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Crop Supply Dynamics and the Illusion
of Partial Adjustment

Nathan P. Hendricks, Aaron Smith, and Daniel A. Sumner

February 2014

Abstract

We use field-level data to estimate the response of corn and soybean acreage to price
shocks. Our sample contains more than eight million observations derived from satellite
imagery and includes every field in Iowa, Illinois, and Indiana. We estimate that
aggregate crop acreage responds more to price shocks in the short run than in the long
run, and we show theoretically how the benefits of crop rotation generate this response
pattern. In essence, farmers who change crops due to a price shock have an incentive
to switch back to the previous crop to capture the benefits of crop rotation. Our result
contradicts the long-held belief that agricultural supply responds gradually to price
shocks through partial adjustment. We would not have obtained this result had we
used county-level panel data. Standard econometric methods applied to county-level
data produce estimates consistent with partial adjustment. We show that this apparent
partial adjustment is illusory, and we demonstrate how it arises from the fact that fields
in the same county are more similar to each other than to fields in other counties. This
result underscores the importance of using models with appropriate micro-foundations
and cautions against inferring micro-level rigidities from inertia in aggregate panel
data. Our preferred estimate of the own-price long-run elasticity of corn acreage is
0.29 and the cross-price elasticity is -0.22. The corresponding elasticities for soybean
acreage are 0.26 and -0.33. Our estimated short-run elasticities are 37 percent larger
than their long-run counterparts.
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How much more land gets allocated to a crop when relative prices change? The answer

to this question is the central parameter for understanding world food prospects, the im-

pacts of farm subsidies, and the environmental consequences from land use change, among

other public and policy issues (e.g., Roberts and Schlenker 2013; Lichtenberg and Zilberman

1986; Searchinger et al. 2008; Donner and Kucharik 2008). We provide a new and better

answer for an important set of commodities in the world food system. We use a conceptual

approach that accounts for crop rotations, a massive sample of individual fields, and econo-

metric methods that account for heterogeneous incentives to rotate crops and heterogeneous

responses to prices. Moreover, we show that supply response is seriously misestimated when

standard econometric methods are applied to county-level panel data. One consequence of

this bias is a mistaken understanding of supply dynamics and, in particular, the relationship

between short-run and long-run supply response.

A typical agricultural field in the United States Corn Belt tends to alternate between

growing corn in one year and soybeans the next. This pattern reflects a common agronomic

feature of crop production: planting a crop on the same field in consecutive years decreases

the productivity of the soil for growing that crop and increases pest populations. These

features generate dynamic complementarity in crop production because the marginal value

of planting a particular crop this year depends on what was planted on that field the previous

year. In this article, we show theoretically and empirically that these field-level dynamics

imply that aggregate acreage of a crop responds to price shocks more in the short run than in

the long run (5-10 years).1 For corn and soybeans, we estimate that the short-run elasticity

of planted-acreage with respect to price exceeds its long-run counterpart by 37 percent.

Intuitively, the short-run response exceeds the long-run response in the Corn Belt because

farmers who change crops due to a price shock have an incentive to switch back to the

previous crop to capture the benefits of crop rotation. For example, if the price of corn

increases permanently, some land previously planted to continuous soybeans would switch

to a corn-soybean rotation and would plant corn first, then rotate to soybeans in the second
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year. Thus, aggregate corn acreage would decrease in the second year, even if prices were to

stay constant.

Our results stand in contrast to the existing literature which, since the seminal work

of Nerlove (1958), has held that farmers respond gradually to price shocks over time. The

partial-adjustment hypothesis has been reinforced by numerous empirical studies that esti-

mate the short-run response is much smaller than the long-run response to price for crops. A

typical such study estimates a regression model containing a lagged dependent variable and

interprets a positive coefficient on the lag as a measure of the extent of partial adjustment.

Askari and Cummings (1977) provide an early review of this literature, and a recent example

is de Menezes and Piketty (2012).

We recognize that there are several important settings where adjustment requires sub-

stantial changes in physical and human capital and agricultural supply is likely to respond

less to price shocks in the short run than in the long run. For example, response to price

shocks in the long run may exceed response in the short run for perennial crops or when

supply response involves the conversion of grasslands or wetlands. However, our results call

into question standard methods used to quantify this adjustment process with aggregate

panel data and overturn the conventional wisdom for an important set of commodities.

Unlike prior studies of crop supply response, we use a novel set of field-level crop data

derived from satellite imagery that includes every field in Iowa (2000-2010), Illinois (1999-

2010), and Indiana (2000-2010). Our sample accounts for roughly 15 percent of world corn

and soybean production. To generate our estimated supply elasticities, we estimate first-

order Markov transition probabilities.2 We separately estimate price responses along the

rotational margin (transitions between corn and soybeans) and the extensive margin (tran-

sitions between corn or soybeans and other crops). Although we have more than 8 million

observations, we only have roughly 11 years of data. In order to account for spatial de-

pendence in the data, we cluster standard errors by year. In dynamic panel regression

models of the type that we estimate, coefficient heterogeneity can induce potentially large
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biases (Robertson and Symons 1992; Pesaran and Smith 1995). We alleviate such biases

by estimating separate econometric models for 24 regions with different soil and climate

characteristics.

To show the value of using field-level data, we also estimate crop supply response by

applying standard dynamic panel estimators to county-level data. This exercise produces a

short-run response to price that is roughly 20 percent smaller than the long-run response.

This finding contradicts our result with field-level data that the short-run response is 37

percent larger than the long-run response. We show that the illusion of partial adjustment

in county-level data arises because aggregating over similar micro units (i.e., fields in the same

county) inflates the bias due to coefficients that differ across fields (Robertson and Symons

1992; Pesaran and Smith 1995). Our results indicate that researchers should exercise caution

in interpreting dynamic economic behavior from commonly used dynamic panel estimators,

especially if the panels represent aggregates over similar micro units.

The illusion of partial adjustment stems not from aggregation per se, but from the fact

that county-level data represent aggregates across similar fields. To illustrate this point

with our data, we create pseudo-county data by randomly assigning fields to groups and

aggregating within each group. Using this group-level data, we re-estimate our models and

obtain similar estimates to those we obtain with our field-level data. This result arises

because most of the heterogeneity is averaged out in the aggregation of groups that are

randomly assigned. Similarly, aggregating to a national time series (if we had a long enough

time series) might also mitigate the biases that arise in the county-level panel.3

Conceptual Model of Aggregate Acreage Response to Price

We develop a stylized model of the aggregate long-run and short-run acreage response to

price that incorporates heterogeneous incentives to rotate crops. To simplify the model, we

consider the two commodities corn and soybeans. If the farmer rotates the crops, then fewer

inputs are required to obtain a given yield and a greater yield is obtained for a given level of
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inputs. To focus on the implications for supply response, we simplify the model by assuming

a zero discount rate, risk neutrality, and no economies of scope or scale.4 We assume that

only the crop from the previous year affects the production of the current crop (i.e., one-year

memory of the rotation). In the supplementary online appendix, we extend the results to

the case of two-year memory.

First, assume that prices are known with certainty and constant over time.5 The farmer

chooses a rotation of corn and soybeans that maximizes profits over the length of the rotation.

Hennessy (2006) shows that under one-year memory the set of optimal crop rotations is

restricted to continuous corn, continuous soybeans, or corn-soybeans denoted as 〈cc〉, 〈ss〉,

and 〈cs〉.6 Intuitively, if 〈cs〉 dominates 〈cc〉, then 〈cs〉 must also dominate 〈ccs〉 under

one-year memory. Similarly, if 〈cc〉 dominates 〈cs〉, then 〈cc〉 must also dominate 〈ccs〉.

Let cit denote a binary variable that equals one if corn is planted and zero if soybeans

are planted on field i in year t. We denote the quantity of input applied to corn as xcit and

to soybeans as xsit. For simplicity, we assume that a single input, such as fertilizer, is used in

production. The farmer obtains profit πcit if corn is planted and πsit if soybeans are planted

in year t. The farmer maximizes the profits over the length of the longest rotation in the set

of all possible optimal rotations,

(1) max
ci,xi

2∑
t=1

[citπcit (xcit, ci,t−1) + (1− cit)πsit (xsit, ci,t−1)] ,

where the rotations continually repeat (t = 0⇒ t = 2). The farmer maximizes profits by

choosing the crop to plant in both periods (denoted ci) and the inputs to apply to each crop

in both periods (denoted xi).

We write the period-t profit from corn and soybeans as

πcit (xcit, ci,t−1) = pci [yci (xcit + (1− ci,t−1)N sc
i ) + (1− ci,t−1)Bsc

i ]− wixcit,(2)

πsit (xsit, ci,t−1) = psi [ysi (xsit + ci,t−1N
cs
i ) + ci,t−1B

cs
i ]− wixsit,(3)
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where pji is the price of crop j that includes per unit government payments, yji (·) is the

yield function that is assumed constant over time,7 and wi is the price of the input. If

corn is planted after soybeans, then the equivalent of N sc
i units of input are applied to corn

(i.e., N sc
i is a perfect substitute for xcit). For example, if corn is planted after soybeans, then

nitrogen carries over from the soybeans and weed and insect pressures are reduced—providing

a substitute for chemical fertilizers, herbicides, and insecticides. Similarly, if soybeans are

planted after corn, then the equivalent of N cs
i units of input are applied to soybeans. In

addition, corn production receives a yield boost of Bsc
i if soybeans were planted the previous

year and soybean production receives a yield boost of Bcs
i if corn was planted the previous

year. The profit functions in equations (2) and (3) assume that the reduction in inputs and

the yield boost from rotating crops enter the production function additively as in Hennessy

(2006).8

The optimal crop rotation is given by the following set of conditions (Hennessy 2006):

〈cc〉 if π̃cci − π̃ssi ≥ pciB
sc
i + psiB

cs
i + wi (N sc

i +N cs
i ) ,(4)

〈ss〉 if π̃ssi − π̃cci ≥ pciB
sc
i + psiB

cs
i + wi (N sc

i +N cs
i ) ,(5)

〈cs〉 if |π̃cci − π̃ssi | ≤ pciB
sc
i + psiB

cs
i + wi (N sc

i +N cs
i ) ,(6)

where π̃cci and π̃ssi denote the indirect profit functions of growing corn after corn and soybeans

after soybeans.9

Now consider the effect on planting decisions of an immediate unanticipated permanent

change in output prices. Assuming constant prices in future crop years, the optimal rotation

in the current year is either 〈cc〉, 〈ss〉, or 〈cs〉. The farmer will determine the optimal

rotation at current prices and begin that rotation immediately, regardless of the previous

crop. Even though the optimal rotation does not depend on the previous crop, the optimal

crop decision does depend on the previous crop. If corn was planted the previous year,

then corn is optimal in the current year only if the optimal rotation is 〈cc〉 at current—and
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future—prices. However, if soybeans were planted the previous year, then corn is optimal

in the current year if the optimal rotation is 〈cc〉 or 〈cs〉 at current prices—or conversely, if

the optimal rotation is not 〈ss〉. If the farmer planted corn in the previous year (ci,t−1 = 1),

then she chooses to plant corn this year if

π̃ccit − π̃ssit ≥ pcitB
sc
i + psitB

cs
i + wit (N sc

i +N cs
i ) .(7)

However, if she planted soybeans in the previous year (ci,t−1 = 0), then she chooses to plant

corn this year if

π̃ccit − π̃ssit ≥ − (pcitBsc
i + psitB

cs
i + wit (N sc

i +N cs
i )) .(8)

Conditions (7) and (8) provide the theoretical basis for specifying our econometric model.

Next, we aggregate these field-level cropping decisions across heterogeneous fields to charac-

terize the dynamics of the aggregate acreage response to price.

To simplify aggregation, assume that there is a single parameter, θ, that represents the

land type, and θ has a probability density function g (θ) and cumulative distribution function

G (θ) (see Lichtenberg 2002). The parameter θ represents a whole range of ways that fields

may differ including soils and climate. Let θ be scaled such that for a given set of prices

it is optimal for fields with θ ≤ θL to plant continuous corn, with θL < θ ≤ θH to plant

corn-soybeans, with θH < θ ≤ θ∗ to plant continuous soybeans, and with θ∗ < θ to plant a

crop other than corn or soybeans. This set of assumptions is illustrated in figure 1.10

Denote the aggregate share of all acres planted to corn as C̄. If all fields are in a steady-

state, long-run equilibrium, then all of the continuous corn acres are planted to corn, half

of the corn-soybean acres are planted to corn, and none of the continuous soybean acres are

planted to corn. The long-run aggregate share of corn acres can be written as

(9) C̄LR = 1 ·G
(
θL
)

+ 1
2 ·
(
G
(
θH
)
−G

(
θL
))

+ 0 ·
(
G (θ∗)−G

(
θH
))
.
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Let p = pc/ps denote the relative price of corn to soybeans. The differential of the long-run

share of corn acres is

(10) dC̄LR = 1
2

(
g
(
θL
) ∂θL
∂p

dp+ g
(
θH
) ∂θH
∂p

dp

)
.

We assume that continuous corn acres are increasing and continuous soybean acres are

decreasing with respect to the relative price of corn to soybeans (i.e., ∂θL

∂p
> 0 and ∂θH

∂p
> 0).

Now consider the change in the share of corn acres in the the short run from an increase in

the relative price of corn (i.e., the change in the first year following a price shock) assuming

that in the initial period acres are in long-run equilibrium. The change in price causes

some land to switch from corn-soybeans to continuous corn and some land to switch from

continuous soybeans to corn-soybeans. All of the fields that switch from corn-soybeans to

continuous corn plant corn in the short run, so 1/2 of these fields plant corn that otherwise

would have planted soybeans in the absence of a price shock. All of the fields that switch

from continuous soybeans to corn-soybeans plant corn in the short run, so all of these fields

plant corn that otherwise would have planted soybeans. Written in differential form, the

short-run change in the share of acres planted to corn is

(11) dC̄SR = 1
2g
(
θL
) ∂θL
∂p

dp+ g
(
θH
) ∂θH
∂p

dp if dp > 0.

Using similar reasoning, the short-run response to a decrease in the relative price is

(12) dC̄SR = g
(
θL
) ∂θL
∂p

dp+ 1
2g
(
θH
) ∂θH
∂p

dp if dp < 0.
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Subtracting the long-run response in (10) from the short-run responses in (11) and (12)

gives

(13) dC̄SR − dC̄LR =


1
2g
(
θH
)
∂θH

∂p
dp if dp > 0

1
2g
(
θL
)
∂θL

∂p
dp if dp < 0

.

Thus, the short-run response to price is larger than the long-run response. The difference

between the short-run and long-run response occurs due to the conversion from continuous

cropping to a crop rotation. When the relative price increases, all of the fields that switch

from continuous soybeans to corn-soybeans are planted to corn in the short run, but in the

long run only half of these fields are planted to corn. Our model also implies that price

shocks cause acreage to oscillate around the long-run equilibrium, so even a temporary price

shock causes oscillations in future acreage. In the supplementary online appendix, we show

that in the case of two-year memory the conceptual model still implies that the short-run

response to price is larger than the long-run response.11

If there is uncertainty about prices in future years, then the farmer accounts for an option

value of changing crops in the future if prices are different than expected. For example, even

though it may be more profitable to plant corn in the current year, a fully rational farmer

may plant soybeans because of the possibility that higher than expected corn prices next

year could yield even higher profits. Planting corn this year would preclude taking advantage

of that opportunity because of the yield drag. While our stylized model ignores this option

value, it allows us to conceptually characterize the dynamics of supply response without

substantial complications. Livingston, Roberts, and Zhang (2013) formulate a stochastic-

dynamic programming model of rotating corn and soybeans that incorporates rational price

expectations, but must solve the model numerically.

The features of acreage response to price from our model are similar to those described

in Eckstein (1984), who developed a land allocation model where the current productivity

of one crop increases if the land allocated to the other crop was larger in the previous year.
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However, there has been little empirical support in the literature for the hypothesis that

the short-run response to price is larger than the long-run response when crops are rotated.

Even Eckstein (1984) estimated that the short-run response was smaller than the long-run

response in an application to aggregate crop data from Egypt. The only exception we found

is Tegene, Huffman, and Miranowski (1988), who estimate a model of corn acreage in Iowa

using aggregate time-series data for the period 1948–1980 and find that the short-run acreage

elasticity is 0.236 and the long-run elasticity is 0.220. In contrast, we estimate that the short-

run response is substantially larger than the long-run response. We also show that estimates

of the dynamics of supply are severely biased when using aggregate panel data.

Data

Next, we describe our methods in constructing the data for the empirical analysis. Descrip-

tive statistics of our data are shown in table 1.

Crop Data and Field Boundaries

Our crop data come from the Cropland Data Layer (CDL),12 which is produced by the Na-

tional Agricultural Statistics Service (NASS) of the United States Department of Agriculture

(USDA). NASS describes the CDL as a “census by satellite.” The CDL is an image of an

entire state with a crop or land use classification code corresponding to each pixel, where

each pixel is less than one acre in size. NASS classifies pixels using data from satellite sensors

and performs validation exercises to “ground truth” the data. We use Common Land Unit

boundaries in 2007 from the Farm Service Agency to approximate “field” boundaries. We

choose a point near the centroid of the Common Land Unit as our unit of analysis.13 Figure

2 gives an example of two areas with Cropland Data Layer classifications overlayed with

Common Land Unit boundaries and the points that we select from each of these Common

Land Units to form our panel of “field-level” crop data (a color figure is available in the on-

9



line version of this article). Our analysis uses crop data in Illinois for the period 1999–2010

and Iowa and Indiana for 2000–2010.

Our empirical analysis uses three crop classifications: corn, soybeans, and other crops

(primarily alfalfa and wheat). According to accuracy assessments conducted by NASS, the

probability that the CDL correctly classifies corn or soybeans is roughly 95% on average in

these three states. The CDL is less accurate at distinguishing between other crops, so we

merge them all into a single category. Our econometric model does not estimate changes in

corn and soybean acres from transitions with noncrop land uses partly because the CDL is

less accurate at classifying noncrop land uses and because noncrop land use, say for grazing

livestock, is a small part of the land mix that is ever planted to crops in the central Corn

Belt. In the supplementary online appendix, we use aggregate data on noncrop acreage to

show that changes in corn and soybean acres due to transitions with noncrop land uses are

likely to be negligible for these three states.

Expected Crop Prices

In our econometric model, the right-hand side regressor is the expected effective price prior to

planting including per-unit government payments—for which we use the shorthand “expected

price.” Expected crop prices are the sum of a futures price, an expected basis14, and an

expected loan deficiency payment. For corn, the futures price is the average price in January–

March of a December futures contract. For soybeans, the futures price is the average price

in January–March of a November futures contract. Futures price data are obtained from the

Commodity Research Bureau.

We use the basis in March, prior to planting, as the expectation for the harvest basis. The

basis in March provides a reasonable expected basis prior to planting because storage bounds

temporal-arbitrage opportunities. To measure the basis, we use spot prices in March for 93

market locations in the three states for corn and 90 locations for soybeans from GeoGrain.

We then interpolate to every point in the crop dataset using inverse distance weighting.
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The U.S. government provides a subsidy for corn and soybeans when market prices are

low—called loan deficiency payments—and had such a program throughout the data period.

The loan deficiency payment equals the difference between a county-specific loan rate and

the posted county price—the government’s measure of the local market price—times the

farmer’s production, but is only triggered when the posted county price falls below the

county-specific loan rate. This program provides a payment to growers but does not create

a floor price for buyers and the government acquires no commodities, so we assume the loan

rate truncates the price distribution from below. We use the formula for a truncated mean

to estimate an expected price that incorporates the possibility of a loan deficiency payment

assuming that the harvest-price distribution has a lognormal conditional distribution where

the standard deviation is the implied volatility of options contracts. We assume the expected

loan deficiency payment is constant across counties and varies only by year. Implied volatility

data are from the Commodity Research Bureau. Loan rate and posted county price data

are from the Farm Service Agency. Further details about constructing expected prices are

available in the supplementary online appendix.

We construct a Laspeyres index of expected corn and soybean prices and a Laspeyres

index of expected alfalfa and wheat prices for the analysis of changes between corn and

soybeans and other crops. We construct these indices at the county level using the expected

crop yield times the crop acreage in 2000 as the weights for expected prices. Expected yield

is the prediction from county-specific regressions with a linear trend using NASS county-level

data from 1980 to 2010. The expected alfalfa price, for which no futures market exists, is the

average January–March price in Iowa.15 The expected wheat price is the sum of a futures

price and an expected loan deficiency payment.

Other Data

We collected data on soil texture (percent clay, percent silt, and percent sand) and slope

from the Soil Survey Geographic (SSURGO) database from NRCS. County-level data on the
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share of cropland that is irrigated are from the 2007 Census of Agriculture. We obtained

precipitation in April and May for each year from PRISM (Parameter-elevation Regressions

on Independent Slopes Model). PRISM interpolates precipitation data to create a grid of

monthly precipitation with a resolution of about 2.5 miles x 2.5 miles. Corn is typically

planted earlier than soybeans, but heavy rainfall can sometimes prevent corn from being

planted on time and thereby prompt substitution to another crop. To capture this possibility,

we include a dummy variable in our regressions that indicates if April–May precipitation was

greater than the 75th percentile in the three states during our sample period.

Suggestive Evidence Supporting the Conceptual Model

Figure 3 shows aggregate data on relative prices, crop acreage, and crop transitions for

Iowa, Illinois, and Indiana during our sample period. Although the large increase in food

commodity prices—often referred to as the “food price crisis”—occurred in 2008, figure 3a

shows that a large shock in the relative expected price for corn to soybeans occurred in 2007

as corn prices increased before soybean prices.

The shock in relative expected prices was accompanied by a sharp increase in corn acreage

in 2007 that was almost completely offset by a decrease in soybean acreage (figure 3b). In

2008, corn acreage decreased sharply and this was offset by an increase in soybean acreage.

The decrease in corn acreage in 2008, after the price shock in 2007, supports the hypothesis

that the response to a price shock is larger in the short run than in the long run, although

this evidence is only suggestive because it relies on one observation and the relative price of

corn also decreased in 2008.

We find stronger evidence to support the claim that the price response is larger in the

short run than the long run by examining crop transitions from our field-level data (see

figure 3c). The shock in relative prices in 2007 was accompanied by a decrease in soybeans

after soybeans and an increase in corn after soybeans, as well as a decrease in soybeans after

corn and an increase in corn after corn.16 The crop transitions were out of steady-state in
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2007 (corn after soybean transitions were not equal to soybean after corn transitions). So in

2008, corn after soybean transitions decreased and soybean after corn transitions increased,

leading to a decrease in corn acres. Thus, the data on crop transitions provides evidence to

support our hypothesis of supply dynamics as can be seen from the oscillation in corn after

soybeans and soybeans after corn following a price shock. Next, we provide a more formal

evaluation by estimating an econometric model.

Econometric Model

The preceding discussion emphasizes transitions between corn and soybeans, which fits our

empirical setting well. Our estimation sample contains roughly 8.75 million observations,

each one representing a crop planted in a particular field in a particular year. Of these obser-

vations, 98 percent are planted to either corn or soybeans; the other two percent are planted

to other crops such as wheat or alfalfa.17 In our econometric analysis, we separately estimate

price responses along the “rotational margin” (transitions between corn and soybeans) and

the “extensive margin” (transitions between corn or soybeans and other crops), and then

add them together to obtain total elasticities. This model setup implies that farmers make

sequential decisions, first deciding whether to plant one of the two main crops (corn and

soybeans) or another crop and then deciding which crop to plant.18

Our conceptual model indicates that the planting decision at the rotational margin de-

pends on the previous crop (see equations (7) and (8)). We set up a first-order Markov model

with two states. Denote corn as state 1 and soybeans as state 2. We specify the following

model for the transitions between the two states:

Φ11
it = Pr (cit = 1|ci,t−1 = 1) = λ1i + βc1ip

c
it + βs1ip

s
it + θ′1ixi + κ1it,(14)

Φ21
it = Pr (cit = 1|ci,t−1 = 0) = λ2i + βc2ip

c
it + βs2ip

s
it + θ′2ixi + κ2it,(15)
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where Φmj
it denotes the probability of a transition from state m to state j on field i in

year t, pcit is the expected effective price of corn including government payments, psit is the

expected effective price of soybeans including government payments, xi is a vector of field

characteristics (an indicator of large spring rainfall, share clay, share silt, slope, and share of

county irrigated), and t is a time trend. These two equations are sufficient to describe the

system because Φ12
it = 1− Φ11

it , Φ22
it = 1− Φ21

it . We write each coefficient with an i subscript

to allow heterogeneity across fields.

We assume that expected price is exogenous. Hendricks, Janzen, and Smith (2013)

find small differences between OLS estimates and IV estimates in regressions of aggregate

acreage on price. They suggest that yield deviations from trend may serve as a proxy to

control for anticipated supply shocks, but yield deviations from trend are likely endogenous

in our study since changes in crop rotation affect yields. We omit input prices from our

econometric model. We recognize that prices for inputs that differ in their intensity of use

between corn and soybean production—most notably fertilizer—may affect decisions at the

rotational margin. However, in the supplementary online appendix, we use University of

Illinois crop budgets to show that changes in the price of fertilizer make a much smaller

difference in the relative returns of crop rotations than changes in crop prices. We also show

in the online appendix that our acreage elasticities are robust to controlling for the price of

fertilizer in our regressions. Our preferred specification omits the price of fertilizer because

we recognize the limitations of identifying the effect of the price of fertilizer separately from

crop prices with only 11 years of data.

We can specify the econometric model with Markov transition probabilities that depend

on expected prices only in the current crop year by assuming the expected price in the

current year embodies all of the price information relevant for decisions in future crop years.

Incorporating forward-looking price expectations into the econometric model would require

a dynamic discrete choice model á la Rust (1987). A dynamic discrete choice model would

substantially increase the computational burden and require a different set of identifying
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assumptions. Forward-looking price expectations are likely to be more important in models

of conversions between cropland and noncropland (e.g., Scott 2013) than for transitions

between field crops.

To estimate the long-run marginal effect of expected price, it is useful to write the tran-

sition probabilities in matrix form as

Φit =

 Φ11
it Φ21

it

Φ12
it Φ22

it

(16)

and let ξit denote a 2 × 1 vector that indicates the state of the process in year t. If the

process is in state j, then ξit has the value one in the jth row and zero in the other row. We

can write E
(
ξit|ξi,t−1

)
= Φitξi,t−1. Holding the explanatory variables fixed at their values

in period t, the vector of long-run state probabilities satisfies the following relationships:

ΦitΠit = Πit,(17)

Π′it1 = 1,(18)

where Πit is the vector of long-run state probabilities and 1 is a vector of ones. Solving

the system of equations in (17) and (18), the long-run probability of corn can be written as

follows:

(19) Π1
it = Φ21

it

Φ21
it + (1− Φ11

it ) .

We estimate the effect on region-wide acreage from changes in the expected corn price

by aggregating marginal effects across fields. The aggregate acres of corn in year t is Ct =∑
i aicit, where ai denotes the fixed land area of field i—measured in acres. The long-run
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change in aggregate corn acres with respect to the expected price of corn is

(20) ∂CLR
∂pcit

=
∑
i

ai
∂Π1

it

∂pcit
.

The short-run change in aggregate corn acres with respect to the expected price of corn is

(21) ∂CSR
∂pcit

=
∑
i

ai
∂E

(
cit|ξi,t−1

)
∂pcit

=
∑
i

ai (ci,t−1β
c
1i + (1− ci,t−1) βc2i) .

To estimate the short-run response to price from steady-state, we substitute Π1
it for ci,t−1

in equation (21). We estimate the short-run and long-run responses to the expected price

of soybeans by replacing pcit with psit in (20) and (21). We report these estimated short-run

effects in elasticity form by multiplying by the mean expected price relative to the mean

corn acreage in our sample.

At the extensive margin, we also estimate first-order Markov transition probabilities

where the two states are (i) corn or soybeans and (ii) other crops. The transition probabilities

are estimated as a function of an index of expected corn and soybean prices, an index of

expected wheat and alfalfa prices, field characteristics (xi excluding spring rainfall), and a

linear trend. The marginal effect of the price of corn on the probability of planting corn at

the extensive margin is obtained by multiplying three components: (i) the derivative of the

price index with respect to the price of corn, (ii) the marginal effect of the price index on the

probability of planting corn or soybeans, and (iii) the probability of planting corn given that

the field is planted to corn or soybeans obtained as a prediction from the rotational margin

estimates.

Our transition probabilities in (14) and (15) are heterogeneous dynamic panel models

with a small time series (T ) dimension. To elucidate the econometric challenges of estimating

this model, we rewrite it as a single equation with a lagged dependent variable and price
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coefficients that are constant across states:

(22) Pr (cit = 1) = λi + γici,t−1 + βci p
c
it + βsi p

s
it + θ′ixi + κit.

OLS estimates of (22) are biased because the lagged dependent variable is correlated with the

heterogeneous intercepts. Furthermore, when the coefficients are heterogeneous across fields,

estimating a single coefficient for all fields (i.e., pooling) leads to biased estimates (Robertson

and Symons 1992; Pesaran and Smith 1995). The bias from heterogeneous coefficients occurs

because the error term in the pooled model is autocorrelated since it contains the lagged

dependent variable and autocorrelated prices. For example, consider a field in which the

probability of planting corn is more responsive to price than the average field. Higher than

normal corn prices this year will generate a larger deviation from the average probability of

planting corn for this field. Because prices are positively autocorrelated, this field also likely

had a larger deviation from the average probability of planting corn for the field last year.

Autocorrelated deviations from the average probability of planting corn bias the estimated

coefficient on the lagged dependent variable.

If we had a panel with large T , then we could estimate separate coefficients for each

field and then average across these coefficients to obtain an aggregate response. This “mean

group estimator” (Pesaran and Smith 1995) is biased in short panels because each field-

level regression has too few observations to overcome the small-sample biases inherent in

estimating dynamic models in short samples (Hsiao, Pesaran, and Tahmiscioglu 1999). Thus,

we have a trade-off between allowing for heterogeneity but inducing the small-T bias and

pooling to reduce the small-T problem but being left with the heterogeneity bias. We

manage this trade-off by forming groups of similar fields and estimating separate coefficients

for groups of similar fields (i.e., a “grouped coefficients” estimator). This approach reduces

the small-T bias by estimating regressions for large groups of fields and reduces bias from

coefficient heterogeneity by only including relatively homogeneous fields in each regression.
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We use Major Land Resource Areas (MLRAs) from the Natural Resources Conservation

Service (NRCS) to define groups of fields. NRCS defines Major Land Resource Areas as

areas with similar soils, climate, and land uses. There are 33 MLRAs in the three states,

but some of these are near the state borders and contain little area in our study region. We

combine small MLRAs with neighboring MLRAs with similar characteristics to create 24

groups. We show these groups in figure 4 overlayed on maps of corn after corn and soybeans

after soybeans in 2010 (a color figure is available in the online version of this article). The

maps indicate that crop dynamics vary spatially by MLRA.

At the rotational margin, about a third of the fields were never planted to monoculture;

they alternate between corn and soybeans throughout the sample period. At the extensive

margin, about 90 percent of the fields are always planted to corn or soybeans. Such fields

are unresponsive to prices in our sample period. To the extent that such fields are less

responsive to price than other fields in the same MLRA, including them in a group-level

regression induces a heterogeneity bias. Thus, at the rotational margin we divide the fields

in each MLRA into two groups: (i) fields that were never planted to monoculture (i.e.,

always rotated between corn and soybeans) and (ii) fields that were planted to monoculture

at least once. For fields that were never planted to monoculture, we impose the identifying

restriction Φ11
it = 0, Φ21

it = 1. At the extensive margin we divide the fields into the following

two groups: (i) fields that transitioned between corn or soybeans and other crops and (ii)

fields that always planted corn or soybeans. For field that always planted corn or soybeans,

we impose the identifying restriction that the probability of planting corn or soybeans is 1

regardless of the previous state.

We refer to our estimator as a “conditional grouped coefficients” estimator. It is a

grouped coefficients estimator because our estimated coefficients are identical within 24× 2

groups of similar fields as defined by 24 MLRAs and 2 transition groups. It is a conditional

estimator because, within each MLRA, we estimate the model separately for two sets of

fields. This conditional estimation approach is like the conditional likelihood approach used
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in discrete-choice models in that the parameters are only identified for fields that changed

states (Heckman 1981). A similar estimation strategy was used by Bernard and Jensen

(2004).

To estimate standard errors, we use a cluster bootstrap with 500 replications, where we

cluster by year. Clustering by year permits cross-sectional (i.e., spatial) dependence between

all of the fields for a given year, but assumes independence between years. We use the wild

bootstrap because bootstrap methods that resample the regressors can be problematic when

there are few clusters (Cameron, Gelbach, and Miller 2008). The wild bootstrap preserves the

regressors but resamples the dependent variable using the OLS prediction and the residual

with probability 0.5 and the negative of the residual with probability 0.5.19

Econometric Results with Disaggregate Data

First, we present our preferred econometric results using the conditional grouped coefficients

methodology. Then we show results with commonly-used pooled estimators, which we argue

are biased.

Results with Conditional Grouped Coefficients

Table 2 reports results for the aggregate acreage elasticities at the rotational and extensive

margins. We find a small price response at the extensive margin—a change in the expected

price of corn or soybeans causes a small change in the number of acres planted to corn or

soybeans in Iowa, Illinois, and Indiana. In the supplementary online appendix, we examine

the extensive margin response in more detail and show that a small response is consistent

with aggregate data.

Panel A of table 2 reports corn acreage elasticities. Column (1) shows that, in the short

run, a 10% increase in the price of corn results in a 4.0% increase in corn acreage, ceteris

paribus. In the long run, a 10% increase in the price of corn results in a 2.9% increase in
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corn acreage, ceteris paribus. The cross-price elasticity is negative and large relative to the

own-price elasticity since most of the acreage response is at the rotational margin.

Panel B of table 2 reports soybean acreage elasticities. We find that in the short run,

a 10% increase in the price of soybeans results in a 3.6% increase in soybean acreage. In

the long run, a 10% increase in the price of soybeans results in a 2.6% increase in soybean

acreage. Note that the marginal effect for soybean acreage at the rotational margin is the

negative of the marginal effect for corn acreage, but the elasticity differs in magnitude. The

own-price elasticity is smaller than the cross-price elasticity for soybean acreage. Corn and

soybean acreage may be more responsive to changes in the expected price of corn because

in most regions corn is the more profitable crop in the rotation,20 while soybeans are grown

to capture rotational benefits. Estimates by Chavas and Holt (1996) also indicate that the

own-price elasticity is smaller than the cross-price elasticity for soybean acreage.

The relative difference in the short-run (εSR) and long-run (εLR) elasticities is reported

in the last row of table 2 as εLR−εSR

εLR
. This parameter is analogous to the coefficient on

the lagged dependent variable in a regression with a single lagged dependent variable and

is a convenient way to compare results across specifications. The total acreage response to

a price shock is 37% larger in the short run than the long run. This result is consistent

with our conceptual model of aggregate acreage dynamics with crop rotations, but stands in

contrast to the previous literature on agricultural supply dynamics. In the supplementary

online appendix, we show that our main results are robust to allowing for two-year memory

in the econometric model.

Our regression estimates indicate substantial heterogeneity in the price response and

acreage dynamics. The histograms in figure 5 show the distribution of short-run marginal

effects of the expected price of corn (figure 5a), short-run marginal effects of the expected

price of soybeans (figure 5b), and the dynamics (figure 5c) for fields that were planted to

monoculture at least once.21 There are only a few cases where the coefficients on prices have
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the opposite sign from what is expected. Heterogeneity of the price response and dynamics

suggests that pooled estimators are biased.

Table 3 reports average coefficients of the Markov transition models that are used to

calculate the aggregate elasticities in table 2. Column (1) of table 3 reports coefficient

estimates for the probability of planting corn given that the field was previously planted to

corn. Column (2) reports estimates given that the field was previously planted to soybeans.

The models are estimated separately for every MLRA. The standard deviation of coefficients

across MLRAs is in brackets and the bootstrap standard error of the average coefficient is

in parentheses.

Comparing columns (1) and (2) in table 3, farmers are much more responsive to changes

in expected prices when corn was previously planted. If a field was previously planted to

soybeans, then farmers are likely to plant corn even when prices change. Most of their

adjustment to prices occurs on fields that were previously planted to corn where they choose

whether to plant corn after corn or rotate with soybeans. The difference in the intercepts in

columns (1) and (2) indicates that on average corn is more likely to be planted if the field

was previously planted to soybeans rather than corn.

A large amount of rainfall in the spring tends to decrease the probability of planting

corn—especially when soybeans were planted previously—because wet field conditions can

delay corn planting. This partly explains the prevalence of soybeans after soybeans even

though soybeans are generally considered less profitable than corn. The coefficients on the

clay and silt content of the soil differ greatly between MLRAs (a large standard deviation),

with the sign of the coefficient often differing between MLRAs. This result likely reflects

nonlinear effects of the soil variables. For example, the effect of higher than average clay

content in an MLRA with soils that have a large clay content may be different than the

effect of higher than average clay content in an MLRA with soils that have a small clay

content. Fields with greater slope have a lower probability of planting corn. Fields in a

county with more irrigation were more likely to plant corn. However, the average coefficients
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for irrigation have large standard errors, perhaps because most counties in this region have

little irrigation. The coefficient on the trend indicates that the probability of planting corn

is increasing over time, holding prices constant; but the trend differs across space. The

positive trend in planting corn if the field was previously planted to corn is consistent with

the evidence reported by Duffy (2011) that the yield advantage of rotating corn and soybeans

has been diminishing over time.

Pooled Estimators

Table 4 reports estimates of the aggregate corn acreage response to price with pooled

estimators—that is, these results estimate a single coefficient for all fields. All of the esti-

mates in table 4 only include the rotational margin response since we find negligible response

at the extensive margin. Results in column (1) are from linear Markov transition probability

models as in equations (14) and (15), but impose the same coefficients across all fields. Re-

sults in columns (2)-(4) are from a linear probability model with a single lagged dependent

variable as in equation (22), but impose the same coefficients across all fields. The results

in column (2), (3), and (4) are from Ordinary Least Squares (OLS), fixed effects (FE), and

the Arellano-Bond estimator. Standard errors are clustered by year.

Results in columns (1) and (2) are similar indicating that there is a small difference in

aggregate results if we estimate transition probabilities or a model with a lagged dependent

variable. However, the elasticities in columns (1) and (2) of table 4 are substantially smaller

than the elasticities in column (1) of table 2. As discussed previously, these pooled estimators

are biased due to heterogeneous coefficients. The short-run elasticities increase slightly with

the fixed effects estimator, but are still smaller than those in table 2. Arellano-Bond estimates

are similar to fixed effects estimates, but the standard errors are very large.

Most of the acreage elasticities in table 4 are not statistically different from zero. The

reason for the difference in standard errors in tables 2 and 4 is that results in table 2 use

substantially more controls and this improves efficiency. For example, OLS estimates of the
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coefficients on prices are statistically significant if we included as controls MLRA dummy

variables and interactions between the MLRAs and weather, soils, and the trend (results not

reported).

The results in table 4 also indicate a larger relative difference between the short-run and

long-run elasticities than our results in table 2. The pooled estimators are likely to overstate

the difference in the short-run and long-run elasticity because they do not fully account for

the correlation between the coefficient on price and the coefficient on the lagged dependent

variable. We are interested in estimating the average (weighted by acreage) long-run effect,∑
i ai

βc
i

1−γi
, rather than the long-run effect calculated from the average of the coefficients,

β̄c

1−γ̄ , where γi denotes the coefficient on the lagged dependent variable. These two concepts

differ when the coefficients are correlated. For example, fields that are likely to maintain

a corn-soybean rotation would have a coefficient on the lagged dependent variable that is

close to -1 and a coefficient on price that is close to zero, whereas fields that are more likely

to switch to monoculture have a smaller coefficient on the lagged dependent variable and

larger coefficient on price. If an estimator does not allow coefficients to differ between these

two types of fields, then the estimator overstates the difference between the short-run and

long-run effect.

Comparison with Aggregate Panel Data

Aggregation of heterogeneous dynamic micro units can produce macro data with more per-

sistence than the persistence of the average micro unit. Granger (1980) shows that the sum

of heterogeneous AR(1) processes can produce a series with long memory. Trivedi (1985),

Lewbel (1994), and Zaffaroni (2004) provide generalizations of this result. Empirically, this

aggregation phenomenon has been used to explain univariate puzzles such as the persistent

deviations of real exchange rates from purchasing power parity (Carvalho and Nechio 2011;

Imbs et al. 2005) and the persistence of aggregate inflation (Altissimo, Mojon, and Zaffaroni

2009).
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In this section, we illustrate a different effect of aggregation—aggregation affects the bias

of dynamic panel estimators due to coefficient heterogeneity. Pesaran and Smith (1995)

show that the bias of pooled estimators in dynamic panels with heterogeneous coefficients

depends on the degree of heterogeneity, the strength of the autocorrelation in the explanatory

variables, and the variation of the explanatory variable relative to the variation of the noise

(i.e., the signal-to-noise ratio). Aggregation will tend to reduce parameter heterogeneity,

and thus reduce bias. However, aggregation will also increase the explanatory power of

common factors (Granger 1987), and thus increase the signal-to-noise ratio and the bias from

heterogeneous coefficients.22 Aggregation will tend to increase the bias from heterogeneous

coefficients when the panels represent aggregates over similar micro units since aggregation

has a minimal effect on reducing parameter heterogeneity, but increases the explanatory

power of common factors.

Aggregation of corn and soybean acreage to the county level has a small effect on pa-

rameter heterogeneity due to the spatial autocorrelation of soils and climate. Aggregation

does change the relative explanatory power of the variables. For example, the previous

crop explains a large proportion of the variation in planting decisions at the field level. At

the county level, the previous acreage planted to corn explains less of the variation in corn

acreage while common factors, such as prices, explain a larger proportion of the variation in

corn acreage. Thus, aggregation to the county level inflates the bias from coefficient hetero-

geneity since aggregation increases the explanatory power of autocorrelated common factors

without substantially reducing parameter heterogeneity.

Table 5 reports estimates of the dynamic model of corn acreage with a single lagged

dependent variable using county-level panel data. The crop acreage data are from the official

county-level data reported by the National Agricultural Statistics Service (NASS). NASS uses

the Cropland Data Layer to inform its county-level estimates, but also uses survey data. We

use counties that had acreage data available for every year for the period 1999-2010 for

Illinois and 2000-2010 for Iowa and Indiana.23 County-level expected prices are the average

24



expected prices within each county from the field-level data. We also constructed our own

county data by aggregating the Cropland Data Layer to the county level and obtained similar

results. We only report estimates with official NASS county-level data.

The dependent variable is the acres planted to corn divided by the average number of acres

planted to corn or soybeans for that county during the sample period. The normalization is

needed since actual corn acreage depends largely on the size of the county. The dependent

variable is a proportion, which is the aggregate analog of the linearly probability model.

Table 5 presents results from several commonly used dynamic panel estimators. The

results in column (1) are fixed effects estimates. The results in column (2) are from the

Anderson-Hsiao estimator that uses the second lagged level as an instrument for the lagged

difference. The results in columns (3) and (4) are from the Arellano-Bond estimator (i.e.,

difference GMM) and results in column (5) are from the Blundell-Bond estimator (i.e., system

GMM). In column (3) we use a maximum of 5 lags as instruments and in (4) and (5) we

use all lags available as instruments. All of the results in table 5 are pooled estimates with

a single lagged dependent variable, so the relative difference in the long-run and short-run

elasticities
(
εLR−εSR

εLR

)
is simply the coefficient on the lagged dependent variable.

The fixed effects result in column (1) of table 5 shows that the bias from ignoring coef-

ficient heterogeneity is so large that pooled estimates indicate the response to a price shock

is smaller in the short run than in the long run—thus, creating the illusion of partial ad-

justment. The fixed effects estimator gives a coefficient on the lagged dependent variable

of 0.19 with county-level data. For comparison, the analogous estimate with field-level data

using conditional grouped coefficients is −0.39.24 Furthermore, standard theory that as-

sumes only the intercept is heterogeneous would expect the positive coefficient in table 5

to underestimate the true coefficient, when it actually substantially overestimates the true

coefficient.

The positive bias of the coefficient on the lagged dependent variable occurs because it

captures positive autocorrelation in prices and the trend. For example, if price response is
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larger in a particular county, then that county is also likely to have had a larger corn acreage

in the previous year since prices are positively autocorrelated. There are also likely to be

other common factors that are omitted from our analysis. These omitted common factors

will have a small effect on estimates with field-level data since they explain a small proportion

of the variation in field-level planting decisions. However, omitted common factors will have

a larger effect on estimates with county-level data because they explain a larger proportion

of the variation in aggregate crop acreage and there may be substantial heterogeneity in the

response to these common factors across counties.

Commonly used dynamic panel estimators do little to alleviate the severe bias of fixed

effects. The coefficient on the lagged dependent variable is positive for every dynamic panel

estimator with county-level data, except the Arellano-Bond estimator when all lags are

used as instruments (column 4 of table 5). However, if a maximum of 5 lags are used as

instruments, then the coefficient on the lagged dependent variable is 0.20 (column 3).25

To reinforce our point that aggregation over similar fields is the cause of the bias in

county-level estimates, we create pseudo counties by randomly assigning the fields in our

sample to 100 different groups and aggregating within the groups. Because the groups

are randomly assigned and include a large number of fields, the parameter heterogeneity is

mostly removed by the aggregation. Pooled OLS estimates with this group-level data give a

negative coefficient on the lagged dependent variable (column 6 of table 5). The elasticities

are similar, but slightly smaller than our conditional grouped coefficient estimates with field-

level data in table 2. The results from the randomly grouped data provide evidence that the

difference in estimates with county-level and field-level data is mostly due to the bias from

heterogeneous responses to autocorrelated factors rather than the aggregation of dynamic

processes per se.
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Conclusion

This article provides estimates of short-run and long-run elasticities of supply for corn and

soybeans, the crops with more acreage than any other in the United States. These sup-

ply elasticities are central for understanding world food prospects and the environmental

consequences of land use change, which have garnered substantial attention recently due to

expanding ethanol production. We use more than 8 million observations that include every

field in Iowa, Illinois, and Indiana over an 11 year period—these three states produce roughly

15% of the world’s corn and soybeans. Our analysis of supply response exploits recent de-

mand shocks in corn and soybean prices caused by strong global commodity demand and

the U.S. policy to convert corn to ethanol for fuel use (Carter, Rausser, and Smith 2013).

We show that field-level dynamics imply that aggregate acreage of a crop responds to

price shocks more in the short run than in the long run when that crop is grown in rotation

with another crop. For corn and soybeans, we estimate that the short-run elasticity of

planted-acreage with respect to price exceeds its long-run counterpart by 37 percent. Our

results differ from all previous estimates because we use a rich set of field-level data to

appropriately model the dynamics of cropping decisions from crop rotations and account for

coefficient heterogeneity across space.

We estimate an own-price elasticity of 0.29 and a cross-price elasticity of -0.22 for corn

acreage in the long run. Our estimates for the Corn Belt indicate that almost all of the

acreage response to price occurs through substitution between corn and soybeans, rather

than changes in the total acreage planted to corn or soybeans. Roberts and Schlenker (2013)

also estimate a small extensive margin response of corn, soybean, wheat, and rice acreage

(taken together) to price in the United States as a whole. After accounting for set-aside

programs, they find a statistically insignificant extensive margin response to price (see their

table 3). Barr et al. (2011) also estimate a small price elasticity of the total acreage of major

crops in the United States as a whole.
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An important topic for future research is to extend our methods to understand supply

response dynamics in other production regions of the United States and the world. Re-

search using crop data from satellite imagery is rapidly becoming feasible for other regions.

For example, the Cropland Data Layer has been made available for the continental United

States since 2008. Future research could also analyze the dynamics of aggregate supply re-

sulting from different dynamics in different regions. Another topic for future research is to

incorporate forward-looking price expectations into the conceptual and econometric models.

We also illustrate that heterogeneity in the response to autocorrelated factors can create

the illusion of partial adjustment or inertia in dynamic panel estimates. We obtain the

expected result that the short-run response to price is larger than the long-run response

using field-level data and accounting for coefficient heterogeneity using Major Land Resource

Areas. Using county-level data, results from popular dynamic panel estimators support

the partial adjustment model. The bias from coefficient heterogeneity is amplified with

county-level data because prices explain a greater proportion of variation in corn acreage

at the county level and parameter heterogeneity persists at the county level due to spatial

autocorrelation. These results suggest that caution is warranted when inferring inertia from

dynamic panel estimators, especially when panels represent aggregates across correlated

micro units.
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Notes

1We define the long run as 5-10 years. Given a sample period of 11 years, we do not claim to estimate

responses with an even longer horizon.
2The planted acreage elasticity is not the same as the supply elasticity if average yields are affected by

price, but Berry and Schlenker (2011) estimate yield-price elasticities near zero for the United States.
3A long time series of crop data is available for the United States, but acreage decisions were highly

distorted by government policies prior to the 1996 Farm Bill, suggesting caution about estimating parameters

useful for current applications from the long time series.
4These assumptions simplify the conceptual model so that (i) we can solve the model for an individual

field rather than at the farm level and (ii) the optimal cropping decision is a repeating crop rotation.
5We could relax this assumption slightly by assuming that harvest-time prices are iid random and the

planting-time expectation of harvest prices is constant across years. Introducing more general forms of price

uncertainty creates an option value in the rotation decision that we ignore here for simplicity.
6Note that 〈cs〉 is equivalent to 〈sc〉.
7We could instead conceptualize yield as containing an iid random component and define yj

i (·) to be the

expected yield functions. To retain the simplicity of our solution, this conceptualization would require yield

to be independent of price or the covariance between yield and price to be constant.
8This assumption makes the model tractable by making the accounting profits linear in output and input

prices (Hennessy 2006).
9In other words, π̃cc

i = pc
iy

c
i (x̃cc

i )− wix̃
cc
i , where x̃cc

i is optimal input use when planting corn after corn.
10The assumption in figure 1 is that if other land uses are converted to corn or soybeans, then these fields

are planted to continuous soybeans. Of course, other land uses may also be converted to plant corn-soybeans

or continuous corn. Our empirical results indicate that most of the changes in corn and soybean acreage

occurs between corn and soybeans so that is the focus of the model here.
11In the case of two-year memory, the difference between the short-run and long-run response also occurs

due to fields converting from a corn-soybean rotation to a corn-corn-soybean rotation. All fields that switch

from corn-soybeans to corn-corn-soybeans due to an increase in the relative price are planted to corn in the

short run, but in the long run only 2/3 of these fields are planted to corn.
12The Cropland Data Layer can be viewed and downloaded at http://nassgeodata.gmu.edu/CropScape/.

For details on the methodology of constructing the Cropland Data Layer see Boryan et al. (2011).
13We only include points corresponding to Common Land Units larger than 15 acres in the empirical

analysis. Further details on constructing the crop data are provided in the supplementary online appendix.
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14Basis is a generic term for a price difference across space or time. In this case, basis refers to the

difference between the local price at harvest time and the expiring futures price, which typically represents

a price along the Illinois River.
15Monthly price data for our sample period are only available for Iowa. We obtain these data from NASS.
16In 2008, corn after corn increased again, not because more fields shifted to a continuous corn rotation,

but because half of the fields that shifted from corn-soybeans to corn-corn-soybeans or continuous corn were

soybeans in 2006 so they did not plant corn after corn until 2008.
17Aggregating our field-level dataset–including CLUs less than 15 acres—we obtain corn and soybean

acreage similar to official NASS data, but underestimate the acreage of other crops.
18Another method is to specify a dynamic nested logit model, but this specification is likely to unnecessarily

complicate the estimation since the extensive margin response is small.
19At the extensive margin, some bootstrap replications indicate that the relative difference between the

short-run and long-run elasticities, εLR−εSR

εLR
, is outside the unit circle. Thus, we report the standard error

on the relative difference in elasticities at the extensive margin as the standard deviation of bootstrap

replications after trimming those replications outside of the unit circle.
20According to crop budgets from University of Illinois extension services, the return from corn after

soybeans was roughly $50-125 more per acre than soybeans after corn in 2012. The 2012 crop budgets are

available at http://www.farmdoc.illinois.edu/manage/2012_crop_budgets.pdf.
21For those fields that were never planted to monoculture, the estimated short-run and long-run marginal

effects are zero.
22We replicate the bias formulas of Pesaran and Smith (1995) and formalize this intuition in the supple-

mentary online appendix.
23There were 11 counties that only had data available for a portion of the sample period. If we include

these counties in the analysis, then the fixed effects estimate of the coefficient on the lagged dependent

variable is biased upward even further.
24Pooled fixed effects with field-level data and a single lagged dependent variable gives a coefficient on the

lagged dependent variable of −0.68 (table 4). However, we argue that the coefficient on the lagged dependent

variable in pooled fixed effects is likely biased downward with field-level data.
25If less than nine lagged levels are used as instruments, then the coefficient on the lagged dependent

variable is positive and if nine or more lags are used as instruments then the coefficient is negative.

34

http://www.farmdoc.illinois.edu/manage/2012_crop_budgets.pdf


Figures

Figure 1: Illustration of land heterogeneity and crop rotations
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Figure 2: Example of Cropland Data Layer with Common Land Unit boundaries
and points used as the unit of analysis for the econometric model
Notes: The figure shows two examples of the raw data used to construct the field-level panel of crop data.
Example 1 is a region planted almost exclusively to corn and soybeans. Example 2 is a region with areas of
woodland and grassland interspersed with corn and soybeans. The classifications of each pixel are from the
2010 Cropland Data Layer (CDL). The light gray lines are Common Land Unit (CLU) boundaries. The red
points are diagonally offset from the centroid of CLUs that are larger than 15 acres. The panel of crop data
corresponds to the crop classification at each of these points over time. This figure is available in color in
the online version of the article.
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Figure 3: Relative expected prices, crop acreage, and crop transitions in Iowa,
Illinois, and Indiana (2000-2010)
Notes: Expected prices are the sum a futures price, an expected basis, and an expected loan deficiency
payment. The expected basis for the graph in panel (a) is the average expected basis across the entire
region. The crop acreage in panel (b) is the sum of state-level data from NASS. Aggregate crop transitions
in panel (c) were calculated by the authors using data from the Cropland Data Layer. Crop transitions were
aggregated across all of the fields used in our econometric analysis.
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(a) Corn in 2009 and corn in 2010

(b) Soybeans in 2009 and soybeans in 2010

Figure 4: Major Land Resource Areas (MLRAs) overlayed on maps of corn after
corn and soybeans after soybeans in 2010
Notes: The map in panel (a) shows Common Land Units that were classified as corn in 2009 and corn in
2010 in red and other transitions in green. The map in panel (b) shows Common Land Units that were
classified as soybeans in 2009 and soybeans in 2010 in blue and other transitions in green. The white area
within the region indicates areas that were other land uses in 2009 and 2010 (e.g., urban areas, forest, and
pasture). The dark lines indicate the borders of the 24 Major Land Resource Areas (MLRAs) that we use
to specify similar groups of fields. Most of the MLRAs represent a single area on the map. In some cases
though, two noncontiguous areas are identified as the same MLRA. This figure is available in color in the
online version of the article.
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Figure 5: Distribution of marginal effects and dynamics of the fields that were
planted to monoculture at least once
Notes: The histograms show how short-run marginal effects and dynamics vary across fields from estimates
of the linear Markov transition probability models as specified in equations (14) and (15). The histograms
show marginal effects across the Major Land Resource Area (MLRA) for those fields that were planted to
monoculture at least once. For those fields that were never planted to monoculture, the estimated short-run
and long-run marginal effects are zero. The histograms represent the distribution of field-specific marginal
effects from equations (20) and (21) calculated across roughly 5.8 million observations. Panel A is a histogram
(bin size=0.01) of the short-run marginal effects of the expected price of corn. Panel B is a histogram (bin
size=0.005) of the short-run marginal effects of the expected price of soybeans. Panel C is a histogram (bin
size=0.015) of the relative difference in the long-run (εLR) and short-run (εSR) elasticities that is analogous
to the coefficient on a single lagged dependent variable.
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Tables

Table 1: Descriptive Statistics of the Estimation Samples

Mean Std. Dev.
Panel A. Rotational Margin Sample (N=8,369,302)
Corn 0.54 0.50
Soybeans 0.46 0.50
Corn after Corn 0.16 0.36
Corn after Soybeans 0.39 0.49
Soybeans after Corn 0.39 0.49
Soybeans after Soybeans 0.07 0.26
Never Monoculture 0.32 0.47
Monoculture at Least Once 0.68 0.47

Expected Price of Corn ($/bu) 3.18 0.86
Expected Price of Soybeans ($/bu) 7.56 1.85
Large Spring Rainfall 0.25 0.43
Share Clay 0.27 0.07
Share Silt 0.51 0.15
Slope 2.94 3.34
Share Irrigated 0.01 0.04

Panel B. Extensive Margin Sample (N=8,753,448)
Corn or Soybeans 0.98 0.13
Other Crops 0.02 0.13
Always Corn or Soybeans 0.89 0.32
Other Crop at Least Once 0.11 0.32

Index of Corn and Soybean Prices 1.21 0.31
Index of Alfalfa and Wheat Prices 1.27 0.29
Share Clay 0.27 0.07
Share Silt 0.51 0.15
Slope 2.99 3.40

Notes: Panel A gives descriptive statistics for the rotational margin sample—observations (field-year pairs)
that were classified as corn or soybeans in two consecutive years. A field was never planted to monoculture
if corn after corn and soybeans after soybeans were never observed. Panel B gives descriptive statistics for
the extensive margin sample—observations that were classified as a crop but where the field was classified
as corn or soybeans at least once during the sample period and for which there is a crop observed in two
consecutive years.
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Table 2: Aggregate Acreage Elasticities from Conditional Grouped Coefficients
Regressions using Field-level Data

Rotational Extensive Total
(1) (2) (3)

Panel A. Corn Acreage Elasticities
Own-Price

Short-run 0.40∗∗ 0.004 0.40∗∗
(0.093) (0.004) (0.093)

Long-run 0.29∗∗ 0.006 0.29∗∗
(0.068) (0.004) (0.068)

Cross-Price
Short-run -0.31∗∗ 0.002 -0.30∗∗

(0.103) (0.003) (0.103)
Long-run -0.22∗∗ 0.003 -0.22∗∗

(0.075) (0.003) (0.075)
Panel B. Soybean Acreage Elasticities
Own-Price

Short-run 0.36∗∗ 0.002 0.36∗∗
(0.121) (0.003) (0.121)

Long-run 0.26∗∗ 0.003 0.26∗∗
(0.088) (0.003) (0.088)

Cross-Price
Short-run -0.46∗∗ 0.003 -0.46∗∗

(0.109) (0.004) (0.109)
Long-run -0.33∗∗ 0.005 -0.33∗∗

(0.080) (0.004) (0.080)

εLR−εSR

εLR
-0.39∗∗ 0.35 -0.37∗∗
(0.012) (0.233) (0.013)

Notes: Elasticities are calculated as the elasticity of the average marginal effect across all fields, weighted by
the size of the fields. Results in column (1) are from linear Markov transition probability models as specified
in equations (14) and (15). The linear probability models are estimated separately for each Major Land
Resource Area (MLRA). Within each MLRA, the model is estimated only for fields where monoculture was
observed at least once. The price response is assumed to be zero for those fields that were never planted
to monoculture. Results in column (2) are from Markov transition models between corn or soybeans and
other crops. The model is estimated separately for each MLRA. Within each MLRA, the model is estimated
for those fields that transitioned between corn or soybeans and other crops. The price response is assumed
to be zero for fields that always planted corn or soybeans. The last row gives the relative difference in
the long-run (εLR) and short-run (εSR) elasticities that is analogous to the coefficient on a single lagged
dependent variable. Standard errors are clustered by year and estimated with a wild bootstrap.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 3: Average Coefficients of Transition Probabilities for Fields that were
Planted to Monoculture at Least Once

Previously Previously
Corn Soybeans
(1) (2)

Expected Corn Price 0.119∗∗ 0.072∗∗
[0.038] [0.070]
(0.033) (0.023)

Expected Soy Price -0.043∗∗ -0.018∗
[0.021] [0.027]
(0.015) (0.008)

Large Spring Rainfall -0.007 -0.043∗∗
[0.045] [0.040]
(0.005) (0.004)

Share Clay -0.313∗∗ 0.033∗
[0.207] [0.206]
(0.028) (0.015)

Share Silt -0.045∗∗ 0.004
[0.134] [0.128]
(0.015) (0.010)

Slope -0.002 -0.008∗∗
[0.005] [0.005]
(0.001) (0.001)

Share Irrigated 0.251 0.310
[2.899] [2.542]
(0.268) (0.395)

Trend 0.013∗∗ 0.005
[0.014] [0.012]
(0.004) (0.003)

Intercept 0.372∗∗ 0.669∗∗
[0.118] [0.127]
(0.027) (0.018)

Observations 3,151,936 2,635,969
Notes: This table gives average coefficients of the Markov transition models across MLRAs.
The standard deviation of coefficients across MLRAs is in brackets. The average and standard
deviation are weighted by the acres in each MLRA. The standard error of the average coefficient
is in parentheses. Standard errors are clustered by year and estimated with a wild bootstrap.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 4: Corn Acreage Elasticities at the Rotational Margin with Pooled Esti-
mators and Field-level Data

Lagged Dependent Variable
Transition Probabilities OLS FE Arellano-Bond

(1) (2) (3) (4)
Own-Price

Short-run 0.25 0.22 0.33∗∗ 0.32
(0.158) (0.161) (0.131) (1.403)

Long-run 0.16 0.14 0.20∗∗ 0.18
(0.102) (0.104) (0.078) (0.822)

Cross-Price
Short-run -0.15 -0.12 -0.17 -0.18

(0.182) (0.186) (0.143) (1.107)
Long-run -0.09 -0.08 -0.10 -0.11

(0.117) (0.121) (0.085) (0.648)
εLR−εSR

εLR
-0.56∗∗ -0.54∗∗ -0.68∗∗ -0.71∗∗
(0.014) (0.009) (0.007) (0.012)

Notes: This table reports results at the rotational margin for models that estimate a single coefficient for all
fields (i.e., pooled estimators). Results in column (1) are from linear Markov transition probability models
as in equations (14) and (15), but impose the same coefficients across all fields. Results in columns (2)-(4)
are from a linear probability model with a single lagged dependent variable as in equation (22), but impose
the same coefficients across all fields. Results in columns (2) and (3) are from Ordinary Least Squares (OLS)
and fixed effects (FE). The Arellano-Bond estimates in (4) are estimated with two-step difference GMM
using XTABOND2 in STATA using a “collapsed” instrument matrix as suggested by Roodman (2009), and
use all lags available as instruments. Standard errors are clustered by year.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 5: Aggregate Corn Acreage Elasticities with Alternative Estimators using Aggregate Panel Data and a
Single Lagged Dependent Variable

County-level Random Groups
Anderson- Arellano- Arellano- Blundell-

FE Hsiao Bond Bond Bond OLS
(1) (2) (3) (4) (5) (6)

Own-Price
Short-run 0.35∗∗ 0.50∗∗ 0.44 0.14 0.41 0.36∗∗

(0.131) (0.160) (0.314) (0.750) (0.517) (0.149)
Long-run 0.44∗∗ 0.62 0.55 0.11 0.41 0.23∗

(0.187) (0.556) (0.409) (0.672) (0.600) (0.114)
Cross-Price

Short-run -0.38∗∗ -0.49∗∗ -0.45∗∗ -0.12 -0.36 -0.24
(0.140) (0.191) (0.230) (0.818) (0.446) (0.186)

Long-run -0.47∗∗ -0.62 -0.56 -0.09 -0.36 -0.15
(0.209) (0.642) (0.356) (0.724) (0.530) (0.139)

εLR−εSR

εLR
0.19∗ 0.21 0.20 -0.29 0.01 -0.55
(0.101) (0.555) (0.307) (1.375) (0.462) (0.311)

Maximum number
of lags as instruments N/A 1 5 10 10 N/A

Notes: The county-level results in this table use official NASS county-level data. The dependent variable is corn acres divided the average
sum of corn and soybean acres during the sample for the county (i.e., the share of corn and soybean acres planted to corn). Right-hand side
variables are a lagged dependent variable, expected corn price, expected soybean price, a trend, and county-specific intercepts. The results in
column (2) are from the Anderson-Hsiao estimator that uses the second lagged level as an instrument for the lagged difference. The results
in (3) and (4) are two-step difference GMM and estimates in (5) are two-step system GMM, estimated using XTABOND2 in STATA using a
collapsed instrument matrix as suggested by Roodman (2009). Results in (3) use a maximum of 5 lags as instruments and results in (4) and
(5) use all lags available as instruments. Results in (7) are from pooled OLS when the field-level data are randomly assigned to 100 different
groups and aggregated within those groups. Standard errors for all estimators are clustered by year.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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