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a b s t r a c t

We study the Student-Project Allocation problem with lecturer preferences over Projects
(spa-p). In this context it is known that stable matchings can have different sizes and
the problem of finding a maximum size stable matching is NP-hard. There are two
known approximation algorithms for max-spa-p, with performance guarantees 2 and
3
2 . We show that max-spa-p is polynomial-time solvable if there is only one lecturer
involved, and NP-hard to approximate within some constant c > 1 if there are two
lecturers involved. We also show that this problem remains NP-hard if each preference
list is of length at most 3, with an arbitrary number of lecturers. We then describe
an Integer Programming (IP) model to enable max-spa-p to be solved optimally in the
general case. Following this, we present results arising from an empirical evaluation
that investigates how the solutions produced by the approximation algorithms compare
to optimal solutions obtained from the IP model, with respect to the size of the stable
matchings constructed, on instances that are both randomly-generated and derived from
real datasets.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Matching problems, which generally involve the assignment of a set of agents to another set of agents based on
references, have wide applications in many real-world settings. One such application can be seen in an educational
ontext, e.g., the allocation of pupils to schools, school-leavers to universities and students to projects. In the context of
llocating students to projects, university lecturers propose a range of projects, and each student is required to provide
preference over the available projects that she finds acceptable. Lecturers may also have preferences over the students
hat find their project acceptable and/or the projects that they offer. There may also be upper bounds on the number
f students that can be assigned to a particular project, and the number of students that a given lecturer is willing to
upervise. The problem then is to allocate students to projects based on these preferences and capacity constraints — the
o-called Student-Project Allocation problem (spa) [5,15].

✩ A preliminary version of a part of this paper appeared in Manlove et al. (2018).
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Two major models of spa exist in the literature: one permits preferences only from the students [2,10,14,18], while the
ther permits preferences from the students and lecturers [1,12]. Given the large number of students that are typically
nvolved in such an allocation process, many university departments seek to automate the allocation of students to
rojects. Examples include the School of Computing Science, University of Glasgow [14], the Faculty of Science, University
f Southern Denmark [5], the Department of Computing Science, University of York [12], and elsewhere [2,4,10,20].
In general we seek a matching, which is a set of agent pairs who find one another acceptable that satisfies the capacities

f the agents involved. For matching problems where preferences exist from the two sets of agents involved (e.g., junior
octors and hospitals in the classical Hospitals–Residents problem (hr) [7], or students and lecturers in the context of spa),

it has been argued that the desired property for a matching one should seek is that of stability [19]. Informally, a stable
matching ensures that no acceptable pair of agents who are not matched together would rather be assigned to each other
han remain with their current assignees.

Abraham et al. [1] described two linear-time algorithms to find a stable matching in a variant of spa where students
ave preferences over projects whilst lecturers have preferences over students. The first algorithm finds the student-
ptimal stable matching, in the sense that each assigned student is allocated to the best project that she could obtain
n any stable matching; while the second algorithm outputs the lecturer-optimal stable matching, in the sense that each
ssigned lecturer is allocated the best set of students that she could obtain in any stable matching.
Manlove and O’Malley [17] proposed another variant of spa where both students and lecturers have preferences over

rojects, referred to as spa-p. A motivation for this variant is that a lecturer might prefer to supervise projects that are
losely related to or in-line with her research interests, while the remaining projects that she proposed, perhaps to ensure
hat the students have some sense of choice, are of lesser priority to her. In their paper, they formulated an appropriate
tability definition for spa-p, and they showed that stable matchings in this context can have different sizes. Moreover,
n addition to stability, a very important requirement in practice is to match as many students to projects as possible.

Consequently, Manlove and O’Malley [17] proved that max-spa-p, the problem of finding a maximum size stable
atching given an instance of spa-p, is NP-hard. Further, they showed that max-spa-p is not approximable within δ1, for
ome δ1 > 1, unless P = NP. Moreover, the result holds even if each project and lecturer has capacity 1, and all preference
ists are of length at most 4. In addition, they gave a polynomial-time 2-approximation algorithm for max-spa-p.

Subsequently, Iwama et al. [11] described an improved approximation algorithm with an upper bound of 3
2 , which

builds on Manlove and O’Malley’s algorithm [17] and uses ideas from Király’s approximation algorithm for the problem
of finding a maximum size stable matching in a variant of the Stable Marriage problem [13]. In addition, Iwama et al. [11]
showed that max-spa-p is not approximable within 21

19 − ε, for any ε > 0, unless P = NP.
Considering the fact that the existing algorithms for max-spa-p are only guaranteed to produce an approximate

solution, we seek another technique to enable max-spa-p to be solved optimally. Integer Programming (IP) is a powerful
technique for producing optimal solutions to a range of NP-hard optimisation problems, with the aid of commercial
optimisation solvers, e.g., Gurobi [9], GLPK [8] and CPLEX [6]. These solvers can allow IP models to be solved in a reasonable
amount of time, even with respect to problem instances that occur in practical applications.

Our contribution. We present new algorithmic and experimental results for spa-p. On the algorithmic side, first we
explore the complexity of max-spa-p under the following separate restrictions: if (i) the instance involves r lecturers,
denoted max-spa-p-lr , where r is a constant; and (ii) each preference list is of length at most 3, denoted (3, 3)-max-spa-
p. For the first restriction, if there is only one lecturer involved, we show that max-spa-p is polynomial-time solvable. In
contrast to this, if there are two lecturers involved, we show that the problem remains NP-hard and is not approximable
within some constant c > 1 unless P = NP. For the second restriction, we show that max-spa-p remains NP-hard. We
then move on to describe an IP model to enable max-spa-p to be solved optimally, in the general case where there are
no restrictions on the problem instance. We remark that this IP model, excluding its correctness result, first appeared in
[16].

On the experimental side, we present results arising from an empirical evaluation that investigates how the solutions
produced by the existing approximation algorithms for max-spa-p [11,17] compare to optimal solutions obtained from
our IP model, with respect to the size of the stable matchings constructed, on instances that are both randomly-generated
and derived from real datasets. These real datasets are based on actual student preference data and manufactured lecturer
preference data from previous runs of student-project allocation processes at the School of Computing Science, University
of Glasgow. We also present results showing the time taken by the IP model to solve the problem instances optimally.
Our main finding is that the 3

2 -approximation algorithm finds stable matchings that are very close to having maximum
ardinality over the tested instances.
The remainder of this paper is organised as follows. We give preliminary definitions and results in Section 2. In

ection 3, we focus on max-spa-p-lr , with r ∈ {1, 2}; we describe a polynomial-time algorithm for max-spa-p-l1
in Section 3.1, and we give an inapproximability result for max-spa-p-l2 in Section 3.2. In Section 4 we show that
(3, 3)-max-spa-p is NP-hard. In Section 5, we describe our IP model for max-spa-p. We present our empirical evaluation
in Section 6, along with some discussions regarding results obtained from the experiments. Finally, in Section 7 we give
some conclusions and open problems.
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Fig. 1. An instance I1 of spa-p.

2. Preliminary definitions and results

We give a formal definition for spa-p as described in the literature [17]. An instance I of spa-p involves a set S =
{s1, s2, . . . , sn1} of students, a set P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each lecturer
lk ∈ L offers a non-empty subset of projects, denoted by Pk. We assume that P1, P2, . . . , Pn3 partitions P (i.e., each project
is offered by one lecturer). Also, each student si ∈ S has an acceptable set of projects Ai ⊆ P . We call a pair (si, pj) ∈ S×P
an acceptable pair if pj ∈ Ai. Moreover si ranks Ai in strict order of preference. Similarly, each lecturer lk ranks Pk in
strict order of preference. Finally, each project pj ∈ P and lecturer lk ∈ L has a positive capacity denoted by cj and dk
respectively.

An assignment M is a subset of S ×P where (si, pj) ∈ M implies that si finds pj acceptable (i.e., pj ∈ Ai). We define the
size of M as the number of (student, project) pairs in M , denoted |M|. If (si, pj) ∈ M , we say that si is assigned to pj and pj
is assigned si. Furthermore, we denote the set of projects assigned to student si in M as M(si). Similarly, we denote the set
of students assigned to project pj in M as M(pj). For ease of exposition, if si is assigned to a project pj offered by lecturer
lk, we may also say that si is assigned to lk, and lk is assigned si. Thus we denote the set of students assigned to lk in M as
M(lk).

A project pj ∈ P is full, undersubscribed or oversubscribed in M if |M(pj)| is equal to, less than or greater than cj,
respectively. The corresponding terms apply to each lecturer lk with respect to dk. We say that a project pj ∈ P is non-empty
if |M(pj)| > 0. Similarly we say that a lecturer lk ∈ L is non-empty if |M(lk)| > 0.

A matching M is an assignment such that |M(si)| ≤ 1 for each si ∈ S , |M(pj)| ≤ cj for each pj ∈ P , and |M(lk)| ≤ dk for
each lk ∈ L (i.e., each student is assigned to at most one project, and no project or lecturer is oversubscribed). In what
follows, lk is the lecturer who offers pj. Given a matching M , an acceptable pair (si, pj) ∈ (S ×P) \M is a blocking pair for
M if (1) and (2) holds as follows:

(1) either si is unassigned in M or si prefers pj to M(si);
(2) pj is undersubscribed, and either (a), (b), or (c) holds as follows:

(a) si ∈ M(lk) and lk prefers pj to M(si);
(b) si /∈ M(lk) and lk is undersubscribed;
(c) si /∈ M(lk) and lk prefers pj to her worst non-empty project.

If such a pair were to occur in practice, si and lk will have an incentive to form a private arrangement outside the
matching in order to improve on their current allocation via pj (see [17, Section 2] for an intuition for this definition).
Henceforth, if (si, pj) forms a blocking pair for M then we refer to (si, pj) as a blocking pair of type (a), type (b), or type
(c), according as (si, pj) satisfies conditions 2(a), 2(b), or 2(c), respectively.

With respect to the spa-p instance given in Fig. 1, M1 = {(s1, p3), (s2, p1)} is clearly a matching. It is obvious that each
of students s1 and s2 is matched to her first ranked project in M1. Although s3 is unassigned in M1, the lecturer offering
p3 (the only project that s3 finds acceptable) is assumed to be indifferent among those students who find p3 acceptable.
Also p3 is full in M1. Thus, we say that M1 admits no blocking pair.

Another way in which a matching could be undermined is through a group of students acting together. Given a
matching M , a coalition is a set of students C = ⟨si0 , . . . , sir−1⟩, for some r ≥ 2 such that each student sij (0 ≤ j ≤ r−1) is
assigned in M and prefers M(sij+1 ) to M(sij ), where addition is performed modulo r . With respect to Fig. 1, the matching
M2 = {(s1, p1), (s2, p2), (s3, p3)} admits a coalition {s1, s2}, as students s1 and s2 would rather permute their assigned
projects in M2 so as to be better off. We note that the number of students assigned to each project and lecturer involved
in any such swap remains the same after such a permutation. Moreover, the lecturers involved would have no incentive to
prevent the switch from occurring since they are assumed to be indifferent between the students assigned to the projects
they are offering. If a matching admits no coalition, we define such matching to be coalition-free.

Given an instance I of spa-p, we define a matching M in I to be stable if M admits no blocking pair and is coalition-free.
It turns out that with respect to this definition, stable matchings in I can have different sizes. Clearly, each of the matchings
M1 = {(s1, p3), (s2, p1)} and M3 = {(s1, p2), (s2, p1), (s3, p3)} is stable in the spa-p instance I1 shown in Fig. 1. The varying
sizes of the stable matchings produced naturally leads to the problem of finding a maximum cardinality stable matching

given an instance of spa-p, which we denote by max-spa-p.
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Algorithm 1 Algorithm MAX-SPA-P-L1

Input: an instance I of spa-p-l1
Output: a maximum size stable matching in I
1: M ← a greedy maximum matching in I
2: while there exist a type (c) blocking pair do
3: si ← a student involved in such blocking pair
4: (si, pj)← best blocking pair for si
5: pq ← worst non-empty project offered by l
6: sr ← any student assigned to pq in M
7: M ← M \ {(sr , pq)}
8: M ← M ∪ {(si, pj)} /* promote si to pj */
9: while M admits a coalition C do

10: satisfy C
11: return M

3. spa-p with constant number of lecturers

As mentioned in Section 1, max-spa-p is not approximable within δ1, for some δ1 > 1 unless P= NP [17]. Moreover, the
result holds even if each project and lecturer has capacity 1, and each preference list is of length at most 4. We wished to
answer the following question: what is the complexity of finding a maximum size stable matching if a constant number
of lecturers are involved in an arbitrary spa-p instance I? As it turns out, the problem is polynomial-time solvable if there
is only one lecturer involved in I and hard to approximate if there are two lecturers involved in I . We present the proof
of these results in the next two sections.

We denote by spa-p-lr an instance of spa-p involving r lecturers, where r is a constant, and we denote by max-spa-p-lr
the problem of finding a maximum size stable matching given an instance of spa-p-lr .

3.1. max-spa-p-l1 is polynomial-time solvable

3.1.1. Introduction
Let I be an instance of spa-p-l1 where l is the lecturer involved in I; assume all notation and terminology from the

general spa-p case. Given an acceptable pair (si, pj), we define rank(si, pj) as 1 plus the number of projects that si prefers
to pj. Let R be the maximum rank of a project in any student’s preference list. We remark that each of rank(si, pj) and R
is calculated from the problem instance.

We define the profile of a matching M in I , ρ(M), as an R-tuple (x1, x2, . . . , xR), such that for each r (1 ≤ r ≤ R), xr is
the number of students, say si, assigned in M to a project, say pj, such that rank(si, pj) = r . For example, the matching
M3 = {(s1, p2), (s2, p1), (s3, p3)} in the instance I1 given in Fig. 1 has the profile ρ(M3) = (2, 1, 0), since two students
(i.e., s2 and s3) are assigned to their first choice project, one student (i.e., s1) is assigned to her second choice project, and
no student is assigned to her third choice project. A greedy maximum matching in I is a matching of maximum cardinality
that has lexicographically maximum profile. Clearly, M3 is a greedy maximum matching in I1.

3.1.2. Description of the algorithm
Our algorithm, which we denote by AlgorithmMAX-SPA-P-L1, begins by first constructing a greedy maximummatching

M in I using the polynomial-time algorithm given in [14]. As we will prove later, at this point in the algorithm, M is
coalition-free and does not admit a blocking pair of type (a) or type (b). If M admits a type (c) blocking pair then the first
while loop of the algorithm is executed. In this loop we identify a student, say si, involved in a type (c) blocking pair, say
(si, pj), such that (si, pj) is the best blocking pair for si. Next, we identify l’s worst non-empty project in M , say pq; we
identify any student assigned to pq in M , say sr , and we remove the pair (sr , pq) from M . Finally, we promote si by adding
the pair (si, pj) to M . As we will prove later, M does not admit a blocking pair at the termination of this loop.

If M admits a coalition C = ⟨si0 , si1 , . . . , sir−1⟩ at this point, for some r ≥ 2, then we satisfy the coalition in the second
while loop, by letting the students in C swap their projects, i.e., for each j (0 ≤ j ≤ r − 1), sij moves project from M(sij )
to M(sij+1 ), where addition is taken modulo r . At the termination of this loop, M is output as a maximum size stable
matching in I . We describe our algorithm in pseudocode form in Algorithm 1.

3.1.3. Correctness of the algorithm
We present the following theorem concerning the correctness of our algorithm.

Theorem 1. Given an instance I of spa-p-l1, Algorithm MAX-SPA-P-L1 terminates with a maximum size stable matching in
O(n2

1Rm) time, where n1 is the number of students, R is the maximum rank of a project in any student’s preference list and m
is the total length of the students’ preference lists.
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roof. Let E be an arbitrary execution of Algorithm MAX-SPA-P-L1, and let M be the matching at the termination of E.
Let M0 be the greedy maximum matching in I found at line 1 during E; clearly M0 is of maximum cardinality. In what
follows, we show that just before the first while loop was initiated during E, M0 admits no blocking pair of type (a) or
type (b), and is coalition-free.

Suppose that (si, pj) is a blocking pair of type (a), i.e., si ∈ M0(l) and si prefers pj to M0(si); pj is undersubscribed in M0
and l prefers pj to M0(si). Let M0(si) = pj′ . Now, let M ′0 = (M0 \ {(si, pj′ )})∪ {(si, pj)}. Then |M ′0| = |M0| and ρ(M ′0) > ρ(M0)
according to lexicographic order), contradicting the fact that M0 is a greedy maximum matching. Suppose that (si, pj) is a
blocking pair of type (b), i.e., si is unassigned in M0 and each of pj and l is undersubscribed in M0. Now, pj undersubscribed
nd l undersubscribed implies that M0 ∪ {(si, pj)} is a matching in I , contradicting the maximality of M0. Next, we show
hat M0 is coalition-free. Suppose M0 admits a coalition of students C = ⟨si0 , si1 , . . . , sir−1⟩ for some r ≥ 2. Suppose M ′0
s the matching that results from satisfying C . Then |M ′0| = |M0| and ρ(M ′0) > ρ(M0), since each student in C will prefer
er assigned project in M ′0 to her assigned project in M0. This is a contradiction to the fact that M0 has a lexicographically
aximum profile.
We note that the first while loop is bound to terminate since (i) the number of students involved in I is finite, and (ii)

or each student involved in a type (c) blocking pair that gets promoted, the lecturer obtains one more student assigned
o a project that is better than her previous worst non-empty project. Let M1 be the matching at the termination of the
irst loop. Clearly, M1 cannot admit a type (c) blocking pair. Moreover, M1 cannot admit a type (b) blocking pair either,
ince for each student that becomes unassigned from a project within the loop, another student becomes promoted to a
roject in the same while loop iteration. Thus the cardinality of M1 remains unchanged, and the proof follows as in the
revious paragraph.
Next, we show that M1 cannot admit a blocking pair of type (a). Suppose that (si, pj) is a blocking pair of type (a). This

mplies that si ∈ M1(l), pj is undersubscribed in M1, and l prefers pj to M1(si). Let M1(si) = pk. First, we note that (si, pk)
ust have been added to M1 as a result of a type (c) blocking pair being satisfied within the first while loop. For, suppose
therwise, we have already established that M0 admits no blocking pair of type (a). Hence pj must have been full in M0
nd became undersubscribed during the first while loop. This is only possible if l’s worst non-empty project in M1 is pj
r better. Hence (si, pj) cannot be a type (a) blocking pair for M1 in this case. Thus (si, pk) must have been added to M1
ithin the first while loop.
Moreover, when (si, pk) was added to the matching during the first while loop, pj must be full, since we satisfy the

est blocking pair for each student within a loop iteration. However, for (si, pj) to form a type (a) blocking pair for M1, pj
ust be undersubscribed in M1. Now, the only way pj can end up becoming undersubscribed in M1, having been full in
0, is if pj was l’s worst non-empty project at a point where a type (c) blocking pair was identified during the first while

oop. Thus in M1, either pj is l’s worst non-empty project, or l’s worst non-empty project is better than pj. Hence (si, pj)
annot be a type (a) blocking pair for M1.
We have proved in the last two paragraphs that the first while loop terminates with a maximum matching M1 in

, which admits no blocking pair. The second while loop is also bound to terminate, since (i) each student has a finite
umber of projects in their preference list, and (ii) for any coalition C of students that exists, each student involved in
obtains a better project after the swap takes place. Clearly M cannot admit any new blocking pair at the end of the

econd while loop. Hence, at the termination of the algorithm, M is a maximum size stable matching in I .

nalysis of the algorithm. Algorithm MAX-SPA-P-L1 finds a maximum size stable matching in I in three phases. In the
irst phase, the algorithm finds a greedy maximum matching M in I . This can be obtained in O(n2

1Rm) time using the
REEDY-MAX-SPA algorithm described in [14], and this complexity dominates the overall runtime of the algorithm. In
he second phase, the algorithm eliminates potential type (c) blocking pairs in M . This phase is bounded by the total
ength of the students’ preference lists. Thus the complexity is O(m).

In the third phase, the algorithm eliminates potential coalitions that might have been introduced in the second phase.
e remark that coalitions in M correspond to cycles in the envy graph G(M), which contains a vertex for each student
ho is assigned in M and a directed edge from student sij to siq if sij prefers M(siq ) to M(sij ). Clearly M is coalition-free

f and only if G(M) is acyclic (see Section 5.1 for further discussions on this). Further, we remark that cyclic coalitions
an be eliminated in O(m) time (see [15, p. 308] for a detailed explanation on how to achieve this). Hence, the overall
omplexity of Algorithm MAX-SPA-P-L1 is O(n2

1Rm).

.2. max-spa-p-l2 is hard to approximate

We define max-spa-p-l2 to be the problem of finding a maximum size stable matching, given an instance of spa-p-l2.
n this section we show that it is NP-hard to approximate max-spa-p-l2 within a factor of δ, for some δ > 1. First, we
efine a problem relating to matchings in graphs. A matching M in a graph G is said to be maximal if no proper superset
f M is a matching in G.
Define min-mm to be the problem of computing the minimum size of a maximal matching, given a graph G (where G

s a subdivision graph of some cubic graph G′). Then G = (U,W , E) is a bipartite graph, where, without loss of generality,
ach vertex in U has degree 2 and each vertex in W has degree 3. Let U = {u1, u2, . . . , un1} and W = {w1, w2, . . . , wn2}.

or each ui ∈ U , let wji and wki be the two neighbours of ui in G, where ji < ki. Manlove and O’Malley [17] showed that
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Fig. 2. Preference lists for constructed instance of spa-p [17, Section 3]. Each project and lecturer has capacity 1.

Fig. 3. Preference lists for constructed instance of spa-p-l2. Each project has capacity 1, whilst lecturers w and x has capacity n2 and 2n1 respectively.

it is NP-hard to approximate max-spa-p within δ, for some constant δ > 1, using a reduction from min-mm, creating a
spa-p instance I as shown in Fig. 2.

The instance in Fig. 2 consists of 2n1+n2 students in the set S∪U1
∪U2, where S = {s1, s2, . . . , sn2}, U

1
= {u1

i : ui ∈ U}
nd U2

= {u2
i : ui ∈ U}; 2n2 + 2n1 projects in the set P ∪ Q ∪ R ∪ T , where P = {p1, p2, . . . , pn2}, Q = {q1, q2, . . . , qn2},

= {r1, r2, . . . , rn1} and T = {t1, t2, . . . , tn1}; and 2n1+n2 lecturers in the set W ∪X ∪ Y , where X = {x1, x2, . . . , xn1} and
Y = {y1, y2, . . . , yn1}. In addition, each project and lecturer has capacity 1; thus, the total lecturer capacity is 2n1+n2. We
ill show that their reduction holds even if instead we create a spa-p-l2 instance I ′ involving two lecturers with a total

ecturer capacity of 2n1+n2, where the number of students and projects remains the same. We illustrate our constructed
pa-p-l2 instance in Fig. 3, which consists of the set of students S ′∪U1

∪U2, where S ′ = {s′1, s
′

2, . . . , s
′
n2}, the set of projects

∪ Q ∪ R ∪ T and the set of lecturers {w, x}. Each project has capacity 1, whilst lecturers w and x have capacity n2 and
n1 respectively.
Let I and I ′ be the spa-p and spa-p-l2 instances as defined above, respectively. The next two propositions demonstrate

hat the size of a maximum stable matching in I is equal to that in I ′.

roposition 2. A stable matching M in I corresponds to a stable matching M ′ in I ′, where |M| = |M ′|.

roof. Let M be a stable matching in I . We construct a matching M ′ in I ′ from M in the following way. First, all the pairs
n M involving students in U1

∪U2 are added to M ′. Next, if k students in S are assigned to a project in M , we add (s′z, qz)
o M ′ for 1 ≤ z ≤ k.

Now, we show that M ′ is a stable matching in I ′. Suppose (uz
i , ri) is a blocking pair of M ′ in I ′, for some i (1 ≤ i ≤ n1)

nd some z (1 ≤ z ≤ 2). This implies that uz
i is either unassigned in M ′ or prefers ri to her assigned project in M ′. By the

onstruction of M ′ from M , the same is true for uz
i in M . Moreover, we have that ri is undersubscribed in M ′, and thus ri

s undersubscribed in M . This implies that the lecturer who offers ri in I , i.e., xi, is undersubscribed in M . Hence (uz
i , ri) is

blocking pair of M in I , a contradiction.
Next, suppose (uz

i , pj) is a blocking pair of M ′ in I ′, for some i (1 ≤ i ≤ n1), some j (1 ≤ j ≤ n2), and some z (1 ≤ z ≤ 2).
his implies that pj is undersubscribed in M ′, and thus pj is undersubscribed in M . Moreover, we have that the lecturer
ho offers pj in I , i.e., wj, is either undersubscribed in M or is full in M with its sole student assigned to qj. Further, uz

i is
ither unassigned in M ′ or prefers pj to her assigned project in M ′, and the same is true for uz

i in M . Hence (uz
i , pj) is a

locking pair of M in I , a contradiction. Thus no project in P can be involved in a blocking pair of M ′ in I ′. Moreover, no
roject in R can be involved in a blocking pair of M ′ in I ′, since each such project is full in M ′. Hence, no student in U2

an be involved in a blocking pair of M ′ in I ′.
Next, suppose (u1

i , ti) is a blocking pair of M ′ in I ′, for some i (1 ≤ i ≤ n1). This implies that u1
i is unassigned in M ′,

nd thus u1
i is unassigned in M . Moreover, ti is undersubscribed in M ′ and thus ti is undersubscribed in M . It follows that

he lecturer who offers ti in I , i.e., yi, is undersubscribed in M . Hence (u1
i , ti) is a blocking pair of M in I , a contradiction.

ence, no student in U1 can be involved in a blocking pair of M ′ in I ′.
Next, suppose (s′i, qi) is a blocking pair of M ′ in I ′, for some i (1 ≤ i ≤ n2). This implies that s′i is unassigned in M ′. By

he construction of M ′ from M , we have that each of qi and w is undersubscribed in M ′. Now since the capacity of w is
2, there exists some wj, for some j (1 ≤ j ≤ n2), such that wj is undersubscribed in M . Hence (sj, qj) is a blocking pair of
in I , a contradiction. Hence, no student in S ′ can be involved in a blocking pair of M ′ in I ′.
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We next verify that M ′ is coalition-free in I ′. Clearly, no student in S ′ can be involved in a coalition, since any such
student who is assigned in M ′ has her first choice project. Also, no student who is assigned in M ′ to a project in R can be in
coalition, since every such student is assigned to her first choice project. As a consequence, no student who is assigned

n M ′ to her second choice project can be in a coalition, since each such student prefers only a project in R. Finally, no
tudent in U1 who is assigned to a project in T can be in a coalition, since no assigned student prefers a project in T to
er project in M ′. Hence M ′ is stable in I ′. It is clear that |M| = |M ′|. □

roposition 3. A stable matching M ′ in I ′ corresponds to a stable matching M in I, where |M ′| = |M|.

Proof. Let M ′ be a stable matching in I ′. We construct a matching M in I from M ′ in the following way. First, all the pairs
in M ′ involving students in U1

∪ U2 are added to M . Next, for each j (1 ≤ j ≤ n2) such that pj is undersubscribed in M ′,
we add (sj, qj) to M .

Now, we show that M is a stable matching in I . Suppose (uz
i , ri) is a blocking pair of M in I , for some i (1 ≤ i ≤ n1)

and some z (1 ≤ z ≤ 2). This implies that uz
i is either unassigned in M or prefers ri to her assigned project in M . By the

construction of M from M ′, the same is true for uz
i in M ′. Moreover, we have that ri is undersubscribed in M , and thus

ri is undersubscribed in M ′. This implies that the lecturer who offers ri in I ′ (i.e., x) is undersubscribed in M ′ (since the
capacity of x is 2n1). Hence (uz

i , ri) is a blocking pair of M ′ in I ′, a contradiction.
Next, suppose (uz

i , pj) is a blocking pair of M in I , for some i (1 ≤ i ≤ n1), some j (1 ≤ j ≤ n2), and some z (1 ≤ z ≤ 2).
his implies that pj is undersubscribed in M and thus pj is undersubscribed in M ′. Moreover, we have that the lecturer
ho offers pj in I ′ (i.e., w) is either undersubscribed in M ′ or is full in M ′ with a student assigned to a project in Q . Further,
z
i is either unassigned in M or prefers pj to her assigned project in M , and the same is true for uz

i in M ′. Hence (uz
i , pj) is

blocking pair of M ′ in I ′, a contradiction.
Next, suppose (u1

i , ti) is a blocking pair of M in I , for some i (1 ≤ i ≤ n1). This implies that u1
i is unassigned in M and

hus u1
i is unassigned in M ′. Moreover, ti is undersubscribed in M , and thus ti is undersubscribed in M ′. It follows that the

ecturer who offers ti in I ′ (i.e., x) is undersubscribed in M ′. Hence (u1
i , ti) is a blocking pair of M ′ in I ′, a contradiction.

ence, no student in U1
∪ U2 can be involved in a blocking pair of M in I .

Next, suppose (si, qi) forms a blocking pair for M in I , for some i (1 ≤ i ≤ n2). This implies that si is unassigned in M .
oreover, we have that each of qi and wi is undersubscribed in M . This implies that pi is undersubscribed in M , and thus

i is undersubscribed in M ′. Hence, by the construction of M from M ′, it follows that (si, qi) ∈ M , a contradiction.
The argument that M is coalition-free in I is similar to that given for M ′ in Proposition 2. Hence M is stable in I , and

learly |M ′| = |M|. □

Propositions 2 and 3 imply that the reduction in [17, Section 3] holds with two lecturers involved. Given that it is
P-hard to approximate max-spa-p within δ, for some constant δ > 1, the following result is immediate.

heorem 4. max-spa-p-l2 is NP-hard. Moreover, it is NP-hard to approximate max-spa-p-l2 within δ, for some constant
> 1. The result holds even if each project has capacity 1.

. NP-hardness of (3, 3)-max-spa-p

Recall that (3, 3)-max-spa-p is the restriction of max-spa-p in which each preference list is of length at most 3. In this
ection, we show that (3, 3)-max-spa-p is NP-hard. The result holds even if each project and lecturer has capacity 1. To
chieve this, we will show that (3, 3)-com-spa-p is NP-complete (this is the problem of deciding, given an instance of
pa-p in which all the preference lists are of length at most 3, whether a complete stable matching3 exists). Clearly, the
P-completeness of (3, 3)-com-spa-p implies the NP-hardness of (3, 3)-max-spa-p.
In order to prove this result, we use a reduction from a restricted version of sat, which we define as follows. Let

2, 2)-e3-sat denote the problem of deciding, given a Boolean formula B in CNF in which each clause contains exactly
literals and, for each variable vi, each of literals vi and vi appears exactly twice in B, whether B is satisfiable. Berman

et al. [3] showed that (2, 2)-e3-sat is NP-complete.

Theorem 5. (3, 3)-com-spa-p is NP-complete. The result holds even if each project and lecturer has capacity 1.

Proof. Suppose we are given an assignment M in an arbitrary instance of (3, 3)-com-spa-p, clearly we can verify in
polynomial-time if M is a complete stable matching. Hence (3, 3)-com-spa-p is in NP. Let B be an instance of (2, 2)-e3-
sat. Let V = {v0, v1, . . . , vn−1} and C = {c1, c2, . . . , cm} be the set of variables and clauses respectively in B. Then for each
vi ∈ V , each of literals vi and vi appears exactly twice in B. Also, for each cj ∈ C , |cj| = 3. Hence m = 4n

3 .
We construct an instance I of (3, 3)-com-spa-p as follows. Let X ∪ D ∪ U be the set of students, where X =

⋃n−1
i=0 Xi,

Xi = {x4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1), D =
⋃m

j=1 Dj, Dj = {d1j , d
2
j , d

3
j } (1 ≤ j ≤ m) and U = {uj : cj ∈ C}. Let

∪ Z ∪ P ∪ Q ∪ C ′ be the set of projects, where Y =
⋃n−1

i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n− 1), Z = {zj : cj ∈ C},

3 A stable matching in which every student is assigned.
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Fig. 4. Preference lists for constructed instance of (3, 3)-com-spa-p.

P =
⋃m

j=1 Pj, Pj = {p
1
j , p

2
j , p

3
j } (1 ≤ j ≤ m), Q = {qsj : cj ∈ C ∧ 1 ≤ s ≤ 3} and C ′ = {csj : cj ∈ C ∧ 1 ≤ s ≤ 3}. Let L ∪ Y ′ ∪ Z ′

be the set of lecturers, where L = {lsj : cj ∈ C ∧ 1 ≤ s ≤ 3} and offers P ∪ C ′ ∪ Q ; Y ′ = {y′r : 0 ≤ r ≤ 4n − 1} and offers
Y ; and Z ′ = {z ′j : 1 ≤ j ≤ m} and offers Z . Finally, each project and lecturer has capacity 1. The preference lists in I are
shown in Fig. 4.

In the preference list of a student x4i+r ∈ X (0 ≤ i ≤ n− 1), if r ∈ {0, 1} then the symbol c(x4i+r ) denotes the project
csj ∈ C ′ such that the (r + 1)th occurrence of literal vi appears at position s of cj. Similarly, if r ∈ {2, 3} then the symbol
c(x4i+r ) denotes the project csj ∈ C ′ such that the (r − 1)th occurrence of literal vi appears at position s of cj. We also use
x(csj ) to denote x4i+r for r ∈ {0, 1, 2, 3}. Clearly each preference list is of length at most 3.

For each i (0 ≤ i ≤ n− 1), let Ti = {(x4i+r , y4i+r ) : 0 ≤ r ≤ 3} and Fi = {(x4i+r , y4i+r+1) : 0 ≤ r ≤ 3}, where addition is
taken modulo 4. We claim that B is satisfiable if and only if I admits a complete stable matching.

Let f be a satisfying truth assignment of B. Define a complete stable matching M in I as follows. For each variable
vi ∈ V , if vi is true under f , add the pairs in Ti to M; otherwise, add the pairs in Fi to M . Now let cj ∈ C . As cj contains
a literal that is true under f , let s ∈ {1, 2, 3} denote the position of cj in which this literal occurs. Add the pairs (uj, qsj ),
(dsj , zj), (d

a
j , p

a
j ) and (dbj , p

b
j ) to M , where {a, b} = {1, 2, 3} \ {s} and a < b. Clearly M is a complete matching in I .

No project in Y ∪ Z can be involved in a blocking pair of M , since each member of Y ∪ Z is full in M . Hence, no student
n D can be involved in a blocking pair since any such student can only potentially prefer a project in Z . Similarly, no
roject in Q can be involved in a blocking pair of M since each lecturer lsj ∈ L is full in M and since lsj either prefers her
orst non-empty project to qsj , or q

s
j is her worst non-empty project. Hence no student in U can be involved in a blocking

air of M . Now suppose that (x4i+r , c(x4i+r )) blocks M , where 0 ≤ i ≤ n − 1 and 0 ≤ r ≤ 3. Let csj = c(x4i+r ), where
≤ j ≤ m and 1 ≤ s ≤ 3. Then lsj is full in M and (uj, qsj ) ∈ M . If r ∈ {0, 1} then (x4i+r , y4i+r+1) ∈ M , so that vi is false

under f . But literal vi occurs (unnegated) in cj at position s, a contradiction, since literal vi was supposed to be true under
f by construction of M (since (uj, qsj ) ∈ M if and only if csj is true). Hence r ∈ {2, 3} and (x4i+r , y4i+r ) ∈ M , so that vi is true
under f . But literal vi occurs in cj at position s, a contradiction, since vi was supposed to be true under f by construction
of M . Hence M admits no blocking pair.

We next verify that M is coalition-free. Clearly, no student in U can be in a coalition, since no two assigned students
in U find the same project acceptable. Also, no student in D who is assigned in M to a project in Z can be in a coalition,
since every such student is assigned to her first choice project. As a consequence, no student in D who is assigned in M
to a project in P can be in a coalition, since each such student prefers only a project in Z . For each i (0 ≤ i ≤ n − 1),
no student in Xi can be in a coalition; for if M ∩ (Xi × Yi) = Ti then neither x4i nor x4i+1 can be involved in a coalition,
since each one of them is assigned in M to her first choice project. As a consequence, x4i+3 cannot be in a coalition, since
the only student x4i+3 can potentially form a coalition with is x4i ; and thus x4i+2 cannot be in a coalition, since the only
student x4i+2 can potentially form a coalition with is x4i+3. A similar argument can be made if M ∩ (Xi × Yi) = Fi. Hence
M is stable.

Conversely, suppose that M is a complete stable matching in I . Firstly, we claim that every project in C ′ is undersub-
scribed in M . To see this, observe that for each j (1 ≤ j ≤ m), uj is assigned in M to some qsj (1 ≤ s ≤ 3). As a consequence,
the three members of Dj can only be assigned to the three members of {zj} ∪ (Pj \ {psj }), since each lecturer in L has
capacity 1. Hence, for each s (1 ≤ s ≤ 3), csj is not assigned to any student. Next, for each i (0 ≤ i ≤ n − 1), we claim
hat M ∩ (Xi × Yi) is a perfect matching of Xi ∪ Yi. For suppose otherwise, then either (i) some student x4i+r ∈ X for
∈ {0, 1, 2, 3} is unassigned in M , since every project in C ′ is undersubscribed in M , or (ii) some project y ∈ Y for
4i+r
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∈ {0, 1, 2, 3} is undersubscribed in M . If (i) holds, we arrive at a contradiction, since M is a complete stable matching.
If (ii) holds, we reach a contradiction following the argument from (i). We form a truth assignment f in B as follows. If
M ∩ (Xi × Yi) = Ti, set vi to be true under f . Otherwise M ∩ (Xi × Yi) = Fi, in which case we set vi to be false under f .

Now let cj be a clause in C (1 ≤ j ≤ m). There exists some s (1 ≤ s ≤ 3) such that (uj, qsj ) ∈ M . Let x4i+r = x(csj ) for
ome i (0 ≤ i ≤ n − 1) and r (0 ≤ r ≤ 3). If r ∈ {0, 1} then (x4i+r , y4i+r ) ∈ M , since M is stable. Thus variable vi is true
under f and hence clause cj is true under f , since literal vi occurs unnegated in cj. If r ∈ {2, 3} then (x4i+r , y4i+r+1) ∈ M
where addition is taken modulo 4), since M is stable. Thus variable vi is false under f , and hence clause cj is true under
f , since literal vi occurs in cj. Hence f is a satisfying truth assignment of B. □

. An IP model for MAX-SPA-P

Let I be an instance of spa-p involving a set S = {s1, s2, . . . , sn1} of students, a set P = {p1, p2, . . . , pn2} of projects
nd a set L = {l1, l2, . . . , ln3} of lecturers. We construct an IP model J of I as follows. Firstly, we create binary variables

xi,j ∈ {0, 1} (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) for each acceptable pair (si, pj) ∈ S × P such that xi,j indicates whether si is assigned
to pj in a solution or not. Henceforth, we denote by S a solution in the IP model J , and we denote by M the matching
derived from S. If xi,j = 1 under S then intuitively si is assigned to pj in M , otherwise si is not assigned to pj in M .

5.1. Constraints

In this section, we give the set of constraints to ensure that the assignment obtained from a feasible solution in J is a
matching, and that the matching admits no blocking pair and is coalition-free.

Matching constraints. The feasibility of a matching can be ensured with the following three set of constraints.∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), (1)

n1∑
i=1

xi,j ≤ cj (1 ≤ j ≤ n2), (2)

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3) . (3)

ote that Inequality (1) ensures that each student si ∈ S is not assigned to more than one project, while Inequalities (2)
nd (3) ensure that the capacity of each project pj ∈ P and each lecturer lk ∈ L is not exceeded.
Given an acceptable pair (si, pj), we define rank(si, pj), the rank of pj on si’s preference list, to be r + 1 where r is the

umber of projects that si prefers to pj. Given a lecturer lk ∈ L and a project pj ∈ Pk, an analogous definition holds for
rank(lk, pj), the rank of pj on lk’s preference list. With respect to an acceptable pair (si, pj), we define Si,j = {pj′ ∈ Ai :

rank(si, pj′ ) ≤ rank(si, pj)}, the set of projects that si likes as much as pj. For a project pj offered by lecturer lk ∈ L, we also
define Tk,j = {pq ∈ Pk : rank(lk, pj) < rank(lk, pq)}, the set of projects that are worse than pj on lk’s preference list.

In what follows, we fix an arbitrary acceptable pair (si, pj) and we impose constraints to ensure that (si, pj) is not a
blocking pair for the matching M (i.e., (si, pj) is not a type (a), type (b) or type (c) blocking pair for M). Firstly, let lk be
the lecturer who offers pj.

Blocking pair constraints. We define θi,j = 1−
∑

pj′∈Si,j
xi,j′ . Intuitively, θi,j = 1 if and only if si is unassigned in M or prefers

pj to M(si). Next we create a binary variable αj in J such that if pj is undersubscribed in M then αj = 1. We enforce this
condition by imposing the following constraint.

cjαj ≥ cj −
n1∑
i′=1

xi′,j , (4)

where
∑n1

i′=1 xi′,j = |M(pj)|. If pj is undersubscribed in M then the RHS of Inequality (4) is at least 1, and this implies that
αj = 1; otherwise, αj is not constrained. Now let γi,j,k =

∑
pj′∈Tk,j

xi,j′ . Intuitively, if γi,j,k = 1 in S then si is assigned to a
project pj′ offered by lk in M , where lk prefers pj to pj′ . The following constraint ensures that (si, pj) does not form a type
(a) blocking pair for M .

θi,j + αj + γi,j,k ≤ 2 . (5)

Note that if the sum of the binary variables in the LHS of Inequality (5) is less than or equal to 2, this implies that at
least one of the variables, say γi,j,k, is 0. Thus the pair (si, pj) is not a type (a) blocking pair for M .

Next we define βi,k =
∑

pj′∈Pk
xi,j′ . Clearly, si is assigned to a project offered by lk in M if and only if βi,k = 1 in S. We

define D = {p ′ ∈ P : rank(l , p ′ ) ≤ rank(l , p )}, the set of projects that l likes as much as p . Next, we create a binary
k,j j k k j k j k j
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Fig. 5. The envy graph G(M2) corresponding to the spa-p instance in Fig. 1.

variable ηj,k in J such that ηj,k = 1 if lk is undersubscribed or prefers pj to his worst non-empty project in M . We enforce
this by imposing the following constraint.

dkηj,k ≥ dk −
n1∑
i′=1

∑
pj′∈Dk,j

xi′,j′ , (6)

where
∑n1

i′=1

∑
pj′∈Dk,j

xi′,j′ is the occupancy of lk involving projects that are at least as good as pj on lk’s preference list.
Intuitively if lk is undersubscribed in M or if lk prefers pj to her worst non-empty project in M , then the RHS of Inequality
6) is at least 1. Finally, to avoid type (b) and type (c) blocking pairs, we impose the following constraint.

θi,j + αj + (1− βi,k)+ ηj,k ≤ 3 . (7)

Next, we give the constraints to ensure that the matching obtained from a feasible solution in J is coalition-free.

Coalition constraints. First, we introduce some additional notation. Given an instance I ′ of spa-p and a matching M ′ in I ′,
e define the envy graph G(M ′) = (S, A), where the vertex set S is the set of students in I ′, and the arc set

A = {(si, si′ ) : si prefers M ′(si′ ) to M ′(si)}.

It is clear that the matching M2 = {(s1, p1), (s2, p2), (s3, p3)} admits a coalition {s1, s2} with respect to the instance given
n Fig. 1. The resulting envy graph G(M2) is illustrated in Fig. 5.

Clearly, G(M ′) contains a directed cycle if and only if M ′ admits a coalition. Moreover, G(M ′) is acyclic if and only
f it admits a topological ordering. Now to ensure that the matching M obtained from a feasible solution S under J is
coalition-free, we will enforce J to encode the envy graph G(M) and impose the condition that it must admit a topological
ordering. In what follows, we build on our IP model J of I .

We create a binary variable ei,i′ for each (si, si′ ) ∈ S × S , si ̸= si′ , such that the ei,i′ variables will correspond to the
adjacency matrix of G(M). For each i and i′ (1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1, i ̸= i′) and for each j and j′ (1 ≤ j ≤ n2, 1 ≤ j′ ≤ n2)
uch that si prefers pj′ to pj, we impose the following constraint:

ei,i′ + 1 ≥ xi,j + xi′,j′ . (8)

If (si, pj) ∈ M and (si′ , pj′ ) ∈ M and si prefers pj′ to pj, then ei,i′ = 1 and we say si envies si′ ; otherwise, ei,i′ is not
onstrained. Next we enforce the condition that G(M) must have a topological ordering. To hold the label of each vertex
n a topological ordering, we create an integer-valued variable vi corresponding to each student si ∈ S (and intuitively
o each vertex in G(M)). We wish to enforce the constraint that if ei,i′ = 1 (i.e., (si, si′ ) ∈ A), then vi < vi′ (i.e., the label
f vertex si is smaller than the label of vertex si′ ). This is achieved by imposing the following constraint for all i and i′
1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1, i ̸= i′).

vi + 1 ≤ vi′ + n1(1− ei,i′ ) . (9)

ote that the LHS of Inequality (9) is strictly less than the RHS of Inequality (9) for all i, i (i ̸= i) if and only if G(M) does
ot admit a directed cycle, and this implies that M is coalition-free.

.2. Variables

We define a collective notation for each integer variable involved in J as follows.

X = {xi,j : si ∈ S and pj ∈ Ai}, Λ = {αj : 1 ≤ j ≤ n2},

H = {ηj,k : 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}, ∆ = {δk : 1 ≤ k ≤ n3},

E = {ei,i′ : 1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1}, V = {vi : 1 ≤ i ≤ n1} .

.3. Objective function

The objective function given below is a summation of all the xi,j binary variables. It seeks to maximise the number of
tudents assigned (i.e., the size of the matching).

max
n1∑ ∑

xi,j . (10)

i=1 pj∈Ai
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inally, we have constructed an IP model J of I comprising the set of integer-valued variables X, Λ,H, E and V , the set of
nequalities (1)–(9) and an objective function (10). Note that J can then be used to solve max-spa-p optimally. Moreover,
f J admits a feasible solution S, then the objective value denoted obj(S) is equivalent to the number of students that are
ssigned in M , i.e., obj(S) = |M|.

.4. Correctness of the IP model

Given an instance I of spa-p formulated as an IP model J using the above transformation, we establish the correctness
f J via the following lemmas.

emma 6. A feasible solution S to J corresponds to a stable matching M in I, where obj(S) = |M|.

Proof. Assume firstly that J has a feasible solution S. Let M = {(si, pj) ∈ S×P : xi,j = 1} be the assignment in I generated
rom S. Clearly obj(S) = |M|. We note that Inequality (1) ensures that each student is assigned in M to at most one project.
Moreover, Inequalities (2) and (3) ensures that the capacity of each project and lecturer is not exceeded in M . Thus M is
a matching. We will prove that Inequalities (4)–(7) guarantee that M admits no blocking pair.

Suppose for a contradiction that there exists some acceptable pair (si, pj) that forms a blocking pair for M , where lk
is the lecturer who offers pj. This implies that si is either unassigned in M or prefers pj to M(si). In either of these cases,∑

pj′∈Si,j
xi,j′ = 0, and thus θi,j = 1. Moreover, as (si, pj) is a blocking pair for M , pj has to be undersubscribed in M , and

thus
∑n1

i′=1 xi′,j < cj. This implies that the RHS of Inequality (4) is strictly greater than 0, and since S is a feasible solution
to J , αj = 1.

Now suppose (si, pj) is a type (a) blocking pair, and suppose M(si) = pj′′ for some pj′′ ∈ Pk. We have that lk prefers pj
to pj′′ , thus γi,j,k =

∑
pj′∈Tk,j

xi,j′ = 1. Now, θi,j = αj = γi,j,k = 1 implies that the LHS of Inequality (5) is strictly greater
than 2. Thus S is not a feasible solution, a contradiction.

Next suppose (si, pj) is a type (b) or type (c) blocking pair for M . This implies that si /∈ M(lk) and thus 1 − βi,k =

1−
∑

p′j∈Pk
xi,j′ = 1. Also, either lk is undersubscribed in M or lk prefers pj to pz , where pz is lk’s worst non-empty project

in M . This implies that the RHS of Inequality (6) is strictly greater than 0, and thus ηj,k = 1. Hence the LHS of Inequality
(7) is strictly greater than 3. Thus S is not a feasible solution, a contradiction.

Finally, we show that Inequalities (8) and (9) ensure that M is coalition-free. Suppose for a contradiction that M admits
a coalition ⟨si0 , . . . , sir−1⟩, for some r ≥ 2. This implies that for each t (0 ≤ t ≤ r − 1), sit prefers M(sit+1 ) to M(sit ), where
addition is taken modulo r , and hence eit ,it+1 = 1, by Inequality (8). It follows from Inequality (9) that

vi0 + 1 ≤ vi1 + 1 ≤ · · · ≤ vir−2 + 1 ≤ vir−1 + 1 ≤ vir = vi0 ,

a contradiction. Hence M is coalition-free, and thus M is a stable matching. □

Lemma 7. A stable matching M in I corresponds to a feasible solution S to J, where |M| = obj(S).

Proof. Let M be a stable matching in I . First we set all the binary variables involved in J to 0. For all (si, pj) ∈ M ,
we set xi,j = 1. Now, since M is a matching, it is clear that Inequalities (1)–(3) are satisfied. For any acceptable pair
(si, pj) ∈ (S × P) \ M such that si is unassigned in M or prefers pj to M(si), we set θi,j = 1. For any project pj ∈ P that
is undersubscribed in M , we set αj = 1 and thus Inequality (4) is satisfied. For Inequality (5) not to be satisfied, its LHS
must be strictly greater than 2. This would only happen if there exists (si, pj) ∈ (S × P) \M , where lk is the lecturer who
offers pj, such that θi,j = 1, αj = 1 and γi,j,k = 1. This implies that si is assigned in M to a project pj′ offered by lk such
that si prefers pj to pj′ , pj is undersubscribed in M , and lk prefers pj to pj′ . Thus (si, pj) is a type (a) blocking pair for M , a
contradiction to the stability of M . Hence Inequality (5) is satisfied.

Suppose lk is a lecturer in L and pj is any project on lk’s preference list. Let pz be lk’s worst non-empty project in M . If
lk is undersubscribed in M or lk prefers pj to pz , we set ηj,k = 1. Then Inequality (6) is satisfied. Now suppose Inequality
(7) is not satisfied. This would only happen if there exists (si, pj) ∈ (S×P)\M , where lk is the lecturer who offers pj, such
that θi,j = 1, αj = 1, βi,k = 0 and ηj,k = 1. This implies that either si is unassigned in M or prefers pj to M(si), si /∈ M(lk),
pj is undersubscribed in M and either lk is undersubscribed in M or lk prefers pj to his worst non-empty project in M .
Thus (si, pj) is either a type (b) or type (c) blocking pair for M , a contradiction to the stability of M . Hence Inequality (7)
is satisfied.

We denote by G(M) = (S, A) the envy graph of M . Suppose si and si′ are any two distinct students in S such that
(si, pj) ∈ M , (si′ , pj′ ) ∈ M and si prefers pj′ to pj (i.e., (si, si′ ) ∈ A), we set ei,i′ = 1. Thus Inequality (8) is satisfied. Since M
is a stable matching, M is coalition-free. This implies that G(M) is acyclic and has a topological ordering

σ : S → {1, 2, . . . , n1} .

For each i (1 ≤ i ≤ n1), let vi = σ (si). Now suppose Inequality (9) is not satisfied. This implies that there exist vertices si
and si′ in G(M) such that vi + 1 > vi′ + n1(1 − ei,i′ ). This is only possible if ei,i′ = 1 since 1 ≤ vi ≤ n1 and 1 ≤ vi′ ≤ n1.
Hence vi + 1 > vi′ , a contradiction to the fact that σ is a topological ordering of G(M) (since (si, si′ ) ∈ A implies that
vi < vi′ ). Hence S, comprising the above assignment of values to the variables in X ∪ Λ ∪ H ∪ ∆ ∪ E ∪ V , is a feasible

solution to J; and clearly |M| = obj(S). □
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Lemmas 6 and 7 immediately give rise to the following theorem regarding the correctness of J .

heorem 8. A feasible solution to J is optimal if and only if the corresponding stable matching in I is of maximum cardinality.

roof. Let S be an optimal solution to J . Then by Lemma 6, S corresponds to a stable matching M in I such that
bj(S) = |M|. Suppose M is not of maximum cardinality. Then there exists a stable matching M ′ in I such that |M ′| > |M|.
y Lemma 7, M ′ corresponds to a feasible solution S ′ to J such that obj(S ′) = |M ′| > |M| = obj(S). This is a contradiction,
ince S is an optimal solution to J . Hence M is a maximum size stable matching in I . Similarly, if M is a maximum size
stable matching in I then M corresponds to an optimal solution S to J . □

6. Empirical evaluation

In this section we present results from an empirical evaluation that investigates how the sizes of the stable matchings
produced by the approximation algorithms compares to those of the optimal solution obtained from our IP model, on
spa-p instances that are both randomly generated and derived from real datasets.

6.1. Experimental setup

When generating spa-p instances, there are clearly several parameters that can be varied, such as the number of
students, projects and lecturers; the length of the students’ preference lists; as well as the total capacities of the projects
and lecturers. For each range of values for the first two parameters, we generated a set of random spa-p instances. In each
set, we recorded the average size of a stable matching obtained from running the approximation algorithms and the IP
model. Further, we considered the average time taken for the IP model to find an optimal solution.

Very broadly, the approximation algorithms involve a sequence of applications and deletions. The students apply to
projects that they find acceptable, and when a project and/or lecturer becomes full, certain (student, project) pairs are
deleted. By design, the approximation algorithms were randomised with respect to the sequence in which students apply
to projects, and the choice of students to reject when projects and/or lecturers become full. In the light of this, for
each dataset, we also ran the approximation algorithms 100 times and record the size of the largest stable matching
obtained over these runs. Our experiments therefore involved five algorithms: the optimal IP-based algorithm, the two
approximation algorithms run once, and the two approximation algorithms run 100 times.

We performed our experiments on a machine with dual Intel Xeon CPU E5-2640 processors with 64GB of RAM,
running Ubuntu 17.10. Each of the approximation algorithms was implemented in Java.4 For our IP model, we carried
out the implementation using the Gurobi optimisation solver in Java (see footnote 4). For correctness testing on these
implementations, we designed a stability checker which verifies that the matching returned by the approximation
algorithms and the IP model does not admit a blocking pair or a coalition.

6.2. Randomly-generated datasets

All the spa-p instances that we randomly generated involved n1 students (n1 is henceforth referred to as the size of the
instance), 0.5n1 projects, 0.2n1 lecturers and 1.1n1 total project capacity which was randomly distributed amongst the
projects such that each project has capacity at least 1. The capacity for each lecturer lk was chosen uniformly at random
to lie between the highest capacity of the projects offered by lk and the sum of the capacities of the projects that lk offers.
In the first experiment, we present results obtained from comparing the performance of the IP model, with and without
the coalition constraints in place.

Experiment 0. We increased the number of students n1 while maintaining a ratio of projects, lecturers, project capacities
and lecturer capacities as described above. For various values of n1 (100 ≤ n1 ≤ 1000) in increments of 100, we created
00 randomly-generated instances. Each student’s preference list contained a minimum of 2 and a maximum of 5 projects.
ith respect to each value of n1, we obtained the average time taken for the IP solver to output a solution, both with

nd without the coalition constraints being enforced. The results, displayed in Table 1 show that when we removed the
oalition constraints, the average time for the IP solver to output a solution is significantly faster than when we enforced
he coalition constraints.

In the remaining experiments, we thus remove the constraints that enforce the absence of a coalition in the solution.
e are able to do this for the purposes of these experiments because the largest size of a stable matching is equal to

he largest size of a matching that potentially admits a coalition but admits no blocking pair,5 and we were primarily
oncerned with measuring stable matching cardinalities. However the absence of the coalition constraints should be borne
n mind when interpreting the IP solver runtime data in what follows.

In the next two experiments, we discuss results obtained from running the five algorithms on randomly-generated
atasets.

4 https://github.com/sofiatolaosebikan/spa-p-isco-2018
5 This holds because the number of students assigned to each project and lecturer in the matching remains the same even after the students

involved in such coalition permute their assigned projects.

https://github.com/sofiatolaosebikan/spa-p-isco-2018
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Table 1
Results for Experiment 0. Average time (in seconds) for the IP solver to output a solution, both with and without the
coalition constraints being enforced.
Size of instance 100 200 300 400 500 600 700 800 900 1000

Av. time without coalition 0.12 0.27 0.46 0.69 0.89 1.17 1.50 1.86 2.20 2.61

Av. time with coalition 0.71 2.43 4.84 9.15 13.15 19.34 28.36 38.18 48.48 63.50

Table 2
Properties of the real datasets and the size of stable matchings obtained from the five algorithms, with respect to Experiment 3, where A, B, C,D
nd E denote the solution obtained from the IP model, 100 runs of the 3

2 -approximation algorithm, single run of the 3
2 -approximation algorithm,

00 runs of the 2-approximation algorithm, and single run of the 2-approximation algorithm, respectively.
Year n1 n2 n3 l Random Most popular Least popular

A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52
2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75
2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74
2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

Experiment 1. As in the previous experiment, we maintained the ratio of the number of students to projects, lecturers and
total project capacity, as well as the length of the students’ preference lists. For various values of n1 (100 ≤ n1 ≤ 2500)
n increments of 100, we created 1000 randomly-generated instances. With respect to each value of n1, we obtained the
verage sizes of stable matchings constructed by the five algorithms run over the 1000 instances. The result displayed
n Fig. 6(a) shows the ratio of the average size of the stable matching produced by the approximation algorithms with
espect to the average size of the maximum cardinality stable matchings produced by the IP solver.

Fig. 6(a) shows that each of the approximation algorithms produces stable matchings with a much higher cardinality
rom multiple runs, compared to running them only once. Also, the average time taken for the IP solver to find a maximum
ardinality matching increases as the size of the instance increases, with a running time of less than one second for
nstance size 100, increasing roughly linearly to 13 seconds for instance size 2500 (see Fig. 6(b)). Perhaps not surprising,
ach of the approximation algorithms terminates in less than one second for all the datasets.

xperiment 2. In this experiment, we varied the length of each student’s preference list while maintaining a fixed number
f students, projects, lecturers and total project capacity. For various values of x (2 ≤ x ≤ 10), we generated 1000
nstances, each involving 1000 students, with each student’s preference list containing exactly x projects. The result for
ll values of x is displayed in Fig. 7(a), which shows that as we increase the preference list length, the sizes of the stable
atchings produced by each of the approximation algorithms approaches optimality. Fig. 7(a) also shows that with a
reference list length greater than 5, the 3

2 -approximation algorithm produces an optimal solution, even on a single run.
oreover, the average time taken for the IP solver to find the size of a maximum size stable matching increases as the

ength of the students’ preference lists increases, with a running time of two seconds when each student’s preference list
s of length 2, increasing roughly linearly to 17 seconds when each student’s preference list is of length 10 (see Fig. 7(b)).

.3. Real datasets

The real datasets in this chapter are based on actual student preference data and manufactured lecturer data from
revious runs of student-project allocation processes at the School of Computing Science, University of Glasgow. Table 2
hows the properties of the real datasets, where n1, n2 and n3 denote the number of students, projects and lecturers
espectively; and l denotes the length of each student’s preference list. For all these datasets, each project has a capacity
f 1 and the capacity of each lecturer was provided as part of the datasets. In the next experiment, we discuss how the
ecturer preferences over their proposed projects were generated (which is the only information we manufactured). We
lso discuss the results obtained from running the five algorithms on the corresponding spa-p instances.

Experiment 3. We derived the lecturer preference data from the real datasets as follows. For each lecturer lk, and for each
project pj offered by lk, we obtained the number aj of students that find pj acceptable. Next, we generated a strictly-
ordered preference list for lk by arranging lk’s proposed projects in (i) a random manner, (ii) ascending order of aj, and
(iii) descending order of aj, where (ii) and (iii) are taken over all projects that lk offers. Table 2 shows the size of stable
matchings obtained from the five algorithms, and the results are essentially consistent with the findings in the previous
experiments: i.e., the 3

2 -approximation algorithm produces stable matchings whose sizes are close to optimal.

6.4. Discussions

The results presented in this section suggest that even as we increase the number of students, projects, lecturers, and
the length of the students’ preference lists, each of the approximation algorithms finds stable matchings that are close to
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Fig. 6. Result for Experiment 1.

Fig. 7. Result for Experiment 2.

having maximum cardinality, outperforming their approximation factor. Perhaps most interesting is the 3
2 -approximation

algorithm, which finds stable matchings that are very close in size to optimal, even on a single run. These results also
hold analogously for the instances derived from real datasets.

We remark that when we removed the coalition constraints, we were able to run the IP model on an instance size
of 10 000, with the solver returning the size of a maximum matching in an average time of 100 seconds, over 100
randomly-generated instances. This shows that the IP model (without enforcing the coalition constraints), can be run
on large instances that could potentially appear in practical applications of the spa-p model, to find maximum size stable
matchings that potentially admits coalition of students. These coalitions should then be eliminated in polynomial time
by repeatedly constructing an envy graph, similar to the one described in [15, p. 290], finding a directed cycle and letting
the students in the cycle swap projects.

7. Conclusions and open problems

In this paper, we have presented algorithmic and experimental results for finding maximum size stable matchings in
instances of spa-p. From an algorithmic perspective, we have shown that max-spa-p becomes polynomial-time solvable if
there is only one lecturer, whilst the problem remains NP-hard to approximate even if there are two lecturers involved.
We also proved that it is NP-hard to find a maximum size stable matching if each preference list is of length at most
3. It would be interesting to consider other polynomial-time solvable special cases, for example, what if each student’s
preference list is of length at most 2 and each lecturer’s preference list is of unbounded length?
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Moving away from hardness results, a particularly interesting direction would be to explore parameterisations that lead
o FPTalgorithms for max-spa-p. Whilst our NP-hardness result shows that parameterising on the number of lecturers or
the maximum length of a preference list is not a good choice, other suitable parameterisations that could be explored
include the maximum capacity of a project or lecturer, which we might expect to be small in practice. On the other hand,
a different direction is to establish W[1]-hardness results under various parameterisations.

To enable max-spa-p to be solved optimally in practice, we went on to describe an IP model for the problem. From
our experimental results, we were able to deduce that the 3

2 -approximation algorithm of Iwama et al. [11] constructs
table matchings whose size is very close to optimal. Nevertheless, the question remains as to whether there exists an
pproximation algorithm for max-spa-p that has a performance guarantee better than 3

2?
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