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Abstract 

Lactic acid is an important platform chemical that has long history and wide applications 

in food, polymer, pharmaceutics and cosmetic industries. Lactic acid has two optical isomers; 

namely D-lactic acid and L-lactic acid. Racemic mixture of lactic acid are usually used as 

preservatives and ingredients in solvents, or as precursors for different chemicals. Currently there 

is an increasing demand of optical pure lactic acid as a feedstock for the production of poly-lactic 

acid (PLA). PLA is a biodegradable, biocompatible and environmental friendly alternative to 

plastics derived from petroleum based chemicals. Optically pure D or L-lactic acid is used for the 

synthesis of poly D or L- lactic acid (PDLA, PLLA).  Blend of PDLA with PLLA results in a 

heat-resistant stereocomplex PLA with excellent properties. As a consequence, large quantity of 

cost effective D-lactic acid is required to meet the demand of stereocomplex PLA. 

Lignocellulosic biomass is a promising feedstock for lactic acid production because of its 

availability, sustainability and cost effectiveness compared to refined sugars and cereal grain-

based sugars. Commercial use of lignocellulosic biomass for economic production of lactic acid 

requires microorganisms that are capable of using all sugars derived from lignocellulosic 

biomass. Therefore, the objectives of this study were: 1) to produce high level of optically pure 

D-lactic acid from lignocellulosic biomass-derived sugars using a homofermentative strain L. 

delbrueckii via simultaneous saccharification and fermentation (SSF); 2) to develop a co-culture 

fermentation system to produce lactic acid from both pentose and hexose sugars derived from 

lignocellulosic biomass; 3) to produce D-lactic acid by genetically engineered L. plantarum 

NCIMB 8826 ∆ldhL1 and its derivatives; 4) to construct recombinant L. plantarum by 

introduction of a plasmid (pLEM415-xylAB) used for xylose assimilation and evaluate its ability 

to produce D-lactic acid from biomass sugars; and 5) to perform metabolic flux analysis of  

carbon flow in Lactobacillus strains used in  our study.  

Our results showed that D-lactic acid yield from alkali-treated corn stover by L. 

delbrueckii and L. plantarum NCIMB 8826 ∆ldhL1 via SSF were 0.50 g g-1 and 0.53 g g-1 

respectively; however, these two D-lactic acid producing strains cannot use xylose from 

hemicellulose. Complete sugar utilization was achieved by co-cultivation of L. plantarum ATCC 

21028 and L. brevis ATCC 367, and lactic acid yield increased to 0.78 g g-1 from alkali-treated 



  

corn stover, but this co-cultivation system produced racemic mixture of D and L lactic acid. 

Simultaneous utilization of hexose and pentose sugars derived from biomass was achieved by 

introduction of two plasmids pCU-PxylAB and pLEM415-xylAB carrying xylose assimilation 

genes into L. plantarum NCIMB 8826 ∆ldhL1, respectively; the resulting recombinant strains 

∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-xylAB used xylose and glucose simultaneously and 

produced high yield of optically pure D-lactic acid.  Metabolic flux analysis verified the 

pathways used in these Lactobacillus strains and provided critical information to judiciously 

select the desired Lactobacillus strain to produce lactic acid catering to the composition of raw 

material and the optical purity requirement. This innovative study demonstrated strategies for 

low-cost biotechnological production of tailor-made lactic acid from specific lignocellulosic 

biomass, and thereby provides a foundational manufacturing route for a flexible and sustainable 

biorefinery to cater to the fuel and chemical industry.   
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Abstract 

Lactic acid is an important platform chemical that has long history and wide applications 

in food, polymer, pharmaceutics and cosmetic industries. Lactic acid has two optical isomers; 

namely D-lactic acid and L-lactic acid. Racemic mixture of lactic acid are usually used as 

preservatives and ingredients in solvents, or as precursors for different chemicals. Currently there 

is an increasing demand of optical pure lactic acid as a feedstock for the production of poly-lactic 

acid (PLA). PLA is a biodegradable, biocompatible and environmental friendly alternative to 

plastics derived from petroleum based chemicals. Optically pure D or L-lactic acid is used for the 

synthesis of poly D or L- lactic acid (PDLA, PLLA).  Blend of PDLA with PLLA results in a 

heat-resistant stereocomplex PLA with excellent properties. As a consequence, large quantity of 

cost effective D-lactic acid is required to meet the demand of stereocomplex PLA. 

Lignocellulosic biomass is a promising feedstock for lactic acid production because of its 

availability, sustainability and cost effectiveness compared to refined sugars and cereal grain-

based sugars. Commercial use of lignocellulosic biomass for economic production of lactic acid 

requires microorganisms that are capable of using all sugars derived from lignocellulosic 

biomass. Therefore, the objectives of this study were: 1) to produce high level of optically pure 

D-lactic acid from lignocellulosic biomass-derived sugars using a homofermentative strain L. 

delbrueckii via simultaneous saccharification and fermentation (SSF); 2) to develop a co-culture 

fermentation system to produce lactic acid from both pentose and hexose sugars derived from 

lignocellulosic biomass; 3) to produce D-lactic acid by genetically engineered L. plantarum 

NCIMB 8826 ∆ldhL1 and its derivatives; 4) to construct recombinant L. plantarum by 

introduction of a plasmid (pLEM415-xylAB) used for xylose assimilation and evaluate its ability 

to produce D-lactic acid from biomass sugars; and 5) to perform metabolic flux analysis of  

carbon flow in Lactobacillus strains used in  our study.  

Our results showed that D-lactic acid yield from alkali-treated corn stover by L. 

delbrueckii and L. plantarum NCIMB 8826 ∆ldhL1 via SSF were 0.50 g g-1 and 0.53 g g-1 

respectively; however, these two D-lactic acid producing strains cannot use xylose from 

hemicellulose. Complete sugar utilization was achieved by co-cultivation of L. plantarum ATCC 

21028 and L. brevis ATCC 367, and lactic acid yield increased to 0.78 g g-1 from alkali-treated 



  

corn stover, but this co-cultivation system produced racemic mixture of D and L lactic acid. 

Simultaneous utilization of hexose and pentose sugars derived from biomass was achieved by 

introduction of two plasmids pCU-PxylAB and pLEM415-xylAB carrying xylose assimilation 

genes into L. plantarum NCIMB 8826 ∆ldhL1, respectively; the resulting recombinant strains 

∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-xylAB used xylose and glucose simultaneously and 

produced high yield of optically pure D-lactic acid.  Metabolic flux analysis verified the 

pathways used in these Lactobacillus strains and provided critical information to judiciously 

select the desired Lactobacillus strain to produce lactic acid catering to the composition of raw 

material and the optical purity requirement. This innovative study demonstrated strategies for 

low-cost biotechnological production of tailor-made lactic acid from specific lignocellulosic 

biomass, and thereby provides a foundational manufacturing route for a flexible and sustainable 

biorefinery to cater to the fuel and chemical industry.   
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Chapter 1 - Biosynthesis of lactic acid using Lactobacilli strains: an 

important platform chemical 

 Lactic Acid  

Lactic acid (2-hydroxypropanoic acid) is an important and versatile chemical with a long 

history of use in the food and cosmetic Industries. Lactic acid was discovered by a Swedish 

chemist, Carl Wilhelm Scheele, in 1780. After a century, a French scientist produced lactic acid 

by bacterial fermentation and this lead to the industrial production of lactic acid (Ghaffar et al. 

2014).  

Lactic acid has two enantiomers, L-lactic acid and D-lactic acid due to its asymmetric C2 

atom (Fig.1.1).  Both enantiomers have similar physical and chemical properties; the pK value of 

lactic acid is 3.89 and dissociates freely at pH around 7, yielding lactate (Ewaschuk et al. 2005).  

L-lactic acid is a biologically important isomer, which is a major cause of muscle fatigue and a 

key factor in acidosis-induced tissue damage (Gladden 2004). Table 1.1 summarizes the physical 

properties of these two enantiomers.   

 Applications of lactic acid 

Lactic acid has many applications in the food, chemical, textile, pharmaceutical and other 

industries. Different fields prefer different isomer of lactic acid; in particular, the food and 

pharmaceutical industries have a preference for the L-lactic acid because it is the only one that 

can be metabolized by the human body. However, the chemical industry requires one of the pure 

isomers or a racemic mixture of both depending on the specific applications (Martinez et al. 

2013).  

Lactic acid is classified as GRAS (generally recognized as safe) by US Food and Drug 

Administration (FDA), and approximately 70 % of produced lactic acid is used in food industry  

(Martinez et al. 2013). Due to its acidic nature, lactic acid is often used as a natural flavoring in 

beverage, as an acidulant in confectionery, and as a preservative for fermented vegetables and 

meat.  Lactic acid salt or esters with long chain fatty acid can be used as an emulsifying agent in 

bakery goods (Dusselier et al. 2013). Traditionally non-food related uses are found in the leather 

tanning and textile treatments as well as in pharmaceutical and cosmetic industries.  Calcium 
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lactate trihydrate is used in pharmaceuticals as a dietary calcium source and also as a blood 

coagulant in the treatment of hemorrhages and to inhibit bleeding during dental operations. 

Sodium lactate is used in the production of some antibiotics and buffering systems (Vijayakumar 

et al. 2008). Natural L-lactic acid is used as a skin-rejuvenating agent and pH regulator in the 

cosmetic industry; for example, the use of ethyl lactate in anti-acne treatments, and sodium 

lactate as moisturizing agents in many skin care products. (Datta and Henry 2006).  

Lactic acid has a hydroxyl and a carboxyl functional group; it can undergo intermolecular 

or self-esterification and form poly-lactic acid (PLA), which is well-known as a sustainable bio-

plastic (Datta et al. 1995).  PLA has numerous applications such as industrial packaging, fibers, 

clothes, and biocompatible materials for medical application. (Jamshidian et al. 2010). The 

optical purity of lactic acid plays important role in PLA physical properties; it can be semi-

crystalline or totally amorphous depending on the stereo-purity of the polymer backbone. The 

polymers derived from optically pure D or L-lactic acid are semi-crystalline materials, while the 

polymer derived from racemic DL-lactic acid is usually amorphous (Garlotta 2001). The 

amorphous PLA is usually used for drug delivery, because it is important to homogeneously 

disperse the active ingredients in the carrier matrix; on the other hand, the semi-crystalline PLA 

is preferred in applications where high mechanical strength and toughness are required (Tsuji 

and Ikada 1999a). Blending of poly-L-lactic acid (PLLA) with poly-D-lactic acid (PDLA) results 

in stereocomplex PLA which has superior heat-resistant property than respective single polymers 

(Okano et al. 2007). Table 1.2 shows the physical properties of PLA.  

 Lactic acid industry 

Currently the major lactic acid producers in the United States are Nature Works LLC and 

Archer Daniels Midland Company (ADM). In Europe, there are Purac (The Netherlands) and 

Galactic S. A (Belgium); and in Asia, Musashino Chemical Co. Ltd (Japan), Changzhou (CCA) 

Biochemical Co. Ltd., and Henan Jindan Lactic Acid Co. LTD (China).  ADM mainly focuses on 

lactic acid and its derivatives for traditional uses, while Nature works LLC has been the 

dominant leader in PLA business. Musashino Chemical Co. Ltd manufactures lactic acid by 

carbohydrate fermentation technology with several Chinese partners (Datta and Henry 2006) .  

According to a business report published by Grand View Research, Inc (“Lactic acid”, 

2014) The current worldwide production (including polymer uses) is estimated to reach around 
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1960 kilo tons by 2020, with an annual growth rate of 15.5 % from 2014 to 2020. Industrial 

applications accounted for 44.3 % of the overall market in 2013, and are expected to continue 

dominating the market over the forecast period. Major driving forces of lactic acid market are 

PLA and lactate solvents as well as personal care products.  The demand for sustainable 

packaging products as well as the rising crude oil prices is expected to drive demand for the 

PLA. Although the demand for PLA is increasing, its current production capacity is only 496 

kilo tons per year (Ghaffar et al. 2014), which results from the high manufacturing cost of its 

monomer-lactic acid. The selling price of PLA must decrease by about half of its current selling 

price in order to compete with its petroleum counterparts, which means that lactic acid price 

should be at or below $0.8 per kilogram (Okano et al. 2010).  

 Lactic acid bacteria (LAB) 

Lactic acid  bacteria (LAB) are the most widely used bacterial group for industrial 

production of lactic acid, because of their long history in industrial scale production and they are 

safe to the consumers and production workers (Vijayakumar et al. 2008). LAB are gram-positive 

microorganisms widely present within plants, meat, and dairy products, they produce lactic acid 

as an anaerobic product of glycolysis with high yield and productivity. Most of the LAB are 

anaerobic, but some of them, for example Lactobacillus species are facultative anaerobes; they 

can also grow in presence of oxygen due to the presence of peroxidases (Ghaffar et al. 2014). 

LAB are generally divided into three groups according to their fermentation patterns. The first 

group is homofermentative LAB, which produce lactic acid as the major end product. 

Theoretical maximal yield of lactic acid is 2 moles lactic acid per mole of glucose or 1 gram 

lactic acid per gram of glucose. Representative LAB in this group are species of Lactococci, 

Enterococci, and Streptococci (Taskila and Ojamo 2013). Homo-lactic acid bacteria metabolize 

hexose to pyruvate through the Embden-Meyerhof pathway (EMP). Then the pyruvate is used to 

regenerate NAD+ in the lactate dehydrogenase (LDH) catalyzed reaction yielding lactic acid. 

There are two types of LDH, namely L-LDH and D-LDH, which are responsible for catalyzing 

reactions for L-lactic acid or D-lactic acid, respectively. Some species have both L-LDH and D-

LDH; thus a racemic mixture of D/L lactic acid is produced. Heterofermentative LAB, for 

example Leuconostocs, Oenococci and some Lactobacilli, for example, Lactobacillus brevis, 

which can use both hexose and pentose sugars via phosphoketolase (PK) pathway (Zaunmueller 
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et al. 2006). The theoretical maximal yield of lactic acid in hetero-LAB is 1 mole of lactic acid 

per mole of glucose or 0.5 gram of lactic acid per gram of glucose. They also yield 1 mole of 

lactic acid per mole of xylose or 0.6 gram of lactic acid per gram of xylose (Tanaka et al. 2002). 

Hetero-LAB also produce by-products such as acetic acid, ethanol or some polyols. Besides 

homo-and heterofermentative LAB, a third group of LAB known as the facultative 

heterofermentative LAB, metabolize hexose through EMP, but they also possess an inducible PK 

pathway with pentose acting as an inducer (Kandler 1983). Different pathways are described in 

Fig.1.2.  

Commercially important LAB strains, such as Lactobacillus strains, are particularly 

useful because of their high lactic acid yield, high acid tolerance and their ability to be 

metabolically engineered. Several studies have been done to improve lactic acid production by 

gene modification of LAB.  Usually, LAB are modified in two aspects; one is to improve the 

optical purity of lactic acid and minimize the by-product production. The other strategy is to 

expand the substrate utilization profile of LAB.  D-lactic acid has attracted intensive attention 

due to the rapid growth of PLA industry. Gene manipulation of D-lactic acid producing strains is 

known to be difficult due to the lack of effective transformation method and compatible plasmid 

(Serror et al. 2002). Therefore, considerable research has been done in the manipulation of the 

D,L-lactic acid producing strains. Okano et al. (2009a; 2009b) has deleted the L-LDH gene of L. 

plantarum NCIMB 8826, and xylose assimilating genes were introduced into the mutant strain 

resulting in successful production of D-lactic acid from glucose, arabinose and xylose with 

optical purity above 99 %. Direct lactic acid production from starch was achieved by cloning and 

expressing а-amylase in L. lactis IL 1403, the resulting strain produced L-lactic acid from 

soluble starch directly (Okano et al. 2009c). Direct fermentation from cellulose to produce lactic 

acid is a challenge. So far, there is no report about direct lactic acid production from cellulosic 

biomass. Though direct lactic acid production was achieved from cello-oligosaccharides 

consisting of more than 4 glucose units (Adsul et al. 2007).  

 Lactic acid production from lignocellulosic biomass 

Lactic acid can be produced by either chemical synthesis or fermentation. The chemical 

synthesis route produces a racemic mixture of D, L lactic acid (Dusselier et al. 2013). Due to the 

growing demand of lactic acid for biodegradable PLA, the need for optically pure lactic acid is 
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increasing. On the other hand, the fermentation route mainly produces optically pure lactic acid 

if an appropriate microorganism is selected.  Commercial lactic acid is produced by fermentation 

of starch or refined sugars. The expensive raw materials account for a large portion of production 

cost, representing the most serious obstacle for fermentative lactic acid while competing with 

synthetic lactic acid production (Datta et al. 1995). Lactic acid is a commodity chemical required 

by other industrial users in large quantities with a relatively low cost. Therefore, low-cost raw 

materials are necessary for the feasibility of the biotechnological production of lactic acid. Low 

cost, renewable, and non-food materials are of great interest for lactic acid production, especially 

lignocellulosic biomass from agricultural, agro-industrial, and forestry sources (Yadav et al. 

2011). However, the cellulose and hemicellulose in lignocellulosic biomass cannot be directly 

used by LAB to produce lactic acid because of the complex structure of lignocellulosic biomass 

and the lack of cellulolytic enzymes in LAB.  

 Lignocellulosic biomass composition 

Lignocellulosic biomass is organic material, which is generally categorized into woody 

biomass, agricultural residues including straws, bagasse and stover, and organic waste. 

Lignocellulosic biomass is mainly composed of cellulose, hemicellulose and lignin. Cellulose is 

a linear polysaccharide polymer with many glucose unit linked with β-1, 4 glycosidic bond. It is 

the major component in the rigid cell walls in plants. Because of the orientation of the linkages 

and additional hydrogen bond formed on the same or on neighbor chains, cellulose is highly 

crystalline and hard to break (Abdel-Rahman et al. 2011). Unlike cellulose, hemicellulose is 

highly branched heteropolymer consisting of xylan, glucuronoxylan, arabinoxylan, 

glucomannan, and xyloglucan (Saha 2003). Hemicellulose is much easier to hydrolyze compared 

with cellulose due to its amorphous structure. Xylose is the dominant sugar from hemicellulose 

in hardwoods and agriculture residues, while mannose is the major hemicellulose sugar in soft 

woods (Taherzadeh and Karimi 2008). Lignin is a complex aromatic polymer, composed of up to 

three monomers (coumaryl alcohol, coniferyl alcohol and sinapyl alcohol), and a complex matrix 

is formed by many possible bonding patterns between individual units (Demirbas 2008). Lignin 

is considered to be difficult to use as a fermentation substrate and is usually removed during 

pretreatment. The composition of biomass varies between species. Table 1.3 shows the 

composition of difference source of biomass. It is clearly evident that the cellulose, 
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hemicellulose and lignin content depends on the type of biomass; therefore, by selecting 

appropriate biomass and LAB, the fermentation purpose can be tailor-made for a defined 

application.  

 Pretreatment methods 

The biologic process of converting lignocellulosic biomass to lactic acid usually consists 

of three major steps: pretreatment, enzymatic hydrolysis and fermentation (Fig. 1.4). The 

purpose of pretreatment is to disrupt lignocellulosic biomass structure to make cellulose more 

accessible to the enzymes. The removal of lignin and hemicellulose during pretreatment depend 

on the methods used. For example, dilute acid pretreatment, which is a leading pretreatment 

process under commercial development, removes most of the hemicellulose from biomass (Xu 

and Huang 2014).  

In dilute acid pretreatment, the lignocellulosic biomass is treated with less than 4 % 

sulfuric acid at a temperature of 120 to 210 ̊C for several minutes to an hour (Taherzadeh and 

Karimi 2007). Dilute acid pretreatment is effective to improve cellulose and hemicellulose 

hydrolysis by varying its severity. The disadvantage of this treatment is the formation of 

inhibitors such as furfurals and 5-hydroxymethyfurfural (HMF) for the subsequent hydrolysis 

and fermentation steps. Alkaline pretreatment, for example, sodium hydroxide pretreatment and 

lime pretreatment are usually performed under lower temperature and pressure compared to 

dilute acid pretreatment. Alkaline pretreatment is a delignification process, which removes most 

lignin from the biomass, and the swollen cell wall increases the internal surface area, which 

makes the cellulose more accessible for enzymes (Xu et al. 2010). Alkaline pretreatment forms 

less amount of furfurals and HMF compared to diluted acid pretreatment. (Taherzadeh and 

Karimi 2008).  Liquid hot water pretreatment is a neutral pretreatment, which is usually 

performed in bath or flow-through reactors. The slurry of biomass and water is usually heated to 

160 to 240  ̊C for a few minutes to an hour (Sanchez and Cardona 2008). The major advantage of 

liquid hot water pretreatment is that no acid catalysts are required, which minimizes the 

formation of inhibitors and also avoids the final washing step or neutralization step. The 

disadvantage of this method is high energy demand because of high pressure and large amount of 

water used. Ozonolysis is carried out at temperature of 20-30  ̊C, and ozone is supplied at flow 

rate from 0.5 to 0.8 L/min (Taherzadeh and Karimi 2008). Unlike other pretreatments, 
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Ozonolysis does not produce toxic compounds, which is a major advantage of this method, but 

large amount of ozone is needed, which makes the process expensive and less applicable 

(Garcia-Cubero et al. 2009). 

 Enzymatic hydrolysis 

The goal of enzymatic hydrolysis is to depolymerize cellulose and hemicellulose 

remaining after pretreatment step into fermentable sugars. To maximize sugar yield, a mixture of 

enzymes are needed. There are two general categories of enzymes: cellulase and hemicellulase. 

Synergistic reaction of three major groups of cellulases (endo-β-1, 4-glucanases, exo- β-1, 4-

glucanases and β-glucosidases) are required for efficient cellulose degradation (Zhang et al. 

2007). Endo- β-1, 4-glucanases randomly cut intramolecular β-1, 4-glycosidic bonds of cellulose 

chains. Exo- β-1, 4-glucanases and β-glucosidases hydrolyze cellulose chains at the ends of the 

polymer to produce soluble cellobiose and glucose. β-glucosidases cleave cellobiose into two 

glucose (Lynd et al. 2002). Enzymatic hydrolysis of hemicellulose requires endo-1, 4- β-

xylanase, β-xylosidase, β-glucuronidase, α-L-arabinofuranosidase and acetylxylan esterase for 

hydrolyzing xylan (Carvalheiro et al. 2008).  β -mannanase and α-mannosidase are required to 

cleave glucomannan (Kumar et al. 2008).  

 Fermentation process with LAB 

The lignocellulosic biomass hydrolysate is a mixture of glucose, xylose, arabinose and/or 

mannose depending on the type of biomass. Glucose can be easily metabolized by LAB to form 

lactic acid, however, most LAB lack the enzymes for metabolizing xylose.  Hinman et al (1989) 

stated that the complete utilization of biomass-derived sugars can reduce the manufacturing cost 

of biomaterials by as much as 25 %. Table 1.4 shows lactic acid production from different 

lignocellulosic biomass by LAB. Fermentation technologies must be cost competitive when 

compared to chemical synthesis of lactic acid to validate the use of biotechnologies on industrial 

scale (Bustos et al. 2007). Most studies focus on improving product yield, productivity and 

product concentration of lactic acid, which are the three main economic drivers in fermentation 

process (Taskila and Ojamo 2013).  

 Effect of pH 
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Most LAB cannot grow under the pH of 4 (Adachi et al. 1998). Low pH of lactic acid has 

an inhibitory effect on cellular metabolism and lactic acid production, therefore neutralizing 

agent need to be added such as sodium hydroxide, calcium carbonate, ammonium hydroxide 

through the fermentation process to keep the pH constant in order to reduce the inhibitory effect 

of low pH.  The desired pH for lactic acid production by majority of LAB was found to be 5-7 

(Hofvendahl and Hahn-Hagerdal 2000).  pH controlled batch fermentation significantly 

increased lactic acid yield and productivity compared to pH uncontrolled batch fermentation by 

different LAB strains, such as L. delbrueckii (Tashiro et al. 2011). Nakano et al. (2012) reported 

that Ca2+ is better than monovalent cation (Na+, NH4
+) as neutralizing agent for lactic acid 

production in simultaneous saccharification and fermentation by L. delbrueckii JCM1106.  

 Effect of temperature 

Temperature is one of the important factors that affects lactic acid production. The 

majority of LAB, such as, L. delbrueckii, are mesophilic bacteria, which grow at 17-50 ̊C and 

have optimum growth temperature between 37-43 ̊C (Hofvendahl and Hahn-Hagerdal 2000). 

Goksungur and Guvenc (1997) reported the optimal temperature for L. delburueckii IFO 3202 is 

at 45 ̊C; when the temperature increased above 45 ̊C, lactic acid production and yield decreased 

rapidly. 

 Simultaneously saccharification and fermentation (SSF) 

SSF is a good strategy for lactic acid production from lignocellulosic biomass; it 

combines enzymatic hydrolysis and fermentation into a single step and has many advantages 

compared to separate hydrolysis and fermentation (SHF).  SSF reduces reactor volume, 

processing time and feedback inhibition, and consequently increases the productivity, lactic acid 

yield and hydrolysis rate, and it also reduces the enzyme loading (Hofvendahl and Hahn-

Hagerdal 2000). 

Enzymes involved in the hydrolysis step are known to be subjected to feedback inhibition 

by the sugars released from lignocellulosic biomass (Olofsson et al. 2008). One advantage of 

SSF is that the microorganisms can quickly consume the sugars and maintain the concentration 

of sugar at a low level, thus significantly reducing the feedback inhibition (Balat et al. 2008). In 

SSF, hydrolysis is usually the rate-limiting step (Philippidis and Smith 1995). Production of 

lactic acid by SSF has been studied using corn stover, corncob, waste wood, wheat straw and 
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alfalfa fiber (Sreenath et al. 2001; Garde et al. 2002; Lee et al. 2004; Miura et al. 2004; Cui et al. 

2011). The disadvantage of SSF is that the difference of optimum temperature and pH required 

for saccharification and fermentation (Huang et al. 2005), and lactic acid inhibition effect on the 

enzymes; however, the lactic acid inhibition factor is much lower than the feedback inhibition 

caused by sugar buildup (Takagi 1984).  

 Mixed culture fermentation 

Mixed cultures have been used in the dairy industry for cheese and yogurt production. In 

the mixed culture system, LAB demonstrated a symbiotic relationship (Galeslcoo et al. 1968). 

Mixed culture have also been used in lactic acid production to increase the conversation 

efficiency of substrates as well as lactic acid yield (Nancib et al. 2009, Cui et al. 2011).   

There is more than one sugar present in lignocellulosic hydrolysate, and it is difficult to 

separate them, thus microorganisms are required to produce lactic acid from both glucose and 

xylose. A co-cultivation system which involve microorganisms that are suitable for each sugar 

present will be useful. Taniguchi et al. (2004) reported a co-culture system with a two stage 

inoculation using a xylose consuming strain E. casseliflavus and a glucose specific strain 

Lactobacillus casei to produce lactic acid from a mixture of glucose and xylose. L. casei was 

inoculated first to consume glucose in the medium followed by E. casseliflavus inoculation due 

to the carbon catabolite repression. Lactic acid (95 g L-1 ) with high optical purity was obtained 

by 192 h with all the sugars consumed. Cui et al. (2011) cultivated Lactobacillus rhamnosus 

along with Lactobacillus brevis. L. rhamnosus consumed glucose rapidly to give lactic acid at 

high productivity; L. brevis simultaneously converted both glucose and xylose to lactic acid with 

a small amount of acetic acid. Lactic acid yield and productivity increased when these two 

strains were co-cultivated. All these results suggest that the mixed cultures of LAB are efficient 

and could be more efficient than single cultures regarding lactic acid concentration and better 

sugar utilization. The existence of possible synergistic interaction among LAB should be studied 

in more depth.  

 Challenges of using lignocellulosic biomass for lactic acid production  

Using lignocellulosic biomass to produce chemicals is a promising way to possibly solve 

the energy crisis problem; however, efficient conversion of biomass to lactic acid still faces 

considerable challenges. One of them is the difficult biomass hydrolysis for efficient sugar 
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utilization by microorganisms (Kumar et al. 2008). A large number of pretreatment methods 

have been studied, but the high energy demand for pretreatment is a major drawback and affects 

the total economy of the bioconversion of lignocellulosic biomass (Zheng et al. 2009). Moreover, 

inhibitory compounds usually are released during the pretreatment process; these inhibitory 

compounds interfere with cellulase hydrolysis of lignocellulosic biomass and some of them have 

been identified as microbial growth inhibitors (Mussatto and Roberto 2004). Also the high costs 

of enzymes and excessive dosage of enzymes are some of the drawbacks that limit commercial 

application of lignocellulosic biomass in the lactic acid industry (Abdel-Rahman et al. 2011). 

Another obstacle is that currently only hexoses derived from lignocellulosic biomass can be 

easily used by LAB, while pentose sugars especially xylose cannot be fermented by most LAB 

(Tanaka et al. 2002). Only a few LAB metabolize pentose sugars through phosphoketolase 

pathway, which generate equimolar of lactic acid and acetic acid, and the yield of lactic acid 

from xylose is low. This co-production of lactic acid and acetic acid also increases the 

downstream purification cost. To achieve maximum product yield and productivity, the complete 

utilization of all sugars derived from lignocellulosic biomass is essential. Sequential sugar 

utilization is commonly found in many LAB, and this sequential utilization of mixed sugars 

make the fermentation process less effective (Bothast et al. 1999). A few LAB strains have been 

reported to simultaneously consume glucose and xylose; for example, L. brevis (Kim et al. 2009; 

Guo et al. 2010). Also mixed culture fermentation has been applied to maximize yield and 

productivity (Cui et al. 2011; Taniguchi et al. 2004). Isolation of superior LAB strains that 

produce less acetic acid or development of genetically engineered LAB strains are needed for 

efficient lignocelluloses utilization.  
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Table 1.1 physical properties of lactic acid  

 Reported value  Enantiomer 

Melting point    ̊C 52.7-53.0 

16.4-18.0 

L or D  

Racemic  

Boiling point    ̊C (at 1.87 kPa) 103 

122 

L or D 

Racemic  

Solid Density  g mL-1 ( at 20   ̊C) 1.33 ̶ 

Dissociation constant pKa 3.79-3.86 

3.73 

L or D 

racemic 

*adapted from Dusselier et al. (2013) 
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Table 1.2 Physical properties of PLA 

PLA structure  Description  Melting point 

Tm   ̊C 

Glass transition 

point Tg     ̊C 

Reference  

PLLA or PDLA LLLLLLLL or 

DDDDDD 

170-190 55-65 Tsuji and Ikada 1996 

Random optical 

copolymers  

Random level of meso or 

D-lactide in L-lactide For 

example: 

LLDLLLDDLDLL  

130-170 45-65 Baratian et al. 2001 

PLLA/PDLA 

stereocomplex 

LLLLLLLLL mixed with 

DDDDDD 

220-230 65-72 Tsuji and Ikada 1999b 

Poly meso lactic acid  DLDLDLDLDLDLDL  152 40 Ovitt and Coates 2002 
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Table 1.3 Cellulose, hemicellulose and lignin content of different type of lignocellulosic 

biomass (% dry weight)  

Lignocellulosic biomass Cellulose (%) Hemicellulose (%) Lignin (%) 

Corn stover 36.8 30.6 23.1 

Corn cobs 33.7-41.2 31.9-36 6.1-15.9 

Corn stalks 35-39.6 16.8-35 7-18.4 

Wheat straw 32.9-50 24-35.5 8.9-17.3 

Softwood barks 18-38 15-33 30-60 

Hardwood barks 22-40 20-38 30-55 

Poplar aspen 50.8-53.3 26.2-28.7 15.5-16.3 

Paper  85-99 0 0-15 

Chemical pulps 60-80 20-30 2-10 

*adapted from Xu and Huang (2014), Balat (2011)  
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Table 1.4 Lactic acid production from lignocellulosic biomass by Lactobacilli  

LAB Substrate  Fermentation 

mode 

Lactic acid 

(g L-1) 

Yield 

(g g-1) 

Productivity  

(g h-1 L-1) 

Type Reference  

L. brevis S3F4 Corn stover 

hydrolysate 

Batch  18.2 0.74 0.76 ̶ Guo et al. 

2010 

L. brevis CHCC 2097 

and L. pentosus 

CHCC 2355 

Wheat straw 

hydrolysate 

Batch  8.0 0.74 0.08 D/L Garde et al. 

2002 

L. brevis ATCC 367 

and L. rhamnosus  

Corn stover SSF 21 0.7 0.58 D/L Cui et al. 

2011 

L. delbrueckii ATCC 

9649 

Corn stover SSF  20.1 0.50 0.32 D Zhang and 

Vadlani 

2013 

L. delbrueckii ATCC 

9649 

Pulp SSF 19.2 0.48 0.31 D Zhang and 

Vadlani 

2013 

L. brevis ATCC 367 

and L. plantarum 

ATCC 21028 

Corn stover SSF 31.2 0.78 0.43 D/L Zhang and 

Vadlani 

2015 

L. brevis ATCC 367 

and L. plantarum 

ATCC 21028 

Poplar 

hydrolysate  

Batch  38.0 0.80 0.40 D/L Zhang and 

Vadlani 

2015 

        

L. pentosus ATCC 

8041 

Corn stover 

 

Fed-batch 

(SSF) 

74.8 0.65 0.05 ̶ Zhu et al. 

2007 

        

L. plantarum ∆ldhL1-

pCU-PxylAB 

Sorghum 

stalks 

SSF 21.6 0.54 0.64 D Chapter-5 

L. plantarum ∆ldhL1-

pLEM415-xylAB 

Corn stover  

 

Fed-batch 

(SSF) 

61.4 0.77 0.32 D Chapter-6 
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Figure 1.1  Lactic acid isomers  

Source: http://nptel.ac.in/courses/116102006/module6/chapter%206.1.html 
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Figure 1.2 Simplified pathways in LAB  

Homofermentative pathway (solid line), heteroformentative pathway (dashed line) 
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Figure 1.3 Schematic flow sheet of converting lignocellulosic biomass into lactic acid 
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Chapter 2 - Research objectives  

Lactic acid has attracted intensive attention as an important platform chemical. The 

increased demand for biodegradable poly-lactic acid (PLA) and green solvents, e.g. ethyl lactate, 

has significantly increased the global interests in lactic acid production. However, the application 

of PLA is hindered by its high manufacturing cost due to the high price of optically pure D-lactic 

acid, which is not commercially available in large quantity. Therefore, the goal of this study was 

to economically produce high optically pure D-lactic acid through utilization of inexpensive 

lignocellulosic biomass, and to promote lactic acid yield and productivity by broadening the 

substrate specificity of lactic acid bacteria as well as applying advanced bioprocess techniques. 

Specific objectives corresponding to each chapter in this dissertation are listed below:  

 Produce high level of optically pure D-lactic acid from lignocellulosic biomass-

derived sugars using a homofermentative strain L. delbrueckii via simultaneous 

saccharification and fermentation. (Chapter-3)   

 Develop a co-culture fermentation system to produce lactic acid from both 

pentose and hexose sugars derived from lignocellulosic biomass. (Chapter-4) 

 Produce D-lactic acid by genetically engineered L. plantarum NCIMB 8826 

∆ldhL1 and its derivatives. (Chapter-5) 

 Construct recombinant L. plantarum by introduction of a plasmid (pLEM415-

xylAB) used for xylose assimilation and evaluate its ability to produce D-lactic acid 

from biomass sugars. (Chapter-6) 

 Perform metabolic flux analysis of carbon flow in Lactobacillus strains used in 

our study. (Chapter-7) 
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Chapter 3 - D-lactic acid biosynthesis from biomass-derived sugars 

via Lactobacillus delbrueckii fermentation1  

 Abstract 

Poly-lactic acid (PLA) derived from renewable resources is considered to be a good 

substitute for petroleum-based plastics. The number of poly L-lactic acid applications is 

increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-

lactic acid and has a higher melting temperature. To date, several studies have explored the 

production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and 

corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars 

and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover 

was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic 

acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and 

fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 

D-lactic acid (36.3 g L-1) with 99.8 % optical purity was obtained in the batch fermentation of 

pulp and attained highest yield of 0.83 g g-1 and productivity of 1.01 g L-1h-1. Luedeking-Piret 

model described the mixed growth-associated production of D-lactic acid. A maximum specific 

growth rate of 0.2 h-1 and product formation rate of 0.026 h-1, were obtained for this strain. The 

efficient synthesis of D-lactic acid having high optical purity and melting point will lead to 

unique stereo-complex PLA with innovative applications in polymer industry. 

 Introduction  

Lignocellulosic biomass is gaining importance as a potential source of renewable energy 

and chemicals as the fossil fuel reserves will eventually getting depleted. Demand continues to 

increase for production of high-value chemicals and materials from renewable resources to attain 

domestic self-sufficiency and enhanced national security. Lactic acid is an important and 

multifunctional organic acid that has wide applications in the food, pharmaceutical, and chemical 

industries (Shen and Xia 2006; Datta et al.1995) It exists in two optical isomeric forms, L (+) 

                                                 

1 Chapter 3 is published as a part of Zhang Y and Vadlani PV (2013) Bioprocess and Biosystems Engineering 

36:1897-1904 
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and D (-) poly-lactic acid (PLA), which are being developed as a substitute for petroleum-

derived plastics. The high chemical resistance of poly lactic acid is advantageous in the 

manufacture of fibers, nonwoven fabrics, and films (Tanaka et al. 2006); however, the 

application of poly L-lactic acid (PLLA) is limited by its melting point (Brizzolara et al. 1996). 

This problem can be obviated by blending it with poly D-lactic acid (PDLA). The melting point 

of the resulting stereocomplex polymer is approximately 50 °C higher than that of the respective 

single polymers (Ikada et al. 1987). The optical purity of lactic acid accentuates the physical 

properties of poly D-lactic acid-based polymers (Tsuji 2002). The chemical process of making 

lactic acids usually yields a mixture of these two enantiomers, which is an undesirable feature; 

therefore, the biological process of making pure lactic acid is preferred (Yadav et al. 2011). 

To date, intense studies have been conducted on the production of L-lactic acid from 

different biomass through microorganism microbial fermentation (Vadlani et al. 2008a; 2008b; 

Moon et al. 2012a; Phrueksawan et al. 2012), but information on biosynthesis of D-lactic acid 

from biomass is limited. A few wild-type strains such as Lactobacillus delbrueckii subsp. 

delbrueckii, Sporolactobacillus inulinus (Fukushima et al. 2004), Lactobacillus coryniformis 

subsp. torquens (Yanez et al. 2003), and Lactobacillus delbrueckii subsp. lactis QU41 (Tashiro 

et al. 2011) have been identified as D-lactic acid producers. Traditional production of lactic acids 

typically uses starch derived from food crops as the fermentation substrate (Fukushima et al. 

2004; Shinkawa et al. 2009), but this process may affect the global food supply. Lignocellulosic 

materials are favorably structured to produce lactic acids, which require the breakdown of 

cellulose to sugars (Schmidt et al. 1997). This step usually can be done by acid hydrolysis and 

enzymatic hydrolysis. The enzymatic hydrolysis method is preferred, because it can be done 

under mild reaction conditions and it avoids using avoiding the use of toxic and corrosive 

chemicals (Xu et al. 2007). The hydrolysis and fermentation steps can be done sequentially 

(SHF) or simultaneously (SSF). The SSF process offers better yields because it avoids product 

inhibition and results in higher productivity (Marques et al. 2008; Kim et al. 2003). 

Production of D-lactic acid from cardboard (Yanez et al. 2005a; 2005b), cellulose (Yanez 

et al. 2003), peanut meal (Wang et al. 2011), and rice bran (Tanaka et al. 2006) has been studied. 

Other sources include pulp and corn stover, which have the potential to become cheap and 

abundant sources for production of ethanol, organic acids, and other chemicals (Yadav et al. 

2011; Yanez et al. 2005b). Pulp is prepared by chemically or mechanically separating cellulose 
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fibers from wood, fiber crops, or waste paper (Biermann 1996). Corn stover, which includes the 

leaves, stalks, and cobs of corn plant, is the most abundant agricultural residue in the U.S. (Li et 

al. 2004); to the best of our knowledge, no research has been reported on D-lactic acid 

fermentation via pulp and corn stover as substrates. 

The purpose of this study was to produce D-lactic acid with high yield and optical purity 

from pulp and corn stover by Lactobacillus delbrueckii ATCC 9649. L. delbrueckii is a 

homofermentative lactic acid bacterium that can provide a continuous bioprocess with high 

volumetric productivity and high optically purity of D-lactic acid under anaerobic conditions 

(Calabia and Tokiwa 2007). In addition, kinetic analyses of enzyme hydrolysis and fermentation 

of glucose to D- lactic acid also have been studied in this work. 

 Materials and methods 

 Raw materials and chemical treatment 

Regular pulp and mechanically modified pulp were obtained from the MeadWestvaco’s 

Crompton mill. Corn stover was obtained from fields in Manhattan and Tribune, Kansas. Alkali 

treatment was performed on corn stover before hydrolysis. Corn stover was suspended in 20 g L-

1 NaOH and heated at 121 °C for 30 min in an autoclave (Tomy SS-325E, Tomy SEKO CO., 

LTD, Tokyo, Japan), then washed under running distilled water and filtered through muslin cloth 

until no color was visible in the wash water. The alkali-treated corn stover was dried at 80 °C for 

24 h and ground to fine particle size in a laboratory mill (3303, Perten Instruments, Springfield, 

IL) for further enzymatic hydrolysis. 

 Enzyme hydrolysis  

CTec2 (cellulase) obtained from Novozymes Inc. (Franklinton, NC) was used in this 

experiment. Enzyme hydrolysis assays were carried out at 45 °C in 250 mL screw capped plastic 

conical flasks with orbital agitation (150 rpm). The substrate concentration was 2 % (w/v). pH 

was kept at 4.8 using 0.05 mol L-1citric acid-sodium citrate buffer. The cellulase activity of 

CTec2 was measured by the filter paper assay (Ghose 1987), and the activity was expressed in 

terms of filter paper units (FPU). CTec2 was added on a dosage of 2, 4, and 8 FPU g-1 of dry 

biomass, respectively. Product yield is based on the amount of glucose released divided by the 

amount of biomass consumed. 
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 Microorganism and culture conditions 

Lactobacillus delbrueckii ATCC 9649 obtained from the American Type Culture 

Collection (Manassas, VA) was used in this work. L. delbrueckii inoculum was prepared by 

growing cells in a 100 mL Wheaton serum bottle containing 50 mL of liquid MRS medium 

(MRS broth, Difco Laboratories, Detroit, MI) and incubated at 37 °C in a temperature-controlled 

shaker (Innova 4300, New Brunswick scientific, NJ) at 120 rpm for 15 h. CO2 (3 vvm) was 

sparged into the bottle to create anaerobic growing conditions. 

 Sequential hydrolysis and fermentation (SHF) 

Shake flask fermentation was modified according to the procedure described by 

Mukhopadhyay (2009). Fermentation was performed in 100 mL Wheaton serum bottles 

containing 50 mL of synthetic medium, pulp, modified pulp, or corn stover hydrolysate, and 

lasted for 30 h. The synthetic medium consisted of 10 g L-1 of glucose, 10 g L-1 of peptone, 5 g L-

1 of yeast extract, 2 g L-1 of ammonium citrate, 2 g L-1 of sodium acetate, 2 g L-1 of K2HPO4, 0.1 

g L-1 of MgSO4.7 H2O, 0.05 g L-1 of MnSO4.4H2O, and 1 g L-1 of Tween 80. Pulp, modified pulp, 

and corn stover hydrolysate were supplemented with all the components (except glucose) of the 

synthetic medium. pH of the medium was adjusted to 6.5 by 10 mol L-1 NaOH, and 3% (w/v) of 

calcium carbonate was added to control the pH. Temperature was maintained at 37 °C, and 

agitation was 120 rpm. 

Batch and fed-batch fermentation were performed in a 7 L fermenter with a working 

volume of 5 L (Bioflo 110, New Brunswick Scientific Inc. Enfield, CT). In the batch 

fermentation experiment, paper pulp was added in quantity (270 g) that would possibly achieve a 

glucose concentration of 40 g L-1 in the medium. After hydrolysis, the pulp hydrolysate was 

supplemented with all the components (except glucose) of the synthetic medium. The synthetic 

medium was used in fed-batch fermentation as a control. After 36 h, 1 L of fermentation medium 

was taken out and 1 L of feeding medium, which consisted of 40 g L-1 of glucose, 2 g L-1 of 

ammonium citrate, 2 g L-1 of sodium acetate, 2 g L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 

g L-1 of MgSO4.7 H2O, and 0.05 g L-1 of MnSO4.4H2O, was added. During the fermentation, the 

temperature was maintained at 37 ºC; agitation speed at 100 rpm; and pH at 6.5. CO2 was 

sparged at 3 vvm through the vessel to maintain anaerobic conditions. 
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 Simultaneous saccharificaiton and fermentation (SSF) 

SSF process was modified according to the procedure described by Mukhopadhyay 

(2009) performed in 100 mL Wheaton serum bottles. The optimal temperature and pH for the 

enzyme and the bacterium are different, In SSF, temperature was set up at 40 °C and pH was at 

5.5, which was considered a suitable condition for both enzyme and bacterium.  Two gram of 

dried pulp and corn stover was suspended in 50 mL 0.05 mol L-1 sodium citrate buffer (pH 5.5) 

with all the components (except glucose) of the synthetic medium. 3 % (w/v) calcium carbonate 

was added to control the pH. CTec2 was added at 8 FPU g-1 of biomass, and L. delbrueckii was 

inoculated at 5 % (v/v). Incubation temperature was 40 °C, and agitation rate was 150 rpm. 

 Analyses 

Fermentation samples were centrifuged at 15,000×g for 10 min in an Eppendorf 

centrifuge (5415R, Eppendorf, Hauppauge, NY). The supernatant was collected in sample vials 

and stored at -4 °C for product and residue glucose analyses. Sugars were quantified by a binary 

HPLC system (Shimadzu Scientific Instruments, Columbia, MD) equipped with a refractive 

Index detector (RID-10A) and phenomenex RPM monosaccharide column (300×7.8 mm, 

Phenomenex, Torrance, CA). Deionised water was used as the mobile phase at a flow rate of 0.6 

mL min-1. The oven (Prominence CTD-20A) temperature was maintained at 80 °C. Lactic acids 

were quantified by a Chirex Chiral column (150×4.6 mm, Phenomenex, Torrance, CA) with 

isocratic 1 mmol L-1 copper (II) sulfate mobile phase at 1 mL min-1. Peaks were monitored using 

a UV detector at 254 nm (Shimadzu, PDA). 

 Results and discussion 

 Enzymatic hydrolysis 

Experiments with different loads of cellulase were performed to determine a suitable 

enzyme loading for enzymatic hydrolysis of pulp, modified pulp, and alkali-treated corn stover. 

The maximum reaction rate (vmax) was calculated from the Michaelis-Menten equation 

(
][

][max

SK

Sv
v

m 
  ). The vmax increased almost linearly with the increase of enzyme concentration in 

all three biomass cases (Fig. 3.1). The hydrolysis rate of corn stover and modified pulp was 

about to reach a plateau when the enzyme loading increased, perhaps due to substrate saturation 
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(Lee and Fan 1982). Increased enzyme loading from 2 to 8 FPU g-1 of substrate increased 

glucose yield by 24% after 48 h of pulp saccharification (Fig. 3.2A); however, increasing the 

enzyme dosage did not significantly change the final glucose yield in the saccharification of 

mechanically modified pulp (12 %) (Fig. 3.2B) and alkali treated corn stover (11 %) (Fig. 3.2C). 

The highest glucose yield was observed at 24 h for mechanically modified pulp as well as corn 

stover. The initial saccharification rate of mechanically modified pulp and corn stover was higher 

than that of pulp.  Mechanically modified pulp had finer fiber size, which made it much easier 

for the enzymes to break down. Alkali treatment caused the cellulose in corn stover to swell, 

which led to an increase in the internal surface area and a decrease in the degree of crystallinity 

of cellulose (Chandra et al. 2011), therefore making cellulose in alkali-treated corn stover much 

easier for the enzyme to access. 

 Production of D-lactic acid by SHF 

The purpose of this portion of the study was to produce D-lactic acid by L. delbrueckii 

using sugars derived from biomass as a cheap carbon source. We also tested another strain 

Sporolactobacillus inulinus ATCC 15538. Unlike in the results obtained by Fukushima et al. 

(2004), S. inulinus produced L-lactic acid instead of D-lactic acid in our experiments. This result 

may be due to the difference in strain or the possible alternation of bacterial character after 

receiving it.  

In shake flask fermentation, the amount of pulp (1 g), mechanically modified pulp (1.3 

g), and corn stover (1.2 g) was set up to obtain 10 g L-1 glucose after enzymatic hydrolysis. No 

residual glucose was observed after 30 h fermentation, and the final pH of the medium was 

between 5 to 5.5. The optical purity of D-lactic acid was 99.9 %. These results were in close 

agreement with Demirci and Pometto (1992). The highest yield of D-lactic acid was observed in 

corn stover hydrolysate (Table 3.1). Besides glucose, 5.6 g L-1 xylose and 1.7 g L-1arabinose 

were also present in the corn stover hydrolysate; however, xylose remained unused, and 

arabinose was below detectable levels at the end of fermentation. L. delbrueckii cannot use 

xylose due to the lack of xylose isomerase and xylulokinase, two key enzymes in xylose 

assimilation (Okano et al. 2009b).  

In fed-batch fermentation, almost all glucose was consumed within the first 36 h (first 

stage). In the second stage, feeding medium was added, and fermentation was completed within 
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80 h. The Luedeking-Piret equation (  
dt

dX

Xdt

dP

X

11
 ) was used to describe the D-lactic 

acid production from synthetic medium in the first stage. Growth-associated constant (α) and 

non-growth associated constant (β) can be calculated from the graph of the specific production 

rate (qp) versus the specific growth rate (µ); the correlation coefficient (R2) was 0.88 (Fig. 3.3). 

Compared with other strains listed in Table 3.2, in our study L. delbrueckii had lower µmax and 

higher α values. Lower µmax suggests lower growth efficiency, and a high α value indicates a 

higher contribution of the cell growth to D-lactic acid production (Zhao et al. 2010). The value of 

α multiplied by µmax was 1.56, which was larger than the β value, indicating that the specific 

growth rate played an important role in specific D-lactic acid production.  

Fig. 3.4 and Fig. 3.5 show the fermentation profile of the synthetic medium and pulp 

hydrolysate, respectively. Table 3.3 summarizes the results of the first stage of fed-batch 

fermentation and batch fermentation. 37.4 g L-1 D-lactic acid was obtained in the end of first 

stage fermentation, and the product yield and productivity obtained in the first stage of fed-batch 

fermentation were 0.93 g g-1 and 1.04 g L-1 h-1, respectively. These results were in agreement 

with that in other work (Vadlani et al. 2008a; Garde et al. 2002). Fed-batch fermentation was 

completed within 80 h; at the end of fermentation, about 5.5 g L-1 glucose was left and up to 57.3 

g L-1 D-lactic acid with optical purity of 99.8 % was accumulated, which led to a productivity of 

0.72 g L-1 h-1. After pulp hydrolysis, the glucose concentration was 50 g L-1 and was used in the 

batch fermentation. After 30 h, glucose was hardly consumed, and even if we extended the 

fermentation time to 36 h, 6.2 g L-1 residual glucose remained. At the end of fermentation, 36.3 g 

L-1 lactic acid was produced, the yield of D-lactic acid was calculated by the amount of D-lactic 

acid produced divided by the amount of glucose consumed, which was 0.83 g g-1, and 

productivity was 1.01 g L-1 h-1. In a similar study undertaken in our laboratory, L-Lactic acid was 

synthesized from cheese whey. A yield of 0.98 g g-1 and productivity of 1.14 g L-1 h-1 was 

obtained (Vadlani et al. 2008a). The product formation rate of batch fermentation of pulp 

hydrolysate was quite close to the product formation rate of first-stage fed-batch fermentation 

using the synthetic medium. The yield of D-lactic acid (0.83 g g-1) from pulp hydrolysate was 

lower than the first-stage yield (0.93 g g-1) from synthetic medium. The reason might be due to 

substrate inhibition; therefore, the SSF process was preferred in subsequent experiments. 
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 Production of D-lactic acid by SSF 

After demonstrating the feasibility of producing D-lactic acid from biomass hydrolysate 

in the batch process, SSF was carried out using pulp and corn stover in a shake flask. In SSF, 

samples were collected after 4 h of incubation, the profiles obtained for corn stover and pulp SSF 

experiments are shown in Fig. 3.6. In SSF, cellulose hydrolysis and glucose assimilation were 

combined into a single fermentation process (Patel et al. 2006). During the first 8 h, bacteria 

were in low activity and glucose accumulated to around 8 g L-1 in the case of pulp and 14 g L-1 

for corn stover. After the first 8 h cultivation, glucose concentration was kept low, which 

indicated that bacterial cells were metabolically active during the entire course of the 

fermentation and also meant that enzymatic hydrolysis of cellulose was the rate limiting step for 

D-lactic acid production as already observed by other groups (Parajo et al. 1997; Nakasaki and 

Adachi 2003). Xylose accumulated and remained nearly constant throughout the process. It was 

impossible to know the exact amount of glucose consumed in the SSF process, in order to 

compare SSF and SHF, results were expressed as an overall yield (the amount of D-lactic acid 

produced divided by the amount of biomass used) to compare SHF and SSF (Table 3.1). The 

highest D-lactic acid overall yield was 0.48 g g-1 of pulp in SSF and 0.38 g g-1 in SHF. For corn 

stover, the maximum D-lactic acid overall yield was 0.50 g g-1 in SSF and 0.41 g g-1 in SHF, 

demonstrating that the SSF process was more efficient than the SHF process. The reason for the 

higher overall yield in SSF may be that glucose released during the hydrolysis step was rapidly 

consumed as substrate during the fermentation step, therefore reducing the end-product 

inhibition of hydrolysis (Akerberg and Zacchi 2000). 

 Conclusions 

In this study, we demonstrated efficient D-lactic acid production with high optical purity 

from pulp, modified pulp, and corn stover by L. delbrueckii ATCC 9649. Enzymatic hydrolysis 

of biomass was achieved effectively by CTec2 enzyme system. D-lactic acid productivity was 

not only high, but also cost-effective because pulp and modified pulp need no pretreatment. The 

SSF process demonstrated the advantages of avoiding substrate inhibition and increasing the 

productivity and yield of D-lactic acid. The yield obtained in the present study would have been 

even higher if xylose from corn stover hydrolysate could be completely used by the 
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microorganism. Future study should be directed toward complete use of the available 

carbohydrate for efficient D-lactic acid production. 
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Table 3.1 D-lactic acid production through SHF and SSF process in shake flask 

  Initial 

glucose 

(g L-1) 

Lactic acid 

(g L-1)  

Yield1 

(g g-1) 

 Overall yield2 

(g g-1) 

Productivity3 

(g L-1 h-1) 

SHF Synthetic  

medium  

10A 7.7±0.05A 0.77±0.01A --- 0.25±0.01A 

Pulp 9.7±0.17A 7.5±0.47A 0.77±0.66A 0.38±0.02A 0.25±0.03A 

Modified pulp 11.2±0.09B 8.5±0.39A 0.76±0.03A 0.42±0.02A 0.28±0.01A 

Corn stover  9.9±0.05A 8.3 ±0.04A 0.83±0.01A 0.41±0.01A 0.27±0.01A 

SSF Pulp  --- 19.2±1.63B --- 0.48±0.04B 0.31±0.04A 

Corn stover  --- 20.1±0.65B --- 0.50±0.03B 0.32±0.07A 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with the same letters 

in the same column are not significantly different.  
1 Yield was calculated by the amount of D-lactic acid produced divided by the amount of glucose consumed.  
2 Overall yield was calculated by the amount of D-lactic acid produced divided by the amount of biomass used.  
3 Productivity was defined as the amount of D-lactic acid produced per liter per hour.  
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Table 3.2 Kinetic parameters of different lactic acid bacteria  

Microorganism Substrate µmax 
1 α β Reference  

L. delbrueckii  Glucose  0.2 7.8 0.18 This study 

L. lactis  Lactose   1.1 0.392 3.02 Boonmee et al. 

2003 

E. faecalis RKY1 Molasses  1.6 0.26 --- Nandasana and 

Kumar 2008 

Lactobacillus 

helveticus  

Whey permeate 0.48 2.33 0.77 Amrane  2005 

1 µmax  is the maximum specific growth rate (h-1) 
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Table 3.3 Kinetic parameters of fed-batch and batch fermentation 

 Lactic acid 

(g L-1) 

 

Yield1  

(g g-1) 

 

YPX
 2 

(g g-1) 

 

YXS 3 

(g g-1) 

 

qps 
4   

(h-1) 

 

Productivity5 

(g L-1 h-1) 

  

Fed-batch (stage I) 37.4 0.93 10.9 0.086 0.026 1.04 

Pulp hydrolysate batch 36.3 0.83 --- --- 0.023 1.01 

1 Yield was calculated by the amount of D-lactic acid produced divided by the amount of glucose consumed. 
2  YPX was calculated by the amount of  D-lactic acid produced divided by the amount of cell dry mass.  
3 YXS was calculated by the amount of cell dry mass divided by the amount of glucose consumed.  
4 qps is product formation rate, calculated based on the equation qps= (1/S) × (dP/dt) 
5 Productivity was defined as the amount of D-lactic acid produced per liter per hour. 
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Figure 3.1 Plot of of vmax of different biomass versus enzyme concentration 
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Figure 3.2 Enzymatic hydrolysis of (A) pulp; (B) mechanically modified pulp; and (C) 

alkali-treated corn stover at varying cellulase levels                                                          
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Figure 3.3 Specific production rate versus specific growth rate for L.delbrueckii growing on 

the synthetic medium 
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Figure 3.4 Fed-batch fermentation profile of D-lactic acid from the synthetic medium 
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Figure 3.5 Batch fermentation profile of D-lactic acid production from pulp hydrolysate  
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Figure 3.6 Time course of SSF process with L. delbrueckii using (A) pulp and (B) akali-

treated corn stover 
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Chapter 4 - Lactic acid production from biomass-derived sugars via 

co-fermentation of Lactobacillus brevis and Lactobacillus plantarum2 

 Abstract  

Lignocellulosic biomass is an attractive alternative resource for producing chemicals and 

fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most 

microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in 

which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was 

selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression 

mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 

0.52 g g-1 from a mixture of glucose and xylose, and 5.1 g L-1 of acetic acid and 8.3 g L-1 of 

ethanol were also formed during production of lactic acid. The yield was significantly increased 

and ethanol production was significantly reduced if L. brevis was co-cultivated with 

Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose 

consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-

product, ethanol, was reduced due to less NADH generated in the fermentation system. 

Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g-1 

from poplar hydrolysate and increased yield to 0.78 g lactic acid per g of biomass from alkali-

treated corn stover with minimum by-product formation. Efficient utilization of both cellulose 

and hemicellulose components of the biomass will improve overall lactic acid production and 

enable an economical process to produce biodegradable plastics. 

 Introduction 

 

Lactic acid is a versatile chemical with a long history of applications in the food, 

cosmetic, and pharmaceutical industries (Yadav et al. 2011), and it has been listed as a platform 

chemical derived from biomass by the US Department of Energy since 2004 (Werpy and 

                                                 

2 Chapter 4 is published as a part of  Zhang Y and Vadlani PV (2015) Journal of Bioscience and Bioengineering 

doi.org/10.1016/j.jbiosc.2014.10.027 
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Petersen 2004). The estimated world demand for lactic acid will be 600,000 tons by 2020 

(Dusselier et al. 2013) and is expected to keep increasing because of their use in the development 

of poly-lactic acid (PLA) and lactate solvents (Hofvendahl and Hahn-Hagerdal 2000).  

Biomass-based fermentation products have gained intensive attention recently due to 

their potential as fossil fuel substitutes. More than 90 % of global production of plant biomass is 

lignocellulose, which is mainly composed of cellulose, hemicellulose, and lignin (Yang et al. 

2009). Total cellulose and hemicellulose content is higher in hardwood (78.8 %) than in 

softwood (70.3 %), but lignin content is opposite (Balat 2009). Various pretreatment methods 

have been developed, such as alkali treatment and ammonia explosion, to convert structural 

carbohydrates to monomer sugars (Kumar et al. 2009). Xylose is the dominant sugar released 

from hemicellulose in hardwoods and agricultural residues (Taherzadeh and Karimi. 2008). 

Efficient utilization of all sugars derived from biomass has the potential to reduce the production 

cost of chemicals by about 25 % (Hinman et al. 1989). Most homofermentative lactic acid 

bacteria, including Lacbobacillus delbrueckii (Fukushima et al. 2004; Zhang and Vadlani 2013), 

Lactobacillus paracasei (Moon et al. 2012b), and Lactobacillus lactis (Kosugi et al. 2010) 

cannot xylose to lactic acid. In contrast, some heterofermentative lactic acid bacteria, such as 

Lactobacillus brevis CHCC 2097 and Lactobacillus pentosus CHCC 2355, have been used to 

produce lactic acid from xylose released from wheat straw (Garde et al. 2002). These 

heterofermentative strains also produce considerable amounts of byproducts, such as acetic acid 

and ethanol, which increase product cost and decrease productivity (Abdel-Rahman et al. 2011).  

A third group of lactic acid bacteria known as the facultative heterofermenters, for example 

Lactobacillus plantarum, they use glucose through the Embden-Meyerhof pathway (EMP) to 

produce lactic acid, while they may also possess an inducible phosphoketolase pathway (PK) 

with pentose acting as inducers (Fugelsang and Edwards 2007).    

Vadlani et al. (2008a) reported using L. plantarum ATCC 21028 in the first stage of 

fermentation to produce lactate from cheese whey; a product yield of 0.98 g lactate per g of 

lactose was obtained. Fu and Mathews (1999) also reported the kinetic model of lactic acid 

production by L. plantarum ATCC 21028 and found out that lactic acid fermentation with this 

bacterium is homolactic and primary growth associated. Lactobacillus brevis, a well-known 

heterofermentative strain, was reported to use xylose simultaneously with glucose (Kim et al. 

2009), which is highly desirable because the strain does not possess carbon catabolite repression 
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(CCR), especially when operating under simultaneous saccharification and fermentation (SSF) 

conditions (Kim et al. 2010). In SSF, the glucose consumption rate needs to be higher than the 

release rate to ensure that no glucose remains in the medium; otherwise, xylose will not be used 

by microorganisms that have a hierarchical sugar utilization pattern.  

Literature on the production of lactic acid through co-fermentation systems is limited 

(Garde et al. 2002; Cui et al. 2011; Nancib et al. 2009; Taniguchi et al. 2004),). Cui et al. (2011) 

reported co-cultivation of L. rhamnosus and L. brevis to produce lactic acid from corn stover 

with a yield of 0.7 g g-1. To the best of our knowledge, no report discusses co-cultivation of L. 

brevis with L. plantarum from lignocellulosic biomass. We hypothesized that L. plantarum 

converts most glucose to lactic acid using the EMP, whereas L. brevis converts xylose and a 

small portion of glucose to lactic acid and acetic acid via the phosphoketolase pathway (Fig. 4.1). 

In this case, both glucose and xylose derived from lignocellulosic biomass can be used 

efficiently, and L. brevis can focus on converting xylose to lactic acid only because available 

glucose is limited; the by-product ethanol, which is produced mainly when glucose concentration 

is high, can be reduced due to glucose depletion by L. plantarum. The objective of this study was 

to evaluate the performance of mixed cultures of L. plantarum and L. brevis and to utilize poplar 

hydrolysate and corn stover, two promising biomasses representing hardwood and agriculture 

residues, respectively, as feedstocks to produce lactic acid.   

 Materials and methods 

 Microorganism and culture conditions  

Lactobacillus brevis ATCC 367 and Lactobacillus plantarum ATCC 21028 obtained 

from the American Type Culture Collection (Manassas, VA, USA) were used in this work. L. 

brevis and L. plantarum inocula were grown in 50 mL liquid MRS medium (MRS broth, Difco 

Laboratories, Detroit, MI, USA) and incubated at 37 °C for 15 h at an agitation rate of 150 rpm 

in a temperature-controlled shaker (Innova 4300, New Brunswick Scientific, NJ, USA). N2 was 

sparged into the bottle to create anaerobic growing conditions. The initial cell density of L. 

brevis and L. plantarum were measured using colony forming unit (CFU) counting method, the 

overnight cultures were diluted to different concentrations, plated on MRS agar and incubated at 

37 °C for 24 h. Colonies were counted using a colony counter (Lab-Aids Inc., NY, USA). Initial 

cell concentrations of L .plantarum and L. brevis were 3×109, and 1.2×1010 CFU/mL, 
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respectively, which were adjusted to approximately 109 CFU/mL for inoculation in all 

fermentation experiments.   

Poplar hydrolysate was obtained from Technology Holding LLC (Salt lake city, UT, 

USA), which contained 415 g L-1 of glucose, 132 g L-1 of xylose and 13 g L-1 of cellobiose. The 

initial pH of poplar hydrolysate was 2.6, which was adjusted to 6.5 using 10 mol L-1 of NaOH.  

Corn stover was harvested from the Kansas State University Agronomy Farm in 

Manhattan and Tribune, Kansas, USA. Corn stover was treated with 1 % NaOH (w/v) using the 

method described by Guragain et al. (2013). The alkali-treated corn stover was dried at 60 ̊ C 

overnight and ground to particle size of <1 mm using a laboratory mill (3303, Perten 

Instruments, Springfield, IL, USA).  

 Fermentation 

Shake flask fermentation was performed in 100 mL Wheaton serum bottles containing 50 

mL of modified MRS medium or poplar hydrolysate. The modified MRS medium consisted of 

glucose and xylose in a 3:1 ratio and supplemented with 10 g L-1 of peptone, 5 g L-1 of yeast 

extract, 2 g L-1 of ammonium citrate, 2 g L-1 of sodium acetate, 2 g L-1 of K2HPO4, 0.1 g L-1 of 

MgSO4.7H2O, 0.05 g L-1 of MnSO4.4H2O, and 1 g L-1 of Tween 80. Poplar hydrolysate was 

diluted and supplemented with all the components (except glucose and xylose) of the modified 

MRS medium. The pH of the medium was adjusted to 6.5 using 10 mol L-1 NaOH, and 3 % 

(w/v) of calcium carbonate was added to control the pH. Temperature was maintained at 37 °C 

for both L. plantarum and L. brevis. Agitation was maintained at 150 rpm.  

In the simultaneous co-culture fermentation experiment, L. plantarum and L. brevis were 

inoculated at the same time at the beginning of fermentation with 5 % (v/v) inoculum for each 

strain at a 1:1 ratio. In the sequential fermentation test, 5 % (v/v) L. plantarum was added first, 

then 5 % (v/v) of L. brevis was inoculated when glucose concentration reached around 5 g L-1.   

Batch fermentation was performed in a 7-L fermenter with a working volume of 5 L 

(Bioflo 110, New Brunswick Scientific Inc., Enfield, CT, USA). The fermentation broth 

consisted of 1L diluted poplar hydrolysate (190 g L-1 glucose, 72 g L-1 of xylose and 6 g L-1 of 

cellobiose), 2 g L-1 of ammonium citrate, 2 g L-1 of sodium acetate, 2 g L-1 of K2HPO4, 0.1 g L-1 

of MgSO4.7H2O, 0.05 g L-1 of MnSO4.4H2O, and 1 g L-1 of Tween 80. During fermentation, the 
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temperature was maintained at 37 ºC; agitation speed at 100 rpm; and pH at 6.5 by adding 10 

mol L-1 NaOH. N2 was sparged at 0.6 vvm through the vessel to maintain anaerobic conditions. 

Simultaneous saccharification and fermentation (SSF) was conducted in 100-mL serum 

bottles.  4 % (w/v) pretreated corn stover was suspended in 50 mL of 0.05 mol L-1 sodium citrate 

buffer supplemented with all the components except sugars of the modified MRS medium. Cellic 

CTec2 (CTec2) obtained from Novozymes Inc. (Franklinton, NC, USA) was added at 8 FPU/g 

of biomass. Temperature was maintained at 37 ºC, and the agitation rate was maintained at 150 

rpm.  

 Analytical methods 

Glucose, xylose, and lactic acid were measured according to the method described by 

Zhang and Vadlani (2013). Acetic acid and ethanol were measured using high-performance 

liquid chromatography (HPLC; Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) 

equipped with a Rezex ROA organic acid column (150 × 7.8 mm, Phenomenex Inc., Torrance, 

CA, USA) and a refractive index (RI) detector (RID-10A). 0.005 N H2SO4 was used as the 

mobile phase at a flow rate of 0.6 mL min-1. Temperatures of the column and detector were 

maintained at 83 and 40 °C, respectively.  

 Statistical methods 

SAS software version 9.1 (SAS Inc. Cary, NC) was used to analyze experimental data by 

applying PROC GLM. 

 Results and discussion 

 Lactic acid production from a mixture of glucose and xylose 

The theoretical L. plantarum yield of lactic acid from glucose via the EMP is 1 (g per g 

of glucose). Fig. 4.2A shows fermentation profile of L. plantarum from a mixture of glucose and 

xylose. L. plantarum consumed glucose rapidly; only 4.4 g L-1 glucose was left at 12 h, and it 

was completely consumed within 24 h of fermentation. 24.3 g L-1 of lactic acid was obtained 

from 25.5 g L-1 of glucose with a D/L lactic acid molar ratio of 0.94 (48.5 % of optical purity) .  

L. brevis can use both glucose and xylose via the PK pathway and produces a mixture of 

lactic acid, acetic acid, and ethanol. The theoretical yield of lactic acid from glucose and xylose 
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is 0.5 g per g of glucose and 0.6 g per g of xylose. As shown in Fig. 4.2B, L. brevis barely 

consumed glucose and xylose in the first 8 h of fermentation, after which glucose was consumed 

much faster than xylose; all glucose was consumed after 24 h, and xylose was completely used 

after 48 h. Final lactic acid concentration was 17.2 g L-1, acetic acid concentration was 5.1 g L-1, 

and ethanol concentration was 8.3 g L-1. The D/L molar ratio of lactic acid was 0.37 (27.0 % of 

optical purity). Kim et al (2009) investigated the proteome of L. brevis grown in glucose, xylose, 

and a glucose/xylose mixture. The relative expression of a putative acetate kinase was expressed 

at a much higher level when cells were grown in xylose as single carbon source, which resulted 

in a different end-product profile. L. brevis in our study also showed a different end-product 

profile when a different carbon source was used. The acetate/ethanol molar ratio was 0.1 when 

glucose was the sole carbon source, but the molar ratio changed to 2.5 when xylose was used as 

the only carbon source. The ratio of acetate/ethanol depends on the oxidation reduction potential 

(NADH/NAD+ ratio) of the fermentation system (Kandler 1983). NADH is required for ethanol 

and lactic acid production. More NADH is generated from glucose catabolism than from xylose 

metabolism; therefore, acetaldehyde is converted to ethanol coupled with the regeneration of 

NAD+ from NADH (Fig. 4.1). 

Unlike a single culture of L. brevis, simultaneous fermentation of L. brevis and L. 

plantarum did not exhibit a sugar consumption lag phase in the first 8 h of fermentation. Glucose 

was consumed within 24 h, and xylose was consumed within 48 h (Fig. 4.2C). Final lactic acid 

concentration increased to 28.3 g L-1 with a D/L molar ratio of 0.61 (37.8% of optical purity), 

and ethanol decreased to 2.1 g L-1 (Table 4.1). The maximum glucose consumption rate of L. 

plantarum was almost 5 times greater than that of L. brevis, which suggests that L. plantarum 

outcompetes L. brevis for glucose consumption when these two strains grow together. 

Furthermore, the ethanol production by L. brevis was inhibited due to glucose depletion by L. 

plantarum.  

The fermentation profile of sequential co-fermentation of L. brevis with L. plantarum is 

shown in Fig. 4.2D. Different inoculation times of L. brevis were tested; no ethanol was 

produced when L .brevis was inoculated at glucose concentration around 5 g L-1. 30.5 g L-1 of 

lactic acid was obtained by the end of fermentation, with a D/L molar ratio of 0.65 (39.4 % of 

optical purity). If all glucose entered the EMP pathway, and if all xylose entered the PK 
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pathway, the theoretical production of lactic acid was: Lactic acid (g L-1) = (glucose (g) 

×1+xylose (g) ×0.6)/volume (L).  

Simultaneous and sequential fermentation of L. plantarum and L. brevis increased lactic 

acid production efficiency to 89 % and 95 % of the theoretical maximum production, 

respectively.  

Taniguchi et al (2004) also reported highest concentration of lactic acid (95 g L-1) with a 

mixed culture system of Lactobacillus casei and Enterococcus casseliflavus from a mixture of 

glucose (100 g L-1) and xylose (50 g L-1). While simultaneous inoculation of L. casei and E. 

casseliflavus did not increase the lactic acid production, sequentially inoculated E. casseliflavus 

after 40 h  allowed completely consumption of xylose and enhanced final lactic acid 

concentration at the expense of lactic acid productivity (0.49 g L-1 h-1). Compared with the two-

stage system reported by Taniguchi, the co-cultivation system in this study has higher lactic acid 

productivity (0.59 g-1 L-1 h-1) and higher lactic acid yield (0.85 g g-1). 

 Lactic acid production from poplar hydrolysate 

The poplar hydrolysate was detoxified by the company and delivered to us; hence, no 

inhibition of cell growth was observed in our experiments. Table 4.2 summarizes the 

fermentation results. L. plantarum produced 25.6 g L-1 of lactic acid from 29.7 g L-1 glucose. The 

D/L lactic acid molar ratio was 0.98 (49.5 % of optical purity), which is very close to that 

obtained from synthetic sugars. L. brevis produced 18.8 g L-1 lactic acid from 29.6 g L-1 of 

glucose, and 9.4 g L-1 of xylose with a D/L molar ratio of 1.2 (54.5 % of optical purity). 4.5 g L-1 

acetic acid and 11.5 g L-1 ethanol were also obtained. Compared with the simultaneous 

fermentation experiment, sequential fermentation of L. plantarum and L. brevis increased lactic 

acid yield from 0.71 to 0.80 g g-1 and increased lactic acid production efficiency from 79 % to 88 

% of the theoretical maximum production. The D/L lactic acid molar ratio was 1 (50.0 % of 

optical purity) for both simultaneous and sequential co-fermentation. Statistically, sequential 

fermentation gave the highest product concentration and yield at the expense of relatively lower 

productivity. Consequently, sequential fermentation was scaled up to a 7-L fermenter with 5-L 

working volume using poplar hydrolysate (Fig. 4.3). Initial glucose and xylose concentrations 

were 35.4 g L-1 and 14.3 g L-1, respectively. L. brevis was added at 20 h when glucose 

concentration was 5.2 g L-1; glucose was completely consumed within 26 h. 2.2 g L-1 of xylose 
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was left after 96 h of fermentation. Final lactic acid concentration was 38.0 g L-1 with 7.2 g L-1 

acetic acid, and no ethanol was detected. The yield of lactic acid was 0.80 g g-1, and productivity 

was 0.40 g L-1 h-1. 

Garde et al. (2002) evaluated lactic acid production from hemicellulose of wheat straw 

hydrolysate by single or mixed culture of Lactobacillus pentosus and Lactobacillus brevis. The 

mixed culture system increased lactic acid production efficiency to 95 % of the theoretical 

maximum yield. Nancib et al. (2009) also reported lactic acid production from date juice extract 

by a mixed culture system of Lactobacillus casei and Lactobacillus lactis, which gave better 

lactic acid production and sugar utilizations. All these results corroborate the results we found 

that mixed cultures of lactic acid bacteria are more efficient than single culture regarding lactic 

acid concentration and sugar utilizations. 

 Lactic acid production from corn stover via SSF 

Corn stover is the most abundant agriculture residue in U.S, with annual production of 

105–117 million dry tons (Graham et al. 2007). Alkali-treated corn stover consisted of around 54 

% (w/w) glucan, 29 % (w/w) xylan and a small amount of arabinan (Guragain et al. 2013). The 

theoretical sugar yields from 2 g of dried alkali-treated corn stover were 1.2 g glucose, and 0.7 g 

xylose. Temperature and pH can be set at optimal conditions for either the enzyme or the 

bacteria. In this study, optimal growth temperature of bacteria was determined by measuring the 

optical density at 600 nm under 30, 37, 40 and 45  ̊C. Both culture grew best at 37  ̊C. The 

temperature was set to the optimum for the bacteria, because bacterial growth was significantly 

reduced under the optimal temperature range of CTec2 (45–50  ̊C), whereas the CTec2 still 

retains 60 % of its hydrolysis activity compared to hydrolysis conducted under optimal 

conditions. The initial pH was set at 6, which between the optimal pH for enzymes and bacteria, 

and the relative performance of enzymes decreases only 10 % under this pH according to the 

Novozymes application sheet (Luna No. 2010-01668-01).  Fig. 4.4A shows lactic acid 

production from corn stover from a single culture of L. plantarum. Glucose released from corn 

stover was consumed rapidly by L. plantarum; the concentration of glucose was maintained at a 

low level throughout the SSF process, which suggests that hydrolysis was the rate-limiting step. 

L. plantarum in this study cannot use xylose, but it was able to use arabinose at very slow rate 

and produced lactic acid (yield of 0.38 g lactic acid per g of arabinose) and trace amount of 
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acetic acid (yield of 0.07 g acetic acid per g of arabinose). Arabinose was not counted into lactic 

acid production in this study due to the small amount of arabinose (less than 1.5 g L-1) present in 

the corn stover hydrolysate. Fig. 4.4B shows L. brevis performance for lactic acid production 

from corn stover, and L. brevis consumed glucose faster than xylose. Glucose concentration 

reached a maximum level of 5.9 g L-1 at 12 h, then rapidly decreased to 0.9 g L-1 in the next 12 h, 

and no glucose was detected at 48 h. Xylose increased to 4.4 g L-1 at 6 h, then slowly decreased 

to 0.7 g L-1 during the remaining time of fermentation. The final concentration of lactic acid was 

16.3 g L-1, acetic acid concentration was 5.1 g L-1 and ethanol concentration was 10.0 g L-1. Fig. 

4.4C shows lactic acid production by simultaneous fermentation of L. plantarum and L. brevis. 

Glucose and xylose accumulated to the maximum level of 1.6 g L-1 and 4.4 g L-1 at 6 h, 

respectively. Glucose concentration decreased to 0.2 g L-1 at 12 h and remained at zero during 

the duration of fermentation. Xylose concentration decreased to 1.9 g L-1 at 24 h, and no xylose 

was detected during the next 24 h. 24.0 g L-1 of lactic acid, 6.2 g L-1 of acetic acid, and 1.2 g L-1 

of ethanol were obtained at the end of fermentation. In sequential fermentation, as shown in Fig. 

4.4D, L. brevis was added when xylose concentration reached 8.2 g L-1 at 24 h, which was 61 % 

of the theoretical hydrolysis yield of xylose from 1 % sodium hydroxide treated corn stover. In 

the first stage, glucose released from corn stover was quickly consumed by L. plantarum to 

produce lactic acid. In the second stage, accumulated xylose was consumed by L. brevis, and L. 

plantarum kept consuming glucose. Lactic acid increased to 31.2 g L-1, and 6.3 g L-1 of acetic 

acid was obtained after 72 h of fermentation. 

The performance of co-cultivation of L. plantarum and L. brevis was better than the 

individual strain during fermentation (Table 4.3). The highest lactic acid concentration (31.2 g L-

1) and overall yield (0.78 g g-1) were obtained in sequential fermentation, whereas the highest 

productivity (0.50 g L h-1) was obtained in simultaneous fermentation, with an overall yield of 

0.57 g g-1. In sequential fermentation, the overall yield was higher, whereas productivity was 

lower than that reported by Cui et al. (2011), which were 0.70 g g-1 and 0.58 g L-1 h-1, 

respectively, in the fermentation of alkali-treated corn stover with mixed cultures of L. 

rhamnosus and L. brevis. The lower productivity in our study is mainly attributed to the lower 

enzyme dosage (8 FPU/g) compared with that (25 FPU/g) used in Cui’s study; consequently, the 

total process time was elongated.  
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 Conclusions  

In conclusion, the novel co-fermentation system in this study took advantage of both 

lactobacillus strains and enabled optimum utilization of sugars derived from lignocellulosic 

biomass. This mixed culture system showed better sugar utilization, enhanced lactic acid 

production, and formed minimal by-products, especially when operated in SSF mode.  Metabolic 

flow of sugars in this co-cultivation system need to be investigated in detail to further increase 

lactic acid yield and decrease by-product formation. Because the process is greatly simplified by 

the similar cultivation conditions of these two strains, the co-cultivation system has enormous 

potential for industrial applications. In addition, optimal conditions such as inoculum size, 

temperature, and substrate concentration in the SSF process can be found with the help of 

response surface methodology.  

 

 



47 

 

Table 4.1 Lactic acid production by single or mixed culture of L. brevis and L. plantarum 

from a mixture of glucose and xylose  

 Glucose 

 (g L-1) 

Xylose  

(g L-1) 

Lactic  

acid 

(g L-1) 

Acetic 

acid 

(g L-1) 

Ethanol  

(g L-1) 

Yield 1 

(g g-1) 

 

Productivity 2 

(g L-1h-1) 

rs,glu 3 

(g L-1h-1) 

Optical 

purity 4 

(%) 

L. plantarum 25.5±1.1A 8.6±0.2A 24.3±0.4B 0B 0C 0.96±0.04A 1.01±0.02A 2.9 48.5 

L. brevis 25.0±0.5A 8.8±0.2A 17.2±0.5C 5.1±0.4B 8.3±0.1A 0.52±0.02C 0.36±0.01D 0.6 27.0 

Simultaneous 26.4±0.2A 8.8±0.1A 28.3±0.2A 4.7±0.4B 2.1±0.0B 0.80±0.01B 0.59±0.00B --- 37.8 

Sequential  27.0±0.0A 9.0±0.0A 30.5±0.9A 4.9±0.4B 0C 0.85±0.02B 0.51±0.02C --- 39.4 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with the same letters 

in the same column are not significantly different.  
1 Lactic acid yield was calculated by dividing the amount of lactic acid by the amount of sugar consumed.  
2 Productivity was defined as the amount of lactic acid produced per liter per hour.  
3 Maximum glucose consumption rate calculated based on the equation rs,glu= qsX. 
4 Optical purity (OP) calculated based on the equation: OP=100×(D-lactic acid concentration)/(Total lactic acid 

concentration) 
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Table 4.2 Lactic acid production by a single or mixed culture of L. brevis and L. plantarum 

from poplar hydrolysate  

 Glucose 

(g L-1) 

Xylose 

(g L-1) 

Lactic acid 

(g L-1) 

Acetic 

acid 

(g L-1) 

Ethanol  

(g L-1) 

Yield 1 

(g g-1) 

 

Productivity 2 

(g L-1h-1) 

Optical  

purity 3 

(%) 

L. plantarum 29.7±0.6A 9.4±0.2A 25.6±1.1C 0C 0C 0.87±0.03A 1.08±0.05A 49.5 

L. brevis 29.6±0.6A 9.4±0.3A 18.8±0.7D 4.5±0.3B 11.5±0.7A 0.48±0.02C 0.31±0.01D 54.5 

Simultaneous 29.3±0.6A 10.2±0.3A 28.1±0.6B 5.3±0.5A 2.9±0.3B 0.71±0.01B 0.43±0.01C 50.0 

Sequential  30.1±0.1A 10.1±0.2A 31.8±0.1A 5.6±0.2A 0C 0.80±0.01A 0.48±0.00B 50.0 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with the same letters 

in the same column are not significantly different.  
1 Lactic acid yield was calculated by dividing the amount of lactic acid by the amount of sugar consumed.  
2 Productivity was defined as the amount of lactic acid produced per liter per hour.  
3 Optical purity (OP) calculated based on the equation: OP=100×(D-lactic acid concentration)/(Total lactic acid 

concentration) 
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Table 4.3 Lactic acid production by a single or mixed culture of L. brevis and L. plantarum 

from NaOH-treated corn stover 

 Lactic acid 

(g L-1) 

Acetic acid 

(g L-1) 

Ethanol  

(g L-1) 

Overall yield 1 

(g g-1) 

Productivity 2 

(g L-1h-1) 

Optical purity 3 

(%) 

L. plantarum 21.0±0.3C 0B 0C 0.50±0.03C 0.44±0.01B 42.2 

L. brevis 16.3±0.2D 5.1±0.2A 10.0±0.3A 0.39±0.01D 0.34±0.00C 39.7 

Simultaneous 24.0±0.6B 6.2±0.1A 1.2±0.0B 0.57±0.01B 0.50±0.01A 47.1 

Sequential  31.2±0.3A 6.3±0.6A 0C 0.78±0.08A 0.43±0.05B 43.2 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with the same letters 

in the same column are not significantly different.  
1 Lactic acid overall yield was calculated by dividing the amount of lactic acid produced by the amount of biomass 

consumed.  
2 Productivity was defined as the amount of lactic acid produced per liter per hour.  
3 Optical purity (OP) calculated based on the equation: OP=100×(D-lactic acid concentration)/(Total lactic acid 

concentration) 
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Figure 4.1 Simplified pathways for lactic acid production from a mixture of glucose and 

xylose by L. plantarum and L. brevis. Solid lines indicate the homofermentative pathway in L. 

plantarum, and dashed lines indicate the heterofermentative pathway in L. brevis  
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Figure 4.2 Lactic acid production from a mixture of glucose and xylose by (A) L. 

plantarum; (B) L. brevis; (C) simultaneous fermentation of L. plantarum and L. brevis; and 

(D) sequential fermentation of L. plantrum and L. brevis 
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Figure 4.3 Lactic acid production from poplar hydrolysate by sequential fermentation 
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Figure 4.4 Lactic acid production from pretreated corn stover via SSF process by (A) L. 

plantarum; (B) L. brevis; (C) simultaneous cultivation of L. plantarum and L. brevis; (D) 

sequential cultivation of L. plantarum and L. brevis  
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Chapter 5 - D-lactic acid production from renewable lignocellulosic 

biomass by genetically modified Lactobacillus plantarum  

 Abstract 

 D-lactic acid is of great interest because of the increasing market demand of bio-based 

poly-lactic acid (PLA). Blending poly-L-lactic acid (PLLA) with poly-D-lactic acid (PDLA) 

greatly improves PLA’s mechanical and physical properties. Corn stover and sorghum stalks 

treated with 1 % sodium hydroxide were investigated as possible substrate for D-lactic acid 

production by both sequential saccharification and fermentation (SHF), and simultaneous 

saccharification and fermentation (SSF). A commercial cellulase (Cellic CTec2) was used for 

hydrolysis of lignocellulosic biomass, and L-lactate deficient mutant strain Lactobacillus 

plantarum NCIMB 8826 ∆ldhL1 and its derivative harboring a plasmid (∆ldhL1-pCU-PxylAB) 

used for xylose assimilation were used for fermentation. The SSF process demonstrated the 

advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus 

significantly improving D-lactic acid yield and productivity. The highest D-lactic acid 

concentration (27.0 g L-1) and productivity (0.75 g L-1 h-1) was obtained from corn stover using 

∆ldhL1-pCU-PxylAB via SSF process. The recombinant strain produced higher concentration of 

D-lactic acid than mutant strain by using the xylose present in lignocellulosic biomass. A small 

amount of acetic acid was also produced from pentose sugars (xylose and arabinose) via the 

phosphoketolase pathway. Our findings demonstrated the potential of using metabolically 

engineered lactic acid bacteria in a cost-effective system to produce D-lactic acid.  

 Introduction 

Demand for lactic acid is increasing because of its wide applications in the food, 

cosmetic and packaging industries.  Annual demand for lactic acid is estimated to be roughly 130 

to 150 kilotons per year (Wee 2006). Lactic acid can be produced either by chemical synthesis or 

fermentation. One advantage of microbial fermentation is that certain microorganism can 

produce optically pure D (+) or L (-) lactic acid (John et al. 2007). The optical purity of lactic 

acid is crucial to the physical properties of poly-lactic acid (PLA), which is a biodegradable 

plastic that can be produced from inexpensive, renewable and abundantly available biomass 

resources (Okano et al. 2009c). A stereocomplex PLA, which is composed both poly-L-lactic 
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acid (PLLA) and poly-D-lactic acid (PDLA), is also of great interest due to its superior 

thermostability (Okano et al. 2010).  

Lactic acid is a commodity chemical that can be produced in large quantities at a 

relatively low price. Feasible economic production of lactic acid requires inexpensive raw 

materials such as agriculture residues and forestry sources (Nguyen et al. 2013). Agricultural 

residues such as corn stover, sorghum stalks are rich in carbohydrates but low in protein and are 

difficult to digest, which limits their utilization as livestock feed or human food (John et al. 

2007). Corn stover including the leaves, husk and stalks, comprises up to half of the crop’s yield 

is one of the most abundant agriculture residues in United States (Li et al. 2004). Raw corn 

stover consists about 49.6 % glucan, 25.1 % xylan and 23.7 % of lignin (Guragain et al. 2013), 

and it has been studied for its potential contribution to the production of biofuels (Zambare et al. 

2012) and biobased lactic acid (Cui et al. 2011; Miura et al. 2004; Zhang and Vadlani 2013). 

Sorghum has been recommended as a feedstock for biofuels production, and of potential crops, 

has the highest water use efficiency and higher tolerance to low soil fertility (Xin et al. 2009). 

Genetic screening through chemical mutagenesis of sorghum generated several useful traits. For 

example, the brown midrib mutant that showed lower lignin content and higher enzymatic 

conversion efficiency (Cotton et al. 2013). Most studies were focused on conversion of sweet 

sorghum juice into lactic acid (Richter and Träger 1994), however, production of D-lactic acid 

from structural carbohydrates in sorghum has not been widely investigated.   

The carbohydrate present in the lignocellulosic biomass must be hydrolyzed into 

fermentative sugars for digestion by microorganisms. The enzymatic hydrolysis method is most 

widely used for lignocellulosic biomass, but one well-known disadvantage of enzymatic catalysis 

is feedback inhibition by sugars released from the biomass (Olofsson et al. 2008). Thus, 

simultaneous saccharification and fermentation (SSF) is usually used to prevent enzyme 

inhibition, which combines enzymatic hydrolysis and fermentation into a single step and reduces 

reactor volume and increase productivity (Olofsson et al 2008).  

Lactobacillus and Lactococcus species are the most studied groups for lactic acid 

production (Li and Cui 2010). Lactic acid bacteria (LAB) can be classified into three groups: 

homofermentative, heterofermentative and facultative heterofermentative. Homofermentative 

LAB can convert sugars exclusively into lactic acid through Embden-Meyerhof pathway (EMP), 

whereas heterofermentative LAB metabolize sugars through the phospoketolase (PK) pathway to 
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produce lactic acid along with other by-products such as acetic acid, ethanol, and/or carbon 

dioxide (Hofvendahl and Hahn-Hagerdal 2000). The third group, facultative heterofermentative 

LAB, (Lactobacillus plantarum, for example), metabolizes hexose sugars through EMP pathway, 

but uses pentose sugars through the PK pathway (Kleerebezem et al. 2003). Lactobacillus 

plantarum is an industrially important strain which can use a wide range of carbohydrates 

including glucose, fructose, arabinose (Okano 2009a, 2009c), but it is not able to use xylose, 

which is a dominant sugar from hemicellulose. The genomes of several L. plantarum strains have 

been sequenced (Kleerebezem et al. 2003; Li et al. 2013), and several gene manipulation 

methods have been developed for L. plantarum (Rud et al. 2006). Okano et al (2009c) deleted 

the L-lactate dehydrogenase gene of L. plantarum NCIMB 8826, and the mutant strain L. 

plantarum NCIMB8826 ΔldhL1 successfully produce D-lactic acid with optical purity of 99.7 % 

from pure glucose. Xylose assimilation plasmid pCU-PxylAB was introduced into this L-lactate 

dehydrogenase-deficient strain and the resulting recombinant strain was able to produce D-lactic 

acid from xylose with a yield of 0.57 g g-1 and 99.9 % optical purity (Okano et al. 2009b) These 

engineered strains perform well in the fermentation of pure sugars, but their performance on real 

biomass sugars has not been reported. Therefore, the objective of this study was to evaluate 

lactic acid production ability of mutant and recombinant L. plantarum from lignocellulosic 

biomass. 

 Materials and methods 

 Microorganisms and culture conditions 

Table 5.1 lists the microorganisms and plasmid used in this study. Pre-culture were 

prepared by growing L. plantarum NCIMB 8826 ∆ldhL1 in MRS broth (OXOID Ltd. 

Basingstoke, Hampshire, England) and L. plantarum NCIMB 8826 ∆ldhL1-pCU-PxylAB in MRS 

broth with 25 µg mL-1 of erythromycin. All cultures were grown in a temperature controlled 

shaker (Innova 4300, New Brunswick Scientific, NJ) at 37  ̊C until OD600 reached around 5.0.  

Pre-culture were used to inoculate fermentation media at 5 % (v/v).  

 Lignocellulosic biomass composition analysis and pretreatment 

Corn stover was obtained from the Kansas State University Agronomy Farm in 

Manhattan and Tribune, Kansas. Sorghum stalks was obtained from Taxes A&M University and 
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ground by Mesa Associate Inc. The biomass samples were obtained from universities-based field 

studies and required no special permission and did not involve endangered or protected species. 

Both corn stover and sorghum stalks were treated with 1 % NaOH (w/v) using the method 

described by Guragain et al. (2013).  The composition of sorghum stalks was determined by 

following the protocol NREL/TP-510-42618 (Sluiter et al. 2008). 

 Enzymatic hydrolysis of corn stover and sorghum stalks 

Enzymatic hydrolysis of corn stover and sorghum stalks was done using the method 

modified from Zhang and Vadlani (2013). Two g of alkali-treated corn stover and sorghum 

stalks were suspended in 40 mL of 50 mM citrate buffer (pH 5), and Cellic CTec2 obtained from 

Novozymes Inc. (Franklinton, NC) was added at dosage of 8 FPU per gram of lignocellulosic 

biomass. Biomass hydrolysis was performed at 50 ̊C with agitation of 150 rpm. Samples (1 mL) 

were withdraw from reaction media at 0, 12, 24 and 48 h, centrifuged, filtered and analyzed by 

HPLC. Sugar yield was reported by the amount of released sugars divided by the amount of 

biomass. 

 Fermentation experiments 

The effect of initial glucose concentration was tested on D-lactic acid production for 

mutant strain ∆ldhL1 in 100 mL Wheaton serum bottles (Fisher Scientific, Pittsburgh, PA) 

containing 50 mL modified MRS broth consisting of different concentrations of glucose (30 g L-1 

, 60 g L-1 , and 90 g L-1 ), supplemented with 10 g L-1 of peptone, 5 g L-1 of yeast extract, 2 g L-1 

of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of MgSO4.7H2O, 0.05 g L-1 of MnSO4.4H2O.  

An experiment with a mixture of glucose and xylose for recombinant strain ∆ldhL1-pCU-

PxylAB was also performed in 100-mL Wheaton serum bottles containing a mixture of 60 g L-1 

glucose and 40 g L-1 xylose supplemented with 10 g L-1 of peptone, 5 g L-1 of yeast extract, 2 g 

L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of MgSO4.7H2O, and 0.05 g L-1 of 

MnSO4.4H2O , and erythromycin was added at final concentration of 25 µg mL-1. The initial pH 

of the media was adjusted to 6.5 using 10 N sodium hydroxide, and 3 % (w/v) calcium carbonate 

was added to maintain the pH during fermentation. All serum bottles were incubated at 37 ̊ C 

with agitation of 150 rpm.  

Fed-batch xylose fermentation of recombinant strain ∆ldhL1-pCU-PxylAB was performed 

in a 7-L fermenter with 5-L working volume (Bioflo 110, New Brunswick Scientific Inc., 
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Enfield, CT). Fermentation medium containing 40 g L-1 xylose supplemented with all the other 

components of modified MRS medium. After 46 h fermentation, 1L of fermentation broth was 

pumped out and 1 L of feeding solution containing 200 g xylose was pumped in. During the 

fermentation, the temperature was maintained at 37  ̊C and agitation was 150 rpm. pH was 

maintained at 6.5 by pumping in 10 N sodium hydroxide. Erythromycin was added at final 

concentration of 25 µg mL-1. 

Sequential hydrolysis and fermentation (SHF) with corn stover and sorghum stalks were 

performed in 100-mL serum bottles. Two g of dried corn stover and sorghum stalks were 

hydrolyzed for 48 h. The hydrolysates were then centrifuged in Sorvall RC 5C plus super speed 

centrifuge (Beckman Coulter, Inc., Brea, CA) at 10,000 ×g for 10 min, supernatants were 

collected and the pH was adjusted to 6.5 using 10 N NaOH. Supernatants were autoclaved at 

121 ̊C for 15 min and supplemented with 5 mL concentrated nutrient solution containing 100 g 

L-1 of peptone, 50 g L-1 of yeast extract, 20 g L-1 of ammonium citrate, 20 g L-1 of K2HPO4, 1 g 

L-1 of MgSO4.7H2O, and 0.5 g L-1 of MnSO4.4H2O, and final fermentation volume was adjusted 

to 50 mL by adding water. Calcium carbonate was added at 3 % (w/v) to control the pH. Mutant 

strain ∆ldhL1 and recombinant ∆ldhL1-pCU-PxylAB strain were added at inoculum of 5 % (v/v). 

Fermentation was performed at 37 ̊C with 150 rpm agitation. Erythromycin was added at final 

concentration of 25 µg mL-1 when needed. 

Simultaneous saccharification and fermentation (SSF) with biomass was conducted in 

100-mL serum bottles.  Two g of dried pretreated corn stover or sorghum stalks were suspended 

in 50 mL of 50 mM sodium citrate buffer (pH 5) supplemented with all the components except 

sugars of the modified MRS medium. Cellic CTec2 was added at 8 FPU per gram of 

lignocellulosic biomass. Mutant strain ∆ldhL1 and recombinant ∆ldhL1-pCU-PxylAB strain were 

added at inoculum of 5 % (v/v). Temperature was maintained at 37 ºC, and the agitation rate was 

maintained at 150 rpm. Erythromycin was added at final concentration of 25 µg mL-1 when 

needed. 

 Electrotransformation procedures 

pCU-PxylAB plasmid was propagated by transformation into Escherichia coli DH5α 

following the methods of Sambrook et al. (2001). E.coli transformants were selected on LB agar 

plates containing 250 µg mL-1 of erythromycin. pCU-PxylAB plasmids were extracted from 
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E.coli using IBI plasmid extraction kit (MidSci, St.Louis, MO) following the manufacturer’s 

instruction. pCU-PxylAB plasmid (Okano et al. 2009b) was transformed into L. plantarum 

NCIMB 8826 ∆ldhL1 using the method modified from Narita et al. (2006). L. plantarum 

NCIMB 8826 ∆ldhL1 was pre-cultivated overnight in a test tube containing 5 mL of MRS broth. 

One mL of the overnight culture was added into 100 mL fresh MRS broth and cultivated at 37 ̊C 

until OD600 value reached about 0.7. Cells were washed three times with ice-cold water followed 

by three times of wash buffer (272 mM sucrose, 7 mM HEPES, 1mM MgCl2, pH 7.4), then 

suspended in 1 mL 0.3 mol L-1 of sucrose.  One µg of plasmid DNA was mixed with 100 µL of 

competent cells and was incubated on ice for 5 min, then electroporated using a Gene pulser 

Xcell electroporator (Bio-Rad, Hercules, CA) in 0.1 cm cuvettes at 1.5 kV, 25 µFD and 200 

Ohm.  Five hundred microliter of fresh MRS broth was immediately added, and cells were 

incubated at 37 ̊C for 2 h before plated on MRS agar with 25 µg mL-1 erythromycin. The plates 

were incubated at 37 ̊ C for 2 to 3 days. 

 Analytical methods 

OD600 of cultures were measured using a Shimadzu UV-spectrometer (UV-1650PC, 

Torrance, CA). Cell dry mass was determined by method described by Zhang et al. (2013). 

Fermentation samples were centrifuged at 15,000 × g for 10 min in a micro-centrifuge 

(Eppendorf, Hauppauge, NY, USA). Supernatant was acidified with 1 N HCl, and diluted 10 

times with deionized water. Lactic acid, and acetic acid were qualified using Shimadzu HPLC 

system equipped with a refractive index (RI) detector (RID-10A), a UV/VIS detector (SPD-

M20A) and Rezex ROA organic acid column (150 × 7.8 mm, Phenomenex Inc., Torrance, CA, 

USA). 0.005 N H2SO4 was used as the mobile phase at a flow rate of 0.6 mL min-1. 

Temperatures of the column and detector were maintained at 83 and 40 °C, respectively.  Sugars 

were measured using a phenomenex RCM monosaccharide column (300 ×7.8 mm, Phenomenex, 

Torrance, CA, USA) using deionized water as mobile phase at 0.6 mL min-1. Lactic acid optical 

purity was measured using the method described by Zhang and Vadlani (2013).  

SAS software version 9.4 (SAS Inc., Cary, NC, USA) was used to analyze experimental 

data by applying PROC GLM. Ryan-Einot-Gabriel-Welsh (REGWQ) multiple range test was 

performed to compare the difference among means. All difference were considered significant at 

α=0.05 level. 
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 Results and discussion 

 Effect of initial glucose concentration 

Substrate inhibition is one of the major problem associated with lactic acid production. 

Substrate inhibition was observed for the ∆ldhL1 strain, for which maximum lactic acid yield 

(0.88 g g-1) and productivity (1.11 g h-1 L-1) were obtained when the initial glucose concentration 

was 60 g L-1(Table 5.2). When the initial glucose increased to 90 g L-1, the yield decreased to 

0.69 g g-1 and productivity decreased to 0.86 g h-1 L-1. Therefore initial glucose concentration 

was set to 60 g L-1 in subsequent mixture sugar fermentation experiment.  

 D-lactic acid fermentation from xylose by ∆ldhL1-pCU-PXylAB 

 Transformed L. plantarum cells were selected on MRS agar plates with 25 µg mL-1 

erythromycin. Cell growth with xylose was evaluated by growing cells in modified MRS 

medium containing 40 g L-1 xylose as sole carbon source. After 12 h cultivation, the OD600 of 

∆ldhL1-pCU-PxylAB was 2.1, while the control strain ∆ldhL1 (without plasmid) showed poor 

growth using xylose as the sole carbon source (OD600 was 0.54).  

A fed-batch xylose fermentation was performed using ∆ldhL1-pCU-PxylAB (Fig. 5.1A). 

All xylose was consumed by the end of first-stage fermentation, and 22.3 g L-1 of D-lactic acid 

with 99.9 % optical purity was produced along with 16.4 g L-1 of acetic acid. Fresh xylose 

solution was added at 46 h, and fermentation continued for next 62 h. ∆ldhL1-pCU-PxylAB, 

consumed xylose much more slowly in the second stage than the first; at the end of fermentation, 

4.8 g L-1 xylose remained, the lactic acid concentration was 37.1 g L-1, and the acetic acid 

concentration was 28.2 g L-1. Although the xylose consumption rate slowed, the lactic acid 

concentration had not plateau, suggesting the recombinant strain would keep producing lactic 

acid if more xylose were added. These results were in agreement with those reported by Okano 

et al. (2009b).  

 D-Lactic acid fermentation from mixture of glucose and xylose by ∆ldhL1-pCU-

PXylAB  

 Lignocellulosic biomass hydrolysate consists of both glucose and xylose, and efficient 

utilization of both sugars is crucial for economical production of D-lactic acid. Carbon catabolite 

repression widely exists in many lactic acid bacteria, which means glucose is always the 
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preferred carbon and energy source, but it represses the utilization of other sugars (Goerke et al. 

2008). ∆ldhL1-pCU-PxylAB did not show a hierarchical sugar utilization pattern (Fig. 5.1B). 

Glucose and xylose were consumed simultaneously, but glucose was consumed faster than 

xylose; at the end of 72 h fermentation, all glucose was consumed, but 10.1 g L-1 of xylose was 

left. Lactic acid concentration was 67.4 g L-1 with optical purity of 99.9 %. Acetic acid 

concentration was 19.7 g L-1. The yield of D-lactic acid from both glucose and xylose was 0.75 g 

g-1 and productivity was 0.94 g L-1 h-1. These results were comparable with results reported by 

Yoshida et al. (2011). In our previous study, the heterofermentative strain Lactobacillus brevis 

used xylose simultaneously with glucose, which gave a lactic acid yield of 0.52 g g-1 from 

mixture of glucose and xylose (Zhang and Vadlani 2015). ∆ldhL1-pCU-PxylAB  is a facultative 

heterofermentative strain that uses glucose through the EMP and xylose through the PK pathway 

(Okano et al. 2009c), which gives better lactic acid yield then heterofermentative lactic acid 

bacteria. 

 Enzymatic hydrolysis of corn stover and sorghum stalks 

 After alkali pretreatment, corn stover consisted of around 53.9 % (w/w) glucan, 29.7 % 

(w/w) xylan, less than 5 % arabinan (Guragain et al. 2013; Huang et al. 2009). The composition 

of alkali treated sorghum stalks was 44.4 % (w/w) glucan, 24.3 % (w/w) xylan, and 2.0 % (w/w) 

arabinan. Therefore, 1 g pretreated corn stover would yield 0.60 g of glucose and 0.34 g of 

xylose, and 1 g of pretreated sorghum stalks would yield 0.49 g of glucose and 0.28 g of xylose 

calculated by the equation: glucose (g) = glucan (g)/0.9; xylose (g) = xylan (g)/0.88 (Sluiter et al. 

2008). Corn stvoer and sorghum stalks in this study showed a similar enzymatic hydrolysis 

profile (Fig. 5.2). Glucose yield was not significantly increased after 24 h for either corn stover 

or sorghum stalks. Xylose yield increased 8 % and 15 % from 24 h to 48 h for corn stover and 

sorghum stalks, respectively. At the end of 48 h of corn stover hydrolysis, glucose yield was 0.52  

g per g of biomass, which was 86.7 % of theoretical yield, and xylose yield was 0.22 g per g of 

biomass, which was and 64.7 % of theoretical yield. At the end of 48 h of sorghum stalks 

hydrolysis, glucose yield was 0.43 g per g of biomass, which was 87.8 % of theoretical yield, and 

xylose yield was 0.22 g per g of biomass, which was 78.6 % of theoretical yield. Therefore, the 

48-h biomass hydrolysate were used for the following SHF experiments.  
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 D-lactic acid production from corn stover and sorghum stalks via SHF  

Sequential hydrolysis and fermentation experiments were conducted as described in 

Materials and Methods. ∆ldhL1 consumed all the glucose (17.7 g L-1) and arabinose (1.0 g L-1) 

within 12 h; at the end of 12 h of fermentation, 15.9 g L-1 of D-lactic acid with optical purity of 

99.6 % was produced (Table 5.3).  The yield of D-lactic acid from glucose and arabinose was 

0.85 g g-1, which was slightly higher than the yield (0.83 g g-1) from a homofermentative 

Lactobacillus delbrueckii ATCC 9649 in our previous study (Zhang and Vadlani 2013). ∆ldhL1-

pCU-PxylAB consumed all of the glucose (17.6 g L-1), xylose (7.5 g L-1) and arabinose (1.0 g L-1) 

from corn stover hydrolysate within 24 h and produced 19.7 g L-1 of D-lactic acid along with 4.2 

g L-1 of acetic acid (Table 5.3). For sorghum stalks hydrolysate, ∆ldhL1 consumed all of the 

glucose (14.2 g L-1) and arabinose (0.74 g L-1) within 12 h and produced 12.5 g L-1 of D-lactic 

acid with a yield of 0.84 g g-1. ∆ldhL1-pCU-PxylAB consumed all sugars (14.0 g L-1 of glucose, 

7.0 g L-1 of xylose, and 0.74 g L-1 of arabinose) within 24 h and produced 15.6 g L-1 of D-lactic 

acid along with 5.0 g L-1 acetic acid (Table 5.3). A small amount of acetic acid was detected 

when using ∆ldhL1 to produce D-lactic acid from corn stover and sorghum stalks in SHF. 

∆ldhL1 was reported as capable of using arabinose to produce lactic acid and acetic acid (0.44 g 

lactic acid and 0.32 g acetic acid produced per g arabinose consumed, respectively) (Okano et al. 

2009a), but acetic acid yield from corn stover and sorghum stalks hydrolysate by mutant strain 

∆ldhL1 in our study exceeded the theoretical yield of acetic acid produced from arabinose (0.6 g 

g-1). This is probably due to the loosely controlled anaerobic fermentation environment, which 

allowed small amount of oxygen in the bottles; thereby the metabolic pattern of glucose shifted 

and resulted in additional production of acetic acid along with lactic acid (Litchfield 1996).  

 D-Lactic acid production from corn stover and sorghum stalks via SSF 

SSF process has several advantages compared to SHF, the most important reason for 

using SSF is to avoid end-product inhibition in the hydrolysis (Olofsson et al. 2008). Sugars 

released during hydrolysis are removed by in situ fermentation, which reduces the feedback 

inhibition to the cellulolytic enzymes and may improve the yield and productivity of lactic acid.  

The optimal temperature range for CTec2 is 45 to 50 ̊C, but ∆ldhL1 and ∆ldhL1-pCU-PxylAB 

grew poorly above 45 ̊C (OD600 ~ 0.2), so the temperature was set at 37 ̊C. Xylose accumulated 

up to 6.8 g L-1 during the fermentation using corn stover, but glucose was barely detected during 
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the fermentation, which indicated that the glucose released from hydrolysis was rapidly 

consumed by ∆ldhL1 (Fig. 5.3A). D-lactic acid concentration increased rapidly during the first 

12 h then slowed down, at the end of fermentation, D-lactic acid concentration was 21.1g L-1 

with optical purity of 99.5%. Fig. 5.3B shows the SSF profile of ∆ldhL1-pCU-PxylAB using corn 

stover. Unlike ∆ldhL1, glucose and xylose concentration were accumulated to the maximum 

level of 1.8 and 1.2 g L-1 at 6 h, respectively, after 6 h, the concentration of both glucose and 

xylose were maintained below 1 g L-1 during remaining fermentation time, and 27.0 g L-1 of D-

lactic acid was produced along with 9.2 g L-1 of acetic acid (Table 5.4). Because of xylose 

utilization ability, ∆ldhL1-pCU-PxylAB gave significantly higher D-lactic acid concentration, 

yield (0.67 g g-1) and productivity (0.75 g L-1 h-1) compared with ∆ldhL1 (yield of 0.53 g L-1, 

productivity of 0.58 g L-1 h-1) in SSF with corn stover.  ∆ldhL1 showed an overall yield similar to 

that of L. delbrueckii, which was used to produce D-lactic acid from corn stover via the SSF 

process (Zhang and Vadlani 2013). ∆ldhL1-pCU-PxylAB yielded similar lactic acid 

concentration (27.0 g L-1) from corn stover compared with a sequential co-fermentation system 

that produced 31.2 g L-1 of lactic acid from corn stover via SSF in our previous study (Zhang and 

Vadlani 2015), but lactic acid productivity of ∆ldhL1-pCU-PxylAB was greatly improved.  

Fig. 5.3C shows the SSF profile of ∆ldhL1 of using sorghum stalks as substrate. Glucose 

reached to the maximum concentration of 1.2 at 5 h then decreased to 0 g L-1 in the next 5 h. 

Xylose concentration increased to 6.7 g L-1 at 34 h. D-lactic acid concentration was 15.7 g L-1 

with optical purity of 99.4% and acetic acid was 3.7 g L-1 (Table 5.4). Fig. 5.3D shows the SSF 

profile of ∆ldhL1-pCU-PxylAB; similar to corn stover, glucose concentration reached a maimum 

of 1.2 g L-1 and xylose concentrations reached a maximum 1.4 g L-1 at 5 h. Glucose 

concentration remained below 1 g L-1 during the remaining SSF time and xylose concentration 

was maintained at close to 1 g L-1. D-Lactic acid (21.6 g L-1) with optical purity of 99.0 % was 

produced along with 7.8 g L-1 of acetic acid. The D-lactic acid yield of ∆ldhL1 from sorghum 

stalks was 0.39 g g-1 and productivity was 0.46 g L-1 h-1. D-lactic acid yield of ∆ldhL1-pCU-

PxylAB from sorghum stalks was 0.54 g g-1, and productivity was 0.64 g L-1 h-1 (Table 5.4).  

In our study, SSF with SHF were comparatively evaluated; lactic acid concentration, 

overall yield, and productivity were greatly improved. Other advantages of using SSF include 

immediate utilization of sugars, thereby avoiding any substrate inhibition. In the SSF, the 

hydrolysis and fermentation occur in different reactors. Separation of sugars from biomass 
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residues in the hydrolysates and then transferring the sugar solution into fermentation reactor 

result in sugar loss. By contrast, in the SSF process, hydrolysis and fermentation are performed 

in the same reactor, which avoids the potential sugar loss during the sugar transfer, and also 

decreases the capital investment because less vessels are needed in the SSF process. Therefore, 

the overall yield and productivity of D-lactic acid obtained in SSF process were greatly increased 

compared to that obtained in SHF process.  

 Conclusions  

Both mutant and recombinant strains were capable of producing D-lactic acid at high 

yield and optical purity from pure sugars. ∆ldhL1-pCU-PxylAB used xylose to produce high 

yields of D-lactic acid and was able to use xylose simultaneously with glucose, which is an 

important advantage when using lignocellulosic biomass as substrate to produce lactic acid. D-

lactic acid production was successfully demonstrated from corn stover and sorghum stalks. 

∆ldhL1-pCU-PxylAB was able to produce 20 % more D-lactic acid than ∆ldhL1 from 

lignocellulosic biomass. Overall yield increased about 38 % and productivity almost three fold 

when the SSF process was applied to produce D-lactic acid.  To our knowledge this is the first 

report that successfully demonstrates D-lactic acid production from lignocellulosic biomass 

using specifically designed genetically engineered lactic acid bacteria. ∆ldhL1-pCU-PxylAB has 

vast potential in the industrial production of D-lactic acid.  
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Table 5.1 Bacterial strains and plasmid 

Strains and plasmid  Relevant characteristics  Antibiotic 

resistance  

Reference or 

source 

Escherichia coli     

DH5α lacZ ∆M15, recA1, endA1   Invitrogen  

Lactobacillus plantarum     

∆ldhL1 L.plantarum NCIMB 8826 L-

lactate dehydrogenase gene1 

deletion 

 Okano et al. 

2009c 

∆ldhL1-pCU-PxylAB L.plantarum NCIMB 

8826∆ldhL1 harboring xylose 

assimilation plasmid 

Erythromycin  Okano et al. 

2009b 

    

Plasmid     

pCU-PxylAB Expression vector containing the 

xylAB operon under the control 

of clpC UTLS promoter  

Erythromycin  Okano et al. 

2009b 
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Table 5.2 D-lactic acid production from different initial glucose concentration 

Initial glucose  

(g L-1) 

D-lactic acid  

(g L-1) 

Productivity1 

(g L-1 h-1) 

Yield 2 

(g g-1) 

30 24.6±0.3C 1.03±0.01B 0.82±0.01B 

60 53.1±0.7B 1.11±0.01A 0.89±0.01A 

90 62.2±0.9A 0.86±0.01C 0.69±0.01C 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with different letters 

in the same column are significantly different.  
1 Productivity was defined as the amount of D-lactic acid produced per liter per hour. In SHF, the 48 h hydrolysis 

time was included in productivity calculation.  
2Yield was calculated by dividing the amount of D-lactic acid by the amount of sugar consumed. 
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Table 5.3 D-lactic acid production from alkali-treated biomass via SHF 

Strain name  D-lactic acid  

(g L-1) 

Acetic acid 

(g L-1) 

Yield 1 

(g g-1) 

Overall yield 2 

(g g-1) 

Productivity3 

(g L-1 h-1)  

Optical 

purity 4 

(%) 

Corn stover       

∆ldhL1 15.9±0.2B 1.3±0.3C 0.85±0.01A 0.40±0.01B 0.26±0.01A 99.6 

∆ldhL1-pCU-

PxylAB 

19.7±0.6A 4.2±0.1B 0.75±0.01B 0.49±0.01A 0.27±0.01A 99.3 

Sorghum stalks       

∆ldhL1 12.5±0.7C 1.5±0.3C 0.84±0.05A 0.31±0.02C 0.21±0.01B 99.2 

∆ldhL1-pCU-

PxylAB 

15.6±0.5B 5.0±0.1A 0.72±0.04B 0.39±0.01B 0.22±0.01B 99.4 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with different letters 

in the same column are significantly different.  
1Yield was calculated by dividing the amount of D-lactic acid by the amount of sugar consumed 
2Overall yield was calculated by dividing the amount of D-lactic acid by the amount of biomass used.  
3 Productivity was defined as the amount of D-lactic acid produced per liter per hour. In SHF, the 48 h hydrolysis 

time was included in productivity calculation.  
4 Optical purity (OP) calculated based on the equation: OP=100×(D-lactic acid concentration)/(Total lactic acid 

concentration) 



70 

 

Table 5.4 D-lactic acid production from alkali-treated biomass via SSF 

Strain name  D-lactic acid 

(g L-1) 

Acetic acid 

(g L-1) 

Overall yield 1 

(g g-1) 

Productivity2 

(g L-1 h-1)  

Optical 

purity 3 

(%) 

Corn stover      

∆ldhL1 21.1±0.3B 2.6±0.1D 0.53±0.01B 0.58±0.01C 99.5 

∆ldhL1-pCU-

PxylAB 

27.0±0.3A 9.2±0.4A 0.67±0.01A 0.75±0.01A 99.5 

Sorghum stalks      

∆ldhL1 15.7±0.2C 3.7±0.1C 0.39±0.01C 0.46±0.01D 99.4 

∆ldhL1-pCU-

PxylAB 

21.6±0.3B 7.8±0.1B 0.54±0.01B 0.64±0.01B 99.0 

Data represent mean values and standard errors based on three replications (p < 0.05). Values with different letters 

in the same column are significantly different.  
1Overall yield was calculated by dividing the amount of D-lactic acid by the amount of biomass used.  
2 Productivity was defined as the amount of D-lactic acid produced per liter per hour.  
3 Optical purity (OP) calculated based on the equation: OP=100×(D-lactic acid concentration)/(Total lactic acid 

concentration) 
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Figure 5.1 D-lactic acid production from refined sugars: (A) D-lactic acid fermentation 

from xylose in a 7-L fermenter; (B) D-lactic acid fermentation from mixed glucose and 

xylose by ∆ldhL1-pCU-PxylAB 
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Figure 5.2 Enzymatic hydrolysis profile of alkali-treated lignocellulosic biomass: (A) Sugar 

yield from corn stover; (B) Sugar yield from sorghum stalks  



73 

 

 

A

Time (h)

0 10 20 30

A
c
id

 a
n

d
 s

u
g

a
r 

o
n

c
e

n
tr

a
ti
o

n
 (

g
 L

-1
)

0

5

10

15

20

25
xylose

glucose

D-lactic acid

acetic acid

 

B

Time (h)

0 10 20 30

A
c
id

 a
n

d
 s

u
g

a
r 

c
o

n
c
e

n
tr

a
ti
o

n
 (

g
 L

-1
)

0

5

10

15

20

25

30
xylose

glucose

D-lactic acid

acetic acid

 

 



74 

 

C

Time (h)

0 10 20 30

A
c
id

 a
n

d
 s

u
g

a
r 

c
o

n
c
e

n
tr

a
ti
o

n
 (

g
 L

-1
)

0

2

4

6

8

10

12

14

16

18

xylose

glucose

D-lactic acid

acetic acid

 

D

Time (h)

0 10 20 30

A
c
id

 a
n
d
 s

u
g
a

r 
c
o
n
c
e

n
tr

a
ti
o
n
 (

g
 L

-1
)

0

5

10

15

20

25

xylose

glucose

D-lactic acid

acetic acid

 

Figure 5.3 SSF profile of different lignocellulosic biomass: (A) alkali-treated corn stover 

using ∆ldhL1; (B) alkali-treated corn stover using ∆ldhL1-pCU-PxylAB; (C) alkali-treated 

sorghum stalks using ∆ldhL1; (D) alkali-treated sorghum stalks using ∆ldhL1-∆pCU-

PxylAB.  
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Chapter 6 -  Enhanced D-lactic acid production from corn stover 

and soybean meal using engineered Lactobacillus plantarum  

 Abstract 

D-lactic acid is used as a monomer in production of poly-D-lactic acid (PDLA), which is 

used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic 

acid using all sugars derived from biomass efficiently, xylose-assimilating genes encoding 

xylose isomerase and xylulokinase were cloned into an L-lactate deficient strain, Lactobacillus 

plantarum. The resulting recombinant strain namely L. plantarum NCIMB 8826 ∆ldhL1-

pLEM415-xylAB, was able to produce D-lactic acid (at optical purity > 99 %) from xylose at a 

yield of 0.53 g g-1. Simultaneous utilization of glucose and xylose to produce D-lactic acid was 

also achieved by this strain, and 47.2 g L-1 of D-lactic acid was produced from 37.5 g L-1 glucose 

and 19.7 g L-1 xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-

effective medium components for D-lactic acid production. Optimization of medium 

composition using response surface methodology, resulted in enzyme loading reduced by 30 % 

and peptone concentration by 70 %. In addition, we successfully demonstrated D-lactic acid 

fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L-1 

D-lactic acid with an overall yield of 0.77 g g-1. All these approaches are geared to attaining high 

D-lactic acid production from biomass sugars to produce low-cost, high-thermostable 

biodegradable plastics 

 Introduction  

Optically pure lactic acid has received intensive attention because it can be used as a 

monomer for production of biodegradable poly-lactic acid (PLA), which is an attractive 

alternative to petroleum-based polymers. Physical and mechanical properties of PLA depend on 

the ratio of poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA) in the copolymer. Co-

crystallization occurs when PLLA is mixed with PDLA, resulting in a new stereocomplex PLA 

with higher melting point (Okano et al. 2010). This finding has led to increased interest in 

production of optically pure D-lactic acid; the commercial market of lactic acid historically has 

been dominated by L-lactic acid. 
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Lactic acid bacteria (LAB) are gram positive microorganisms that exist within plants, 

meat, and dairy products that produce lactic acid with high yield and productivity. LAB are 

either homofermentative or heterofermentative based on their end products. Homofermentative 

LAB such as L. delbrueckii (Zhang and Vadlani 2013) produce lactic acid as major end-product 

through the Embden-Meyerhof pathway (EMP), and are preferable for commercial-scale lactic 

acid production (Abdel-Rahman et al. 2013). Most homofermentative LAB cannot use pentose 

sugars, the dominant sugars of hemicellulose, which leads to low efficiency of using biomass 

sugars. On the other hand, heterofermentative LAB such as L. brevis (Guo et al. 2014) and L. 

pentosus (Bustos et al. 2005) use the phosphoketolase (PK) pathway, which cleaves pentose 

sugars to glyceraldehyde 3- phosphate (GAP) and acetyl phosphate followed by converting GAP 

into lactic acid. Xylose fermentation in these heterofermenters involves isomerization of xylose 

to xylulose and phosphorylation of xylulose to xylulose-5-phosphate (Lockman et al. 1997); 

however other by-products such as acetic acid, ethanol, and/or formic acid result in low lactic 

acid yield and additional cost in the purification step were also produced. L. plantarum is a 

facultative heterofermentative strain that ferments hexose sugars through EMP, but it also has an 

inducible PK pathway; arabinose was converted to xylulose-5-phosphate and further converted 

to lactic acid and acetic acid through the PK pathway in L. plantarum (Helanto et al. 2007).  The 

goal of utilizing all major biomass sugars can be achieved during production of lactic acid if 

xylose-assimilating genes are introduced into L. plantarum and convert xylose into xylulose-5-

phosphate (X5P), an intermediate in the PK pathway. Introduction of DNA into Lactobacilli is 

challenging, mainly because of the unavailability of suitable cloning vectors and efficient 

transformation systems (Posno et al. 1991a). The ability of plasmid to replicate itself and express 

foreign genes is usually unpredictable, which also add difficulty to appling recombinant DNA 

technology to Lactobacillus strains (Serror et al. 2002). pLEM415 plasmid derived from pLEM3 

which was isolated from L. fermentum has been used to express heterologous genes in different 

Lactobacillus strains (Fons et al. 1997; Rochat et al. 2006). A well-defined constitutive promoter 

is preferred to an inducible promoter because inducible systems are not always easy to manage 

under industrial conditions (Ahmed 2006). A constitutive clpC promoter from L. fermentum 

BR11 displayed high activity and it was useful for starting heterologous gene expression in 

Lactobacilli strains (McCracken et al, 2000; Okano et al. 2009a; Okano et al 2009b).  
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Lactic acid bacteria are fastidious microorganisms; they require a wide range of growth 

factors including amino acids, vitamins, and fatty acids (Yadav et al. 2011). Complex nitrogen 

source are usually used to growth lactic acid bacteria, and yeast extract (YE) is the most effective 

for both microbial growth and lactic acid production (Kwon et al. 2000); however, YE is not 

cost-effective for commodity chemicals. The cost of YE is estimated to contribute as much as 30 

% of the total production cost of lactic acid (Li et al. 2006). Soybean meal is a major residue of 

soybean oil extraction, and it contains 44 % crude protein and all essential amino acids including 

high levels of glutamic acid, a strong lactic acid bacteria growth promotant (Batal et al. 2000; 

Maxwell et al. 1942).  

In this study, we constructed a recombinant plasmid for xylose assimilation and 

introduced it into Lactobacillus plantarum NCIMB 8826 ∆ldhL1. D-lactic acid production of this 

strain was investigated using corn stover and soybean meal extract (SBME) as substrates. The 

composition of the fermentation medium was optimized by response surface methodology and 

optimal conditions were used to produce D-lactic acid in a fed-batch fermentation.     

 Materials and methods 

 Bacterial strains and plasmids 

Lactobacillus brevis ATCC 367 was purchased from the American Type Culture 

Collection (Manassas, VA, USA). Lactobacillus plantarum NCIMB 8826 ∆ldhL1 and pCU-

PxylAB plasmid containing the clpC promoter were donated by Kondo et al. (Okano et al. 2009a; 

2009b), and pLEM415 plasmid was donated by Serror et al. (2002).  L. plantarum NCIMB 8826 

∆ldhL1 and L. brevis ATCC 367 were grown in MRS broth at 37 and 30 ̊C, respectively 

(OXOID Ltd. Basingstoke, Hampshire, England). Escherichia coli DH5α was used to manipulate  

pLEM415-based DNA, which was grown in Luria-Bertani (LB) medium at 37  ̊C. Antibiotics 

were added when necessary: 100 µg mL-1 ampicillin for E.coli and 25 µg mL-1 erythromycin for 

Lactobacillus plantarum.  Table 6.1 shows the microorganisms, plasmids and primers used in 

this study.  

 Feedstock preparation 

Corn stover was obtained from the Kansas State University Agronomy Farm in 

Manhattan and Tribune, Kansas, which was pretreated with 1 % (v/v) sodium hydroxide 
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according to the method described by Guragain et al. (2013). Soybean meal was obtained from 

the O.H. Kruse Feed Technology Innovation Center in Manhattan, Kansas. Soybean meal extract 

was prepared by using method modified from Zhang et al (2013).  Soybean meal (60 g) was 

mixed with 600 mL water and shaken at room temperature with an agitation rate of 150 rpm 

(Innova 2350, New Brunswick Scientific, CT, USA) for 1 h. The soybean meal slurry was then 

centrifuged at 10,000 ×g for 10 min (Sorval RC 5C Plus, GMI Inc., MN, USA). The supernatant 

was collected and used as SBME for lactic acid production.  

 Construction of recombinant pLEM415-xylAB plasmid 

The genomic DNA of L. brevis ATCC 367 was extracted using an IBI genomic DNA 

mini kit (MidSci, St. Louis, MO, USA) according to the manufacturer’s instructions. The xylAB 

operon from L. brevis ATCC 367’s genome was amplified by PCR using xylAB-F and xylAB-R 

primers, which were designed based on the sequence of the xylAB operon derived from  L. brevis 

ATCC 367’s genome (GenBank accession number NC_008497.1). The amplified 2.98 kb DNA 

fragment was then digested with XhoI and PvuII and ligated into XhoI and EcoRV digested 

pLEM415 vector. The promoter clpC fragment from the pCU-PxylAB vector was amplified by 

PCR using clpC-F and clpC-R primers, the amplified fragment was then ligated into the 

pLEM415 vector harboring the xylAB operon using recombinant sites KpnI and XhoI. The 

resulting plasmid designed to express xylose isomerase and xylulokinase under control of the 

clpC promoter was designated pLEM415-xylAB (Fig.6.1) and was sent to Molecular Cloning 

Laboratories (South San Francisco, CA, USA) for sequencing. The sequence thus obtained was 

verified for in-frame cloning using MEGA 6 (Tamura et al. 2013).  

pLEM415-xylAB was then transformed into L. plantarum NCIMB 8826 ∆ldhL1 using the 

method modified from Narita et al. (2006). L. plantarum NCIMB 8826 ∆ldhL1 was cultivated 

overnight in a test tube containing 5 mL of MRS broth, and the overnight culture was then 

diluted 100 times with fresh MRS broth and cultivated at 37  C̊ until the OD600 value reached 0.5 

to 0.8. Cells were washed five times with wash buffer (272 mM sucrose, 7 mM HEPES, 1mM 

MgCl2, pH 7.4), and suspended in 1 mL electroporation buffer (wash buffer with 20 % (w/v) 

PEG6000). Fifty microliters of competent cells were mixed with 0.1~0.3 µg of plasmid DNA 

and incubated on ice for 30 min. Before electroporation, 1 µL of TypeOne Restriction Inhibitor 

(Epicentre Technologies Corp. Madison, WI, USA) was added. Samples were then subjected to a 
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2.5 kV, 25 µFD and 200 Ohm electric pulse in a 0.2 cm cuvette by using a Gene pulser Xcell 

electroporator (Bio-Rad, Hercules, CA, USA). Fresh MRS broth (500 µL) was immediately 

added, and cells were incubated for 2 h at 37  ̊C before plating on MRS agar supplemented with 

25 µg mL-1 erythromycin. Plates were incubated at 37  ̊C for 2 to 3 days. The resulting 

transformant was designated Lactobacillus plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB 

and used in the fermentation experiments. 

 D-lactic acid production from pure sugars 

A fed-batch xylose fermentation experiment was conducted in a 7 L fermenter with 5 L 

working volume (Bioflo 110, New Brunswick Scientific Inc., Enfield, CT, USA). L. plantarum 

NCIMB 8826 ∆ldhL1-pLEM415-xylAB was grown in MRS broth with 25 µg mL-1 erythromycin 

until OD value reached about 5, and was used to inoculate at 5 % (v/v) to the fermenter 

containing 5 L modified MRS medium with 40 g L-1 of xylose supplemented with 10 g L-1 of 

peptone, 5 g L-1 of YE, 2 g L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of 

MgSO4.7H2O, and 0.05 g L-1 of MnSO4.4H2O. Temperature was controlled at 37 ºC with 

agitation of 150 rpm. The pH was maintained at 6.5 by adding 10 N sodium hydroxide.  

A mixed sugars fermentation experiment was conducted in a 2-L fermenter with 1.5 L 

working volume (Biostat. B, Satorius AG, Goettingen, Germany). Fermentation medium 

contained 37.5 g L-1 glucose, and 19.7 g L-1 xylose and was supplemented with 10 g L-1 of 

peptone, 5 g L-1 of YE, 2 g L-1 of ammonium citrate, 2 g L-1 of K2HPO4, 0.1 g L-1 of 

MgSO4.7H2O, and 0.05 g L-1 of MnSO4.4H2O. Fermentation conditions were identical to the 

xylose fermentation experiment.  

 D-lactic acid production from corn stover 

Sequential saccharification and fermentation (SHF), and simultaneous saccharification 

and fermentation (SSF) experiments with corn stover were carried out in 150-mL conical flasks. 

In SHF experiments, 2 g of dried alkali-treated corn stover was hydrolyzed by Cellic CTec2 

obtained from Novozyme. Inc. (Franklinton, NC, USA). The dosage of CTec2 was added at 8 

FPU per gram of corn stover. Saccharification was carried out at 50  ̊C for 48 h, and centrifuged 

at 10.000 × g for 10 min (Sorvall RC 5C Plus, GMI Inc., MN, USA). Supernatant was collected 

and pH adjusted to 6.5 by sodium hydroxide. Corn stover hydrolysate was supplemented with all 

the components (except sugars) of the modified MRS medium to make final volume of 50 mL, 
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and 3 % (w/v) of CaCO3 was added to buffer the pH. Fermentation was performed at 37  ̊C with 

150 rpm agitation. 

In SSF experiments, 2 g of alkali-treated corn stover was supplemented with all the 

components (except sugars) of the modified MRS medium and volume was adjusted to 50 mL by 

50 mM sodium citrate buffer (pH 5). Cellic CTec2 was added at 8 FPU per gram of corn stover 

and L. plantarum NCIMB 8826 ∆ldhL1- pLEM415-xylAB inoculum was added and 5 % (v/v). 

SBME was evaluated to substitute YE for D-lactic acid production from corn stover via SSF 

process. SBME was added at 10 % (v/v) with 5 g L-1 peptone, 2 g L-1 of ammonium citrate, 2 g 

L-1 of K2HPO4, 0.1 g L-1 of MgSO4.7H2O, and 0.05 g L-1 of MnSO4.4H2O. Fermentation 

conditions were the same as describe in SHF experiments.  

The fed batch SSF experiment was carried out in 500-mL conical flasks with working 

volumes of 100 mL. Dried alkali-treated corn stover (4 g), Cellic CTec2 (5.6 FPU g-1 of corn 

stover), SBME (15 % v/v), peptone (3 g L-1), salts (2 g L-1 of ammonium citrate, 2 g L-1 of 

K2HPO4, 0.1 g L-1 of MgSO4.7H2O, and 0.05 g L-1 of MnSO4.4H2O), and inoculum (5 % v/v) 

were added at the beginning of fermentation. CaCO3 (3 g) was also added in the beginning to 

maintain pH in the flasks. Feed was applied every 36 h, which contained 2 g of corn stover, 1.5 g 

of CaCO3, and 15 mL of SBME along with Cellic CTec2 at a dosage of 5.6 FPU g-1 of corn 

stover. 

 Statistical Experimental Design  

Response surface methodology was used to optimize key factors affecting lactic acid 

production, which were enzyme loading and, SBME and peptone concentrations in a batch 

shake-flask. Design Expert V. 8.0.7.1 (Stat-Ease Inc., Minneapolis, MN, USA) was used to 

generate experimental design, assess the response of dependent variables and also generate 

response surface plots.  

Three independent factors (enzyme loading, SBME, and peptone concentration) and their 

respective levels are given in Table 6.2. Box-Behnken design (Box and Behnken 1960) was 

adopted to optimize the levels of these three factors. A total of 17 runs comprising 5 replicates in 

the central point were carried out in random order. Lactic acid concentration was the response. A 

second-order quadratic model was fitted for the experimental results. Validation of optimized 

conditions was carried out with four replications. 
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 Analytical procedures 

Cell growth was measured by a spectrophotometer at a wavelength of 600 nm (UV-

1650PC, Shimadzu, Torrance, CA, USA). Concentrations of lactic acid, acetic acid, glucose, and 

xylose were measured using a high-performance liquid chromatography (HPLC) system 

equipped with a refractive index detector (RID-10A) and a Rezex ROA organic acid column 

(300×7.8 mm, Phenomenex Inc., Torrance, CA, USA).  Samples were centrifuged at a speed of 

15,000 ×g for 10 min (Eppendorf, Hauppauge, NY, USA), and the supernatant was acidified 

with 1 N H2SO4 and centrifuged at 15,000 ×g for 15 min to remove CaSO4 precipitant. 

Supernatant was diluted 10 times with deionized water before analysis. 0.005 N H2SO4 was used 

as mobile phase at an elution speed of 1 mL min-1, column temperature was maintained at 80  ̊C, 

and RID detector temperature was maintained at 40  ̊C. The optical purity of lactic acid was 

measured by the method described by Zhang and Vadlani (2013).  

 Results  

 Lactic acid fermentation from pure sugars using L. plantarum NCIMB 8826 ∆ldhL1-

pLEM415-xylAB 

Xylose-assimilating genes (xylAB) transformed strains were selected on an MRS plate 

containing 25 µg mL-1 of erythromycin. Cultivation with xylose as the sole carbon source was 

carried out using L. plantarum NCIMB 8826 ∆ldhL1 as a control to confirm the transformation 

strains were able to use xylose. After 48 h of cultivation, the OD600 of L. plantarum NCIMB 

8826 ∆ldhL1 was 0.7, but L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB showed  

remarkably increased growth (OD600 was 3.6); these results indicated that introduction of xylAB 

genes into L. plantarum NCIMB 8826 ∆ldhL1 resulted in successful assimilation of xylose by L. 

plantarum NCIMB 8826  ∆ldhL1-pLEM415-xylAB. 

Fermentation with 40 g L-1 of xylose was performed to evaluate the lactic acid 

fermentation ability of L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB from pure xylose. 

As shown in Fig. 6.2A, 19.7 g L-1 of D-lactic acid was produced along with 12.8 g L-1 of acetic 

acid at the end of the first stage of fermentation. The yield of D-lactic acid from xylose in the 

first stage was 0.53 g g-1, which was comparable to that of L. brevis (0.50 g g-1). After 56 h of 

fermentation, 700 mL of fermentation broth was pumped out and 700 mL of fresh medium 
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containing 200 g xylose was added and fermentation continued for next 112 h. In the end of 

fermentation 30.1 g L-1 of D-lactic acid was produced with 20.5 g L-1 of acetic acid.  

A mixed sugars experiment using glucose and xylose at a 2:1 ratio was conducted to 

mimic sugar composition in enzymatic hydrolysate of alkali-treated corn stover. As shown in 

Fig. 6.2B, almost all glucose was consumed at 36 h, whereas xylose was consumed more slowly 

than glucose and almost all xylose was consumed at 48 h. At the end of fermentation, 47.2 g L-1 

of D-lactic acid and 8.9 g L-1 of acetic acid were obtained. Yield of lactic acid from both glucose 

and xylose was 0.84 g g-1 and productivity was 0.98 g L-1 h-1.  Simultaneous utilization of 

glucose and xylose by L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB in this study greatly 

increased lactic acid productivity compared with a co-culture system in which L. brevis was 

sequentially cultivated after glucose was almost consumed by L. plantarum  and resulted in lactic 

acid yield of 0.85 g g-1 and productivity of 0.51 g L-1 h-1 (Zhang and Vadlani 2015).   

 D-Lactic acid production from corn stover  

Fig. 6.3A shows the fermentation profile of using corn stover hydrolysate. Glucose (16.3 

g L-1) was consumed within 12 h, and xylose (8.6 g L-1) was consumed within 24 h. 19.4 g L-1 of 

D-lactic acid along with 4.6 g L-1 of acetic acid was produced. The yield of D-lactic acid from 

total sugar was 0.78 g g-1, and productivity was 0.27 g L-1 h-1. The SSF process was applied to 

convert corn stover to D-lactic acid to improve lactic acid productivity (Fig. 6.3B). Glucose and 

xylose concentration in the medium were maintained less than 1 g L-1 during the entire process. 

As shown in Table 6.3, D-lactic acid concentration reached up to 26.8 g L-1 with overall yield of 

0.67 g g-1 and productivity of 0.74 g L-1 h-1. D-lactic acid yield and productivity from corn stover 

by this recombinant strain were greatly improved compared with D-lactic acid yield (0.50 g g-1) 

and productivity (0.32 g L-1 h-1) from corn stover by homofermentative strain L. delbrueckii in 

our previous study (Zhang and Vadlani 2013). 

 Optimization of parameters affecting D-lactic acid production using RSM  

A Box-Behnken design with 17 runs was conducted to evaluate the effect of enzyme 

loading, and peptone and SBME concentrations on D-lactic acid production via the SSF process. 

Maiti et al. (2011) also applied a Box-Behnken design to optimize process parameters for ethanol 

production, because it required fewer experimental runs than central composite design. Fig. 6.3C 

shows the fermentation profile of the SSF experiment with Cellic CTec2 at 8 FPU g-1 of corn 
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stover, 5 g L-1 peptone, and 10 % (v/v) SBME; these data were used as the basis (0 level) of the 

statistical experimental design. Utilization of glucose and xylose in SBME as a substitute for YE 

in the experiment were slower compared with using YE and a high concentration of peptone 

(Fig. 6.3B). Glucose accumulated to maximum level of 4.6 g L-1 at 6 h, and maintained lower 

than 1 g L-1 after 12 h.  Xylose consumption was slower compared with that of glucose. Xylose 

accumulated to a maximum concentration of 3.9 g L-1 at 12 h, and slowly reduced to 1.3 g L-1 at 

36 h. At the end of fermentation, 29.4 g L-1 lactic acid along with 5.1 g L-1 of acetic acid were 

obtained (Table 6.3).  

Table 6.4 shows the ANOVA of the second order response surface model for lactic acid 

production. The model F-value of 9.04 indicated the model was significant, the chance (p-value) 

that a “Model F-value” this large would occur as a result of  noise was only 0.42 %. The 

coefficient estimates and their corresponding p-values were all less than 0.05, suggesting that all 

the variables were significant. The equation used to demonstrate lactic acid production in coded 

terms was:  

. The R2 value was used to judge if the model is a good fit or not (Liu and Wang 2007), R2 for 

the above equation was 0.92, which indicates that 92 % of the variation in lactic acid production 

can be explained by this model. All three variables positively influenced lactic acid production, 

which means higher level of all three variable would result higher lactic acid production. 

Numerical optimization in which the optimal conditions were generated by setting goals 

for each response; was chosen to maximize lactic acid production and minimize enzyme loading 

and peptone concentration. D-lactic acid concentration was set at a range of 27 to 32 g L-1 in 

order to achieve D-lactic acid production equivalent to that using YE, which was 26.8 g L-1. The 

highest desirability was 0.446, at which the optimal conditions were enzyme loading (5.6 FPU g-

1), peptone (3 g L-1), and SBME (15 % v/v). Validation experiments based on four replicates 

gave lactic acid production of 29.9 g L-1, which was within the 95 % confidence level of the 

predicted value (25.5 to 32.8 g L-1).  After optimization, the enzyme loading decreased 30 %, and 

peptone concentration decreased 70 %,  and YE was completely replaced by SBME.  
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 Fed-batch experiment using alkali treated corn stover via SSF 

In accordance with the statistical study and taking production costs into consideration, the 

optimal conditions (enzyme loading 5.6 FPU per g of corn stover, 3 g L-1 of peptone and 15 % 

(v/v) SBME) were evaluated in fed-batch experiment.  Four batches of alkali treated corn stover 

were fed at 36, 72, 108 and 144 h giving a total amount of 12 g corn stover. Fig. 6.4 shows the 

concentration of lactic acid and acetic acid in the fed-batch experiment. The abrupt drops at 

feeding point (36, 72, 108 and 144 h) were due to the volume change caused by taking samples 

and adding fresh corn stover and SBME. D-Lactic acid concentration increased rapidly within 

the first 72 h, then leveled off after 192 h and slightly decreased to 59.5 g L-1, but acetic acid 

concentration gradually increased to 13.2 g L-1. Because D-lactic acid is the product of interest in 

this study, the data point at 192 h was used to calculate yield and productivity. The overall yield 

of lactic acid was 0.77 g g-1 and productivity was 0.32 g L-1 h-1 (Table 6.3).  

 Discussion  

In this study, we constructed a recombinant plasmid used for xylose assimilation under 

the control of a constitutive clpC promoter and transformed L. plantarum NCIMB 8826 ∆ldhL1 

with this plasmid. D-lactic acid production from corn stover and SBME as a substitute for YE by 

the resulting recombinant strain was also demonstrated. At first, two constitutive promoters, one 

from lactate dehydrogenase genes (ldh) of L. casei (GenBank accession number M76708) and 

the other one from S-layer protein gene (slpA) of L. brevis (GenBank accession number Z14250), 

were ligated upstream of the xylAB operon in the pLEM415 plasmid. Disruption of plasmids was 

observed during cloning in E.coli; such plasmid instability is possibly owing to promoters from 

LAB, because the pLEM415 plasmid carrying xylAB without a promoter sequence was stable in 

E.coli. The clpC promoter from a polypeptide similar to previously characterized ClpC ATPase 

chaperones of Lactobacillus fermentum BR11 (McCracken et al. 2000; Lazazzera and Grossman 

1997) was used to construct an expression vector pCU by Okano et al. (2009a). Interestingly, 

plasmid instability was not observed during cloning of the clpC promoter in E.coli in our study. 

The possible explanation could be that high-level expression of the xylAB gene is detrimental to 

E.coli (Posno et al. 1991b). The clpC promoter is reported to be negatively regulated by CtsR, a 

product of orf1 gene (Derré et al. 1999). A homologous protein in E.coli may act as a repressor 

for clpC promoter results in lower-level expression of xylAB genes compared with slpA and ldh 
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promoters in E.coli cells.  The recombinant pLEM415-xylAB plasmid under control of the clpC 

promoter was used to transform Lactobacillus plantarum ∆ldhL1, and a homofermentative strain 

Lactobacillus delbrueckii ATCC 9649, which was used in our previous study (Zhang and 

Vadlani 2013). Unfortunately, electroporation attained a lack of L. delbrueckii tranformants, 

which may be attributed to various restriction modification systems encoded by the host (Rixon 

and Warner 2003), or the TypeOne restriction inhibitor failing to improve the transformation 

efficiency of L. delbrueckii in our study.  

L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB produced highly optically pure D-

lactic (～99.7 %) from either refined sugars or lignocellulosic biomass in this study. The high 

optical purity is preferred for production of poly lactic acid, which usually requires 99 % or 

greater purity. D-lactic acid yield from xylose by L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-

xylAB at the first stage was 0.53 g g-1, which is close to the yield (0.57 g g-1 ) obtained by using 

L. plantarum NCIMB 8826 ∆ldhL1 harboring the pCU-PxylAB plasmid (Okano et al. 2009a).  At 

the second stage of xylose fermentation, xylose was consumed very slowly, and 12.9 g L-1 was 

left at the end of fermentation. The slow consumption of xylose probably occurred because of  

exhaustion of other nutrients such as metal ions (Mn2+, Mg2+) and vitamins, which serve as 

activators in enzymatic reactions (Yadav et al. 2011). Similar to L. plantarum NCIMB 8826 

∆ldhL1-pCU-PxylAB, L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB did not show a 

hierarchical sugar utilization pattern in the mixed sugar fermentation. D-lactic acid yield of 0.84 

g g-1 was obtained, which was slightly higher than the yield (0.76 g g-1) obtained by using L. 

plantarum NCIMB 8826 ∆ldhL1-pCU-PxylAB in mixed sugar fermentation (Yoshida et al. 

2011).  

Production of lactic acid from corn stover via the SSF process has been described using 

various wild-type LAB (Zhang and Vadlani 2013; 2015; Zhu et al. 2007). The SSF process is 

widely used in the bio-ethanol industry and producing chemicals from lignocellulosic biomass by 

increasing the productivity and reducing feedback inhibition that usually occurs in the hydrolysis 

step is a much more effective method. The low concentration of glucose and xylose during the 

SSF process (Fig. 6.3) indicated the consumption of sugars by bacteria was much more rapid 

than release of sugars from the hydrolysis step, which also was observed in our previous study 

(Zhang and Vadlani 2013; 2015). D-lactic acid yield increased to 16 % compared to the yield 

obtained by using homo-fermentative strain L. delbrueckii (Zhang and Vadlani 2013), and 72 %, 
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compared to the yield obtained by using the xylose assimilation genes provider strain L. brevis 

(Zhang and Vadlani 2015). 

Lactic acid bacteria are nutritionally fastidious, and using expensive nitrogen sources 

such as YE and peptone has been common to spur fast growth of lactic acid bacteria and lactic 

acid production. SBME is a promising low-cost nitrogen source alternative that completely 

replaced YE for D-lactic acid production in our study. Replacing YE with 10 % (v/v) SBME did 

not significantly change lactic acid production; in fact, it increased slightly (Table 5.3), probably 

because of the presence of certain strong growth stimulators for LAB in SBME, such as glutamic 

acid and glutamine (Batal et al. 2000; Maxwell et al. 1942).  Fed-batch fermentation, an 

industrially preferred fermentation method was applied to improve lactic acid concentration in 

this study.  Lactic acid concentration stopped increasing after 192 h; the cessation is probably 

owing to the lack of an available carbon source, as evidence by the lower concentration of 

sugars. The other reason may be the inhibition of high concentration of lactic acid. Bustos et al. 

(2005) reported that Lactobacillus pentosus ATCC 8041 was strongly inhibited when lactic acid 

concentration reached 46 g L-1.  The decrease in lactic acid after 192 h was probably due to 

further convertion of lactic acid to acetic acid and CO2 by lactate oxidase when oxygen is present 

(Kandler 1983).   Zhu et al. (2007) reported production of lactic acid from corn stover and 

substitute YE with corn steep liquor using Lactobacillus pentosus ATCC 8041 via fed-batch 

SSF, and lactic acid yield reached 65 % of the maximum theoretical yield (assuming assimilation 

of glucose follow EMP, and assimilation of xylose and arabinose following PK pathway). The 

glucan and xylan contents of corn stover in this study were estimated to be 53.9 % (w/w) and 

29.7 % (w/w), respectively (Guragain et al. 2013); thus, 12 g alkali-treated corn stover 

containing 7.2 g of glucose and 4.1 g of xylose which were calculated using the following 

equations:   , and . The yield in 

our study was calculated to be 95 % of the maximum theoretical yield. The productivity of lactic 

acid was 0.05 g L-1 h-1 in the previous study, whereas productivity in our study was 0.32 g L-1 h-1 

because of simultaneous use of glucose and xylose by L. plantarum NCIMB 8826 ∆ldhL1-

pLEM415-xylAB, whereas the xylose consumption occurred only after depletion of glucose in 

Zhu et al.’s study (2007).  

 



87 

 

 Conclusions  

In conclusion, this study demonstrated D-lactic acid production from corn stover and 

SBME using L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB. Our findings show that L. 

plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB was able to simultaneously use  all the major 

sugars derived from corn stover to produce D-lactic acid with high optical purity (>99 %). This 

fermentation process is a value added approach to producing D-lactic acid with high optical 

purity from lignocellulosic biomass and a low-cost nitrogen source, which could reduce the 

manufacturing cost of lactic acid production. 

. 
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Table 6.1 Bacterial strains and plasmids 

Strains and plasmids  Relevant characteristics  Antibiotic resistance  Reference or 

source 

Strains     

Escherichia coli DH5α lacZ ∆M15, recA1, endA1 

mutations 

 Invitrogen 

L. plantarum NCIMB 

8826 ∆ldhL1  

L.plantarum NCIMB 8826 L-

lactate dehydrogenase gene1 was 

disrupted 

 Okano et al. 

2009c 

L.brevis  Source of xylAB gene  ATCC 

∆ldhL1-pLEM415-xylAB L. plantarum NCIMB 8826 

∆ldhL1 strain carrying 

pLEM415-xylAB plasmid  

 This study 

Plasmids    

pLEM415 Escherichia coli- Lactobacillus 

shuttle vector 

Erythromycin 

Ampicillin  

Serror et al. 

2002 

    

pCU-PxylAB Expression vector containing the 

xylAB operon under the control 

of clpC UTLS promoter  

Erythromycin  Okano et al. 

2009b 

Primers    

xylAB-F TAACTCGAGGGAGGGCTTTTATAATTATGAC 

TAACAGCTGCTAAAGCTCCGCTCGCCGATAGTCTAA 

GCGGTACCCTTAAAATATAGTCATAGAATTAGGGCG 

GCCTCGAGTAATCTTGACCATTATTTTACCACACTT 

xylAB-R                                              

clpC-F 

clpC-R 

* restriction enzyme cleavage sites are underlined 
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Table 6.2 Factors and levels of variables in the Box-Behnken design 

   Coded levels   

Factor  -1 0 1 

A Enzyme loading 

(FPU g-1 corn 

stover) 

4 8 12 

B Peptone (g L-1) 0 5 10 

C SBME (% v/v) 5 10 15 
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Table 6.3 D-lactic acid production from corn stover 

 D-lactic acid 

(g L-1) 

Acetic acid 

(g L-1) 

Overall yield1 

(g g-1) 

Productivity2 

(g L-1 h-1) 

SHF 19.4±0.3C 4.6±0.0C 0.49±0.01C 0.40±0.01B 

SSF+YE 26.8±1.0B 6.2±0.8B 0.67±0.02B 0.74±0.03A 

SSF+SBME 29.4±0.8B 5.1±0.3BC 0.73±0.02AB 0.82±0.02A 

Fed batch 61.4±1.1A 12.5±0.2A 0.77±0.02A 0.32±0.01C 

Each mean is based on three replications (p < 0.05). Values with same letters in the same column are not 

significantly different.  
1Overall yield was calculated by dividing the amount of D-lactic acid by the amount of biomass used.  
2Productivity was defined as the amount of D-lactic acid produced per liter per hour. In SHF, the 48 h hydrolysis 

time was included in productivity calculation.  
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Table 6.4 ANOVA for response surface quadratic model for lactic acid production  

Source  Sum of 

Squares  

df Mean Square F value p-value 

Prob > F 

Model  190.65 

 

9 21.18 9.04 0.0042 

A-enzyme 

loading 

52.53 1 52.53 22.41 0.0021 

B- peptone 73.81 1 73.81 31.49 0.0008 

C-SBME 36.13 1 36.13 15.41 0.0057 

AB 1.82 1 1.82 0.78 0.4072 

AC 0.010 1 0.010 0.004266 0.9498 

BC 1.69 1 1.69 0.72 0.4239 

A2 0.30 1 0.30 0.13 0.7305 

B2 23.6 1 23.60 10.07 0.0156 

C2 0.88 1 0.88 0.38 0.5592 
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Figure 6.1  Recombinant pLEM415-xylAB plasmid 

xylAB: xylose assimilation operon from L. brevis ATCC 367; ori: origin of replication; rep: 

replication gene from pLEM3 (Fons et al. 1997); Erm: erythromycin resistance gene from 

pLEM3; Amp: ampicillin resistance gene from pBII(SK+); P-clpC: clpC promoter from pCU-

PxylAB 
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Figure 6.2 D-lactic acid production from pure sugars: (A) Xylose; (B) mixture of xylose and 

glucose  
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Figure 6.3 D-lactic acid production from corn stover via (A) SHF; (B) SSF with YE 

supplement; (C) SSF with SBME supplement  
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Figure 6.4 Lactic acid and acetic acid concentration in fed-batch SSF experiments 
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Chapter 7 -  Metabolic flux analysis of carbon balance in 

Lactobacilli strains 

 Abstract  

Metabolic flux analyses were calculated based on the carbon balance of Lactobacillus 

strains used in this study. Results confirmed that L brevis metabolized both glucose and xylose 

through PK pathway, but the end-products ratio varied when different carbon source were used. 

L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ∆ldhL1, L. plantarum 

NCIMB 8826 ∆ldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB 

metabolized glucose via EMP. Xylose was metabolized through PK pathway in L. brevis, L. 

plantarum NCIMB 8826 ∆ldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ∆ldhL1-

pLEM415-xylAB. Our analysis showed that in the presence of xylose, a small amount of glucose 

was channeled into PK pathway in L. plantarum NCIMB 8826 ∆ldhL1-pCU-PxylAB and L. 

plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB.  

 Introduction  

Raw material is a key factor that decides the production cost of lactic acid. It’s estimated 

to be 30 to 40 % of the total cost (Oh et al. 2005). Lactic acid can be produced from different raw 

materials including starchy and sugar based waste from food industry, municipal solid waste 

such as waste paper products, and agricultural residues. Lactic acid bacteria can convert 

carbohydrate in the above mentioned raw materials into lactic acid and/or other products 

depending on their metabolic pathway. Generally, homofermentative lactic acid bacteria convert 

carbohydrate into lactic acid using the Embden-Meyerhof pathway (EMP), whereas 

heterofermentative lactic acid bacteria metabolize carbohydrate through the phosphoketolase 

(PK) pathway to produce lactic acid, acetic acid, ethanol, formic acid and CO2. Pentose sugars 

are usually metabolized through the PK pathway. By understanding the distribution of carbon 

flux in lactic acid bacteria, useful information can be gathered to enable proper selection of 

strains for desired level of lactic acid production with different raw materials.  

In this doctoral research, six Lactobacillus strains were studied to produce lactic acid 

from different lignocellulosic biomass, viz. Lactobacillus delbrueckii ATCC 9649, Lactobacillus 

brevis ATCC 367, Lactobacillus plantarum ATCC 21028, Lactobacillus plantarum NCIMB 
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8826 ∆ldhL1 and its two derivatives: Lactobacillus plantarum NCIMB 8826 ∆ldhL1-pCU-

PxylAB and Lactobacillus plantarum NCIMB 8826 ∆ldhL1-pLEM415-xylAB. L. delbrueckii is a 

homofermentative strain which can metabolize most hexose sugars including glucose and 

fructose through the EMP pathway to produce D-lactic acid, but xylose cannot be used by this 

strain (Demirci et al. 1992; Zhang and Vadlani 2013; Calabia and Tokiwa 2007). L. brevis can 

use both glucose and xylose simultaneously to produce a racemic mixture of D/L lactic acid 

(Kim et al. 2009; Zhang and Vadlani 2015). L. plantarum processes glucose through the EMP 

pathway to produce a racemic mixture of D/L lactic acid, but it also possesses an inducible PK 

pathway when pentose sugars such as arabinose are present. However, this strain cannot use 

xylose (Vadlani et al. 2008a, 2008b; Zhang and Vadlani 2015). L. plantarum NCIMB 8826 was 

genetically modified to produce only D-lactic acid by deletion of the L-lactate dehydrogenase 

gene, and the resulting strain is designated as Lactobacillus plantarum NCIMB 8826 ∆ldhL1 

(Okano et al. 2009c). ∆ldhL1 is able to use arabinose (Okano et al. 2009a), but it cannot use 

xylose. By introduction of xylose assimilation plasmids into this strain, the resulting ∆ldhL1-

pCU-PxylAB and ∆ldhL1-pLEM415-xylAB strains produced D-lactic acid from both glucose and 

xylose. The purpose of this study was to investigate detailed carbon metabolic flux in these six 

Lactobacillus strains using different carbon source. Metabolic flux analysis results could provide 

useful information about strain selection, distribution of carbon fluxes, and thereby means to 

minimize byproduct formation, when different raw materials are used for lactic acid production. 

 Materials and methods 

  Fermentation conditions  

Glucose (30 g L-1), xylose (30 g L-1) and mixed sugar fermentation (30 g L-1 glucose and 

15 g L-1 xylose) experiments were conducted in 100 mL sealed serum bottles with 50 mL 

working volume for L. delbrueckii, L. brevis, L. plantarum, ∆ldhL1, ∆ldhL1-pCU-PxylAB and 

∆ldhL1-pLEM-PxylAB. Calcium carbonate was added at 3 % (w/v) to buffer the pH. 

Temperature was kept at 37 ̊C and agitation rate was kept at 150 rpm.  

 Sample analysis  

Glucose, xylose, lactic acid, acetic acid and ethanol were measured via HPLC system 

using a refractive index detector (RID) and a Rezex ROA organic acid column (300×7.8 mm, 
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Phenomenex Inc., Torrance, CA). Samples were eluted using 0.005 N sulfuric acid at a flow rate 

of 1 mL min-1.  

 Flux analysis equation development  

The method developed by Ohara et al. (2007) was used for calculating the carbon 

metabolic flow. Fig. 7.1 shows the proposed EMP and PK pathway of Lactobacillus strains. 

Based on Fig. 7.1 The junctions A to I were set; the same letters were organized in a circuit 

diagram and each pathway was named as f1 to f17 (Fig. 7.2). The fn (the amount of carbons in 

each pathway) was equal to the amount of molecules in the flow multiplied by the number of 

carbons in the molecules. For example the equation applied to junction B in Fig. 7.2 was: f2  ̶ f3  ̶ 

f4=0; similar equations for other junctions were formed in the same way. The molecular rate of 

inflow and outflow was assumed to be constant in junction B, F and I, thus the amount of 

molecules were calculated by dividing fn by the number of carbons in the molecules. Concerning 

the outflow of molecules from junction B, equation can be formed as f3/3=f4/2. Similar equations 

can be formed for outflow of molecules from junction F and I.  All of the equations were 

expressed in an augmented matrix and fn was solved by using MATLAB (version 2014a, 

MathWorks, Natick, MA).  

 Results and discussion 

Table 7.1 shows the fermentation results of Lactobacillus strains with glucose as carbon 

source. L. plantarum strains consumed almost all of the glucose within 24 h, while L. delbrueckii 

and L. brevis consumed glucose more slowly than L. plantarum strains; all glucose was 

consumed within 48 h.  Lactic acid yield of L. plantarum ATCC 21028 was 0.93 g per g of 

glucose and ∆ldhL1-pLEM415-xylAB was 0.96 g per g of glucose, which were very close to the 

theoretical yield (1 g lactic acid per g of glucose), followed by ∆ldhL1-pCU-PxylAB , L. 

debrueckii, and ∆ldhL1. All glucose was metabolized through EMP in these strains resulting in 

high yield of lactic acid (Table 7.2). L. brevis gave the lowest lactic acid yield due to the 

diversion of carbon to ethanol and acetic acid production. Small amount of acetic acid was also 

detected in L. plantarum ATCC 21028, ∆ldhL1, ∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-

xylAB strains, which were supposed to ferment glucose through EMP and produce only lactic 

acid from glucose. The formation of a small amount of acetic acid in these strains could be the 

semi-anaerobic fermentation condition or glucose limitation, which may cause the conversion of 
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pyruvate to acetic acid and CO2 (Kandler 1983). The negative value of f6 indicated the reverse 

reaction had occurred (Table 7.2). Acetyl-CoA can be formed from acetate by a reaction 

catalyzed by acetyl-CoA synthetase, but this reaction is less common than the pyruvate 

dehydrogenase route; however when acetyl-CoA synthetase route was considered, the calculated 

carbon flow did not fit into the model.  

Table 7.3 shows the fermentation results of using xylose as carbon source. Table 7.4 

shows the calculated carbon flow. Lactic acid yield of L. brevis, ∆ldhL1-pCU-PxylAB and 

∆ldhL1-pLEM415-xylAB were 0.50, 0.51 and 0.47 g per g of xylose, respectively, which are 

close to theoretical yield (0.6 g per g of xylose). Although yield of lactic acid of these three 

strains were comparable to each other, ∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-xylAB 

consumed more xylose and produced more lactic acid than L. brevis within 48 h. With xylose as 

carbon source, no ethanol was produced in L. brevis compared to when glucose was used as the 

only carbon source. One possible explanation is that NAD+ must be balanced, and NAD+ 

regenerated in lactic acid production compensates the NAD+ used in xylose fermentation, thus 

acetyl phosphate can be converted to acetate instead of ethanol to gain one ATP, making PK 

pathway as efficient as the EMP.  

When mixed sugars were used as carbon source, xylose was not used by L. delbrueckii, 

L. plantarum ATCC 21028 and ∆ldhL1 in the mixed glucose and xylose fermentation, and their 

fermentation performance was not affected by the presence of xylose. The yield of lactic acid of 

L. brevis from mixed xylose and glucose was 0.53 g g-1, lactic acid yield of ∆ldhL1-pCU-PxylAB 

was 0.81 g g-1 and ∆ldhL1-pLEM415-xylAB was 0.84 g g-1 (Table 7.5).  Table 7.6 shows the 

calculated f1 to f17 value of using mixed sugars. L. brevis metabolized both glucose and xylose 

through PK pathway. Interestingly, about 9 % of consumed glucose was diverted into the PK 

pathway in ∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-xylAB when mixed glucose and xylose 

were used as carbon source. The reason why glucose was diverted into the PK pathway is still 

unclear; one possible explanation could be that the PK pathway was used as a bypass in response 

to lactic acid stress.  Pieterse et al. (2005) found out that genes involved in the PK pathway 

showed an increased expression under lactic acid stress condition. After xylose assimilation 

plasmid was introduced into L. plantarum NCIMB 8826 ∆ldhL1, xylose isomerase and xylulose 

kinase were constitutively expressed and xylose was converted into the common intermediate 

xylulose-5-phosphate (X5P) which was immediately metabolized in the PK pathway and 
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converted into lactic acid. Compared to when glucose was used alone, lactic acid production 

increased to about 38 % for ∆ldhL1-pCU-PxylAB and 31 % for ∆ldhL1-pLEM415-xylAB. The 

increased lactic acid stress may cause the diversion of small amount of glucose into the PK 

pathway.  

Each Lactobacillus strain has its own merits or demerits when compared. Selection of the 

proper strain depends on the final purpose and sugar composition of raw materials. If D-lactic 

acid is the desired product, and raw materials are rich in lactose, galactose, fructose, or sucrose, 

such as, cheese whey, sugar cane molasses or juice, then L. delbrueckii would be a good choice 

because it can use all the above mentioned sugars and produce optically pure D-lactic acid 

through the EMP pathway without any by-product. If high optical purity D-lactic acid is required 

and the raw material contains mainly glucose, such as glucose enriched stream from 

lignocellulosic biomass, then ∆ldhL1 could also be a good choice because ∆ldhL1 grows faster 

than L. delbrueckii and it can tolerant higher level of oxygen compared to L. delbrueckii, which 

prefers 5 % CO2 environment during fermentation. If the optical purity of lactic acid is not an 

important factor, and raw material is rich in glucose, then L. plantarum ATCC 21028 can be 

used. If the raw materials are rich in both glucose and xylose, such as agricultural residues, and 

D-lactic acid is the product of interest, then either ∆ldhL1-pCU-PxylAB and ∆ldhL1-pLEM415-

xylAB can be a good option.  It seem that L. brevis is not a desired strain to produce lactic acid 

because it metabolizes both glucose and xylose through the PK pathway, and produces 

significant amount of acetic acid and ethanol, which will enhance downstream processing cost. 

However, co-cultivation with other glucose fermenting strains, for example L. plantarum or 

∆ldhL1, L. brevis will focus on converting xylose into lactic acid and ethanol production will 

also be reduced (Zhang and Vadlani 2015).  

 Conclusions  

The performances of six Lactobacillus strains were compared and the detailed carbon 

flow was studied for different carbon sources. The existence of different pathways was identified 

in six different Lactobacillus strains. The EMP is dominant in classic homofermentative L. 

delbrueckii strain. The presence of two carbon pathways in facultative heterofermentative L. 

plantarum strains makes the bacteria more flexible with different carbon source. The end product 

profile of heterofermentative strain L. brevis is affected by the oxidation-reduction potential of 
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the fermentation system. These critical data will help to select proper strain to achieve a desired 

product with different raw materials; but the performance of these Lactobacillus strains on other 

carbon sources such as lactose, sucrose, fructose, and arabinose needs to be evaluated in detail to 

provide more information on the strain selection.  
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Table 7.1 Fermentation results of Lactobacillus strain with glucose as carbon source  

Strain   Time 

(h)  

Consumed 

glucose  

(g L-1) 

Lactic acid  

(g L-1) 

Acetic acid  

(g L-1) 

Ethanol  

(g L-1)  

Yield1  

(g g-1) 

L. delbrueckii 48 30.0±1.9 26.1±1.4 0 0 0.87 

L. brevis 48 29.5±1.2 15.0±0.6 6.1±0.1 4.3±0.6 0.50 

Lactobacillus plantarum       

ATCC 21028 24 29.6±0.1 27.5±0.2 0.4±0.1 0 0.93 

∆ldhL1 24 30.0±0.7 24.6±0.3 0.06±0.1 0 0.82 

∆ldhL1-pCU-PxylAB 24 29.7±0.7 26.1±0.1 0.6±0.1 0 0.88 

∆ldhL1-pLEM415-xylAB 24 30.0±0.8 28.7±0.5 0.1±0.2 0 0.96 

1Yield is calculated by the amount of lactic acid produced divided by the amount of glucose consumed 
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Table 7.2 Calculation results for carbon metabolic flow with glucose as carbon source (mM 

carbon) 

Strain  f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12  f13 f14 f15 f16 f17 

L. delbrueckii 0 0 0 870 0 870 0 0 0 0 0 870 870 0 0 0 

L. brevis 833 500 333 500 130 500 187 203 85 56 28 1000 0 1000 167 833 

ATCC 21028  0 0 0 933 -13 913 0 13 20 13 7 933 933 0 0 0 

∆ldhL1 0 0 0 823 -2 820 0 2 3 2 1 823 823 0 0 0 

∆ldhL1-pCU-

PxylAB 

0 0 0 900 -20 870 0 20 30 20 10 900 900 0 0 0 

∆ldhL1-

pLEM415-

xylAB 

0 0 0 971 -3 967 0 3 5 3 2 972 972 0 0 0 
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Table 7.3 Fermentation results of Lactobacillus strain with xylose as carbon source 

Strain   Time 

(h)  

Consumed 

xylose 

 (g L-1) 

Lactic acid  

(g L-1) 

Acetic acid  

(g L-1) 

Ethanol  

(g L-1)  

Yield1  

(g g-1) 

L. brevis 48 9.35±0.6 4.7±0.2 4.7±0.1 0 0.50 

Lactobacillus plantarum        

∆ldhL1-pCU-PxylAB 48 18.8±0.5 9.5±0.6 7.5±0.6 0 0.51 

∆ldhL1-pLEM415-xylAB 48 17.0±0.6 8.0±0.1 5.9±0.1 0 0.47 

1Yield is calculated by the amount of lactic acid produced divided by the amount of xylose consumed 
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Table 7.4 Calculation results for carbon metabolic flow with xylose as carbon source (mM 

carbon) 

Strain  f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 

L. brevis  245 245 147 98 245 -58 157 0 157 88 59 29 

∆ldhL1-pCU-PxylAB 433 433 259 173 433 -76 318 0 250 115 77 38 

∆ldhL1-pLEM415-xylAB 352 352 211 141 352 -56 267 0 197 85 56 28 
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Table 7.5 Fermentation results of Lactobacillus strain with mixed glucose and xylose as 

carbon source 

Strain   Time 

(h)  

Consumed 

glucose  

(g L-1) 

Consumed 

xylose 

 (g L-1) 

Lactic acid  

(g L-1) 

Acetic acid  

(g L-1) 

Ethanol  

(g L-1)  

Yield1  

(g g-1) 

L. brevis 48 20.7±1.9 2.7±1.9 12.3±0.5 2.6±0.3 5.0±0.1 0.53 

Lactobacillus plantarum        

∆ldhL1-pCU-PxylAB 48 29.5±0.1 15.0±0.4 36.2±0.5 6.6±0.0 0 0.81 

∆ldhL1-pLEM415-xylAB 48 29.6±0.1 14.8±0.1 37.5±0.8 7.1±0.1 0 0.84 

1Yield is calculated by the amount of lactic acid produced divided by the amount of total sugar consumed 
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Table 7.6 Calculation results for carbon metabolic flow with mixed glucose and xylose as 

carbon source (mM carbon) 

Strain  f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 

L. brevis  110 683 410 273 410 186 410 217 87 46 31 15 688 0 688 115 573 

∆ldhL1-pCU-

PxylAB 

476 550 330 220 1207 0 1207 0 220 0 0 0 966 877 89 15 74 

∆ldhL1-

pLEM415-

xylAB 

515 592 355 237 1250 0 1250 0 237 0 0 0 987 895 93 15 77 
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Figure 7.1 Pathway of mixed sugars in lactobacillus strains. Junctions A to E corresponded to 

those in Fig. 7.2, GAP, glyceraldehyde 3-phospahte 
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Figure 7.2 Circuit of modified pathways in Lactobacillus strains 
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Chapter 8 - Conclusions and future research 

Lactic acid is an industrial important chemical with an expanding market demand 

because of its multifunctional abilities as a platform chemical.  Economics of lactic acid 

production through fermentation depends on many factors, including the raw materials source, 

microorganisms, and fomentation process. The purpose of this study was to produce lactic acid, 

primarily high optical pure D-lactic acid from lignocellulosic biomass using different 

Lactobacillus strains. The following conclusions can be drawn from this study.  

1) L. delbrueckii produced high level of optically pure D-lactic acid as major end-

product from biomass derived glucose, but the dominant sugar xylose derived from 

hemicellulose was not utilized. 

2) L-lactate deficient strain L. plantarum NCIMB 8826 ∆ldhL1 produced optically pure 

D-lactic acid from glucose and arabinose. A small amount of acetic acid by-product 

was also produced from the arabinose. Xylose was not used by this mutant strain.  

3) L. brevis was capable of simultaneously using both glucose and xylose derived from 

lignocellulosic biomass to produce racemic mixture of D and L-lactic acid. The yield 

of lactic acid was low compared to L. delbrueckii and L. plantarum NCIMB 8826 

∆ldhL1 due to the diversion of carbon to acetic acid and ethanol produciton. 

4)  Co-fermentation strategy of cultivating L. brevis with L. plantarum significantly 

enhanced the yield of lactic acid and minimized the formation of by-products.  

5) L. plantarum NCIMB 8826 ∆ldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 

∆ldhL1-pLEM415-xylAB simultaneously used glucose and xylose from 

lignocellulosic biomass. D-lactic acid was produced at high yield and productivity by 

these two recombinant strains.  

6) SSF process demonstrated the advantages of avoiding substrate inhibition and 

increasing the productivity and yield of lactic acid compare to SHF process.  

7) Soybean meal extract was demonstrated to be a cost-effective substitute to yeast 

extract for lactic acid production.  

8) Metabolic flux analysis based on carbon balance confirmed pathways in different 

Lactobacilli and useful information was attained to make meaningful strain selection 

for a targeted lactic acid production from a specific lignocellulosic feedstock.   
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 Future research  

Currently lactic acid is commercially produced from corn starch or cane sugar via 

bacterial fermentation. The industrial use of lignocellulosic biomass as feedstocks for lactic acid 

production by lactic acid bacteria has not been sufficiently profitable due to some limitations as 

mentioned earlier. Further research in the following area is required to make the lignocellulosic 

biomass derived lactic acid more economically attractive:  

1) Lactobacilli strains used in this study need to be evaluated for their tolerance to 

common inhibitors such as furfural and HMF generated during pretreatment process. 

Lactobacilli growth inhibition was not observed by using alkali pretreated 

lignocellulosic biomass in this study. However, other pretreatment methods, for 

example, the acid pretreatment, usually generate much more inhibitors compared to 

alkali pretreatment; therefore production of lactic acid by Lactobacilli using 

lignocellulosic biomass processed with different pretreatments is required.  

2) Lactic acid production from lignocellulosic biomass in this study was performed in 

laboratory scale, thus scale-up studies are required to further evaluate the scalability 

and commercial feasibility. 

3) High concentration of lactic acid has an inhibitory effect on cellular metabolism and 

lactic acid production. The end product inhibition caused by lactic acid could result 

in a disturbance of the regeneration of NAD+, particularly under anaerobic condition 

because the NADH oxidase would not be available to convert NADH to NAD+ in the 

absence of oxygen. Also the undissociated lactic acid can enter the cytoplasm and 

disrupt the internal pH and anion pool, which denatures essential enzymes inside the 

cells. One way to reduce the feedback inhibition of lactic acid is to integrate 

fermentation with downstream processing. Esterification and hydrolysis is a widely 

accepted method to purify lactic acid, esterification of lactic acid with ethanol could 

be an attractive strategy to separate lactic acid from fermentation broth, and promote 

corn ethanol by adding value to the ethanol production process (Fig. 8.1).  The other 

way is to develop enhanced acid tolerant strain, which can improve lactic acid 

production and reduce the utilization of neutralizing agents. Acid tolerant strains can 

be selected by adaptive evolution method. Cells are challenged at low pH with 

addition of lactic acid for several generations until stable growth is achieved.  
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4) Although enzyme loading was optimized by RSM in this study, the high cost of 

enzyme is still a concern for economical production of lactic acid. Cellobiose is the 

main product in enzymatic hydrolysis of cellulose, and it can strongly inhibit the 

hydrolysis reaction of cellulase. Therefore, high dosage of β-glucosidase is usually 

supplemented to reduce the feedback inhibition caused by accumulated cellobiose.  

By introducing an expression plasmid (Fig. 8.2) carrying genes encoding β-

glucosidase into D-lactic acid producing strain, the amount of enzyme used to 

degrade cellulose will be reduced.  

5) Co-utilization of glucose and xylose was achieved by our recombinant strain ∆ldhL1-

pLEM415-xylAB, but it consumes xylose much slower than glucose. The co-

utilization of glucose and xylose could be owing to the fact that clpC promoter is 

derived from another lactic acid bacterium, thus the regulation of host strain do not 

govern its expression or function, and xylose is converted to xylulose-5-P even when 

glucose is still present. Posthuma et al. (2002) reported that expression of 

phosphoketolase which catalyzes the reaction of splitting xylulose-5-P into acetyl-P 

and glyceraldehyde-3-P was induced by pentose sugars and was repressed by carbon 

catabolite protein A (CcpA) - a key player in carbon catabolite repression (CCR). To 

improve the xylose uptake rate and productivity of D-lactic acid of this recombinant 

strain, gene encoding a proton motive force-linked xylose transport can be cloned and 

co-expressed with xylose assimilation genes (Chaillou et al. 1998) (Fig. 8.3). After 

the buildup of the xylose transport system in the bacteria, the ccpA gene which 

encodes CcpA could be disrupted and higher phosphoketolase activity could be 

achieved, which may result in increased conversion rate of xylose into lactic acid.  
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Figure 8.1 Integrated process of lactic acid production with corn ethanol  

CDS: Condensed distillers solubles; DDGS: Dried distillers grains with solubles; SSF: 

simultaneous saccharification and fermentation 
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Figure 8.2 β-glucosidase expression vector 

bgl: β-glucosidase gene; SS: signal peptide sequence encoding gene; Ori: origin of replication; 

rep: replication gene from pLEM3; Erm: erythromycin resistance gene from pLEM3; Amp: 

ampicillin resistance gene from pBII(SK+); P-clpC: clpC promoter from pCU-PxylAB 



116 

 

 

Figure 8.3 xylose symporter and xylose assimilation enzymes co-expression vector 

xylT: D-xylose-H+ symporter genes from L. brevis; xylAB: xylose assimilation operon from L. 

brevis ATCC 367; Ori: origin of replication; rep: replication gene from pLEM3; Erm: 

erythromycin resistance gene from pLEM3; Amp: ampicillin resistance gene from pBII(SK+); P-

clpC: clpC promoter from pCU-PxylAB 
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