This is the author's manuscript for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus)

Katherine E. Waselkov and Kenneth M. Olsen

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Waselkov, K. E., & Olsen, K. M. (2014). Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus). Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Waselkov, K. E., & Olsen, K. M. (2014). Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus; Amaranthaceae). American Journal of Botany, 101(10), 1726-1736.

Copyright: © 2014 Botanical Society of America

Digital Object Identifier (DOI): doi:10.3732/ajb.1400064

Publisher's Link: http://www.amjbot.org/content/101/10/1726.full.pdf+html?sid=c3a78d54-2335-45ae-88e7-e7666bb3e117

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at <u>http://krex.ksu.edu</u>

1	
2	
3	
4	
5	Population Genetics and Origin of the Native North American Agricultural Weed
6	Waterhemp (Amaranthus tuberculatus) ¹
7	
8	Katherine E. Waselkov ^{2,3,4} and Kenneth M. Olsen ³
9	² Current address: Division of Biology, Kansas State University, Manhattan, KS 66506
10	USA
11	³ Department of Biology, Washington University, St. Louis, MO 63140 USA
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

25	¹ Manuscript received:; revised manuscript accepted:
26	The authors thank P. Tranel at the University of Illinois Urbana-Champaign for A.
27	tuberculatus transcriptome data; C. Lapid for help designing microsatellite primers; R.
28	Kempen and N. Regenold for assistance with plant collecting; and L. Small, D. Vera-
29	Vazquez, N. Regenold, A. Al-lozi, A. Clark, and D. Wetherington for assistance with lab
30	work. Members of the Olsen, Miller, and Ferguson laboratories provided helpful
31	comments on the manuscript. Funding was provided by an NSF Graduate Research
32	Fellowship to K. Waselkov.
33	⁴ Author for correspondence (email: waselkov@k-state.edu); present address: Division of
34	Biology, Box 18, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA.
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47

48 ABSTRACT

49	Premise of the study—The evolution of invasiveness has been extensively studied in
50	natural ecosystems; however, far less is known about the evolution of agricultural
51	invasiveness, despite the major economic impact of weeds on crop
52	productivity. Examining the population structure of recently arisen weeds can provide
53	insights into evolutionary avenues to invasion of agroecosystems. Weeds that originate
54	from wild plants are the most common yet least frequently studied type of agricultural
55	invasive. Here we address several questions about the origin of the native North
56	American agricultural weed waterhemp (Amaranthus tuberculatus), which invaded corn
57	and soy fields in the Midwestern U.S. in the 20th century.
58	Methods—We genotyped 38 populations from across the species range with 10
59	microsatellite markers, and used these data to assess genetic diversity and population
60	structure within and outside the geographical region where waterhemp is agriculturally
61	problematic.
62	Key Results—We found evidence for two ancestral genetic lineages in our data,
63	supporting the hypothesis that A. tuberculatus was diverging into two evolutionary
64	lineages prior to the 20th century. However, we found no support for the hypothesis that
65	agricultural weed populations arose from admixture of these two lineages after secondary
66	contact. Our data suggest that eastward movement of the western genetic lineage,
67	facilitated by changing agricultural practices, is the source of the agricultural invasion of
68	waterhemp.

69 *Conclusions*—This research demonstrates that agricultural invasion by native, wild plant

70	species can proceed via different evolutionary trajectories from weeds related to
71	domesticated plants, which has implications for evolutionary biology and weed control.
72 73	Key Words: agricultural weed; Amaranthus tuberculatus; hybridization; invasive;
74	population admixture; waterhemp
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93	The evolution of invasiveness, broadly defined as the ability of an organism to
94	establish, persist, and proliferate in a new habitat or range (Mack et al., 2000), has been
95	extensively studied in natural ecosystems (Lambrinos, 2004; Ward et al., 2008).
96	However, far less is known about the evolution of invasiveness in heavily human-
97	modified, anthropogenic habitats such as agricultural ecosystems. Agricultural weeds,
98	plants that invade crop fields and range lands, are the single greatest threat to agricultural
99	productivity worldwide, costing an estimated \$33 billion per year in the US alone
100	(Pimentel et al., 2005). Examining the population structure and genetic composition of
101	these weeds can potentially provide insights into the evolutionary avenues to invasion in
102	agricultural habitats; this approach has been successful in natural ecosystem invasions
103	(Sakai et al., 2001). Despite the economic importance of agricultural weeds, population
104	genetics has been used to study the origin of very few weed species, aside from weedy
105	relatives of crops (Vigueira et al., 2013).
106	Agricultural weeds are often presumed to have evolved along with plant
107	domestication and the beginnings of agriculture roughly 12,000 years ago (De Wet and

109 with highly mobile human populations can limit the ability to draw inferences about the

Harlan, 1975). In such cases, the weed's origin in the distant past and long association

110 population-level processes underlying the evolution of weediness. However, agricultural

111 weeds may also evolve on a more contemporary timescale. The 20th century saw

108

112 enormous changes in agricultural practices in the U.S., including the introduction of

113 herbicides and the widespread adoption of conservation tillage (Owen, 2008), and these

114 changes have allowed species that were formerly confined to natural habitats to find a

new niche in an agricultural environment (Buhler et al., 1997). Unlike weeds whose

116	origins date to the beginnings of agriculture, recently arisen weeds may retain a clear
117	genetic signature of the events that led to their agricultural invasion.
118	Three main hypotheses about the origin of agricultural weeds are prevalent in the
119	literature (reviewed in Vigueira et al., 2013, following De Wet and Harlan, 1975). Weed
120	species that are related to domesticated species may arise either through "de-
121	domestication" (domesticated species becoming feral), or by hybridization between
122	related domesticated and wild species. Support for these two hypotheses has been found
123	in many systems, including beets, rye, rice, and sunflowers (Burger et al. 2006; Londo
124	and Schaal, 2007; Olsen et al., 2007; Fénart et al., 2008; Muller et al., 2010). A close
125	phylogenetic relationship between a crop species and a sympatric weed leads to
126	interesting evolutionary dynamics, as ongoing gene flow between the two can shape
127	adaptive evolution of the weed (possibly even through transgene escape), and many
128	evolutionary studies have focused on these related crop-weed systems (eg., Warwick et
129	al., 2003; Morrell et al., 2005; Aono et al., 2006; Campbell et al., 2006).
130	The third hypothesized mode of weed origination, the niche expansion of wild
131	plants into agroecosystems through plasticity, adaptation, or exaptation, has received less
132	attention by evolutionary biologists (but see Barrett et al., 1983; Menchari et al., 2007;
133	Welsh and Mohamed, 2011), even though all weeds without close crop relatives must
134	have followed this pathway to agricultural invasion, and even though this type of weed
135	species is the most common (De Wet and Harlan, 1975). Of the few studies of this mode
136	of agricultural invasion in the literature, the origin of weedy sunflower populations
137	(Helianthus annuus) from wild populations is the best documented (Kane and Rieseberg,
138	2008; Lai et al., 2008). Due to the scarcity of studies on wild-to-weed evolutionary

transitions, many fundamental questions about these systems remain unaddressed,
including: whether evolutionary changes in the plant and/or changes in agricultural
management practices are required for the invasion; whether such invasions usually have
a single or multiple wild sources; and what morphological, physiological, and ecological
traits predispose a wild species to expand into agricultural habitats.

144 Among agricultural weeds that have evolved directly from wild species, a 145 distinction can be drawn between those that are introduced in the region where they are 146 invasive and those that are native. While agricultural weeds in North America are often 147 assumed to be mostly introduced from elsewhere, approximately 50% of U.S. cropland 148 weeds are in fact native (Clements et al., 2004). In many cases, wild populations of these 149 native agricultural weeds still exist in the same geographic area, which opens up the 150 potential for gene flow between populations in agricultural and natural habitats. This 151 study focuses on one such native plant species that became agriculturally invasive over a 152 very short, recent time scale.

153 Our study species, waterhemp (Amaranthus tuberculatus (Moq.) Sauer), is an 154 herbaceous, outcrossing annual plant native to the Midwestern U.S., where it occurs 155 naturally along riverbanks and in floodplains. Domesticated species of Amaranthus are 156 largely absent from its range (Mosyakin and Robertson, 2003). Waterhemp has invaded 157 Midwestern agricultural ecosystems since the 1950s and has become a major problem for 158 corn and soybean farmers in Missouri, Iowa, and Illinois since the 1990s (Sauer, 1957; 159 Tranel and Trucco, 2009). In Illinois alone, waterhemp accounts for about 10% of weed 160 control costs for corn and soybean fields, costing farmers an additional \$65 million per 161 year (Patrick Tranel, Univ. of IL, pers. comm.). If uncontrolled, it can reduce corn yields

162	by up to 74%, and soybean yields by as much as 56% (Steckel, 2007). As a small-seeded
163	annual with sporadic or discontinuous germination, waterhemp is a prime example of the
164	class of agricultural weeds that benefited from the widespread adoption of conservation
165	tillage in the late 20 th century (Hager et al., 2000; Owen, 2008; Refsell and Hartzler,
166	2009). Other aspects of the species' biology have contributed to another factor in
167	waterhemp's success: the rapid evolution and spread of herbicide resistance. A dioecious
168	mating system and wind pollination are expected to promote extensive gene flow,
169	potentially leading to genetic admixture and homogenization across large geographical
170	areas. To date, resistance to five different chemical classes of herbicides has been
171	detected in A. tuberculatus populations, and resistance to one of the older classes (ALS-
172	inhibitors) is very widespread (Hausman et al., 2011; Tranel and Trucco, 2009).
173	Furthermore, there is some morphological evidence that the species may have
174	been diverging into two species, one on either side of the Mississippi River, until human
175	disturbance brought the taxa back into contact, and possibly gave rise to the agriculturally
176	invasive strain through admixture (Sauer, 1957). Sauer studied herbarium specimens
177	from 1856-1955, and noted that what he considered the "western species" had invaded
178	the range of the "eastern species," with specimens appearing as far east as Indiana by the
179	1950s. He also found that hybrids between the two taxa were more likely to be collected
180	in "artificial" habitats, including agricultural fields, than in natural habitats (Sauer, 1957).
181	In this study, we used population genetic techniques to address several questions
182	about the origin and evolution of the agricultural weed form of this native Midwestern
183	U.S. weed, to add to the small body of research on wild, native plants that have expanded
184	their niche to encompass cropland. We extensively sampled populations of waterhemp

185	across the species' range, both within and outside of the region where waterhemp is
186	agriculturally problematic, and genotyped these populations using polymorphic
187	microsatellite markers. These population genetic data were used to test the following
188	hypotheses. First, we hypothesized (following Sauer, 1957) that A. tuberculatus was
189	diverging into two evolutionary lineages on opposite sides of the Mississippi River prior
190	to the 20 th century, and that the present-day species would retain some genetic and
191	geographical signature of past subdivision into two evolutionary units.
192	The second hypothesis, contingent on the first, was that the agricultural weed
193	originated through hybridization between the two diverged lineages. Based on this latter
194	hypothesis, we predicted that populations of waterhemp collected from agricultural fields
195	would show strong evidence of admixture between western and eastern genetic
196	subpopulations. In order to test this prediction, we examined the genetics of agricultural
197	and non-agricultural waterhemp populations across the species' range and also in a
198	smaller geographical region at the range edge of weedy waterhemp in Ohio. Our data
199	support the first hypothesis but not the second, and suggest that eastward movement of
200	the western genetic lineage, facilitated by changing agricultural practices, is the source of
201	the agricultural invasion of waterhemp.
• • •	

- 202
- 203

MATERIALS AND METHODS

Study system—Amaranthus tuberculatus sensu lato (including A. rudis sensu
Sauer, 1972), is an annual herb native to North America. The species' range is centered
around the Mississippi Valley region, from the Great Plains (roughly as far west as the
100th meridian) eastward to Ohio, and from Louisiana northward to Minnesota, with a

208	northern range boundary in southern Ontario (Fig. 1). The region of agricultural invasion
209	is more restricted: waterhemp is most problematic in the central Mississippi Valley
210	region (MO, IL, IA, IN), but also occurs agriculturally in the eastern Great Plains and in
211	parts of Kentucky and Ohio (Tranel and Trucco, 2009). Waterhemp is dioecious (and
212	thus obligately outcrossing) and wind-pollinated, with small one-seeded utricle fruits that
213	may be dehiscent or indehiscent. Natural populations of A. tuberculatus are almost
214	always found in wet habitats, especially seasonally inundated riverbanks in the Midwest,
215	but also banks of creeks and drainage ditches, lakeshores, and marshy floodplains
216	(Mosyakin and Robertson, 2003).
217	Until Pratt and Clark's 2001 taxonomic study of populations across the species'
218	range, waterhemp was considered two species, distinguished primarily by utricle
219	dehiscence, tepal number, and geographic range: A. tuberculatus, the entity with
220	indehiscent utricles and no pistillate tepals found to the east of the Mississippi River; and
221	A. rudis (earlier misapplied name = A. tamariscinus; see Sauer, 1972), the dehiscent-
222	fruited taxon with one pistillate tepal found natively west of the Mississippi River (Sauer,
223	1955; 1957; 1972; Fig. 1). Pratt and Clark discovered a continuum of morphological and
224	isozyme characters across the range of both species and lumped them into the more
225	broadly defined A. tuberculatus, but some authors still distinguish the two former species
226	as varieties: A. tuberculatus var. tuberculatus and var. rudis (Costea and Tardif, 2003).
227	The varietal taxonomy is used here, with Pratt and Clark's species called A. tuberculatus
228	sensu lato (s.l.) or simply A. tuberculatus.
229	<i>Sample collection</i> —We collected plant samples from 38 populations of <i>A</i> .
230	tuberculatus s.l. across the entire species range in 2009 and 2010 (Table 1 and Fig. 1;

Supporting information, Table S1). Populations were sampled in Nebraska, Kansas,
Oklahoma, Arkansas, Missouri, Illinois, Indiana, Ohio, Michigan, and Ontario. Ohio was
intensively surveyed because it is the edge of the range of agricultural waterhemp, with
agricultural populations in ~10 counties west of Columbus but only non-crop populations
in the remainder of the state (J. Stachler, NDSU, pers. comm.; Fig. S1). Gene flow
between the weed and non-weed populations, which could obscure the genetic signature
of the weed's origin, should be lowest in this area.

We located populations using a combination of herbarium record data and new 238 239 surveys of typical A. tuberculatus habitat along riverbanks, lakeshores, and in crop fields. 240 For the areas with agricultural waterhemp populations, both crop field and non-241 agricultural populations were included in the study. We recorded latitude and longitude 242 coordinates for each population using a Garmin eTrex H handheld GPS unit (Garmin, 243 Olathe, Kansas, USA), and collected voucher specimens (both male and female plants if 244 possible). For each population, either 10 dried leaf samples in silica gel were collected, 245 or 10 fresh leaf samples were collected and kept in a cooler until they could be frozen at -246 80°C. Fruit dehiscence (considered an important taxonomic character for distinguishing 247 the two varieties) was recorded for each female voucher specimen (Table 1).

248 *DNA extraction and genotyping*—DNA was extracted from each sample with 249 Qiagen DNeasy Plant Mini Kits (Qiagen Inc., Valencia, California, USA). Ten 250 microsatellite loci were amplified and genotyped. Primers, repeat motifs, and sizes of 251 products are listed in Table S2. Multiple primer pairs from Lee et al. (2009), originally 252 designed from *A. tuberculatus* genomic sequence data, were tested for consistent 253 amplification and polymorphism, and three primer pairs were selected. The other seven

254	primer pairs were selected from a set of 14 mined from A. tuberculatus transcriptomic
255	data using the program SSR Finder (Schroeder, 2003). The transcriptome contigs were
256	provided by the Tranel lab (Univ. IL). In order to multiplex products from different
257	primers in a cost-effective manner, we designed the forward primers with an M13(-21)
258	sequence (TGTAAAACGACGGCCAGT) at the 5' end, to allow the attachment of a
259	universal fluorescent-dye labeled M13(-21) tag (Schuelke, 2000). The universal tags
260	were labeled with the fluorescent dyes HEX, 6FAM, and NED (Applied Biosystems,
261	Carlsbad, California, USA). In addition, we designed the reverse primers to incorporate a
262	PIG-tail, the sequence "GTTTCTT" at the 5' end of the reverse primer, to facilitate
263	consistent non-template adenylation of the 3' end of the PCR product and to reduce
264	stutter (Brownstein et al., 1996).
265	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied
265 266	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 μL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison,
265 266 267	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 μL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 μM M13(-21) dye-
265 266 267 268	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq
265 266 267 268 269	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions
 265 266 267 268 269 270 	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions were: 94°C for 5 minutes; then 30 cycles of 94°C (30 seconds), 51°C (45 seconds), 68 °C
 265 266 267 268 269 270 271 	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions were: 94°C for 5 minutes; then 30 cycles of 94°C (30 seconds), 51°C (45 seconds), 68 °C (45 seconds) to amplify the product; followed by 8 cycles of 94°C (30 seconds), 48°C (45
 265 266 267 268 269 270 271 272 	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions were: 94°C for 5 minutes; then 30 cycles of 94°C (30 seconds), 51°C (45 seconds), 68 °C (45 seconds) to amplify the product; followed by 8 cycles of 94°C (30 seconds), 48°C (45 seconds), 68°C (45 seconds) to attach the labeled tag; and 72°C (30 minutes) final
 265 266 267 268 269 270 271 272 273 	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions were: 94°C for 5 minutes; then 30 cycles of 94°C (30 seconds), 51°C (45 seconds), 68°C (45 seconds) to amplify the product; followed by 8 cycles of 94°C (30 seconds), 48°C (45 seconds), 68°C (45 seconds) to attach the labeled tag; and 72°C (30 minutes) final extension. PCR products were diluted 1:10 and multiplexed (combining PCR products
 265 266 267 268 269 270 271 272 273 274 	PCR was performed on ABI GeneAmp 9700 thermocyclers (Applied Biosystems), in 10 µL reactions containing: 1X GoTaq Flexi Buffer (Promega, Madison, Wisconsin, USA), 2.5 mM MgCl2, 0.05 mM each dNTPs, 0.15 µM M13(-21) dye- labeled tag, 0.04 µM forward primer, 0.16 µM reverse primer, 0.075 µL GoTaq (Promega), 3.875 µL nanowater, and 1.25 µL genomic DNA. Amplification conditions were: 94°C for 5 minutes; then 30 cycles of 94°C (30 seconds), 51°C (45 seconds), 68 °C (45 seconds) to amplify the product; followed by 8 cycles of 94°C (30 seconds), 48°C (45 seconds), 68°C (45 seconds) to attach the labeled tag; and 72°C (30 minutes) final extension. PCR products were diluted 1:10 and multiplexed (combining PCR products from up to three loci with different dye labels and different sizes in the same well) with

276 minutes at 95°C, and genotyped on an ABI Prism 3130x Genetic Analyzer (Applied
277 Biosystems).

278 Microsatellite data were visualized using GeneMapper v3.7 software (Applied 279 Biosystems). The alleles at each locus for each individual were recorded by hand and 280 double-checked by repeated amplification and genotyping if more than two peaks 281 appeared (since A. tuberculatus is diploid) or unusual allele size classes were observed. 282 If these anomalies were observed twice (which happened very rarely for any particular 283 locus), the data for that marker for that particular individual were coded as missing. 284 Additionally, if genotyping failed for an individual for a particular locus, several 285 subsequent attempts were made to obtain these data before they were coded as missing. 286 Microsatellite data for all populations and loci is available from Dryad (XXX). 287 Microsatellite data analysis—Microsatellite markers were checked for null 288 alleles using MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004). The program 289 Genepop 4.2 (Rousset, 2008) was used to test the probability of Hardy-Weinberg 290 equilibrium for each population (with the Markov chain method to estimate exact p-291 values), to test for linkage disequilibrium between loci (with Fisher's method), and to 292 detect private alleles for each population. Popgene 1.31 (Yeh et al. 1997) was used to 293 estimate the average number of observed alleles and effective alleles and average 294 observed and expected heterozygosity over all loci for each population, and per-locus for 295 all populations combined. Weir and Cockerhams's theta (an estimate of Fst) was 296 calculated over all loci and all populations using the program FSTAT 2.9.3.2 (Goudet, 297 1995).

298	To test for isolation by distance (IBD), we calculated the geographic great circle
299	distance in kilometers between each pair of populations using the Geographic Distance
300	Matrix Generator (Ersts, 2013). We then generated a matrix of pairwise Fst values
301	between populations, and compared the two matrices in a Mantel test for isolation by
302	distance (with 1000 permutations) using Genepop. This procedure was used to test for
303	IBD across the entire species range, and across subsets of the species range: the Plains
304	states (TR, CHE, TCL, and SaltR populations); Missouri and Illinois; Ohio; and Northern
305	Ohio (OTT, MAU, and PTC populations), Michigan, and Ontario.
306	To identify the highest-likelihood number of genetic subpopulations (K) in the
307	data, we employed the program STRUCTURE 2.3.1 (Pritchard et al., 2000). We used the
308	correlated allele frequencies model with sampling locations (population assignment) as a
309	prior, which facilitates clustering for data with weak genetic structure. We ran separate
310	analyses for the admixture and no-admixture ancestry models for both datasets. For the
311	total species range dataset, we ran the analysis for K=1-20; and for the Ohio dataset, from
312	K=1-7, with five runs per K, 100,000 Markov Chain Monte Carlo (MCMC) burnin steps,
313	and 500,000 MCMC steps after the burnin for both datasets. The separate analysis of the
314	Ohio dataset was conducted to examine fine-scale structure in this intensively sampled
315	part of the range. To estimate the number of genetic clusters from the ln Probability
316	(X K) values output by STRUCTURE, we used STRUCTURE HARVESTER v0.6.93
317	(Earl and vonHoldt, 2012) to implement the ΔK method of Evanno et al. (2005). We
318	combined the results of multiple runs for each K, using the FullSearch algorithm, with
319	the program CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007) and visualized the
320	combined results as bar graphs with distruct v1.1 (Rosenberg, 2004).

321	The program BAPS v5.3 (Bayesian Analysis of Population Structure; Corander et
322	al., 2003) was used to incorporate spatial information into the estimation of genetic
323	clusters for the total species range dataset, using an admixture model rather than a no-
324	admixture model, as recommended by François and Durand (2010). Unlike
325	STRUCTURE, BAPS does not use MCMC to infer K. Instead, BAPS uses a stochastic
326	search algorithm that considers multiple K values simultaneously to directly estimate the
327	number of genetic clusters and assign individuals to those clusters using mixture analysis.
328	Geographic localities of populations were employed as priors, using the "spatial
329	clustering of groups" option (Corander et al., 2008). We set $K_{max} = 2, 5, 10, and 20$, with
330	three runs per K. For admixture analysis based on the mixture analysis results from the
331	highest-probability K-value, we used a minimum population size of five, 200 iterations,
332	100 reference individuals for each population, and 20 iterations of reference individuals
333	(as suggested in the manual). The graphical output from BAPS is an "admixture
334	partition" bar graph showing genetic assignment of individuals, and a Voroni tessellation
335	diagram showing the spatial genetic assignment of populations.
336	
337	RESULTS
338	Genetic diversity—Populations largely conformed to Hardy-Weinberg
339	expectations. MICRO-CHECKER revealed that none of the loci were consistently more
340	homozygous than expected, indicating no evidence for null alleles in the dataset.
341	Likewise, no single population showed a deviation from Hardy-Weinberg equilibrium
342	(HWE) at more than one locus. Hardy-Weinberg probability tests yielded slightly
343	different results, showing that the locus AAC1 deviated from HWE in five populations,

and that one population, MAU, deviated from HWE when all loci were taken into
account (P = 0.024). Population structure analyses were therefore run with and without
this locus and population; however, exclusion of these data had negligible effect on the
results (data not shown). No significant linkage disequilibrium was detected between any
pair of loci.

349 Genetic diversity data for each population are presented in Table 2, with per-locus 350 values shown in Table S3. Gene diversity (He) ranged between 0.42 and 0.68 for 351 individual populations, with a mean of 0.56 over all populations, indicating high within-352 population genetic diversity. Populations in the western half of the species range tended 353 to have higher average observed and effective numbers of alleles than populations in the 354 eastern half of the species range. Several populations in Indiana (VIGO, KANK) and 355 Ohio (NEV, CAN, SCIO, MC, PTC) and one population in Illinois (PEK) had higher 356 average observed than expected heterozygosity, potentially suggesting recent admixture 357 (Table 2). These populations include only two of the ten populations from crop fields 358 (see Table 1), and agricultural waterhemp populations did not have higher average 359 observed than expected heterozygosity on average (results not shown). The number of 360 alleles per locus ranged from 6 to 20, and in general both observed and expected 361 heterozygosity per locus were high, with the exception of the locus ATC9, which had 362 approximately one effective allele (Table S3). 363 Genetic differentiation among populations was low overall. Weir and

Cockerham's theta (analogous to Fst) was 0.075 averaged across loci, with a range of

365 0.029-0.186 for individual loci. Nonetheless, Mantel tests revealed significant isolation

by distance across the species range (P < 0.00001, Fig. 2), with pairwise Fst values

367	between populations ranging from 0.0013 to 0.2681. For geographical subsets of the
368	species range, there was no isolation by distance at the state or bi-state level, or across the
369	three Plains states. However, the dataset composed of populations from northern Ohio,
370	Michigan, and Ontario did show weak isolation by distance ($P = 0.037$).
371	Population structure—
372	Whole species range dataset—STRUCTURE output and the ΔK statistic indicated
373	two genetic clusters within A. tuberculatus, one characteristic of the western part of the
374	geographic range and one characteristic of the eastern part, with greater than 25%
375	admixture inferred for the populations PEK and KNK (IL), KANK, IND, and WAB (IN),
376	SCF (ON), and the OH agricultural waterhemp region populations (Fig. 3; Supporting
377	information, Fig. S2). Overall for K=2, the ten crop field populations had an average of
378	23.9% admixture, while the 28 non-agricultural populations had an average of 15.0%
379	admixture (calculated from STRUCTURE output). Analyzing the dataset with the no-
380	admixture model yielded the same inferred numbers of clusters (results not shown).
381	The analysis of population structure that explicitly incorporated information on
382	the geographical locations of populations yielded generally similar results to the
383	STRUCTURE analysis. BAPS identified the highest K value as K=3 (for $K_{max} = 5$, 10,
384	and 20). Population and individual assignments to these three clusters are shown in the
385	admixture partition bar graph (resulting from a mixture analysis, followed by admixture
386	analysis) (Fig. 4a). The population assignments largely correspond to the same
387	western/eastern divide seen in the STRUCTURE analysis, with the switch from primarily
388	western to eastern genetics between VIGO (IN) and KANK (IN), PEK having a strong
389	affinity for the eastern genetic cluster, and IND, RT29, GTB, and STW primarily

390	assigned to the western cluster. The MC population (OH) was the only population
391	assigned to the third cluster. BAPS identified only eight individuals as exhibiting
392	admixture, but these individuals were in the central populations (PEK, KNK, KANK,
393	IND) and agricultural waterhemp region of Ohio (STW, SCIO), which correspond to
394	populations with high admixture in STRUCTURE. The Voroni tessellation diagram
395	shows the same population genetic assignments spatially (without admixture) (Fig. 4b).
396	The agreement between the STRUCTURE and BAPS results suggests that a genetic
397	signature of the two previously-diverging lineages in the species still remains in the
398	present-day species.
399	Ohio dataset—For the dataset composed of only Ohio population genetic data, the
400	ΔK method of Evanno et al. (2005) (implemented in STRUCTURE HARVESTER)
401	weakly supported two genetic clusters, one in the agricultural waterhemp region of Ohio
402	and the other in the Ohio River region, with strong admixture between the two clusters
403	inferred for populations in northern Ohio and in the southern Ohio population BTL (Figs.
404	5, S3). In contrast to the whole range dataset results, three of the four agricultural
405	populations in the Ohio dataset (GTB, MC, and RT29) have less than 25% admixture in
406	the STRUCTURE bar graphs for K=2: instead, most individuals in these populations
407	were assigned almost entirely to the western genetic cluster (Fig. 5). Overall for K=2,
408	populations in the agricultural waterhemp region had an average of 12.6% admixture,
409	while the Ohio populations outside of this region had an average of 31.8% admixture.
410	There was a second peak in ΔK at K=5 for the Ohio dataset (Figs. S3, S4).
411	

412

DISCUSSION

413	Support for two ancestral evolutionary units— The combined results from
414	isolation by distance tests, STRUCTURE, and BAPS analyses are largely congruent and
415	paint an interesting picture of the recent origin and evolution of the agricultural weed
416	form of Amaranthus tuberculatus. The hypothesis that the species was formerly diverging
417	into two evolutionary units prior to the 20 th century is supported by our data.
418	STRUCTURE recovered two genetic clusters from the total species range dataset, and at
419	the range edges, the geographical structure of these clusters corresponds closely to the
420	hypothesized eastern/western divide between the two former taxonomic units (Sauer,
421	1957) (Figs. 1, 3). BAPS identified an additional cluster consisting of one Ohio
422	agricultural population, which might have distinctive multigene allele frequencies due to
423	admixture. It appears from our data as though the Mississippi River is no longer the
424	geographical divide between the two genetic clusters; instead, the western genetic cluster
425	extends into Indiana. Interestingly, this boundary shift was documented more than half a
426	century ago by Sauer (1957), who observed from herbarium specimen records that the
427	western taxon, now called A. tuberculatus var. rudis, had been moving steadily northward
428	and eastward across the Mississippi River since the 1850s, into the range of A.
429	tuberculatus var. tuberculatus. Furthermore, he noted that this movement was associated
430	with agricultural invasion: the earliest records of A. tuberculatus var. rudis in Illinois
431	(1940s) and Indiana (1950s) are reports from agricultural fields (Sauer, 1957).
432	Spatial genetic clustering allows the use of information beyond genotype data
433	(such as spatial autocorrelation and geographical trends) for inferring population
434	structure, and can be especially useful when closely-related taxa come into secondary
435	contact at regional geographic scales (François and Durand, 2010). The differences in

436	clustering between STRUCTURE and BAPS are probably due to differences in the
437	assumptions of the underlying Bayesian clustering methods, as well as the inclusion of
438	geographical information. While STRUCTURE uses Markov methods to find the highest
439	likelihood for each K value independently, BAPS uses a stochastic search algorithm that
440	directly estimates the most likely K value. Furthermore, BAPS estimates admixture after
441	partitioning the data into clusters with a mixture model, while STRUCTURE estimates
442	admixture and the likelihood of each K value simultaneously. Because of these
443	differences, the discovery by both programs of two major genetic clusters in our dataset
444	provides strong support for this inference.
445	Pratt and Clark's (2001) analysis of 27 morphological characters and 14 isozyme
446	loci across the range of A. tuberculatus s.l. revealed a continuum of morphological
447	character states and isozyme alleles across the entire range. On the basis of no clear
448	clustering in a PCA of these characters, they concluded that the two previously described
449	taxa are one variable species. The observed continuum is not surprising, given the
450	geographical overlap between the two varieties that occurred in the middle of the range as
451	A. tuberculatus var. rudis pushed eastward. In our own voucher specimens, the
452	morphological character of utricle dehiscence is nearly constant at the western and
453	eastern ends of the range (the Plains states and Ontario), and variable among populations
454	in the range center (Table 1). Both Sauer and Pratt and Clark were primarily focused on
455	taxonomy, and tended not to focus on population-level patterns. Our application of a
456	relatively recently-developed genetic tool, microsatellite genotyping, has largely
457	confirmed their broad-scale observations and has also shed more light on the origins of
458	the agricultural weed form.

459 Intraspecific hybridization did not create the agricultural form—Our second 460 hypothesis, that weedy waterhemp was created through hybridization between the two 461 evolutionary units in A. tuberculatus s.l., was not supported by our data. If this were the 462 case, one would expect that the agricultural populations of waterhemp would show strong 463 evidence of admixture between the two genetic clusters. Instead, four out of the six 464 Missouri, Illinois, and Indiana agricultural populations show a strong affinity with the 465 western (red) genetic cluster in STRUCTURE, with the two remaining populations, KNK 466 (IL) and VIGO (IN), showing around 25% contribution from the eastern genetic cluster 467 (Fig. 3). Over the whole range, average admixture is about 9% higher in agricultural 468 populations than in non-agricultural populations: however, the average admixture of 469 weedy populations is still less than 25%. Additionally, many individual non-weed 470 populations, especially those in Indiana, have levels of admixture equal to or greater than 471 those observed in agricultural habitats in STRUCTURE; the result is also seen in the 472 heterozygosity comparisons in Table 2. The geographical component of the observed 473 admixture suggests that it was simply an inevitable consequence of A. tuberculatus var. 474 rudis migrating eastward.

We intensively sampled the edge of the range of agricultural waterhemp in Ohio, in order to examine evidence for weedy admixture at a finer geographic scale in this region with recent contact between varieties and presumably, little historical gene flow. According to STRUCTURE analysis of the total range dataset, admixture is prevalent in 10 out of the 12 sampled Ohio populations (including six of the eight non-agricultural populations) (Fig. 3). However, when only the Ohio populations are analyzed in STRUCTURE, admixture was 25% or less in the four agricultural populations (CAN,

GTB, MC, and RT29), which were mainly assigned to the western genetic cluster (Fig.
5). In fact, average admixture was almost 20% lower within the 10 counties that
constitute the "agricultural waterhemp region" of the state than in the remainder of Ohio.
Together with the whole range results, this suggests that admixture is not a prerequisite
for weediness in *A. tuberculatus*.

487 The population structure data suggest that the movement of A. tuberculatus var. 488 rudis eastward almost completely replaced A. tuberculatus var. tuberculatus populations 489 in natural environments in central Illinois (e.g., the natural populations RIP and KEY 490 have very little signature of the eastern genetic cluster). Interestingly, the central part of 491 Indiana (IND) is genetically more "eastern" than the western part of Ohio, potentially 492 indicating that A. tuberculatus var. rudis might have been secondarily introduced to Ohio 493 from farther west. The populations in the "agricultural waterhemp region" of Ohio are 494 either strongly admixed or primarily western genetically in the STRUCTURE analyses 495 (Figs. 3, 5), and three of these populations are genetically western according to the BAPS 496 Voroni diagram (Fig. 4b). The range boundary of agricultural waterhemp is around 497 Columbus, Ohio (J. Stachler, NDSU, pers. comm.), and natural populations were not 498 sampled in the eastern half of the state. The inclusion of additional eastern populations 499 could confirm the inference that A. tuberculatus var. rudis genetic material hits a range 500 boundary in central Ohio.

501 The western variety of waterhemp may also have northern and southern 502 geographic boundaries in the areas it has invaded: the northern Illinois populations PEK 503 and KNK and the northern Indiana populations KANK and WAB show more evidence of 504 eastern genetic ancestry than populations in the middle of those states. The southern

populations along the Ohio River in Indiana and Ohio are almost entirely composed of
the eastern genetic cluster, and the southern population BTL and the northern populations
OTT, MAU, and PTC are eastern according to BAPS or admixed according to
STRUCTURE.

509 Altogether, these patterns of genetic clustering point to a geographical invasion of 510 A. tuberculatus var. rudis almost directly eastward through the primary agricultural 511 regions of the eastern states, facilitated by introduction first in crop fields (as observed by 512 Sauer, 1957). Waterhemp weed seeds are extensively moved around by farm equipment, 513 which is often shared between farms and transported long distances (Patrick Tranel, 514 University of IL, pers. comm.). With the evolution of resistance to multiple herbicide 515 classes in the species, the spread of A. tuberculatus var. rudis throughout the Midwest 516 became highly probable. The reasons for the possible northern, southern, and eastern 517 geographical boundaries to the invasion deserve further study: the Ohio boundary may 518 involve soil substrate (which changes abruptly in the middle of the state, in Licking 519 County, east of Columbus (ODNR, 2014)), and the northern and southern boundaries are 520 more likely to involve differences in climate and topography.

521*The origin of weedy waterhemp*—Returning to the major question of the study —522how the weedy form of *A. tuberculatus* arose — introgression between the two varieties523is not supported as a causative factor in this study. The most likely scenario based on our524results is that the weed form is simply *A. tuberculatus* var. *rudis*, which was already525genetically and phenotypically suited to agricultural environments. When Mississippi526Valley environments became increasingly dominated by agriculture in the 20th century,527due to large-scale mechanized farming and the channeling of rivers for the greater

528	agricultural availability of floodplain habitats (Ghersa et al., 1994), A. tuberculatus var.
529	rudis was already well-suited to coexist and compete with crops in these new
530	environments. Later in the 20 th century, the further expansion of waterhemp as a weed
531	was facilitated by the widespread adoption of no-till agriculture and herbicide-based
532	weed control (Costea et al., 2005). The idea that A. tuberculatus var. rudis was already
533	"weedy" and might not have required genetic changes to be successful in agricultural
534	ecosystems is supported by Sauer's description of the taxon, in which he states that in
535	contrast to A. tuberculatus var. tuberculatus, var. rudis has "very definite weedy
536	tendencies," and one-third of the herbarium collections of the species are from artificial,
537	anthropogenically-disturbed habitats (Sauer, 1955). Further evidence for the agricultural
538	inclinations of the western variety of A. tuberculatus was discovered in a separate
539	common garden experiment (K. Waselkov, unpublished data).
540	In the few other population genetic studies of agricultural invasion by wild plants,
541	where gene flow from cultivated plants is unlikely, a key conclusion is often exaptation
542	or "preadaptation" of these species to agricultural environments (Vigueira et al., 2013).
543	For example, weedy Helianthus annuus populations appear to have arisen multiple times
544	without genetic bottlenecks (Kane and Rieseberg, 2008), and an important parasite of
545	cereal crops, Striga hermonthica, shows no evidence of host specificity across Ethiopia,
546	with genetic structure influenced instead by geography (Welsh and Mohamed, 2011).
547	Exceptions to this trend include crop mimicry, in which weeds are strongly selected to
548	resemble the co-occurring crop during one ore more life history stages (Barrett, 1983),
549	and also herbicide avoidance and/or resistance, although these adaptive changes would

require enough preliminary tolerance to agricultural practices to enable the wild plants tooccur in crop fields, before selection could act.

552 Our interest in Amaranthus tuberculatus stemmed not only from its "wild-to-553 weed" path to agricultural invasion, but also from the opportunity to trace this 554 evolutionary transition in a native plant. Given the often close proximity of agricultural 555 fields and natural riverbank habitats, it is perhaps surprising that any genetic signature of 556 the two varieties, let alone a genetic signature of the eastward invasion of A. tuberculatus 557 var. *rudis*, still exists. Indeed, our genetic diversity results support the idea that gene 558 flow homogenizes neutral genetic variation over large areas of the species range 559 (Thinglum, 2010). This is evident in the isolation by distance analyses, which show no 560 isolation by distance at scales smaller than groupings of three states or provinces, and the 561 low overall Fst in the total range dataset. These results are also consistent with the 562 species' biology, as it is locally abundant, obligately outcrossing, and wind pollinated, 563 and thus probably has very large effective population sizes and very high effective 564 recombination across the genome (Thinglum et al., 2011).

565 The lack of complete genetic homogenization of waterhemp after secondary 566 contact between the two varieties might suggest some degree of reproductive isolation 567 between them: however, greenhouse experiments have found no evidence for pre- or 568 postzygotic reproductive barriers between the two varieties (Murray 1940). Furthermore, 569 pollen of A. tuberculatus is viable for up to 120 hours, allowing for long-distance 570 dispersal, although most pollen fertilizes plants within 50 meters in field trials (Liu et al., 571 2012). There is some anecdotal evidence that prezygotic isolation may be occurring in 572 the wild: the timing of reproduction appears to differ between riverbanks and crop fields,

573 with agricultural waterhemp senescing while nearby riverbank waterhemp is just 574 beginning to flower (K. Waselkov, pers. obs.). Further studies of observed dispersal and 575 realized gene flow between the different varieties and habitats in this species could shed 576 light on the apparent contradiction between our results and the species' biology. 577 Our results also suggest that finer-scale geographic sampling as well as more 578 genetic markers and/or candidate genes would be needed for studies attempting to detect 579 the genetic basis of agricultural adaptation in A. tuberculatus. Various herbicide 580 resistance genes are already known to be strongly favored in agricultural populations of 581 A. tuberculatus (Tranel and Trucco, 2009); population genetic studies with denser 582 genomic coverage could reveal other specific genomic regions showing adaptive 583 differentiation between agricultural and natural environments (e.g., Loh et al., 2008; 584 Bouchet et al., 2012). Gene expression differences were detected using a cDNA 585 microarray between nearby wild and weedy populations of sunflowers, suggesting both 586 agricultural and local adaptation (Lai et al, 2008); however, a European study of the 587 rapidly expanding, wind-pollinated weed blackgrass (Alopecurus myosuroides) found 588 that even though agricultural populations experienced strong selection from herbicide 589 application, this did not modify their genetic structure at 116 AFLPs distributed across 590 the genome (Menchari et al., 2007).

591 *Conclusions*—In this study, we have built on the observations of Sauer (1957) 592 and Pratt and Clark (2001) to present a new hypothesis about the origin of the agricultural 593 weed form of *A. tuberculatus*. Weedy *A. tuberculatus* var. *rudis* appears to have blazed a 594 path from west to east through the central Midwestern states without significant genetic 595 change at neutral markers. Its surprisingly limited admixture with the native conspecific

596	eastern variety is intriguing, and should be investigated further. Evolution in response to
597	agricultural management practices is ongoing in this species, as exemplified by its
598	continual adaptation to new herbicides (e.g., Hausman et al., 2011), and current range
599	boundaries may shift in response to evolution or land use changes.
600	This research shows that the most common mode of weed origination, the
601	expansion of the niches of wild plants to include agricultural environments, can proceed
602	via quite different evolutionary trajectories from weeds related to domesticated plants.
603	Future evolutionary investigations of the understudied wild-to-weed category of weed
604	origins have the potential to show how general or specific the patterns found in this paper
605	are. Generalizations from these studies would be interesting from the perspective of both
606	basic evolutionary biology and weed control.
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	

619	LITERATURE CITED
620	Acres M. C. Wermanner, M. N. Gerrary, N. Newerman, M. There over A. Kerne, even H.
621	AONO, M., S. WAKIYAMA, M. NAGAISU, N. NAKAJIMA, M. IAMAOKI, A. KUBO, AND H.
622	SAJI. 2000. Detection of feral transgenic onseed rape with multiple-heroicide
023 624	resistance in Japan. Environmental Biosafety Research 5: 77-87.
625 626	BARRETT, S. C. H. 1983. Crop mimicry in weeds. Economic Botany 37: 255-282.
627	POLICHET S. D. DOT M. DELL I. F. DAML C. BILLOT V. DEDDIED, D. DIVALLAN ET AL
628 628	2012. Genetic structure, linkage disequilibrium and signature of selection in
629 630	e33470.
631	
632 633	BROWNSTEIN, M. J., J. D. CARPTEN, AND J. R. SMITH. 1996. Modulation of non-templated nucleotide addition by <i>Taq</i> DNA polymerase: primer modifications that facilitate
634	genotyping. BioTechniques 20: 1004-1010.
635	
636	BUHLER, D. D., R. G. HARTLZER, AND F. FORCELLA. 1997. Implications of weed seedbank
637	dynamics to weed management. <i>Weed Science</i> 45: 329-336.
638	
639	BURGER, J. C., S. LEE, AND N. C. ELLSTRAND. 2006. Origin and genetic structure of feral
640	rye in the western United States. <i>Molecular Ecology</i> 15: 2527-2539.
641 642	CAMPBELL I. C. A. A. SNOW AND C. F. PIDLEY 2006. Weed evolution after gron gene
6/3	introgression: greater survival and fecundity of hybrids in a new environment
644	<i>Ecology Latters</i> 0: 1108–1200
6/5	<i>Ecology Letters 9</i> . 1198-1269.
6/6	<u>CLEMENTS D R Α DITOMMASO N ΙΟΡΠΑΝ R D ROOTH Ι CARDINA D DOOHAN C</u>
6 <u>4</u> 7	I MOHIER ET AL 2004 Adaptibility of plants invading North American
6/8	cropland Agriculture Ecosystems and Environment 104: 379-398
6 <u>4</u> 9	croptand. Agriculture, Ecosystems and Environment 104. 577-576.
650	CORANDER I P WALDMANN AND M I SILLANPÄÄ 2003 Bayesian analysis of genetic
651	differentiation between populations <i>Genetics</i> 163: 367-374
652	
653	CORANDER, L. J. SIRÉN, AND E. ARIAS, 2008, Bayesian spatial modeling of genetic
654	population structure. Computational Statistics 23: 111-129
655	population structure. Computational statistics 25, 111 129.
656	COSTEA, M., AND F. J. TARDIE 2003. Conspectus and notes on the genus Amaranthus in
657	Canada Rhodora 105: 260-281
658	
659	COSTEA, M., S. E. WEAVER AND F. TARDIE 2005. The biology of invasive alien plants in
660	Canada 3 Amaranthus tuberculatus (Mog.) Sauer var. rudis (Sauer) Costea &
661	Tardif. Canadian Journal of Plant Science 85: 507-522
662	
663	DE WET, J. M. J., AND J. R. HARLAN. 1975. Weeds and domesticates: evolution in the
664	man-made habitat. <i>Economic Botany</i> 29: 99-107.

665 666 667 668	EARL, D. A., AND VONHOLDT, B. M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. <i>Conservation Genetics Resources</i> 4: 359-361.					
669 670 671 672 673	ERSTS, P. J. [Internet] Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Available at <u>http://biodiversityinformatics.amnh.org/open_source/gdmg</u> . Accessed on 2013- 6-2.					
674 675 676 677	EVANNO, G., S. REGNAUT, AND J. GOUDET. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. <i>Molecular Ecology</i> 14: 2611-2620.					
678 679 680 681 682	FÉNART, S., J-F. ARNAUD, I. DE CAUWER, AND J. CUGUEN. 2008. Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the <i>Beta vulgaris</i> complex species. <i>Theoretical and Applied Genetics</i> 116: 1063-1077.					
683 684 685	FRANÇOIS, O., AND E. DURAND. 2010. Spatially explicitly Bayesian clustering models in population genetics. <i>Molecular Ecology Resources</i> 10: 773-784.					
686 687 688	GHERSA, C. M., M. L. ROUSH, S. R. RADOSEVICH, AND S. M. CORDRAY. 1994. Coevolution of agroecosystems and weed management. <i>BioScience</i> 44: 85-94.					
689 690 691 692	GOUDET, J. 1995. FSTAT Version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485-486. FSTAT 2.9.3.2 software available from: http://www2.unil.ch/popgen/softwares/fstat.htm					
692 693 694 695 696 697	HAGER, A., L. WAX, W. SIMMONS, AND C. SPRAGUE. 2000. Waterhemp management in Illinois agronomic crops. <i>In</i> the University of Illinois Extension [eds.], 2000 Illinois Agricultural Pest Management Handbook, 91-100. The University of Illinois, Urbana-Champaign, Illinois, USA.					
698 699 700 701 702	 HAUSMAN, N. E., S. SINGH, P. J. TRANEL, D. E. RIECHERS, S. S. KAUNDUN, N. D. POLGE, D. A. THOMAS, AND A. G. HAGER. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (<i>Amaranthus tuberculatus</i>) from Illinois, United States. <i>Pest Management Science</i> 67: 258-261. 					
703 704 705 706	JAKOBSSON, M., AND N. A. ROSENBERG. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. <i>Bioinformatics</i> 23: 1801-1806.					
707 708 709 710	KANE, N. C., AND L. H. RIESEBERG. 2008. Genetics and evolution of weedy <i>Helianthus</i> annuus populations: adaptation of an agricultural weed. <i>Molecular Ecology</i> 17: 384-394.					

711	LAI, Z., N. C. KANE, Y. ZOU, AND L. H. RIESEBERG. 2008. Natural variation in gene						
712	expression between wild and weedy populations of <i>Helianthus annuus</i> . <i>Genetics</i>						
713	179: 1881-1890.						
714							
715	LAMBRINOS, J. G. 2004. How interactions between ecology and evolution influence						
716	contemporary invasion dynamics. <i>Ecology</i> 85: 2061-2070.						
717							
718	LEE, R. M., J. THIMMAPURAM, K. A. THINGLUM, G. GONG, A. G. HERNANDEZ, C. L.						
719	WRIGHT, R. W. KIM, M. A. MIKEL, AND P. J. TRANEL. 2009. Sampling the						
720	waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology.						
721	Weed Science 57: 463-469.						
722							
723	LOH, YH. E., L. S. KATZ, M. C. MIMS, T. D. KOCHER, S. V. YI, AND J. T. STREELMAN.						
724	2008. Comparative analysis reveals signatures of differentiation amid genomic						
725	polymorphism in Lake Malawi cichlids. Genome Biology 9: R113.						
726							
727	LONDO, J. P., AND B. A. SCHAAL. 2007. Origins and population genetics of weedy red rice						
728	in the USA. Molecular Ecology 16: 4523-4535.						
729							
730	LIU, J., A. S. DAVIS, AND P. J. TRANEL. 2012. Pollen biology and dispersal dynamics in						
731	waterhemp (Amaranthus tuberculatus). Weed Science 60: 416-422.						
732							
733	MACK, R. N., D. SIMBERLOFF, W. M. LONSDALE, H. EVANS, M. CLOUT, AND F. A.						
734	BAZZAZ. 2000. Biotic invasions: causes, epidemiology, global consequences, and						
735	control. <i>Ecological Applications</i> 10: 680-710.						
736							
737	MENCHARI, Y., C. DÉLYE, AND V. LE CORRE. 2007. Genetic variation and population						
738	structure in black-grass (Alopecurus myosuroides Huds.), a successful, herbicide-						
739	resistant, annual grass weed of winter cereal fields. Molecular Ecology 16: 3161-						
740	3172.						
741							
742	MORRELL, P. L., T. D. WILLIAMS-COPLIN, A. L. LATTU, J. E. BOWERS, J. M. CHANDLER,						
743	AND A. H. PATERSON. 2005. Crop-to-weed introgression has impacted allelic						
744	composition of johnsongrass populations with and without recent exposure to						
745	cultivated sorghum. <i>Molecular Ecology</i> 14: 2143-2154.						
746							
747	MOSYAKIN, S., AND K. R. ROBERTSON. 2003. Amaranthus. In Flora of North America						
748	Editorial Committee [eds.], Flora of North America North of Mexico, Vol. 4.						
749	Magnoliophyta: Caryophyllidae, Pt. 1. Oxford University Press, New York, New						
750	York, USA.						
751							
752	MULLER, MH., M. LATREILLE, AND C. TOLLON. 2010. The origin and evolution of a						
753	recent agricultural weed: population genetic diversity of weedy populations of						
754	sunflower (Helianthus annuus L.) in Spain and France. Evolutionary Applications						
755	4: 499-514.						
756							

757 758 750	MURRAY, J.M. 1940. The genetics of sex determination in the family Amaranthaceae. <i>Genetics</i> 25: 409–431.
760 761 762 763	ODNR. 2014. Soil regions of Ohio, Brochure 1. Division of Soil and Water Resources, Ohio Department of Natural Resources, Columbus, Ohio, U.S.A. Available at <u>http://www.dnr.state.oh.us/tabid/9073/Default.aspx</u>
764 765 766	OLSEN, K. M., A. L. CAICEDO, AND Y. JIA. 2007. Evolutionary genomics of weedy rice in the USA. <i>Journal of Integrative Plant Biology</i> 49: 811-816.
767 768 760	OWEN, M. D. K. 2008. Weed species shifts in glyphosate-resistant crops. <i>Pest Management Science</i> 64: 377-387.
770 771 772 773	PIMENTEL, D., R. ZUNIGA, AND D. MORRISON. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. <i>Ecological Economics</i> 52: 273-288.
774 775 776	PRATT, D. B., AND L. G. CLARK. 2001. Amaranthus rudis and A. tuberculatus, one species or two? Journal of the Torrey Botanical Society 128: 282-296.
777 778 779	PRITCHARD, J. K., M. STEPHENS, AND P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. <i>Genetics</i> 155: 945-959.
780 781 782 783	REFSELL, D. E., AND R. G. HARTZLER. 2009. Effect of tillage on common waterhemp (<i>Amaranthus rudis</i>) emergence and vertical distribution of seed in the soil. <i>Weed Technology</i> 23: 129-133.
785 785 786	ROSENBERG, N. A. 2004. <i>Distruct</i> : a program for the graphical display of population structure. <i>Molecular Ecology Notes</i> 4: 137-138.
787 788 780	ROUSSET, F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. <i>Molecular Ecology Resources</i> 8: 103-106.
790 791 792 703	SAKAI, A. K., F. W. ALLENDORF, J. S. HOLT, D. M. LODGE, J. MOLOFSKY, K. A. WITH, S. BAUGHMAN, ET AL. 2001. The population biology of invasive species. <i>Annual Review of Ecology and Systematics</i> 32: 305-332.
795 794 705	SAUER, J. D. 1955. Revision of the dioecious amaranths. Madroño 13: 5-46.
795 796 797 798	SAUER, J. D. 1957. Recent migration and evolution of the dioecious amaranths. <i>Evolution</i> 11: 11-31.
799 799 800	SAUER, J. D. 1972. The dioecious amaranths: a new species name and major range extensions. <i>Madroño</i> 21: 427-434.
801 802 803	SCHROEDER, S. 2003. SSR Finder. Maize Mapping Project, University of Missouri, Columbia, MO, USA.

804	
805	SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments.
806	Nature Biotechnology 18: 233-234.
807	
808	STECKEL, L. E. 2007. The dioecious Amaranthus spp.: here to stay. Weed Technology 21:
809	567-570.
810	
811	THINGLUM, K. A. 2010. Population genetics of herbicide resistance in waterhemp.
812	Masters Thesis, University of Illinois at Urbana-Champaign, Available through
813	the Illinois Digital Environment for Access to Learning and Scholarship.
814	
815	THINGLUM, K. A., C. W. RIGGINS, A. S. DAVIS, K. W. BRADLEY, K. AL-KHATIB, AND P. J.
816	TRANEL 2011. Wide distribution of the waterhemp (<i>Amaranthus tuberculatus</i>)
817	$\Lambda G210 PPX2$ mutation, which confers resistance to PPO-inhibiting herbicides
818	Wood Science 59: 22-27
819	
820	TRANEL P I AND F TRUCCO 2009 21^{st} century weed science: a call for Amaranthus
821	genomics In C N Stewart Ir [ed] Weedy and Invasive Plant Genomics 53-81
822	Blackwell Publishing Ames IA USA
823	Diackweit Fublishing, Aines, 17, 0574.
824	VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. M. WILLS, AND P. SHIPLEY, 2004
825	MICRO-CHECKER: software for identifying and correcting genotyping errors in
826	microsatellite data. <i>Molecular Ecology Notes</i> 4: 535-538.
020	
827	VIGUEIRA, C. C., K. M. OLSEN, AND A. L. CAICEDO, 2013. The red queen in the corn:
828	agricultural weeds as models of rapid adaptive evolution. <i>Heredity</i> 110: 303-311.
829	WARD, S. M., J. F. GASKIN, AND L. M. WILSON, 2008. Ecological genetics of plant
830	invasion: what do we know? <i>Invasive Plant Science and Management</i> 1: 98-109.
831	WARWICK, S. I., MJ. SIMARD, A. LÉGÈRE, H. J. BECKIE, L. BRAUN, B. ZHU, P. MASON,
832	G. SÉGUIN-SWARTZ, AND C. N. STEWART, 2003. Hybridization between transgenic
833	Brassica napus L, and its wild relatives: Brassica rapa L, Raphanus
834	raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E.
835	Schulz, Theoretical and Applied Genetics 107: 528-539
836	
837	WELSH A B AND K I MOHAMED 2011 Genetic diversity of Strigg hermonthica
838	nonulations in Ethiopia: evaluating the role of geography and host specificity in
839	shaping population structure International Journal of Plant Sciences 172: 773-
840	782
841	762.
842	VEH EC R C VANG T BOVIE 7 H VE AND LY MAD 1997 POPGENE: the
8/2	user-friendly shareware for population genetic analysis. Molecular Riology and
8//	Biotechnology Centre University of Alberta Canada, Available at
044 Q15	http://www.uelborte.co/.fuch/
04J 816	<u>mup.//www.uarberta.ca/~ryen/</u>
040 017	
04/	

848

TABLES

849 Table 1. Genotyped populations of *Amaranthus tuberculatus*: name, U.S. state/Canadian

province, geographical region of population (from Figure 1: west = historical range of A.

851 *tuberculatus* var. *rudis*, east = historical range of *A. tuberculatus* var. *tuberculatus*,

852 overlap = historical range of both varieties), habitat of population (agricultural or

853 natural), number of individuals genotyped (N), and voucher specimen fruit dehiscence

854 (whether the ripe utricle opens or not).

Name	State/ Province	Geographical region	Habitat	Ν	Voucher fruit dehiscence
SaltR	ОК	west	riverbank	10	dehiscent
CHE	KS	west	lake shore	10	too young to tell
TCL	KS	west	lake shore	10	dehiscent
TR	NE	west	riverbank	9	dehiscent
MSH	МО	west	soy field	10	dehiscent
GASC	МО	west	riverbank	10	too young to tell
JCK	AR	west	riverbank	9	dehiscent
WSS	МО	west	sunflower field	7	dehiscent
WSR	МО	west	riverbank	10	indehiscent
AAF	МО	west	soy field	10	dehiscent
RIP	П	west	riverbank	10	indehiscent
GTP	MO	west	riverbank	10	dehiscent
EMN	МО	west	riverbank	8	dehiscent
PEK	П	overlan	riverbank	10	indehiscent
VEV	IL	overlap	laka shara	10	too young to
KEYC	IL	overlap	sov field	10	dahisaant
KNK	IL	overlap	soy field	10	indebiscent
VICO	IN	overlap	soy field	10	indebiseent
KANK	IN	overlap	soy held	10	indebiscent
	IN	east	riverbank	10	indebiscent
WAD	IN	east	riverbank	10	indehiscent
WAB	119	east	riverbank	10	too young to
AUR	IN	east	riverbank	10	tell
DMD	MI	east	riverbank	9	indehiscent
R129	OH	east	corn field	10	dehiscent
BIL	OH	east	riverbank	9	dehiscent
GTB	OH	east	soy field	10	indehiscent
STW	OH	east	riverbank	10	indehiscent
NEV	OH	east	riverbank	10	indehiscent
	OH	east	riverbank	10	indehiscent
MAU	OH	east	riverbank	10	indehiscent
MC	OH	east	soy field	10	indehiscent
PCL	OH	east	lake shore	10	indehiscent
CAN	OH	east	soy held	10	indehiscent
SCIO	OH	east	lake shore	10	dehiscent
PIC	OH	east	lake shore	9	too young to
SCF	ON	east	lake shore	10	tell
DEL	ON	east	riverbank	9	indehiscent
YORK	ON	east	riverbank	10	indehiscent

Table 2. Population genetic statistics for each population summarized over all loci.

857 Na = number of alleles, Ne = effective number of alleles (estimated reciprocal of

858 homozygosity), Ho = observed heterozygosity, He = expected heterozygosity.

859 Populations with higher observed than expected heterozygosity (potentially reflecting

860 admixture) are in bold font.

Population	Mean Na	Mean Ne	Mean Ho	Mean He
TR	5.1	3.22	0.57	0.65
CHE	4.9	3.48	0.57	0.60
TCL	5.2	3.05	0.58	0.59
SaltR	5.2	3.50	0.65	0.68
GASC	4.9	3.09	0.54	0.54
MSH	4.8	3.07	0.50	0.55
AAF	4.7	3.39	0.60	0.61
WSR	4.9	3.39	0.57	0.61
GTP	5.1	3.52	0.59	0.62
WSS	4.4	3.44	0.63	0.64
EMN	4.6	3.21	0.49	0.55
JCK	5.2	3.70	0.51	0.62
PEK	4.8	3.31	0.59	0.58
RIP	5.1	3.12	0.54	0.57
KEY	5.0	3.27	0.55	0.60
KEYC	4.7	3.17	0.51	0.56
KNK	5.3	3.18	0.55	0.60
VIGO	4.3	2.56	0.69	0.55
KANK	4.8	3.22	0.61	0.60
WAB	5.3	3.44	0.63	0.64
IND	5.6	4.05	0.59	0.66
AUR	4.4	3.01	0.46	0.54
BTL	4.7	3.00	0.51	0.58
PCL	3.9	2.86	0.49	0.50
NEV	3.8	2.64	0.52	0.49
STW	5.0	3.55	0.57	0.60
CAN	3.3	2.34	0.58	0.55
SCIO	4.5	3.27	0.64	0.63
GTB	4.5	2.74	0.47	0.53
MC	3.7	2.44	0.62	0.58
RT29	5.0	3.64	0.60	0.64
OTT	4.2	2.83	0.49	0.59
MAU	4.5	3.08	0.54	0.60
РТС	4.6	2.96	0.59	0.58
DMD	4.2	2.91	0.50	0.55
DEL	3.0	2.01	0.46	0.46
SCF	4.7	3.47	0.60	0.63
YORK	3.5	2.01	0.38	0.42
All Populations	4.6	3.11	0.56	0.58

862 863	FIGURE LEGENDS
803 864	Figure 1. Locations of 38 genotyped populations of A. tuberculatus from across the
865	species range. Geographic coordinates were plotted in ArcGIS, and each population is
866	shown as an orange circle, with the population name in orange text (corresponding to
867	Table 1). The green line outlines the geographical region corresponding to the historical
868	range of <i>A. tuberculatus</i> var. <i>rudis</i> , and the purple line outlines the historical range of <i>A</i> .
869	tuberculatus var. tuberculatus (adapted from Sauer, 1957). The red dashed trapezoid
870	outlines the "agricultural waterhemp region" of Ohio. Map sources: ESRI, DeLorme,
871	USGS, NOAA.
872	
873	Figure 2. Plot of pairwise genetic distances (Fst/(1-Fst)) versus pairwise geographic
874	distances (ln(kilometers)) for the 38 A. tuberculatus populations genotyped over the
875	entire species range, showing isolation by distance. The regression has been constrained
876	to go through the origin.
877	
878	Figure 3. STRUCTURE population assignment of individuals for K=2, for the 38
879	genotyped populations from across the species range. The "western" genetic cluster is in
880	green and the "eastern" genetic cluster is in purple. Population names are shown below
881	the bar graph, and the arrow below the graph shows the geographical organization of the
882	populations. A red asterisk above a population indicates it was found in an agricultural
883	habitat.
004	

885	Figure 4. BAPS graphical output for K=3, for the 38-population species' range dataset.
886	The "western" genetic cluster is in green and the "eastern" genetic cluster is in blue,
887	while the third cluster (the MC population) is in red. A. The admixture bar graph for
888	K=3. Population names are shown below the population clusters, and the organization of
889	populations geographically is the same as in Figure 3. B. The Voroni tessellation
890	diagram for K=3, labeled with population names.
891	
892	Figure 5. STRUCTURE population assignment of individuals for K=2, for the 12-
893	population Ohio dataset. The "western" genetic cluster is in green and the "eastern"
894	genetic cluster is in purple. Population names are shown below the bar graph, a red
895	asterisk above a population indicates it was found in an agricultural habitat, and a black
896	asterisk indicates a population found in the "agricultural waterhemp region" but in a non-
897	agricultural habitat.
898	
899	
900	SUPPORTING INFORMATION
901	Table S1. Genotyped populations of Amaranthus tuberculatus, with name, U.S.
902	state/Canadian province, voucher information, and geographical coordinates.
903	
904	Table S2. Microsatellite loci forward (F) and reverse (R) primers, repeat motif, dye label
905	(used in multiplexed reactions), size range, and primer source. Sources are Lee et al.
906	(2009) and the Tranel lab at the University of Illinois-Urbana/Champaign.
907	

908	Table S3. Population genetic statistics for each locus summarized over all populations.
909	Na = number of alleles, Ne = effective number of alleles (estimated reciprocal of
910	homozygosity), Ho = observed heterozygosity, He = expected heterozygosity.
911	
912	Figure S1. Locations of 12 genotyped populations of A. tuberculatus from Ohio.
913	Geographic coordinates were plotted in ArcGIS, and each population is shown as an
914	orange circle, with the population name in orange text (corresponding to Table 1). The
915	red dashed trapezoid outlines the "agricultural waterhemp region" of the state (J.
916	Stachler, NDSU, pers. comm.). Map sources: ESRI, DeLorme, USGS, NOAA.
917	
918	Figure S2. Plots of (A) mean LnP(D) (the natural log of the probability of the data from
919	STRUCTURE output) with vertical lines showing standard deviation, and (B) ΔK (the
920	second-order rate of change of K) versus K, for the 38 genotyped populations from across
921	the species range, showing a highest ΔK of 2. Plots are from the STRUCTURE
922	HARVESTER output.
923	
924	Figure S3. Plots of (A) mean LnP(D) (the natural log of the probability of the data from
925	STRUCTURE output) with vertical lines showing standard deviation, and (B) ΔK (the
926	second-order rate of change of K) versus K, for the 12 genotyped populations from Ohio,
927	showing a highest ΔK of 2, and a second peak at K=5. Plots are from the STRUCTURE
928	HARVESTER output.

929

- 930 Figure S4. STRUCTURE population assignment of individuals for K=5 for the 12-
- 931 population Ohio dataset. Population names are shown below the bar graph, a red asterisk
- above a population indicates it was found in an agricultural habitat, and a black asterisk
- 933 indicates a population found in the "agricultural waterhemp region" but in a non-
- 934 agricultural habitat.

935

Figures Click here to download Figure: Figures for PopGen Manuscript.ppt

Figure 1.

Figure 2.

Figure 3.

Figure 4a.

Figure 4b.

Figure 5.

Table S1. Genotyped populations of *Amaranthus tuberculatus*, with name, U.S. state/Canadian province, voucher information, and geographical coordinates.

Voucher Information:								
Name	State/ Province	Collector, Collection #: Herbarium	Latitude	Longitude				
SaltR	OK	K. Waselkov, #75: MO	36.771660	-98.038000				
CHE	KS	K. Waselkov, #74: MO	37.744750	-97.783860				
TCL	KS	K. Waselkov, #72: MO	39.439230	-96.710250				
TR	NE	K. Waselkov, #68: MO	41.223310	-96.357610				
MSH	МО	K. Waselkov, #138: KSC	39.168783	-93.289057				
GASC	МО	K. Waselkov, #137: MO	38.668122	-91.556135				
JCK	AR	K. Waselkov, #133: MO	35.642113	-91.319192				
WSS	МО	K. Waselkov, #31: MO	38.656280	-90.736955				
WSR	МО	K. Waselkov, #32: MO	38.656280	-90.736950				
AAF	МО	K. Waselkov, #25: KSC	38.473250	-90.661016				
RIP	IL	K. Waselkov, #58: MO	40.027434	-90.631546				
GTP	МО	K. Waselkov, #24: MO	38.558930	-90.447360				
EMN	МО	K. Waselkov, #26: KSC	38.545160	-90.433450				
PEK	IL	K. Waselkov, #56: MO	40.574410	-89.655980				
KEY	IL	K. Waselkov, #53: MO	38.733710	-89.275850				
KEYC	IL	K. Waselkov, #142: KSC	38.768113	-89.273209				
KNK	IL	K. Waselkov, #64: MO	41.160983	-87.627515				
VIGO	IN	K. Waselkov, #119: MO	39.273930	-87.470000				
KANK	IN	K. Waselkov, #115: MO	41.314810	-86.737550				
IND	IN	K. Waselkov, #109: MO	39.783310	-86.189750				
WAB	IN	K. Waselkov, #111: MO	40.790980	-85.820860				
AUR	IN	K. Waselkov, #106: MO	39.056110	-84.898350				
DMD	MI	K. Waselkov, #82: MO	42.645000	-84.649700				
RT29	OH	K. Waselkov, #101: MO	40.545911	-84.634131				
BTL	ОН	K. Waselkov, #95: MO	39.427430	-84.540710				
GTB	OH	K. Waselkov, #97: MO	40.120100	-84.398680				
STW	OH	K. Waselkov, #98: MO	40.121630	-84.358660				
NEV	OH	K. Waselkov, #92: MO	38.807630	-84.211710				
OTT	ОН	K. Waselkov, #91: MO	41.037830	-83.813490				
MAU	OH	K. Waselkov, #90: MO	41.556350	-83.662410				
MC	ОН	K. Waselkov, #102: MO	40.155580	-83.455330				
PCL	OH	K. Waselkov, #94: MO	39.268010	-83.388610				
CAN	OH	K. Waselkov, #104: MO	39.985850	-83.339630				
SCIO	OH	K. Waselkov, #103: MO	40.177450	-83.126400				
PTC	OH	K. Waselkov, #89: MO	41.514500	-82.938430				
SCF	ON	K. Waselkov, #84: MO	42.030950	-82.603850				
DEL	ON	K. Waselkov, #86: MO	42.933750	-81.421060				
YORK	ON	K. Waselkov, #88: MO	43.020700	-79.891050				

Table S2. Microsatellite loci forward (F) and reverse (R) primers, repeat motif, dye label (used in multiplexed reactions), size range, and primer source. Sources are Lee et al. (2009) and the Tranel lab at the University of Illinois-Urbana/Champaign.

Locus name	Primer	Repeat	Dye label	Size range	Source
C1140	F: 5'-TTGAAGACGACGATCTTTCTGGAT	(GAT) ₁₀	6FAM	113-181 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-CCCCTCTGTACACCATAATCGAAC				
C4097	F: 5'-ATCATCTTCTGCTAAGGCTGTTGG	(ACC) ₈	NED	164-179 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-ATATCTTCCCCAATTGGACTCCTC	_			
C0745	F: 5'-TAGGAAGTTCATCCATAAGCTCGG	(TGA)10	NED	130-164 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-CAATTCCAAGGAATCATCCTCATC	-			
C3561	F: 5'-CCATAAACCATTTTCCCAGACC	(CCA) ₈	HEX	123-141 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-ACTTCTGGCCCAATTAGGAAGTC				
C4999	F: 5'-CCACCCAATGACCCATACCTACTA	(ACC) ₈	NED	120-141 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-GATGAGGTTGATAATTGGGGTTCA				
AAC1	F: 5'-CCCACCAAGGATGATCATTTAGAC	AAC	6FAM	112-130 bp	Lee et al. 2009
	R: 5'-TCATCATTATTTGTTGGCGTTGAC				
TAG5	F: 5'-GTCGCTGAATTGTTTTAGCTTGGT	TAG	HEX	132-163 bp	Lee et al. 2009
	R: 5'-TGGGAATTCTCTCTTGTGACACAGT				
ATC9	F: 5'-TAGCCATTTCAACCTTACGAGGAA	ATC	NED	142-160 bp	Lee et al. 2009
	R: 5'-ACCGTTGATTGATTTTATGGCATC				
C3695	F: 5'-TCAACTTCTTATTCTTGGGTTGCTTC	(TGA) ₈	6FAM	127-174 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-CCTTACCTTCTCTCAAAAGCACCA				
C9333	F: 5'-AACTAAACGCATTTGCCATTGAA	(GAT) ₈	HEX	165-199 bp	Tranel lab A. tuberculatus transcriptome data
	R: 5'-TGTTCATCTAACCACATCATAATGGAA	-			

Locus	Sample size	Na	Ne	Но	He
C1140	722	20	8.86	0.82	0.89
C4097	720	6	2.04	0.49	0.51
C0745	702	14	5.87	0.76	0.83
C3561	722	7	1.55	0.35	0.35
C4999	716	9	3.02	0.58	0.67
AAC1	714	6	2.46	0.43	0.59
TAG5	710	10	2.55	0.46	0.61
ATC9	716	6	1.09	0.09	0.09
C3695	718	16	9.10	0.85	0.89
C9333	704	13	6.46	0.73	0.85

Table S3. Population genetic statistics for each locus summarized over all populations. Na = number of alleles, Ne = effective number of alleles (estimated reciprocal of homozygosity), Ho = observed heterozygosity, He = expected heterozygosity.

Online Supplemental Click here to download Online Supplemental: Supplementary Figures.pptx

Figure S1.

Figure S2.

Figure S3.

Figure S4.