Authors:  Rastislav Horos1,5,*, Magdalena Büscher1,2,5, Rozemarijn Kleinendorst1, Anne-Marie 3 

Alleaume1, Abul K. Tarafder1, Thomas Schwarzl1, Dmytro Dziuba1, Christian Tischer1, 4 

Elisabeth M. Zielonka1, Asli Adak1, Alfredo Castello3, Wolfgang Huber1, Carsten Sachse1,4, and 5 

Matthias W. Hentze1,6,* 6 

Affiliations: 7 

1European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany 8 

2(Candidate for) Joint PhD degree from EMBL and Heidelberg University, Faculty of 9 

Biosciences 10 

3Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, 11 

United Kingdom 12 

4Ernst Ruska- Centre for Microscopy and Spectroscopy with Electrons / ER-C3 Structural 13 

Biology, Wilhem-Johnen-Straße, 52425 Jülich, Germany 14 

5These authors contributed equally 15 

6Lead contact 16 

*Correspondence: horos@embl.de (R.H.), hentze@embl.de (M.W.H.)  17 

Combined Manuscript File

mailto:horos@embl.de
mailto:hentze@embl.de


2 
 

SUMMARY 1 

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in 2 

many eukaryotes. Although they have been linked to drug resistance, apoptosis and viral 3 

replication, their molecular functions remain unclear. Here we show that vault RNAs directly 4 

bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of 5 

human vtRNA1-1 inhibits, while its antisense LNA-mediated knock down enhances p62-6 

dependent autophagy. Starvation of cells reduces the steady state and p62-bound levels of vault 7 

RNA1-1, and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display 8 

increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, 9 

vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with 10 

oligomerization, a critical step of p62 function. Our data uncover a striking example of the 11 

potential of RNA to control protein functions directly, as previously recognized for protein-12 

protein interactions and post-translational modifications.  13 
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INTRODUCTION  1 

 Vault RNAs (vtRNA) have been described as small non-coding RNA components of 2 

giant ribonucleoprotein particles (RNPs), termed vaults (Kedersha and Rome, 1986). Humans 3 

express four vtRNA paralogs (vtRNA1-1, vtRNA1-2, vtRNA1-3, vtRNA2-1), which are 88-100nt 4 

long and transcribed by RNA polymerase III. Vaults are found in a broad spectrum of eukaryotes 5 

ranging from protists to mammals (Stadler et al., 2009). Although vaults can occur at 10,000 to 6 

100,000 particles per cell and have been linked to cellular processes like drug resistance, 7 

apoptosis and nuclear transport (Berger et al., 2009), their function remains unclear. 8 

Sedimentation experiments showed that only a fraction of vtRNAs is incorporated into vaults 9 

(Kickhoefer et al., 1998), suggesting that vtRNAs may have roles outside of vault RNPs. 10 

Overexpression of vtRNA1-1 was shown to be protective against apoptosis in a cellular model of 11 

Epstein Barr Virus infection (Amort et al., 2015), and to favor influenza virus replication via 12 

PKR deactivation (Li et al., 2015). Yet, the molecular functions of vault RNAs remain 13 

undefined.     14 

 Macroautophagy (referred to further as autophagy) is an essential cellular process 15 

responsible for the recognition, removal and degradation of intracellular components, organelles 16 

and pathogens within membrane vesicles termed autophagosomes (Klionsky et al., 2016). The 17 

molecular and functional details of the multiprotein complexes that regulate the formation and 18 

growth of autophagosomal double-membranes have been intensively studied (for review see 19 

(Yin et al., 2016)). After encompassing the cargos, autophagosomes close and fuse with 20 

lysosomes, and degrade their contents to supply amino acids, lipids and nucleotides for the 21 

anabolic needs of cells.  22 
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 Autophagy was considered to be a non-selective mechanism until the discovery of 1 

autophagic receptors with the ability to bind specific autophagic substrates, and bring them to the 2 

forming autophagosomal membranes via interaction with Atg8-like proteins, including LC3B 3 

and GABARAP (Galluzzi et al., 2017). The protein p62 (also known as sequestosome-1, 4 

SQSTM1) is such an autophagic receptor with a C-terminal ubiquitin binding domain (UBA) and 5 

a LC3-interaction motif (LIR) (Pankiv et al., 2007). p62 co-localizes with LC3-positive 6 

autophagosomes and is itself degraded in autophagolysosomes (Pankiv et al., 2007, Sahani et al., 7 

2014, Bjorkoy et al., 2005). Thus, determination of p62 protein levels can serve as a proxy for 8 

autophagic flux (Klionsky et al., 2016). p62 mostly serves in selective autophagy for the removal 9 

of intracellular pathogens (Zheng et al., 2009), and the degradation of intracellular aggregates 10 

marked by ubiquitin (Ub) (Pankiv et al., 2007). Amongst the autophagy receptors, p62 has the 11 

distinct property to oligomerize via its N-terminal PB1 (Phox and Bem1p) domain (Ciuffa et al., 12 

2015). Oligomerization is functionally important, as it increases p62 affinity for LC3-positive 13 

membranes (Wurzer et al., 2015), and is thought to help align p62 to forming autophagosomal 14 

structures (Ciuffa et al., 2015). Importantly, oligomerization-deficient p62 is dysfunctional in 15 

autophagy (Itakura and Mizushima, 2011). Yet, it is not well understood how the oligomerization 16 

of p62 is controlled.   17 

 Here we uncover that the autophagy receptor p62 is an RNA-binding protein. We show 18 

that p62 binds the short, non-coding RNA Pol III transcript vault RNA1-1 in vivo and in vitro. 19 

We demonstrate that vault RNA1-1 inhibits p62-dependent autophagy and Ub aggregate 20 

clearance, and we show that vault RNA1-1 expression is diminished when autophagy is activated 21 

during starvation. Mechanistically, vtRNA1-1 appears to inhibit p62 oligomerization, 22 
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consequently impairing the binding of p62 to the Atg8-like autophagic effectors LC3B and 1 

GABARAP. Thus, vault RNA1-1 emerges as a riboregulator of targeted autophagy.   2 
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RESULTS 1 

The autophagy receptor p62/SQSTM1 is an RNA-binding protein  2 

We recently developed a method for the proteome-wide identification of RNA-interacting 3 

peptides in RNA-binding proteins (RBPs), termed RBDmap (Castello et al., 2016). We 4 

performed RBDmap on human hepatic HuH-7 cells and identified peptides from both known and 5 

previously unknown RBPs (http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/, 6 

Table S1). A peptide mapping to the autophagy receptor p62/sequestosome-1 suggested that p62 7 

interacts with RNA. While lysosome-mediated RNA degradation was described long ago 8 

(reviewed in (Frankel et al., 2016)), and autophagy has been implicated in the degradation of 9 

ribosomal (Kraft et al., 2008) and retrotransposon RNA (Guo et al., 2014), none of the known 10 

mammalian autophagy receptors have been shown to bind RNA directly, which we therefore 11 

explored further.  12 

We first validated the p62-RNA interaction. HuH-7 cells were exposed to UV-C light, 13 

and covalently bound RNA-binding proteins were recovered from lysates using oligo-(dT) 14 

coupled beads (Castello et al., 2013). Western blotting confirmed specific p62 binding to 15 

polyadenylated RNA (Figure 1A). In an alternative approach, we UV-C treated cells followed 16 

by lysis and RNase treatment. We then immunoprecipitated (IP) p62 and used the IP for 17 

radioactive labeling of RNA 5’ ends with T4 polynucleotide kinase (PNK) (Baltz et al., 2012). 18 

We observed a typical, smeared signal corresponding to RNA-containing complexes, which was 19 

reduced to a sharper band depending on the RNase treatment, confirming the p62-crosslinked 20 

entity as RNA (Figure 1B). Thus, p62 is a bona fide RNA-binding protein.  21 

 To determine the RNAs bound by p62, we performed iCLIP (Huppertz et al., 2014). We 22 

sequenced RNAs that UV-crosslinked to and co-immunopurified with p62 using two 23 

http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/
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independent antibodies (and the respective controls, Figure S1A and B), identifying 165 high 1 

confidence RNA hits. Amongst these are numerous polyadenylated transcripts, explaining the 2 

initial identification of p62 as an RBP by RBDmap. However, RNA polymerase III transcripts 3 

including tRNAs and vault RNAs emerged as the top categories specifically enriched in the IPs 4 

(Figure 1C, Table S2). Differential crosslink site occurrence of individual RNAs isolated from 5 

p62 or control IPs, respectively, placed all four human vtRNAs prominently on the p62 target list 6 

(Figure 1D, Table S3). More detailed analysis of the iCLIP data revealed that p62 preferentially 7 

interacts with looped regions of the central domains of the vtRNAs (Figure 1E and Figure S1C) 8 

without an apparent binding motif.  9 

Thus, p62 predominantly interacts with a subset of Pol III transcripts, and shows 10 

preferential binding to the central domains of vault RNAs. 11 

  12 

Vault RNA 1-1 is the prime p62-interacting RNA 13 

To complement the results of iCLIP and to quantify RNA binding to p62 under steady-state 14 

conditions, we performed p62 RIP-qPCR (RNP immunoprecipitation followed by cDNA 15 

synthesis and quantitative real-time PCR) from HuH-7 cells, using a p62 antibody or control 16 

IgG, respectively. We observed prominent and specific enrichment of vtRNA1-1 relative to the 17 

other vault and control RNAs (Figure 2A, Figure S2A). Thus, vault RNA1-1 appears to be a 18 

prime interacting RNA of p62.  19 

 Next, we tested a series of cell lines for the interaction between p62 and vtRNA1-1 (for 20 

human HeLa cells) or the single murine vault RNA mVR1 in hepatic Hepa1-6 and Hep-56.1D 21 

cells, NIH3T3 fibroblasts and monocytic RAW264.7 cells by RIP-qPCR. We confirmed p62 22 

binding to vtRNA1-1 in HeLa cells (Figure 2B), and to mVR1 in the different mouse cell lines 23 
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(Figure 2C). Thus, the binding of p62 to vault RNAs is conserved between human and mouse 1 

cells.  2 

We next investigated the interaction of p62 and vtRNA1-1 in vitro using an 3 

electrophoretic mobility shift assay (EMSA) with purified recombinant protein and radiolabeled 4 

in vitro-transcribed RNA. Since native p62 tends to oligomerize spontaneously in vitro (Ciuffa et 5 

al., 2015), we tagged the N-terminus with MBP (maltose binding protein; 40 kDa) to prevent 6 

spontaneous oligomerization and to facilitate native gel electrophoresis. We observed that MBP-7 

p62 forms complexes with vtRNA1-1 (Figure S2B). To test whether the interaction between 8 

MBP-p62 and vtRNA1-1 is specific, we used unlabeled vtRNA1-1 as specific, and the iron-9 

responsive element (IRE) from human FTH1 mRNA or a mixture of bacterial tRNAs, 10 

respectively, as non-specific competitors. Unlabeled vtRNA1-1 effectively competes with the 11 

labeled vtRNA1-1 from p62 (Ki=200.7 nM) as compared to IRE (Ki=856.6 nM) or bacterial 12 

tRNAs (Ki=1531 nM) (Figure 2D). We next determined the apparent Kd of p62-vtRNA1-1 13 

complex formation in the presence of non-specific competitor and determined it to be 546.3 14 

±106.6 nM, while the MBP tag alone did not yield any shifted complexes (Figure 2E and 15 

Figure S2C). These findings confirm that p62 specifically binds vtRNA1-1 in vitro, 16 

complementing our in cellulo data (Figure 1 and Figure 2A-C). 17 

 18 

vtRNA1-1 inhibits p62-mediated autophagy and Ub aggregate clearance 19 

To uncover the functional significance of the vtRNA1-1/p62 interaction, we first tested whether 20 

p62 might mediate the lysosomal degradation of vault RNAs. However, no difference in the 21 

steady-state levels of the vtRNAs could be seen in cells depleted of p62 by siRNA treatment 22 
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(Figure 2F and G) or in p62 KO cells (Figure S2D), respectively. Thus, neither acute nor 1 

sustained p62 deficiency affects the steady state levels of the vault RNAs. 2 

 Since p62 binding does not overtly affect the expression of its major class of RNA 3 

binders, we next explored whether vtRNA1-1 conversely might affect p62 function in autophagy. 4 

We knocked-down vtRNA1-1 with antisense LNAs, and monitored autophagic flux by assessing 5 

two parameters, LC3B conjugation from LC3B-I to LC3B-II during autophagosome assembly, 6 

and p62 levels reflecting its autolysosomal degradation. Interestingly, vtRNA1-1 knockdown 7 

(KD) (Figure S3A and B) stimulated LC3B conjugation (compare the ratios of LC3BII over 8 

LC3BI, Figure 3A and B), suggesting increased autophagic flux. In keeping with this notion, we 9 

observed a dose-dependent decrease in p62 levels (Figure 3A). To examine whether this effect is 10 

dependent on p62, we concurrently removed p62 and vtRNA1-1. We observed that removal of 11 

p62 partially restores the LC3B conjugation ratio after vtRNA1-1 depletion compared to controls 12 

(Figure 3C, compare lanes 3 and 4 with 1 and 2).  Treatment with bafilomycine A1 (BafA), an 13 

inhibitor of autophagosome-lysosome fusion and lysosomal degradation that leads to the 14 

accumulation of autophagosomes (Klionsky et al., 2016),  restored the LC3B conjugation ratio 15 

and led to the expected accumulation of total LC3B in vtRNA1-1 KD cells (Figure 3C, lanes 5 16 

and 6). In addition, immunofluorescence microscopy of cells depleted for vtRNA1-1 revealed an 17 

increased number of LC3B punctae compared to controls (Figure 3D and E), and the fraction of 18 

p62 co-localizing with LC3B increased upon vtRNA1-1 KD (Figure 3D and F), providing 19 

independent evidence for the stimulation of autophagic flux upon vtRNA1-1 KD. We also 20 

corroborated these results by assessing the expression levels of another Atg8-like protein, 21 

GABARAP (Figure S3C).  22 



10 
 

 The phosphorylation of the mTORC1 targets ULK1 or 4E-BP1 was not noticeably 1 

affected by vtRNA1-1 KD, suggesting that the effect on autophagy is not the result of decreased 2 

mTORC1 activity (Figure S3C). Thus, multiple lines of evidence show that sequestration of 3 

vtRNA1-1 induces autophagic flux in a p62-dependent way.  4 

 We also tested whether the increased expression of vtRNA1-1 by transfection affects 5 

autophagy. Elevation of vtRNA1-1 levels suppresses LC3B conjugation and yields a concomitant 6 

accumulation of p62 in a dose-dependent manner (Figure 3G and S3D), both suggesting 7 

decreased autophagic flux. Overexpression of other vault RNAs did not consistently affect the 8 

LC3B conjugation ratio (Figure 3H and S3D). BafA treatment restored the LC3B conjugation 9 

ratio in cells overexpressing vtRNA1-1 (Figure 3H), suggesting that vtRNA1-1 overexpression 10 

does not disturb LC3 conjugation per se, but rather restricts autophagic flux.  11 

 Lastly, we investigated whether p62-dependent Ub aggregate clearance is affected by 12 

vtRNA1-1. We treated HuH-7 wt and vtRNA1-1KO cells (Figure S6B-D), respectively, with the 13 

proteasome inhibitor MG132 and assessed Ub-positive aggregate levels by Western blotting. In 14 

cells lacking vtRNA1-1, aggregate accumulation is significantly reduced when p62 wt protein is 15 

present (Figure 3I). However, the p62 S407A variant that does not undergo ULK1-dependent 16 

phosphorylation and activation of the UBA domain (Lim et al., 2015) fails to mediate better 17 

aggregate clearance in vtRNA1-1KO cells (Figure 3I), showing that the observed difference 18 

between wt and vtRNA1-1KO cells in aggregate clearance is mediated by p62.   19 

Taken together, experimental up- or down-modulation of vtRNA1-1 levels inversely 20 

affect p62-dependent autophagy and p62-dependent aggregate clearance.  21 

 22 

vtRNA1-1 levels and p62 RNA binding are dynamically regulated by starvation 23 
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Next, we explored whether the regulatory potential of the p62 and vtRNA1-1 interaction is used 1 

physiologically. Amino acid and serum starvation induce autophagy, where p62 supports the 2 

increased autophagic flux (Bjorkoy et al., 2005) and undergoes degradation itself (Sahani et al., 3 

2014). HuH-7 cells cultivated in minimal media lacking amino acid and serum respond with a 4 

major drop in vtRNA1-1 levels after 6 hours of starvation (Figure 4A and S4A). This decrease in 5 

vtRNA1-1 levels is not a result of autophagic co-degradation with p62, because neither the KD of 6 

p62 nor BafA treatment significantly restored vtRNA1-1 levels (Figure 4A). Interestingly, the 7 

specific, starvation-induced decrease in vtRNA1-1 levels is also observed when the RNA is 8 

expressed from a heterologous (H1) promoter (Figure S4B), suggesting that the regulatory 9 

information is contained within the gene body of vtRNA1-1. Whether regulation is exerted 10 

transcriptionally via the internal Pol III promoter sequences and/or post-transcriptionally at the 11 

RNA level remains to be determined. We also assessed a starvation time course of the levels of 12 

several tRNAs, which further attests to the specificity of the response of vtRNA1-1 (Figure 13 

S4C).  14 

  RNA binding of p62 follows the diminished vtRNA1-1 expression in the course of 15 

starvation (Figure 4B and C). Cells starved in the presence of BafA, which prevents p62 16 

degradation, show that bulk autophagy decreases the fraction of RNA-bound p62 relative to total 17 

p62. BafA treatment per se in complete medium does not change the RNA binding properties of 18 

p62 (Figure S4D), suggesting that the effect on RNA binding is not driven by p62 protein levels. 19 

Therefore, p62 active in autophagy and destined for lysosomal degradation apparently does not 20 

bind RNA, in keeping with the notion that RNA binding inhibits p62 function in autophagy.  21 

 Of note, the starvation-induced decrease in vtRNA1-1 levels correlates with a decrease in 22 

the fraction of RNA-bound p62 (Figure S4E). Importantly, starvation reduces the interaction of 23 
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p62 and vtRNA1-1 (Figure 4D), and removal of vtRNA1-1 by LNA KD prior to starvation further 1 

potentiates interaction of p62 with LC3B (Figure 4E and F). It thus appears that at least part of 2 

the starvation-mediated activation of autophagy includes the removal of inhibitory vtRNA1-1 3 

from p62.   4 

 Collectively, these data show that vtRNA1-1 levels and the interaction of vtRNA1-1 with 5 

p62 are physiologically regulated by amino acid and serum starvation.  6 

 7 

p62 binds vtRNA1-1 primarily via its zinc finger domain 8 

To study the mechanism of how vtRNA1-1 inhibits p62 function, we wanted to generate an RNA 9 

binding-deficient mutant of p62. p62 possesses several domains with assigned functions and 10 

interaction partners, but no classical RNA-binding motif (Figure 5A). To identify the RNA-11 

binding region of p62, we utilized our RBDmap data and inspected the neighboring region of the 12 

RBDpep (Castello et al., 2017) that we had identified within the ZZ domain (Figure 5A and B). 13 

We found that substitution of the conserved K141 within the ZZ domain of p62 by alanine 14 

appeared to decrease RNA binding (Figure S5A), but complex formation between the 15 

endogenous wild type p62 with the stably expressed p62 K141A variant interfered with the 16 

analysis. We therefore depleted endogenous p62 from HuH-7 cells by RNAi, and transfected 17 

tagged p62 variants, resistant to the siRNAs by synonymous mutations. As expected, siRNA KD 18 

of p62 effectively removed its radiolabeling signal (Figure 5C, lanes 1, 2). The p62 K141A 19 

variant displays strongly reduced RNA binding compared to the wild type, which is further 20 

diminished in the R139/K141/AA variant (referred to as p62 RK/A, Figure 5C, lanes 3-5). The 21 

shift of tagged p62 by 2.5 kDa, both on the PNK assay and the Western blot, also provides 22 

evidence that RNA binding of p62 is direct.  23 
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Next, we generated HuH-7 p62 KO clones using CRISPR/Cas9 gene inactivation (Figure 1 

S5B and S5C), and confirmed the decreased RNA binding of p62 RK/A in a p62 null 2 

background (Figure S5D). To investigate whether oligomerization of p62 may affect RNA 3 

binding, we expressed an oligomerization-deficient variant of p62 (Lamark et al., 2003), a triple 4 

mutation R21A, D69A, D73A, referred to as p62 PB1m. p62 PB1m also showed diminished 5 

RNA binding (Figure 5D). Even if RNA binding of p62 PB1m is less compromised than that of 6 

the p62 RK/A variant (Figure S5D), its diminished RNA interaction compared to the wild type 7 

protein suggests that the PB1 domain contributes to RNA binding.  8 

 To quantify the RNA binding of the p62 variants to vault RNA, we expressed HA-tagged 9 

p62 variants in HuH-7 p62 KO cells (Figure S5E), and IP-ed these followed by qPCR. As is the 10 

case for endogenous p62 protein, tagged wt p62 strongly interacts with vtRNA1-1, while the p62 11 

RK/A mutant and the PB1m variant display strongly reduced vtRNA1-1 binding (Figure 5E), 12 

suggesting that both domains contribute to full vault RNA1-1 binding. 13 

 14 

vtRNA1-1 regulates the interaction of p62 with Atg8-like proteins 15 

With the RK/A mutant available, we could address the mechanism of vtRNA1-1 function. We 16 

first tested whether RNA binding affects interactions of p62 with the Atg8-like proteins LC3B 17 

and GABARAP by co-immunoprecipitation. Both proteins co-purify with p62 and display the 18 

expected increase in interaction when autophagy is induced by starvation (Figure S6A, compare 19 

the lanes 2 and 4). Following KD of vtRNA1-1 p62 displays increased interaction with LC3B 20 

(Figure 6A), corroborating data obtained by IF microscopy. We also prepared HuH-7 vtRNA1-1 21 

KO cell lines by CRISPR/Cas9 gene deletion. We deleted the vtRNA1-1 transcription unit 22 

(Figure S6B) and verified the specificity of the deletion by genomic PCR (Figure S6C). We 23 
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confirmed the deletion of vtRNA1-1 using qRT-PCR on total RNA prepared from the vtRNA1-1 

1KO clones (Figure S6D). We also observed increased interaction between p62 and LC3B in 2 

cells deleted for the vtRNA1-1 locus (Figure 6B and S6E). These data suggest that vtRNA1-1 3 

regulates the interaction of p62 with LC3B.  4 

 To test this further, we conducted co-IPs in HuH-7 p62 KO cells reconstituted with the 5 

p62 wt, RK/A or PB1m variants, respectively. Although the interaction with LC3B is not 6 

significantly changed, the p62 RK/A variant shows increased complex formation with the Atg8-7 

like protein GABARAB compared to wt p62 (Figure 6C and D). As a control, the interaction 8 

with the PB1 domain-binding protein NBR1 is unchanged between the p62 wt and RK/A variant 9 

(Figure 6C and D). As expected, the p62 PB1m variant displays decreased binding to LC3, 10 

GABARAP and NBR1 (Figure 6C and D), reflecting the requirement for p62 oligomerization 11 

for efficient interaction with the autophagic machinery (Itakura and Mizushima, 2011).  12 

 Since removal of vault RNA1-1 or rendering p62 RNA binding-deficient both increase 13 

p62’s engagement with LC3B and GABARAP, the data suggest that vault RNA1-1 binding 14 

affects the interactions of p62 with Atg8-like proteins.  15 

 16 

p62 RNA binding inversely correlates with its oligomerization state in cellulo 17 

We then wanted to determine whether the above regulation was a direct or an indirect effect of 18 

vtRNA binding to p62. Further analysis of the data shown in Figure 5D revealed that UV-C 19 

exposure of cells to crosslink RNAs to p62 also induces a laddering of the protein on a Western 20 

blot that persists through denaturing SDS-PAGE (lower panel). While p62 oligomerization has 21 

been studied extensively in vitro (Wurzer et al., 2015, Ciuffa et al., 2015, Zaffagnini et al., 22 

2018), little is known about the precise oligomeric state in the cellular context (Carroll et al., 23 
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2018). Since the oligomerization-deficient PB1m variant completely lacks this laddering (Figure 1 

5D), serendipitously, we appear to have found direct biochemical evidence for p62 2 

oligomerization in cells and a simple assay for this process. Although UV-treatment typically 3 

does not induce protein-protein crosslinks (Pashev et al., 1991, Suchanek et al., 2005), the local 4 

topology of p62 oligomers may favor reactive oxygen species-induced covalent bond formation 5 

between the p62 subunits (Donohue et al., 2014).  6 

To evaluate this laddering assay in a physiological context, HuH-7 cells were starved for 7 

2 hours before UV crosslinking, and cell lysates were assessed by the laddering assay and for 8 

RNA binding by PNK assay. As expected, starvation reduces p62 RNA binding (Figure 7A, 9 

upper panel) and, importantly, increases the laddering of p62 visualized by Western blotting 10 

(Figure 7A, lower panel, compare lane 5 with lane 8). The RK/A variant strikingly displays this 11 

enhanced laddering even under basal culture conditions (lane 6), which is not increased further 12 

by starvation (lane 9). Thus, the RK/A mutant oligomerizes under basal conditions like wt p62 13 

after starvation, strongly suggesting that vtRNA1-1 interferes with p62 oligomerization. We also 14 

note that the p62 oligomers display profoundly reduced RNA binding compared to monomeric 15 

p62 (Figure 7A and Figure 5D, compare the upper and the lower panels), which indicates that 16 

p62 monomers or low complexity oligomers represent the RNA-binding forms of p62. 17 

Finally, we used XIE62-1004-A (XIE, in short) (Figure 7B), a small molecule that binds 18 

to the ZZ-domain of p62, inducing p62 oligomerization and activating p62-dependent autophagy 19 

(Cha-Molstad et al., 2017). XIE thus affords an opportunity to directly test p62-dependent 20 

autophagy in addition to starvation-induced autophagy, which is more pleiotropic. HuH-7 wt or 21 

vtRNA1-1KO cells were treated with XIE, or solvent control, and autophagy was assessed by 22 

LC3B conjugation. As expected, the vtRNA1-1KO cells display increased LC3B conjugation 23 
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compared to their wt counterparts already under control conditions (Figure 7C). In keeping with 1 

its original description (Cha-Molstad et al., 2017), XIE treatment induces LC3B lipidation in 2 

control cells, and its effect is significantly enhanced in the vtRNA1-1KO cells (Figure 7D). 3 

Thus, the cellular response to this p62-specific activator of autophagy is strongly affected by 4 

vtRNA1-1 (Figure 7C, D), meeting a prediction for a riboregulator of p62 function. 5 

 6 

DISCUSSION 7 

Our experiments show that the small non-coding RNA vtRNA1-1 contributes to the regulation of 8 

autophagic flux by direct interaction with the autophagy receptor protein p62/sequestosome-1. 9 

Thus, we can assign a mechanism-based function to the first member of the family of vault 10 

RNAs, which was described more than 30 years ago (Kedersha and Rome, 1986). Our data also 11 

show that a small non-coding RNA can regulate a biological process by directly affecting the 12 

function of a protein, which is typically expected of protein-protein interactions.  13 

 14 

Vault RNAs, p62 and the regulation of autophagy 15 

Autophagy is a highly regulated process, especially at the level of initiation (Sica et al., 2015). 16 

We show that starvation triggers a reduction of the steady state levels of vtRNA1-1 (Figure 4A 17 

and S4A-C) and diminishes vtRNA1-1 binding to p62 (Figure 4B, C and D). Gain- and loss-of-18 

function experiments demonstrate that vtRNA1-1 negatively controls p62 in autophagy (Figure 19 

3). This conclusion is corroborated by analyses of the RNA binding-deficient RK/A mutant of 20 

p62, which shows characteristics of activated p62 even under non-starvation conditions (Figure 21 

6D, E and Figure 7A). The starvation-induced drop in vtRNA1-1 levels thus contributes to the 22 

physiological, p62-mediated increase in autophagic flux.  23 
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Future work will address how starvation signals control vtRNA1-1 expression. 1 

Conceivably, both transcriptional and/or post-transcriptional mechanisms could contribute to this 2 

control. Pol III transcription is controlled by the repressor protein MAF1, which in turn is 3 

inhibited by phosphorylation via mTORC1 (Orioli et al., 2016). Whether MAF1-inhibition may 4 

be selective for vtRNA1-1 transcription compared to the other vault RNA genes remains to be 5 

investigated. Alternatively, cytosine-5 methylation at position C69 of vtRNA1-1 was shown to 6 

promote processing of vtRNA1-1 into small svRNAs (Hussain et al., 2013), effectively reducing 7 

the pool of vtRNA1-1. It will be interesting to investigate vtRNA1-1 processing in the context of 8 

starvation. In any case, since vtRNA1-1 expressed from a heterologous promoter is specifically 9 

and strongly regulated by starvation (Figure S4B), the cis-regulatory information is embedded 10 

within the DNA and/or RNA sequence of vtRNA1-1 itself. 11 

 While our experiments explore starvation, proteasome inhibition and pharmacological 12 

induction by XIE62-1004-A as triggers of p62-dependent autophagy, we have not tested other 13 

conditions that affect autophagy so far. It will be informative to investigate whether e.g. p62-14 

dependent xenophagy (Galluzzi et al., 2017) is affected by vtRNA1-1. It will also be relevant to 15 

investigate possible functions of the other RNAs that bind p62, including the three additional 16 

human vault RNAs. Upregulation of a vtRNA2-1 fragment (svtRNA2-1a) was found to mark 17 

early stages of Parkinson disease (PD) and to induce neuronal dysfunction (Minones-Moyano et 18 

al., 2013). Intracellular protein inclusions that are typical of PD commonly contain p62 19 

(Zatloukal et al., 2002), and it is possible that RNA binding by p62 could play a role in PD. 20 

 Vault RNAs and vault particles are highly expressed in cells and processes that are 21 

strongly linked to autophagy. These include Dictyostelium discoideum (Vasu et al., 1993) and 22 

macrophages (Izquierdo et al., 1996), highly autophagic/phagocytic cells, and several multi-drug 23 
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resistant cancer cells (Berger et al., 2009). Epstein-Barr virus (EBV) potently induces vtRNA1-1 1 

expression, which potentiates viral replication and protects infected cells from apoptosis (Amort 2 

et al., 2015, Nandy et al., 2009). Induced expression of vtRNA1-1 also increases viral titers of 3 

influenza A in cell culture models and in vivo (Li et al., 2015). Interestingly, both EBV and 4 

influenza A infections can block autophagosome maturation and turnover, respectively (Jackson, 5 

2015). Whether p62 is involved in these responses remains to be investigated. Since p62 is 6 

involved in other cellular processes including oxidative stress response (Komatsu et al., 2010), 7 

mTORC1 regulation (Duran et al., 2011), or NF-κB signaling (Duran et al., 2004), it will also be 8 

meaningful to explore the role of RNA binding in these settings. 9 

 10 

A mechanistic model for p62 regulation by vtRNA1-1 11 

Mutagenesis experiments based on RBDmap data identified a critical role of the ZZ 12 

domain of p62 in RNA binding (Figure 5). Interestingly, a PB1 domain mutant of p62 bearing 13 

an intact ZZ domain also displays compromised RNA-binding activity (Figure 5D, E), 14 

suggesting that the PB1 domain may also interact with RNA, or that oligomerization is required 15 

for RNA binding. In favor of the former explanation, PNK assays show strong RNA binding for 16 

monomeric and low complexity oligomeric p62, but hardly any for higher complexity multimers 17 

(Figure 5D and Figure 7). The results of EMSA assays support this interpretation (Figure S2B 18 

and C). We suggest that vtRNA1-1 binds to monomeric, dimeric or low complexity oligomeric 19 

p62 and interferes with subsequent p62 multimerization. This interference is evident from the 20 

increased oligomerization of p62 when vtRNA1-1 expression is diminished during starvation 21 

(Figure 7A), when vtRNA1-1 binding is impaired due to the RK/A mutation (Figure 7A), and 22 

when the oligomerization-inducing ligand XIE is used (Figure 7C, D). Therefore, we propose 23 
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that vtRNA1-1 interferes with p62 multimerization, which is in turn required for the localization 1 

of p62 to autophagosomes and its interaction with the Atg8-like proteins LC3B and GABARAP 2 

(Itakura and Mizushima, 2011).  3 

We have no evidence to believe that vtRNA1-1 acts as a dominant “on-off switch” of p62 4 

activity. We rather envisage vtRNA1-1 to function as a “p62 activity dial” that is itself regulated 5 

by biological cues such as starvation, and that modulates the activity of p62 as an autophagy 6 

receptor by controlling its multimerization. While our data implicate p62 as the direct and 7 

primary target of vtRNA1-1 in autophagy, we cannot exclude additional regulatory roles of 8 

vtRNA1-1 in this process. In fact, knock-down of p62 by RNAi did not fully restore the LC3B 9 

lipidation ratio following vtRNA1-1 knock-down (Figure 3C), reflecting the incomplete removal 10 

of p62 by RNAi, and/or implicating additional autophagic targets of vtRNA1-1. 11 

 We currently do not know the precise features of vtRNA1-1 that determine its specific 12 

binding to p62. Our iCLIP data indicate that p62 primarily binds to the central regions of the 13 

different human vault RNAs (Figure 1E and S1C). We also found that the single murine mVR1 14 

RNA binds p62 in several cell lines that we tested (Figure 2C). We have not yet recognized a 15 

shared feature of vtRNA1-1 and mRV1 RNAs that distinguishes these from the other three human 16 

vault RNAs. While iCLIP showed that p62 interacts with all four human vault RNA paralogs 17 

(Figure 1D and E), the RIP-qPCR data show that vtRNA1-1 is the predominant p62 target 18 

(Figure 2A and 5E). We hypothesize that a cellular factor may contribute to the selectivity of 19 

p62 for vtRNA1-1 under steady state conditions. Mutagenesis experiments and high resolution 20 

structural analyses are expected to shed light on the exact mode of interaction between p62 and 21 

vtRNA1-1, with implications for both the question of determinants of binding specificity and the 22 

mechanistic model discussed above. 23 
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 It will also be important to determine whether vtRNA1-1 binds to and inhibits p62 as a 1 

‘free’ RNA or as part of the vault particle. A large fraction of vault RNAs is not associated with 2 

the vault particle in different cell types (Kickhoefer et al., 1998), and both possibilities therefore 3 

need to be considered. At least in vitro, non-particle associated vtRNA1-1 can bind to p62. 4 

Moreover, p62 co-immunoprecipitation experiments that yield vtRNA1-1 and the Atg8-like 5 

proteins (Figure 6), have failed to identify the major vault protein (data not shown) as an 6 

interactor. While this indirect evidence points to the free, non-particle associated RNA as the 7 

regulator of p62, the question remains to be answered formally. 8 

 9 

Beyond p62 and vault RNA 10 

Recent work from several laboratories identified hundreds of proteins that had previously 11 

escaped detection as RNA-binding proteins (reviewed in (Hentze et al., 2018)). Many of these 12 

RBPs lack classical RNA-binding domains and assigned functions in RNA biology; we 13 

collectively refer to these as enigmRBPs (Beckmann et al., 2015). The intensively studied 14 

p62/sequestosome-1 is an excellent example of such an enigmRBP, whose RNA-binding 15 

properties was previously undiscovered.  16 

 The regulation of protein function by an RNA, as seen for p62/vtRNA1-1, could represent 17 

a general principle of biological control, complementing well-recognized forms of regulation 18 

such as by protein-protein interactions and post-translational modifications. In bacteria, 6S 19 

RNAs are 180-200 nucleotide-long RNAs that bind and regulate RNA polymerase activity 20 

during the stationary growth phase (Wassarman and Storz, 2000). In mammalian cells, innate 21 

immune effector proteins such as Toll-like receptors or the protein kinase PKR sense the 22 

presence of viral RNAs, leading to their activation (Kato et al., 2011, Meurs et al., 1990). 23 
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vtRNA1-1 acts as a physiological “riboregulator” that controls a cellular process, such as 1 

autophagy, by direct binding to the autophagy receptor p62. We predict that the regulatory 2 

principle employed by p62/vtRNA1-1 will be found to be more widespread in biology, especially 3 

amongst enigmRBPs.  4 
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MAIN FIGURE LEGENDS 1 

Figure 1. The autophagy receptor p62 is an RNA-binding protein.  2 

(A) Western blot analysis of input and eluate samples from interactome capture experiment. 3 

TDP43 serves as a positive control for RNA binding, whereas actin serves as negative control. 4 

(B) Lysates from UV-treated or control cells were treated with dilutions of RNaseA and used for 5 

immunoprecipitation followed by radioactive labeling (upper panel) and Western blotting (lower 6 

panel). (C) Log2 odds ratios of the enrichment of different RNA classes in p62 IPs over the 7 

control IPs (Fisher exact test, Benjamini-Hochberg (BH) adjusted P< 0.05). (D) Volcano plot of 8 

differential crosslink site (CS) occurrences; each dot corresponds to a genomic region (exons, 9 

introns), black coloring indicates significant enrichment in p62 IPs (BH adjusted P < 0.05). The 10 

data were normalized for background and CS enrichment in p62 IPs over controls was tested 11 

with DESeq2. Open circles indicate vault RNAs. (E) Predicted RNA secondary structures of 12 

vtRNAs. Mean CS count values in p62 IPs are shown by the indicated color code. See also 13 

Figure S1. 14 

Figure 2. p62 binds vault RNA1-1.  15 

(A) Differential enrichment of RNAs in native p62 IPs from HuH-7 cells as measured by qRT-16 

PCR. RNA enrichments were normalized by 5S rRNA and compared between p62 and IgG (=1) 17 

IPs. Significant differences are indicated by p values. (B) RNA enrichment in p62 IPs compared 18 

to the respective input levels. (C) A representative native p62 IP followed by cDNA synthesis 19 

and qRT-PCR measurement. RNA enrichment in p62 IPs compared to the respective input 20 

levels. (D) Competition electromobility shift assay (EMSA) using 10nM of radiolabeled vtRNA1-21 

1, 1500 nM of MBP-p62 protein and unlabeled competitor RNAs as indicated on the plot; n=3, 22 

(E) Determination of RNP complex Kd using EMSA assay with radiolabeled vtRNA1-1 and 23 
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MBP-p62 or MBP tag only. n=3 (F) Cells were transfected with indicated siRNAs and lysed 1 

after 48 hours. Total protein lysates were analyzed by Western blotting; a representative image is 2 

shown. (G) Total RNA extracted from cells as in (F) was analyzed by Northern blotting. Probe 3 

signals recognizing respective vtRNAs were quantified and normalized by 5S rRNA. Data shown 4 

are RNA levels in p62 siRNA-treated cells relative to respective siRNA control. See also Figure 5 

S2.    6 

Figure 3. vtRNA1-1 regulates p62-dependent autophagy and aggregates clearance.  7 

(A) HuH-7 cells were transfected with a control LNA oligo, or with increasing amounts of an 8 

LNA oligo targeting vtRNA1-1, and lysed after 48 hours. Lysates were analyzed by Western 9 

blotting with the indicated  antibodies. (B) Quantification of LC3 conjugation from independent 10 

experiments using 50 nM LNA transfections. (C) Cells were transfected with the indicated LNAs 11 

and control or p62 siRNA, and incubated for 48 hours. Where indicated, cells were treated with 12 

BafA. Lysates were analyzed by Western blotting with the indicated antibodies. (D) 13 

Representative IF images of cells treated as in (B). LC3B cyan; p62 magenta; DNA blue, 14 

p62/LC3B co-localization white. Scale bar represents 20 µM. (E,F) Quantitative image analysis 15 

of 2 independent experiments as in (D), n indicates the number of cells analyzed. (G) HuH-7 16 

cells were transfected with empty vector (ctrl) or plasmid encoding vtRNA1-1, and lysed after 24 17 

hours. Lysates were analyzed by Western blot with the indicated antibodies. (H) Cells were 18 

transfected with indicated vtRNA-encoding plasmids, vehicle treated or treated with BafA at 100 19 

nM for 5 hours, and then lysed. Lysates were analyzed by Western blotting and images of LC3B 20 

staining were quantified. (I) HuH-7 wt or vtRNA1-1KO cells were treated with siRNA against 21 

p62, and p62 wt or p62 S407A, respectively, was expressed by transfection of siRNA-resistant 22 

cDNA expression vectors. Cells were then vehicle treated or treated with 0.25µM of MG132 23 
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overnight, lysed and analyzed by Western blotting. Quantification of Western blots for anti-1 

ubiquitin normalized by GAPDH expression is plotted as fold changes compared to HuH-7 wt 2 

vehicle control sample. n=3. See also Figure S3. 3 

Figure 4. Starvation reduces p62 RNA binding and vtRNA1-1 expression.  4 

(A) HuH-7 cells were treated with a control siRNA or p62 siRNA for 48 hours, followed by 5 

starvation for 6 hours. Total RNA was isolated and analyzed by Northern blotting; 6 

phosphorimages were quantified and data were plotted as relative to non-starved samples. 7 

Significant differences to respective non-starved samples are indicated by p-values. n=6 (B) 8 

Cells were starved in medium containing solvent control or BafA at 100 nM for the indicated 9 

time, 254nm UV-C light exposed and lysed. Lysates were used for p62 IP and RNA 10 

radiolabeling assay. After SDS-PAGE and transfer, the membrane was exposed overnight on 11 

film and used subsequently for Western blotting. (C) Phosphorimages and Western blots of 3 12 

independent replicates as described in (B) were used for quantification. Significant differences to 13 

the 0 hour sample are indicated by p-values. (D) Enrichment of vtRNA1-1 on native p62 IPs from 14 

cells cultured in complete media or starvation media for 2 hours. (E) Cells were transfected with 15 

the indicated LNAs, incubated for 48 hours, and then starved for 2 hours. Representative IF 16 

images of cells are shown; LC3B cyan; p62 magenta; DNA blue; p62/LC3B co-localization 17 

white. Scale bar represents 20 µM. (F) Image analysis and quantification of cells as in (E) using 18 

2 independent experiments; n indicates the number of cells analyzed. See also Figure S4. 19 

Figure 5. p62 binds vtRNA1-1 primarily via its zinc finger domain 20 

(A) RBDmap-enriched peptide (red) and a peptide not enriched in the RNA-bound fraction 21 

(blue) positioned on the p62 protein. The X-axis is scaled to protein length. A scheme of the p62 22 

domain architecture is drawn below. NLS, nuclear localization signal; NES, nuclear export 23 
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signal, LIR, LC3 interaction region; KIR, Keap1 interaction region; UBA, ubiquitin associated 1 

domain. (B) Human p62 protein region between AA 101-163. Orthologous proteins are aligned 2 

below; the dotted region represents the insertion of a longer peptide. The RBDmap-enriched 3 

peptide (FDR 1%) is shaded in grey. Hs, Homo sapiens, Mm, Mus musculus, Xl, Xenopus laevis, 4 

Dr, Dario rerio. (C) HuH-7 cells treated with the indicated siRNA were transfected with empty 5 

vector (ev) or p62 wt and variants (K141A, RK/A refers to the R139/K141-AA) cDNAs resistant 6 

to RNAi. Cells were exposed to 254nm UV-C light, lysed and used for IP followed by the 7 

radioactive labeling of RNAs and Western blotting. (D) HuH-7 p62KO cells were transfected 8 

with empty vector (ev) or p62 wt and variants (RK/A; PB1m refers to triple mutation in PB1 9 

domain). Cells were exposed to 254nm UV-C light, lysed and used for IP followed by the 10 

radioactive labeling of RNAs and Western blotting. (E) Differential enrichment of indicated 11 

RNAs on HA IPs from p62 KO cells expressing transfected p62 variants. RNA enrichment levels 12 

measured by qRT-PCR normalized to 5S rRNA were compared to ev enrichment (=1). 13 

Significant differences between the p62 variants are indicated by p values. See also Figure S5. 14 

 15 

Figure 6. vtRNA1-1 affects p62 interactions with Atg8-like proteins 16 

(A) HuH-7 cells were transfected with the ctrl LNA or LNA targeting vtRNA1-1, cultured for 48 17 

hours, and then treated with 100nM BafA for 5 hours. Cells were subjected to DSP protein-18 

protein crosslinking, lysed, and used for p62 IPs. Eluates from IPs were analyzed by Western 19 

blotting and quantified. (B) p62 co-IP analysis of controls and vtRNA1-1KO cells, performed as 20 

in (A). (C) HuH-7 p62KO cells were transfected with the indicated p62 variants, cultured for 24 21 

hours, and then treated with 100nM BafA for 5 hours. Cells were subjected to DSP protein-22 

protein crosslinking, lysed and used for IPs. Eluates from IP were analyzed by Western blotting. 23 
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* indicates a non-specific band. (D) Quantification of pull down efficiency of replicate 1 

experiments as shown in (C). See also Figure S6. 2 

 3 

Figure 7. Mechanism of vtRNA1-1 function as a riboregulator of autophagy  4 

(A) HuH-7 p62KO cells were transfected with the indicated p62 variants, cultured for 24 hours, 5 

and then cultured in starvation media for 2 hours or treated with 100nM BafA in complete media 6 

for 5 hours. Cells were exposed to 254nm UV-C light, lysed and used for IP followed by the 7 

radioactive labeling of RNAs and Western blotting. (B) Chemical structure of XIE62-1004-A 8 

(XIE). (C) HuH-7 wt or vtRNA1-1KO cells were treated with 20 µM XIE, or solvent, for the 9 

indicated times. Cells were then lysed and analyzed by Western blotting. (D) HuH-7 control cells 10 

(wt and CRISPR ctrl clones) or vtRNA1-1KO cells, respectively, were treated with 10 µM XIE 11 

or solvent for 1h, lysed and analyzed by Western blotting. LC3B conjugation ratios from 3 12 

independent experiments are plotted. Significant differences are indicated by p-values. The effect 13 

of XIE was analyzed by the robust F test. (E) Working model for the function of vtRNA1-1 as a 14 

riboregulator of p62 protein multimerization and activity. 15 

  16 
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SUPPLEMENTARY FIGURE LEGENDS 1 
 2 
Figure S1. iCLIP analysis of p62 Related to Figure 1 3 

(A) Lysates from 254nm UV-C light exposed HuH-7 cells were treated with a low (20U/ml 4 

RNase I, L) or high concentration of RNase I (200 U/ml, H), and used for IPs with the indicated 5 

antibodies and controls. p62-RNA complexes were separated by SDS-PAGE, blotted and excised 6 

as indicated by the red dotted rectangles. The underlined area of the blot was used for a 7 

subsequent Western blotting shown in panel (B). (C) p62 crosslink site (CS) analysis on 8 

vtRNAs. Significant (FDR 5%) CS read counts of p62 IPs displayed on the vtRNAs transcript 9 

sequence.  10 

Figure S2. In cellulo and in vitro p62-vtRNA1-1 analysis Related to Figure 2 11 

(A) Raw RT-qPCR Ct values related to Figure 2A. (B) EMSA using MBP-p62 and radiolabeled 12 

vtRNA1-1. (C) Representative EMSA using MBP-p62 and radiolabeled vtRNA1-1, with 13 

unlabeled non-specific competitor RNA included. (D) qRT-PCR analysis of total RNA from wt 14 

or p62 KO HuH-7 cells; n=3.  15 

Figure S3. vtRNA1-1 phenotypic analysis Related to Figure 3 16 

(A,B) Cells were transfected with indicated amounts of LNA and lysed after 48 hours. Total 17 

RNA was isolated and analyzed by Northern blotting (A), representative image, and by qRT-18 

PCR (B); n=3. (C) Cells were transfected with control LNA or LNA targeting vtRNA1-1 and 19 

incubated for 48 hours. Cells were then subjected to following treatments: control, 100 nM BafA 20 

for 5h, or media lacking amino acids (-AA) for 4h. Lysates were analyzed by Western blotting. * 21 

indicates a non-specific band. (D) Cells were transfected with the indicated expression vectors, 22 

total RNA was extracted after 24h and analyzed by Northern blotting.  23 
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Figure S4. Starvation-mediated regulation of vtRNA1-1 levels Related to Figure 4  1 

(A) Cells were treated as indicated and used for total RNA isolation and analysis by qRT-PCR. 2 

n=9 (B) Cells were transfected with the indicated expression vectors (‘ vtRNA o.e.’), and 24 3 

hours later were either starved for 6h or control treated. Total RNA was extracted and analyzed 4 

by Northern blotting. Probe signals were quantified and plotted as data relative to non-starved 5 

control. n=3 (C) Cells were starved for the indicated times, total RNA was extracted, and 6 

analyzed by Northern blotting with indicated probes. (D) Cells were starved in minimal medium 7 

containing solvent control or BafA at 100 nM for the indicated time, 254nm UV-C light exposed 8 

and lysed. Lysates were used for p62 IPs and RNA radiolabeling assay. After SDS-PAGE and 9 

transfer, the membrane was exposed overnight on film and used subsequently for Western 10 

blotting. (E) Data of quantified RNA-bound p62/total p62 from Figure 4C is plotted together 11 

with the total vtRNA1-1 levels acquired from the HuH-7 cells starved in minimal media for 12 

indicated time and measured by Northern blotting; n=3  13 

Figure S5. p62 PNK analysis and HuH-7 p62KO cell generation Related to Figure 5  14 

(A) HuH-7 wt cells stably expressing tagged p62 wt or K141A variant subjected to UV-C 15 

254nm, lysed and used for HA IP followed by RNA radiolabeling assay. Arrows indicate the 16 

endogenous (lower band) and exogenous (upper band) p62, respectively. (B) Western blotting 17 

analysis of stable HuH-7 p62 KO CRISPR clones analyzed for the expression of p62. * indicates 18 

a non-specific band. (C) Sanger sequencing analysis of the p62 genomic locus around ATG. 19 

Reference genomic sequence (“ref”) is displayed on the top. Two lines for each clone represent 20 

alleles identified in the TA cloning for the amplified PCR fragment. (D) Quantification of 21 

radiolabeling experiments related to Figure 5D. The colors indicate paired replicates. (E) 22 

Representative Western blot analysis of HA IP eluates related to Figure 5E.  23 
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Figure S6. p62 co-IP analysis and HuH-7 vtRNA1-1KO cells generation Related to Figure 6 1 

 (A) HuH-7 cells were treated as indicated (starv.+BafA indicates 5h in starvation media in the 2 

presence of 100 nM BafA). Cells were then crosslinked using DSP, lysed and used for p62 IPs. 3 

Eluates were analyzed by SDS-PAGE and visualized by Western blotting. * indicates band from 4 

previous LC3B antibody stain (B) Schematic representation of the genomic locus of vtRNA1-1. 5 

Localization of guide RNAs and primers for PCR analysis are indicated. The combinations of 6 

guide RNAs for CRIPSR are shown. (C) PCR analysis of genomic loci of the respective vault 7 

RNAs for wt, control and CRISPR KO clones. * indicates a non-specific amplicon. (D) qRT-8 

PCR analysis of vault RNAs from total RNA of selected CRISPR clones. “0” indicates no value 9 

detected. (E) Western blotting analysis of p62 co-IP eluates. IP from lysates of indicated cell 10 

clones cultured in the presence of BafA for 5h at 100 nM and treated with DSP.  11 

  12 
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STAR METHODS  1 

 2 

CONTACT FOR REAGENT AND RESOURCE SHARING 3 

Further information and requests for resources and reagents should be directed to and will be 4 

fulfilled by the Lead Contact, Matthias W. Hentze (hentze@embl.de). 5 

 6 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 7 

HuH-7 cells (human male origin) were cultured in low glucose (5mM) DMEM supplemented 8 

with 10% heat inactivated FCS (PAA), 2mM L-glutamine (25030081, Thermo Fisher) and 100 9 

U/ml PenStrep (15140122, Thermo Fisher). We derived a HuH-7 Flp-In TREx cell line using 10 

published protocols (Flp-In T-Rex, Thermo Fisher), and prepared stably expressing doxycycline-11 

inducible cell lines following manufacturer’s instructions. Stable cell lines were grown in 12 

medium containing blasticidine (5µg/ml) and zeocin (100 µg/ml) or hygromycin (200 µg/ml). 13 

Induction was performed with doxycycline at 100 ng/ml overnight. HeLa (human female origin), 14 

Hepa1-6 (mouse origin), Hep-56.1D (mouse female origin), RAW264.7 (mouse male origin) and 15 

NIH3T3 cells (mouse origin) were grown in high glucose DMEM supplement as above. Cell 16 

lines were not authenticated. E.coli BL21(DE3) CodonPlus-RIL cells were pre-cultured 17 

overnight at 37ºC at 220 rpm in LB broth containing 34μg/ml kanamycin and 34μg/ml 18 

chloramphenicol. 25 ml of the saturated overnight culture was added to the ZY autoinduction 19 

media (LB broth without NaCl) containing 34μg/ml kanamycin and 34μg/ml chloramphenicol 20 

and incubated at 37°C for 6 hours with agitation at 200 rpm.   21 

 22 

METHOD DETAILS 23 
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Transfections and treatments  1 

Transfections were done using Lipofectamine 3000 (L3000008, Thermo Fisher) for the plasmid 2 

DNA, or Lipofectamine RNAiMax (13778075, Thermo Fisher) for the siRNA and LNAs. 3 

Bafilomycine A1 (tlrl-baf1, InvivoGen) was diluted in DMSO to 100 µM and used at 50-100 nM 4 

for 4-6 hours. 4-thiouridine (T2933, Biomol) was used at 100 µM for 16 hours. MG132 (tlrl-5 

mg132) was used at 0.25µM concentration overnight. For starvation, cells were washed twice 6 

with PBS and starved in low glucose DMEM lacking amino acids (D9800-13, USBiological) and 7 

serum.    8 

 9 

RNA interactome capture 10 

RNA interactome capture was performed with minor modifications in the cell lysis procedure as 11 

previously described (Castello et al., 2013). Shortly, cells were washed twice with PBS on ice 12 

before UV crosslinking at 150 mJ/cm2. Cells were lysed directly with lysis buffer (20 mM pH7.5 13 

Tris HCl, 500 mM LiCl, 0.5% LiDS, 1 mM EDTA, 5 mM DTT) on the cell culture plates, 14 

scraped and lysates were sheared through a 27G needle before incubation with oligo d(T) beads 15 

(volume ratio lysate to beads 15:1) for 1 hour at 4°C. Beads were then washed twice with lysis 16 

buffer, twice with wash buffer 1 (20 mM pH7.5 Tris HCl, 500 mM LiCl, 0.1% LiDS, 1 mM 17 

EDTA, 5 mM DTT), twice with wash buffer 2 (20 mM pH7.5 Tris HCl, 500 mM LiCl, 1 mM 18 

EDTA, 5 mM DTT, 0.01% NP40) and twice with wash buffer 3 (20 mM pH7.5 Tris HCl, 200 19 

mM LiCl, 1 mM EDTA, 5 mM DTT). RNAs were eluted using elution buffer (20 mM pH7.5 20 

Tris HCl, 1 mM EDTA)  and pooled eluates from three rounds of purification were used for 21 

RNase treatment with 10 U of RNase A and 10 U of RNase T1 for 30 min at 37ºC. Samples were 22 

then concentrated using Amicon 3K columns (UFC500396, Merck Millipore) and mixed with 4x 23 

http://www.merckmillipore.com/DE/de/product/Amicon-Ultra-0.5-Centrifugal-Filter-Unit-with-Ultracel-3-membrane,MM_NF-UFC500396
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sample buffer (4xSB) (200mM Tris-HCl pH6.8; 8% SDS; 40% Glycerol, 0.04% bromophenol 1 

blue, 400mM DTT; 10% beta mercaptoethanol) before loading on SDS-PAGE. 2 

 3 

Polynucleotide kinase (PNK) assay 4 

The cells were washed twice with PBS on ice before UV crosslinking at 150 mJ/cm2, lysed in 5 

lysis buffer (100mM NaCl; 50mM Tris-HCl pH7.5; 0.1% SDS; 1 mM MgCl2; 0.1 mM CaCl2; 6 

1% NP40; 0.5% sodium deoxycholate; protease inhibitors (11873580001, Roche)) and 7 

homogenized by ultrasound (level 4, 3x 10sec, 50% amplitude) on ice. After homogenization the 8 

lysates were treated with 10 ng/µl of RNase A (R5503, Sigma-Aldrich) and 2U/ml Turbo DNase 9 

(AM2238, Thermo Fisher) for 15 min at 37°C, cooled on ice and used for IPs. For the Figure 1B, 10 

a series of RNaseA dilution was used. After the IP and 3 washes with lysis buffer, beads were 11 

washed additionally twice with PNK buffer (50mM NaCl; 50mM Tris-HCl pH7.5; 10mM 12 

MgCl2; 0.5% NP-40; protease inhibitors (11873580001, Roche)), then resuspended in PNK 13 

buffer containing 0.1 µCi/µl [γ-32P] rATP (Hartmann), 1 U/µl T4 PNK (NEB), 1mM DTT and 14 

labeled for 15 min at 37°C. After 4 washes with PNK (without DTT) buffer, proteins were eluted 15 

at low pH (0.1M glycin pH2.0), neutralized with 0.2M Tris-HCl pH8.5, and mixed with 4xSB 16 

buffer. Samples were resolved by SDS-PAGE and blotted on nitrocellulose membrane. The 17 

membrane was exposed overnight to phosphorimager screen or to the imaging film (Z350397-18 

50EA, Sigma), followed by Western blotting. 19 

 20 

p62 iCLIP  21 

iCLIP was performed as published (Huppertz et al., 2014) using following IP procedure. 0.75-1.5 22 

µg of p62 antibody or appropriate control IgG was coupled for 1 hour at RT to 12.5 µl of Protein 23 
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G coupled magnetic beads (10004D, Thermo Fisher). Cells were washed twice with cold PBS, 1 

lysed in lysis buffer (100mM NaCl; 50mM Tris-HCl pH7.5; 0.1% SDS; 1 mM MgCl2; 0.1 mM 2 

CaCl2; 1% NP40; 0.5% sodium deoxycholate; protease inhibitors (11873580001, Roche)) and 3 

homogenized by ultrasound (level 4, 3x 10sec, 50% amplitude) on ice. Treatment of the lysates 4 

with RNaseI (AM2295, Thermo Fisher) was used at 20 U/ml. Lysates containing 2 mg of total 5 

protein were used for IP for 1 hour at 4°C, washed three times with high salt buffer (500mM 6 

NaCl; 20mM HEPES pH7.3; 1% NP-40; 0.1% SDS; 1 mM EDTA; 0.5% sodium deoxycholate; 7 

protease inhibitors (11873580001, Roche)) and three times with the lysis buffer. Next, beads 8 

were incubated for 16 h (1 100 rpm, 16°C) in 20 µL ligation mix (50 mM Tris–HCl pH 7.5, 10 9 

mM MgCl2, 10 mM DTT, 500 U/mL T4 RNA ligase 1, 500 U/mL RNasin, 1.5 μM 10 

preadenylated linker L3 [5′-rApp-AGATCGGAAGAGCGGTTCAG-ddC-3′], 20% PEG-400 11 

[Sigma]) and washed three times with lysis buffer. Complexes were eluted at low pH (0.1M 12 

glycin pH2.0), neutralized with 1M Tris-HCl pH8.5, digested with proteinase K and used for all 13 

subsequent steps as described previously (Huppertz et al., 2014). cDNA libraries obtained after 14 

PCR amplification with universal Solexa primers (25 cycles) were multiplexed and sequenced 15 

using an Illumina HiSeq2000 platform.   16 

 17 

Native p62 IP and protein-protein co-IP 18 

Cells were washed twice with PBS on ice. For co-IP variant, cells were treated with 0.5mM DSP 19 

(Thermo Fisher #22585) for 1h and quenched with TRIS-HCl as recommended by vendor. Cells 20 

were lysed directly on the plates with lysis buffer (20mM Tris HCl pH7.4, 100mM NaCl; 1mM 21 

EDTA; 1mM EGTA; 1% triton X-100; protease inhibitors (11873580001, Roche); 5 µg/ml 22 

RNAsin (Promega)) by swelling 5min on ice, followed by scraping. Lysates were homogenized 23 
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by pipetting against the plate and 5sec vortex. Lysates were centrifuged for 10 min at 11,800xg 1 

at 4ºC and supernatant was used for IP. IP was performed either using p62 antibodies (as above) 2 

or 25 µl HA-beads slurry (Pierce). Lysis buffer washes were applied 6x and tubes were renewed 3 

after every second wash. Proteins were eluted as described above and analyzed with Western 4 

blotting. Alternatively, eluates were directly resuspended in TRI reagent (T9424, Sigma-Aldrich) 5 

and RNA was purified according to manufacturer’s protocol. 5µg of linear acrylamide (Thermo, 6 

AM9520) was used as carrier and RNA was resuspended in 10 µl water. 7 

 8 

qRT-PCR 9 

0.5 µg of total RNA or 7 µl of IP RNA was used for cDNA synthesis using Maxima RT kit 10 

(Thermo Fisher, K1671). Typically, 5ng of cDNA was used for qPCR. Primers are listed in 11 

Supplementary Table S4. 12 

 13 

RNA isolation and Northern blotting 14 

RNA was isolated using TRI reagent (T9424, Sigma-Aldrich) as recommended by the 15 

manufacturer. RNA was dissolved in nuclease-free water and stored at -80°C. Typically, 10 or 16 

15 µg of total RNA was mixed with 2x loading dye (95% formamide; 0.025% xylene cyanol and 17 

bromophenol blue; 18mM EDTA; 0.025% SDS), denatured for 5 min at 95°C, cooled on ice and 18 

loaded on 8% acrylamide (19:1), 7M urea polyacrylamide gels. A semi-dry blotting apparatus 19 

was used for blotting on Hybond N+ membranes (RPN1520B, GE) which were UV auto-20 

crosslinked, pre-hybridized for 1 hour at 50°C and used for hybridizations with 32P labelled DNA 21 

antisense oligonucleotide probes (Supplementary Table S4) overnight at 50°C. The membranes 22 

were then washed three times with high stringency buffer (5X SSC; 5% SDS), three times with 23 
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low stringency buffer (1X SSC; 1% SDS) and exposed to phosphorimaging screens for 4 hours 1 

or overnight. Screens were scanned at Typhoon FLA-7000 (GE) and TIFF images were 2 

quantified by ImageJ.  3 

 4 

RBDmap 5 

Shortly, HuH-7 lysates and oligo-d(T) captures were done as for the RNA interactome capture 6 

method. After washes and elution (eluate 1), 3 µg of LysC was added to the eluate 1 and 7 

incubated at 37ºC for 8h. Afterwards, aliquots for protein and RNA quality controls were 8 

harvested. Next, second oligo-d(T) capture was applied on the LysC-treated eluate 1, while the 9 

flow-through after oligo-d(T) incubation was saved. Washes were applied and elution (eluate 2) 10 

was applied. Next, inputs, eluates and flow-through were used for RNase treatment with 10 U of 11 

RNase A and 10 U of RNase T1 for 30 min at 37ºC. Proteomics analysis was performed and 12 

analyzed as described (Castello et al., 2016). Shortly, cysteines were reduced (5 mM DTT, 56˚C, 13 

30 min) and alkylated (10 mM Iodoacetamide, 30 min in the dark). Samples were buffer-14 

exchanged into 50 mM triethylammoniumbicarbonate, pH 8.5, using 3 kDa centrifugal filters 15 

(Millipore, UFC500396) and digested with sequencing grade trypsin (Promega, V5280; enzyme-16 

protein ratio 1:50) at 37˚C for 18 h. Resulting peptides were desalted and labelled using stable 17 

isotope reductive methylation (Boersema et al., 2009) on StageTips (Rappsilber et al., 2007). 18 

Labels were swapped between replicates. Labeled samples were combined and fractionated into 19 

12 fractions on an 3100 OFFGEL Fractionator (Agilent) using Immobiline DryStrips (pH 3–1 10 20 

NL, 13 cm; GE Healthcare) according to the manufacturer’s protocol. Isoelectric focusing was 21 

carried out at a constant current of 50 mA allowing a maximum voltage of 8000 V. When 20 22 

kVh were reached the fractionation was stopped, fractions were collected and desalted using 23 



47 
 

StageTips. Samples were dried in a vacuum concentrator and reconstituted in MS loading buffer 1 

(5% DMSO 1% formic acid). Samples were analyzed on a LTQ-Orbitrap Velos Pro mass 2 

spectrometer (Thermo Scientific) coupled to a nanoAcquity UPLC system (Waters). Peptides 3 

were loaded onto a trapping column (nanoAcquity Symmetry C18, 5 μm, 180 μm × 20 mm) at a 4 

flow rate of 15 μl/min with solvent A (0.1% formic acid). Peptides were separated over an 5 

analytical column (nanoAcquity BEH C18, 1.7 μm, 75 μm × 200 mm) using a 110 min linear 6 

gradient from 7-40% solvent B (acetonitrile, 0.1% formic acid) at a constant flow rate of 0.3 7 

μl/min. Peptides were introduced into the mass spectrometer using a Pico-Tip Emitter (360 μm 8 

outer diameter × 20 μm inner diameter, 10 μm tip, New Objective). MS survey scans were 9 

acquired from 300–1700 m/z at a nominal resolution of 30000. The 15 most abundant peptides 10 

were isolated within a 2 Da window and subjected to MS/MS sequencing using collision-induced 11 

dissociation in the ion trap (activation time 10 msec, normalized collision energy 40%). Only 12 

2+/3+ charged ions were included for analysis. Precursors were dynamically excluded for 30 sec 13 

(exclusion list size was set to 500). The RBDmap dataset and analysis can be accessed at 14 

http://www.hentze.embl.de/public/RBDmapHuH7. 15 

 16 

Protein extracts, SDS-PAGE and Western blotting 17 

For Western blotting, cells were washed twice with ice cold PBS on ice and lysed on plate using 18 

RIPA lysis buffer (89900, Thermo Fisher) supplemented with protease inhibitor (11873580001, 19 

Roche). Lysates were treated with benzonase (100U/ml, 71206, Merck Millipore) for 15 min on 20 

ice and protein concentrations were measured. Lysates were mixed with 4xSB, boiled for 5 min 21 

and typically 15 µg of lysate was used for SDS-PAGE. Proteins were transferred to 22 

nitrocellulose or PVDF membranes using the Trans-Blot Turbo Transfer System (Bio-Rad) and 23 

http://www.hentze.embl.de/public/RBDmapHuH7
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blocked for 1 hour at room temperature with 5% milk in PBS; 0,05% Tween (PBS-T). Primary 1 

antibodies were incubated in 5% milk PBS-T either overnight at 4°C or 1 hour at RT, followed 2 

by 3x PBS-T washes, secondary antibody incubation in 5% milk in PBS-T for 1 hour at RT, 3x 3 

PBS-T washes and developed using ECL (WBKLS0500, Millipore). Primary and secondary 4 

antibodies used for Western blotting are listed in the Key Resources Table.  5 

 6 

siRNA, LNAs 7 

An siRNA pool targeting p62 (L-010230-00-0020, GE) was used at 30 nM concentration for 48 8 

hours. As control siRNA an equimolar mix of Scramble (5’ UUCUCCGAACGUGUCACGUtt 9 

3’; s229174, Thermo Fisher), sLuciferase (5’ CGGAUUACCAGGGAUUUCAtt 3’; Thermo 10 

Fisher) and SWNeg9 (5’ UACGACCGGUCUAUCGUAGtt 3’; s444246, Thermo Fisher) was 11 

used. LNAs (Exiqon) targeting vtRNA1-1 (#1: 5’ ttaaagaactgtcgaa 3’; #3: 5’ttaaagaactgtcga 3’) 12 

and control negA (5’ aacacgtctatacgc 3’) were used at 25 or 50 nM for 48 hours.   13 

 14 

Cloning 15 

Full length human p62 wild type cDNA was cloned into pcDNA5_FRT/TO vector with N-16 

terminal FLAG/HA tag (MDYKDDDDKSAGGYPYDVPDYAKL…) using HindIII and XhoI 17 

sites. Single and double amino acid mutations were done using PCR-mediated mutagenesis. 18 

Recognition sites of p62 siRNA were mutated in synonymous fashion (5’ 19 

GGATCGAGGTAGACATAGA 3’; 5’ GAGCAAATGGAATCCGACA 3’; 5’ 20 

GGACGCACCTCTCATCTAA 3’; 5’ CGACTGGCCTCAAAGAGGC 3’), cDNA was 21 

synthetized in pUC57 (GenScript) and swapped into p62 cDNA using BamHI and XhoI sites. 22 

Vault RNA with T7 or H1(2xTO) promoters were synthetized (GenScript) in pUC57 backbone.  23 



49 
 

   1 

CRISPR/Cas9 gene deletion of vtRNA1-1 2 

Single guide RNAs targeting the vtRNA1-1 locus (Supplementary Table S4) were predicted using 3 

the CRISPR online tool (http://crispor.tefor.net; Version May 2017) (Ran et al., 2013), ordered 4 

from Sigma-Aldrich, annealed and cloned into pSpCas9(BB)-2A-GFP (PX458) (Addgene 5 

plasmid #48138 kindly provided by Fang Zhang), pSpCas9(BB)-2A-RFP or pSpCas9(BB)-2A-6 

Cer3 (both kindly provided by Kyung-Min Noh, EMBL) using the BbsI restriction sites. 7 

Different combinations of the generated plasmids (see Figure S6B) were nucleofected into HuH-8 

7 cells using the Nucleofector 4D system according to manufacturer’s guidelines (Lonza, Cell 9 

Line Nucleofector Kit SF, program FF137, 1 million cells and 1µg of DNA per nucleofection). 10 

As negative control a mixture of all parental plasmids (without sgRNA) was used. Single cell 11 

sort of double/triple positive cells was performed 48h after nucleofection. Upon clone expansion 12 

the genomic DNA was isolated (Zymo, Quick-DNA Miniprep Kit) and a PCR was performed to 13 

screen for homozygous deletions of the vault RNA1-1 (see Supplementary Table S4 for primers, 14 

Figure S6C). Resulting vaultRNA1-1 KO clones were further validated by qPCR (Figure S6D). 15 

In order to detect possible off-target effects all vault RNA paralogues were included into the 16 

screen. 17 

 18 

CRISPR/Cas9 mediated p62 gene inactivation 19 

Alt-R kit (IDT) was used for p62 gene inactivation. In short, HuH-7 cells were transfected with 20 

3nM RNP complexes using 2 different crRNAs (Supplementary Table S4) and cell sorted 48 21 

hours later using tracRNA-Atto 550nm. Single cell derived clones were grown out and analyzed 22 

by Western blotting. Positive clones were cultured in the presence of 100nM BafA for 5 hours 23 
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and re-analyzed by Western blotting using 2 different p62 antibodies (Figure S5B). Genomic 1 

locus spanning p62 ATG was amplified for selected clones (primers sequences in Supplementary 2 

Table S4), cloned into TA plasmid (Thermo Fisher, K204001) and sequenced. For all 3 

experiments presented in the main Figures p62KO clone I-E7 was used. 4 

 5 

In vitro transcription and EMSA 6 

pUC57 plasmid with T7_vault RNA1-1 was used for in vitro transcription reaction using 7 

MEGAshortscript kit (AM1354, Thermo Fisher) with 32P-αUTP (SRP-210, Hartmann) according 8 

to the manufacturer’s protocol. RNA was gel purified, phenol-chloroform extracted, dissolved in 9 

water and measured for the specific activity with scintillation counter and concentration with 10 

QuBit (Thermo). Before the reaction, RNA was denaturated 10 min at 65°C and cooled down to 11 

room temperature. Afterwards MgCl2 was added to 2.5mM. IRE RNA element production was 12 

described (Pantopoulos and Hentze, 1995). EMSA reaction contained typically 0.025-6 µM of 13 

proteins, 15 nM of RNA (150 fmol, 3-5kCPM), 1 mg/µl of BSA, 10 mg/µl RNAsin, 5mM DTT, 14 

0.5mM PMSF, 2.5mM MgCl2, 100mM KCl; 20mM HEPES pH7.9; 0.2 mM EDTA and 15 

20%glycerol. Reactions were incubated 20 min at room temperature. After the reaction samples 16 

were loaded on 20cm long 5% acrylamide native gel and ran overnight at 70V. Gel was dried for 17 

1 hour at 80°C and exposed 4h or overnight to phosphorimager screen.   18 

 19 

p62 protein expression and purification 20 

MBP-p62-his6 was expressed in E.coli BL21(DE3) CodonPlus-RIL cells by autoinduction in ZY 21 

media. After pre-culture at 37ºC for 6 hours, cell cultures were cooled down to room temperature 22 

and incubated for 16 hrs at 20°C.  Cells were lysed by resuspension in lysis buffer (50mM 23 
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HEPES pH 8.0, 1M NaCl, 0.5 mM TCEP, 1x protease inhibitor) followed by four passes through 1 

a microfluidizer. Lysate was clarified by centrifugation at 48 000xg and incubated with Ni-NTA 2 

beads for 1 hr.  Beads were washed extensively in buffer 1 (50mM HEPES pH 8.0, 1M NaCl, 0.5 3 

mM TCEP, 50mM Imidazole) and protein eluted with buffer 2 (50mM HEPES pH 8.0, 1M 4 

NaCl, 0.5 mM TCEP, 250mM Imidazole).  5 

 6 

Immunofluorescence microscopy and image analysis 7 

For immunostaining, cells were cultured on ibidi slides (80426; ibidi), fixed for 10 min with 8 

methanol, washed with PBS, permeabilized and blocked for 1 hour in 0.1% Triton-X 100 in 1% 9 

BSA solution. Cells were then incubated with primary antibodies for 1 hour at room temperature, 10 

washed in PBS and incubated with the secondary antibody, DAPI and Cell Mask for 1 h at room 11 

temperature in the dark. Slides were washed 3 times in PBS and stored at 4°C in PBS until 12 

imaging. Reagents used were anti-p62 (1:1000, #PM045, MBL), anti-LC3B (1:200; #CTB-LC3-13 

2-IC, Cosmo Bio), anti-mouse IgG Alexa Fluor 488 (1:1000; #4408, Cell Signaling), anti-Rabbit 14 

IgG Alexa Fluor 555 (1:1000; #4413, Cell Signaling), DAPI (#10236276001, Roche); HSC 15 

CellMask Deep Red stain (1:40 000; #H32721, Thermo Fisher). Images of the fluorescent 16 

staining were acquired on a Leica SP5 confocal microscope using a 63x/NA1.2 PlanApo water 17 

immersion lens. Excitation and emission settings were as follows:  Dapi (Ex 405nm / Em 410 - 18 

484 nm), Alexa Fluor 488 (Ex 488nm / Em 500 – 551 nm) and Alexa Fluor 555 (Ex 561 nm / 19 

Em 564 – 628 nm), and Cell Mask Deep Red ( Ex 633 nm / Em 661 – 714 nm). One image data 20 

set comprised one z-stack with 24 slices acquired at 335 nm spacing, each slice consisting of 21 

1024 x 1024 pixels with a pixel size of 120 nm x 120 nm.  Typically, 10 such image data sets 22 

were acquired per condition and replicate. For visual inspection and quantitative single cell 23 
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analysis in CellProfiler 2.2.0 (Carpenter et al., 2006) z-maximum projections were computed 1 

using ImageJ (Schneider et al., 2012). Using CellProfiler, nuclei were segmented in the DAPI 2 

channel by means of an intensity threshold. Cells were segmented by an image-based watershed 3 

algorithm, computed on the Cell Mask Deep Red staining, using segmented nuclei as seeds. LC3 4 

and p62 objects were segmented in the respective antibody staining images by applying a 5 

morphological tophat filter for enhancement of locally bright structures followed by an intensity 6 

threshold. LC3 and p62 objects were counted as co-localizing if the pixel based overlap was 7 

greater than or equal to three pixels. To ensure an unbiased analysis all settings of the analysis 8 

pipeline such as all intensity thresholds and filter settings were kept unchanged across all 9 

conditions and replicates. 10 

 11 

Chemical synthesis of XIE62-1004-A 12 

XIE62-1004-A (2-((3,4-bis(benzyloxy)benzyl)amino)ethan-1-ol) was chemically synthesized 13 

starting from 3,4-dihydroxybenzaldehyde according to the literature procedure described by 14 

(Cha-Molstad et al., 2017) with the following modifications. The crude 2-((3,4-15 

bis(benzyloxy)benzyl)amino)ethan-1-ol was purified by silica gel column chromatography using 16 

a NH3(aq.)/MeOH/CH2Cl2 mixture for elution (1/1/98 → 1/10/89). The product obtained as 17 

colorless oil was re-dissolved in HPLC grade CHCl3, aliquoted into eppendorf tubes and then 18 

the solvent was evaporated in a Speedvac overnight. XIE62-1004-A was used as a 500 mM 19 

DMSO stock. 20 

 21 

QUANTIFICATION AND STATISTICAL ANALYSIS 22 
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Data are displayed as single points, mean ±SEM; Student’s t-test was used, n values are 1 

indicated in the respective Figure legends. p-values are indicated in the Figures, p<0.05 was 2 

considered statistically significant. GraphPad Prism v4.0 was used to create plots. Images were 3 

quantified with ImageJ.  4 

 5 

DATA AND SOFTWARE AVAILABILITY 6 

The sequencing data was deposited to Array Express with the accession number E-MTAB-4894: 7 

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4894/?page=1&pagesize=500  8 

The analysis of the p62 iCLIP datasets is described at http://www.hentze.embl.de/public/p62-9 

iCLIP. RNA secondary structures were predicted using the ViennaRNA package.   10 

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4894/?page=1&pagesize=500
http://www.hentze.embl.de/public/p62-iCLIP
http://www.hentze.embl.de/public/p62-iCLIP
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SUPPLEMENTARY TABLES – EXCEL TABLES 1 

Table S1. List of proteins found in HuH-7 cells RBDmap Related to Figure 1 2 

Table S2. iCLIP crosslink site data per RNA class Related to Figure 1 3 

Table S3. iCLIP analysis per single RNA Related to Figure 1 4 

Table S4. List of oligonucleotides used in the study. Related to Figures 2, 4, S5 and S6 5 
 6 

 7 



Key Resources Table 

The small non-coding vault RNA1-1 acts as a riboregulator of autophagy 

Horos et al. 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Rabbit polyclonal anti-p62 MBL Cat#:PM045 
Mouse monoclonal anti-p62 NOVUS Cat#:H00008878-

M01 
RRID:AB_437085 

Rabbit polyclonal anti-TDP43 ProteinTech Cat#:10782-2-AP 
RRID:AB_615042 

Mouse monoclonal anti-Β-actin Sigma-Aldrich Cat#:A5441 
RRID:AB_476744 

Rabbit polyclonal anti-LC3B MBL Cat#:PM036 
RRID:AB_2274121 

Rabbit monoclonal anti-GABARAP CST Cat#:13733 
Rabbit polyclonal anti-NBR1 PTG Cat#:16004-1-AP 

RRID:AB_2251178 
Rabbit monoclonal anti-phospho-Ser757 ULK1 CST Cat#:14202 

RRID:AB_2665508 
Rabbit monoclonal anti-ULK1 CST Cat#:8054 

RRID:AB_11178668 
Rabbit polyclonal anti-phosphoThr389 S6K1 CST Cat#:9205 

RRID:AB_330944 
Rabbit monoclonal anti-S6K1 CST Cat#:2708 

RRID:AB_390722 
Rabbit polyclonal anti-phospho-Ser4E-BP1 CST Cat#:9451 

RRID:AB_330947 
Rabbit monoclonal anti-4E-BP1 CST Cat#:9644 

RRID:AB_2097841 
Mouse monoclonal anti-Ub (FK2) Tebu-Bio Cat#:AB120 

RRID:AB_10541840 
Rabbit polyclonal anti-GAPDH Sigma-Aldrich Cat#:G9545 

RRID:AB_796208 
Goat anti-mouse IgG-HRP Santa Cruz Cat#:Sc-2005 

RRID:AB_631736 
Goat anti-rabbit IgG-HRP Santa Cruz Cat#:Sc-2004 

RRID:AB_631746 
Mouse anti-LC3B Cosmo Bio Cat#:CTB-LC3-2-IC 
Anti-mouse IgG Alexa Fluor 488 CST Cat#:4408 

AB_10694704 
Anti-rabbit IgG Alexa Fluor 555 CST Cat#:4413 

AB_10694110 
Bacterial and Virus Strains  
E.coli BL21(DE3) CodonPlus-RIL Agilent Cat#:230240 
Chemicals, Peptides, and Recombinant Proteins 
Bafilomycine A1 InVivoGen Cat#:tlrl-baf1 
MG132 InVivoGen Cat#:tlrl-mg132 
4-thiouridine Biomol Cat#:T2933 
DAPI Roche Cat#:10236276001 
HSC CellMask Deep Red Thermo Fisher Cat#:H32721 
Critical Commercial Assays 

Key Resource Table



TRI-reagent Sigma-Aldrich Cat#:T9424 
Alt-R  IDT N/A 
Quick DNA Miniprep Kit Zymogen Cat#:D4074 
Nucleofector 4D Lonza Cat#:SF 
Lipofectamine 3000 Thermo Fisher Cat#:L3000008 
Lipofectamine RNAi max Thermo Fisher Cat#:13778075 
MEGAshortscript Thermo Fisher Cat#:AM1354 
Anti-HA magnetic beads  Thermo Fisher Cat#:88836 
Maxima RT kit Thermo Fisher Cat#:K1671 
Deposited Data 
p62 iCLIP data this paper Array Express 

E-MTAB-4894 
Experimental Models: Cell Lines 
HuH-7 Beckmann et al., 2015 N/A 
HuH-7 Flp-In T-Rex Beckmann et al., 2015 N/A 
HeLa Castello et al., 2013 N/A 
NIH3T3 C. Merten laboratory N/A 
RAW264.7 M.Muckenthaler 

laboratory 
N/A 

Hep-56.1D M.Muckenthaler 
laboratory 

N/A 

Hepa1-6 M.Muckenthaler 
laboratory 

N/A 

Oligonucleotides 
sgRNAs, cRNAs, PCR primers and Northern blotting 
probes - please refer to the Supplementary Table S4 

this paper N/A 

Recombinant DNA 
pcDNA5-FRT-TO-FLAG/HA-p62 wt and variants this paper N/A 
pETM43-MBP-3C-p62-His6 wt and variants this paper Ciuffa et al., 2015 
pUC57-T7-vtRNAs this paper N/A 
pUC57-H1-vtRNAs this paper N/A 
pSpCas9(BB)-2A-GFP Ran et al., 2013 Addgene plasmid#: 

48138 
pSpCas9(BB)-2A-RFP/Cer3 kind gift from Noh lab, 

EMBL 
N/A 

Software and Algorithms 
Vienna fold N/A http://rna.tbi.univie.a

c.at/ 
iCOUNT N/A https://icount.readthe

docs.io/en/latest/ 
Prism GraphPad GraphPad Software Version 4 
ImageJ N/A https://imagej.net/W

elcome 
CellProfler N/A http://cellprofiler.org/ 
HuH-7 RBDmap data analysis this paper http://www.hentze.e

mbl.de/public/RBDm
apHuh7/vignettes/re
sult/ 

p62 iCLIP data analysis this paper http://www.hentze.e
mbl.de/public/p62-
iCLIP 

 

http://rna.tbi.univie.ac.at/
http://rna.tbi.univie.ac.at/
https://icount.readthedocs.io/en/latest/
https://icount.readthedocs.io/en/latest/
https://imagej.net/Welcome
https://imagej.net/Welcome
http://cellprofiler.org/
http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/
http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/
http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/
http://www.hentze.embl.de/public/RBDmapHuh7/vignettes/result/
http://www.hentze.embl.de/public/p62-iCLIP
http://www.hentze.embl.de/public/p62-iCLIP
http://www.hentze.embl.de/public/p62-iCLIP
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