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SENSITIVITY ANALYSIS AND PARAMETER ESTIMATION FOR AN  
APPROXIMATE ANALYTICAL MODEL OF CANAL-AQUIFER  

INTERACTION APPLIED IN THE C-111 BASIN 

I. Kisekka,  K. W. Migliaccio,  R. Muñoz-Carpena,  Y. Khare,  T. H. Boyer 

ABSTRACT. The goal of this study was to better characterize parameters influencing the exchange of surface water in 
south Florida’s C-111 canal and Biscayne aquifer using the analytical model STWT1. A three-step model evaluation 
framework was implemented as follows: (1) qualitative parameter ranking by comparing two Morris method sampling 
strategies, (2) quantitative variance-based sensitivity analysis using Sobol’s method, and (3) estimation of parameter 
posterior probability distributions and statistics using the Generalized Likelihood Uncertainty Estimator (GLUE) 
methodology. Results indicated that the original Morris random sampling method underestimated total parameter effects 
compared to the improved global Morris sampling strategy. However, parameter rankings from the two sampling methods 
were similar. For the STWT1 model, only four out of the six parameters analyzed were important for predicting water 
table response to canal stage and recharge fluctuations. Morris ranking in order of decreasing importance resulted in 
specific yield (ASY), aquifer saturated thickness (AB), horizontal hydraulic conductivity (AKX), canal leakance (XAA), 
vertical hydraulic conductivity (AKZ), and half-width of canal (XZERO). Sobol’s sensitivity indices for the four most 
critical parameters revealed that summation of first-order parameter effects was 1.0, indicating that STWT1 behaved as 
an additive model or negligible parameter interactions. We estimated parameter values of 0.07 to 0.14 for ASY, 11,000 to 
14,300 m d-1 for AKX, 13.4 to 18.3 m for AB, and 99.8 to 279 m for XAA. The estimated values were within the range of 
values estimated using more complex methods at nearby sites. The Nash-Sutcliffe coefficient of efficiency and root mean 
square error for estimated parameters ranged from 0.66 to 0.95 and from 4 to 7 cm, respectively. This study demonstrates 
a simple and inexpensive way to characterize hydrogeological parameters controlling groundwater-surface interactions in 
any region with aquifers that are highly permeable without using standard pumping tests or canal drawdown experiments. 
Hydrogeological parameters estimated using this approach could be used as starting values in large-scale numerical 
simulations. 

Keywords. Canal-aquifer interaction, GLUE method, Morris method, Parameter estimation, Sensitivity analysis, Sobol’s 
method. 

urface water in streams, canals, and rivers 
infiltrates into hydraulically connected aquifers 
during rising flood stage and is released back into 
surface water bodies during flow recession. This 

interaction between groundwater and surface water bodies 
occurs in virtually all types of landscapes (Winter et al., 
1998). However, it is particularly critical in low-elevation 
coastal watersheds (e.g., southeastern Atlantic and Gulf 

coasts of the U.S.) with shallow water tables due to the 
high risk of flooding from large storms. As an example, 
south Florida’s low-elevation coastal landscape has a 
shallow water table aquifer (Biscayne aquifer) that is 
hydraulically connected to an extensive canal network 
primarily constructed for flood control (Chin, 1990; 
Genereux and Guardiario, 1998). As part of flood control 
management in south Florida, pre-storm contingency 
planning normally involves artificially lowering the water 
table to create sufficient storage for the forecasted storm 
(Bolster et al., 2001). Canal stage lowering has to be done 
carefully to balance other freshwater uses such as 
ecosystem restoration in the Everglades and control of salt 
water intrusion. 

Making the best flood control and water management 
decisions requires continuously improving our knowledge 
of factors such as canal bed conductance, aquifer specific 
yield, and aquifer saturated thickness as well as horizontal 
and vertical hydraulic conductivities, which may be used to 
characterize and predict aquifer responses to canal stage 
management. There are many ways of determining these 
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physical parameters, e.g., using standard pumping tests and 
slug tests for quantifying hydraulic conductivity and 
specific yield (Freeze and Cherry, 1979) and canal 
drawdown tests for assessing aquifer hydrogeological 
parameters and canal bed conductance (Bolster et al., 
2001). For regional studies, pumping and slug tests are 
expensive. In addition, they are particularly challenging for 
very permeable aquifers, such as the Biscayne aquifer, due 
to the large pumps and water conveyance pipes required to 
produce a large enough drawdown to be accurately 
measured (Fish and Stewart, 1991). Another approach that 
has been used for characterizing hydrogeological param-
eters in surface water-groundwater interaction problems is 
parameterization of numerical or analytical models. In this 
study, we focus on the latter, since numerical models could 
be computationally expensive when applied within a global 
sensitivity and parameter estimation framework (Ves-
selinov et al., 2012). 

Many analytical models have been developed to 
describe the interaction between surface water bodies such 
as canals and groundwater aquifers (e.g., Hall and Moench, 
1972; Serrano and Workman, 1998; Zlotnik and Huang, 
1999; Moench and Barlow, 2000; Lal, 2001; Hantush, 
2005). The main difference among these analytical models 
is the simplifying assumptions made in deriving a solution 
to the groundwater flow equation. In most analytical 
models, aquifer response to arbitrary stage and recharge 
fluctuations is simulated using the convolution integral 
(Olsthoorn, 2008). For this study, the approximate 
analytical solution developed by Barlow and Moench 
(1998) was selected because it is more generalized for 
many canal-aquifer configurations and boundary conditions 
and also accounts for the effect of both arbitrary canal stage 
and recharge variations. In addition, computer programs are 
available to facilitate implementation of the generalized 
unit-step response function with the convolution integral 
(http://water.usgs.gov/ogw/staq/). Examples of prior studies 
involving estimation of hydrogeological parameters using 
analytical models of canal-aquifer interaction include 
Bolster et al. (2001), Lal (2006), and Ha et al. (2007). 
Bolster et al. (2001) determined Biscayne aquifer specific 
yield using data from canal drawdown experiments and the 
analytical model developed by Zlotnik and Huang (1999) 
for partially penetrating streams with a low-permeability 
bed sediment layer in the absence of recharge. Lal (2006) 
determined bulk aquifer and canal resistance dimensionless 
parameters for the Biscayne aquifer using a coupled canal-
aquifer analytical model. Ha et al. (2007) applied an 
analytical model of river-aquifer interaction to estimate 
aquifer diffusivity and river bed resistance in the Man-
gyeong River floodplain, South Korea. 

In prior investigations related to the Biscayne aquifer, 
sensitivity analysis was implemented using local sensitivity 
analysis techniques. Local sensitivity analysis is limited 
because (1) parameter interactions are not considered, 
(2) parameter importance is assessed only in the vicinity of 
mean parameter value, and (3) it is unreliable for nonlinear 
models (Frey and Patil, 2002). Global sensitivity analysis 
techniques overcome these limitations and provide more 
information on the response of linear and nonlinear model 

output to variations in model input factors. Global 
sensitivity analysis methods explore the entire parametric 
space of the model simultaneously for all model input 
factors, which allows them to capture first-order and 
higher-order parameter effects. Different global sensitivity 
analysis methods may be selected depending on the 
objective of the analysis, the number of uncertain input 
factors, and the computing time required for a single 
forward model simulation (Muñoz-Carpena et al., 2007; 
Saltelli et al., 2000). Saltelli et al. (2004) proposed that 
robust statistical frameworks for model evaluation should 
be based on global analysis techniques meeting the 
following requirements: (1) are model independent, i.e., 
can work with various models without the need for 
modification, (2) contain a screening method for qualitative 
identification of a subset of important model input factors, 
(3) contain a method that can quantitatively decompose 
model output variance in terms of first-order and higher-
order input factor effects, and (4) can allow for uncertainty 
analysis through construction of output probability density 
functions (PDFs). The method of Morris (1991) provides a 
robust screening method, yet it requires few model 
simulations, while variance-based methods, such as Sobol’s 
method, are robust for quantitative determination of first-
order and higher-order or interaction input factor effects 
(Sobol, 1993). 

Morris (1991) proposed an effective screening 
sensitivity measure for identifying important parameters in 
models that have many parameters. The Morris method 
aims at identifying input factors whose effect on the model 
output is negligible, linear/additive, and nonlinear/involv-
ing interactions with other factors. The original Morris 
(1991) method is based on computing for each input factor, 
using a one-factor-at-a-time (OAT) approach, a number of 
incremental ratios called elementary effects (EE). Basic 
statistics are then calculated from the distributions of EE 
for each input factor, which are used to infer model output 
sensitivity to different parameters. Campolongo et al. 
(2007) observed that the sampling method employed in the 
original Morris (1991) method, which is based on random 
sampling of the input factor space, could lead to limited or 
non-optimum coverage of the input factor space, 
particularly for models with a large number of input 
factors. Campolongo et al. (2007) then proposed an 
improved sampling strategy that aims at better scanning of 
the input factor space without increasing the number of 
model executions. The philosophy behind the improved 
sampling strategy was to select r trajectories in such a way 
as to maximize their dispersion in the input factor space. 
The improved sampling strategy guarantees a global 
dispersion of the selected trajectories but comes at a high 
computational cost. 

Sobol’s method (Sobol, 1993) is based on the 
computation of total sensitivity indices (TSI).The TSI of a 
given parameter includes main effects or first-order effects 
and all interaction effects involving a particular parameter 
(Sobol, 1993; Chan et al., 1997; Saltelli et al., 2000). The 
premise behind Sobol’s method of computing sensitivity 
indices is decomposing the input-out relationship (i.e., 
model output) into summands of increasing dimensionality 
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(Chan et al., 1997; Chan et al., 2000; Saltelli et al., 2000). 
The resulting equation is complex and is solved using 
Monte Carlo numerical integration to obtain sensitivity 
indices. One of the drawbacks of this method is its 
computational cost, especially for models with many 
uncertain input factors. 

Another key component of model evaluation is 
parameter estimation or model calibration using measured 
system responses. Beven (2006) demonstrated that there are 
multiple models structures and optimum parameter sets that 
could be used for simulating a hydrologic system. This 
phenomenon is known as equifinality, and it arises from the 
fact that models are imperfect representations of natural 
systems due to various sources of uncertainty. Several 
methods have been developed for parameter uncertainty. 
Among the most popular is the General Likelihood 
Uncertainty Estimator (GLUE). The GLUE methodology 
rejects the idea of a single optimal solution and adopts the 
concept of equifinality of model input factors and model 
structure; thus, there are multiple model structures and 
input factors that can be used to simulate a natural system 
(Beven and Binley, 1992). With regard to the uncertain 
model parameters, in the GLUE analysis the prior set of 
model parameters is divided into a set of acceptable 
solutions and another set of non-acceptable solutions. The 
degree of membership to either set is determined by 
assessing the extent to which the model simulations fit the 
observed data, which in turn is determined by a subjective 
likelihood function, e.g., the Nash-Sutcliffe coefficient of 
efficiency (NSE). With regard to assessing parameter 
uncertainty, the outputs from GLUE are posterior PDFs and 
cumulative density functions (CDFs) describing parameter 
statistics. 

The goal of this study was to use global sensitivity and 
global parameter estimation techniques with an analytical 
model of canal-aquifer interaction to better characterize 
model parameters influencing the exchange of water 
between the C-111 canal and the Biscayne aquifer in south 
Florida. The objectives were to: (1) apply the Morris 
screening technique using two sampling approaches to 
identify a subset of the parameters to which model output 
was most sensitive, (2) apply Sobol’s variance-based global 
sensitivity analysis technique on a subset of parameters 
obtained from the Morris method to quantify first-order 
(only due to a given parameter) and total effects (the 
parameter and its interactions with other parameters) 
sensitivity indices, and (3) apply the GLUE methodology to 
obtain values of parameter sets that produce acceptable 
results (i.e., parameters that result in the closest agreement 
between predicted and measured water table elevation 
measured using the Nash-Sutcliffe coefficient of 
efficiency). 

MATERIALS AND METHODS 
STUDY AREA 

The study area was an agricultural area of approximately 
17 km2 located within the C-111 basin in Homestead, 
Florida, in southern Miami-Dade County (fig. 1). The 

hydrogeologic system at the study site consists of the 
Biscayne aquifer bordered by two canals (C-111 and C-
111E) separated by a distance of approximately 3.5 km 
(fig. 1) and managed by the South Florida Water 
Managements District (SFWMD). The Biscayne aquifer is 
a highly permeable, unconfined aquifer with hydraulic 
conductivities reported to exceed 10,000 m d-1 and serves 
as the principle source of drinking water for over 3 million 
people in Miami-Dade, Broward, and the southern part of 
West Palm counties in southeast Florida (Genereux and 
Guardiario, 1998). The Biscayne aquifer is wedge-shaped, 
increasing in thickness from the western boundary of 
Miami-Dade and Broward Counties to a thickness of 
approximately 60 m near the coast. At our study site, the 
aquifer consists of two formations: the Miami Limestone 
formation and the underlying Fort Thompson Limestone 
formation (Fish and Stewart, 1991). Aquifer thickness at 
our study site has not been measured, but Genereux and 
Guardiario (1998) reported a thickness of 13.6 m for a 
nearby site west of our current study site, with roughly one-
third accounted for by the Miami Limestone formation. 

Canal C-111 was constructed in 1967 as the principle 
flood control canal for south Miami-Dade County and 
partially penetrates the Biscayne aquifer to a depth of 
approximately 5 m (i.e., 4 m through the Miami Limestone 
formation and 1 m into the Fort Thompson Limestone 
formation). Flow in C-111 is south toward Florida Bay, and 
the topography is essentially flat, ranging between 1.1 and 
2.2 m National Geodetic Vertical Datum (NGVD) 29. The 
width of the canal increases from north to south, with an 
average width of approximately 29 m at the S-177 gated 
spillway. Currently, very little is known about hydraulic 
properties of the canal bed sediment in the lower C-111; 
however, several studies have documented the presence of 
a low-permeability canal bed sediment layer, a mixture of 
carbonate mud and natural organic matter, in several canals 
within the C-111 basin (Chin, 1991; Genereux and 
Guardiario, 1998; Merkel, 2000). 

HYDROLOGIC DATA MONITORING 
Data from six groundwater observations wells were used 

(fig. 1; table 1). The observation wells were separated into 
two groups: group 1 with wells VC1, VC2, and AK5, and 
group 2 with wells AK6, C-111AE, and C-111AW (fig. 1). 
Each group was assigned a different canal stage based on 
its proximity to the headwater or tail waters of the S-177 
gated spillway (fig. 1). Group 1 was assigned to the C-111 
headwater canal stage, while group 2 was assigned to the 
C-111 tail water canal stage. Observation wells C-111AE 
and C-111AW were constructed and maintained by the 
SFWMD, while the other four sites (VC1, VC2, AK5, and 
AK6) were constructed and maintained by University of 
Florida (UF) IFAS. The UF wells were constructed using a 
50.8 mm (nominally 2 in.) PVC casing, which was inserted 
into a 101.6 mm bore of 6 m depth. The screen size was 
0.254 mm (nominally 0.1 in.) with a length of 1.5 m. The 
well was backfilled using 20/30 silica sand filter pack up to 
a depth of 60 cm above the screen. A 2.5 m layer of 30/65 
fine sand was placed above the filter pack. A 6 m steel rod 
was used by gently dropping it into the annular gap to en- 
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sure the space was uniformly backfilled. The well was 
filled with Portland type I cement grout to a depth of 35 cm 
below the ground surface. The top of the well was 
completed with 40 cm cast-iron manhole. The UF wells 
were equipped with level loggers (Levelogger, Gold Solinst 
Canada, Ltd., Georgetown, Ontario, Canada) to record 
water table elevation every 15 min, although daily averages  

were used in the modeling. Atmospheric corrections were 
accounted for using a STS Barologger (Solinst Canada, 
Ltd.) in well AK6 (fig. 1). Data were downloaded from the 
wells weekly; as a quality control procedure, water table 
elevations were also measured manually with a laser water 
level well meter (model 102, Solinst Canada, Ltd.). 
Elevations at the top of the well manholes were measured 

 

Figure 1. Map of the study area showing University of Florida (UF) and South Florida Water Management District (SFWMD) experimental 
sites and the SFWMD canal network in the lower C-111 agricultural basin. 

Table 1. Monitoring groundwater wells with descriptors. 

 Well 
Distance from 

C-111 Canal (m) Installer[a] 
Location Ground Elevation 

(NGVD29, m) Latitude Longitude 
Group 1 VC1 1000 UF 25.41883 -80.550041 2.07 

 VC2 1000 UF 25.41110 -80.550375 1.86 
 AK5 2000 UF 25.40347 -80.541933 2.07 

Group 2 AK6 1000 UF 25.39283 -80.549543 2.23 
 C-111AE 2000 SFWMD 25.39261 -80.541605 1.19 
 C-111AW 500 SFWMD 25.39317 -80.553724 1.21 

[a] SFWMD = South Florida Water Management District, and UF = University of Florida. 
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with a laser level with reference to a benchmark at 1.21 m 
NGVD29 elevation near well C-111AE. Details about the 
SFWMD wells are available at: www.sfwmd.gov/ 
dbhydroplsql/show_wilma_info.report_process. Water table 
elevation data for wells C-111AE and C-111AW were 
processed by SFWMD and published on its online 
environmental database DBHydro (www.sfwmd.gov/ 
dbhydroplsql/show_dbkey_info.main_menu). 

In south Florida, most of the rainfall is received from the 
end of May to the beginning of November and is dominated 
by conventional or tropical rainfall forming processes. 
Under such rainfall forming processes, tipping buckets may 
fail to accurately represent the orientation of the rainfall 
front or fail to capture the entire rainfall events (Pathak, 
2008). To minimize the uncertainty associated with the 
spatial variability of rainfall in south Florida, gauge-
adjusted NEXRAD (Next Generation Radar) rainfall data 
were used. Skinner et al. (2008) showed that both 
NEXRAD data and point tipping-bucket measurements had 
limitations, but the best of the two measurement methods 
was realized by using rain gauge data to adjust NEXRAD 
values. Gauge-adjusted NEXRAD rainfall data on a 2 × 
2 km grid were obtained from SFWMD. 

Ground surface potential evapotranspiration (ETo) was 
computed from micrometeorological data obtained from a 
Florida Automated Weather Network (FAWN; http://fawn. 
ifas.ufl.edu) station located approximately 10 km northeast 
of the study site at the Tropical Research and Education 
Center, Homestead, Florida. The ASCE standardized 
Penman-Monteith equation and the Ref-ET tool by Allen 
(2011) were used to estimate ETo values. 

Canal stage data were measured at the S-177 gated 
spillway. Daily headwater and tailwater canal stage data 
were used. Canal stage data were measured by SFWMD 
and are available at: www.sfwmd.gov/dbhydroplsql/show_ 
dbkey_info.main_menu. 

ANALYTICAL MODEL 
The governing equation for two-dimensional 

groundwater flow (in a vertical plane) in a water table 
aquifer is expressed as equation 1 (Barlow and Moench, 
1998). The initial condition is expressed as equation 2. 
Equation 3 represents the right boundary condition (BC) as 
the aquifer extends to infinity. Equation 4 represents the 
head-dependent boundary flux at the canal-aquifer 
interface. Equation 5 represents the boundary at the water 
table, while equation 6 represents the no-flow bottom BC: 
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where Kx and Kz are horizontal and vertical hydraulic 
conductivities (m d-1), Ss is the specific storage (d-1), x is 
the distance in the horizontal direction (m; xo < x < ∞, 
where xo is the distance from the middle of the canal to the 
canal aquifer boundary), z is the distance in the vertical 
direction (m; 0 < z < b, where b is the saturated thickness of 
the aquifer), hi is the initial water level in the aquifer (m), a 
is the canal leakance (m), Ks is the canal bed sediment 
hydraulic conductivity (m d-1), d is the thickness of the 
sediment layer (m), and Sy is the specific yield. 

Barlow and Moench (1998) derived an analytical 
solution to the boundary value problem in equations 1 
through 6 for an instantaneous unit-step change in canal 
stage relative to the water level in the adjacent aquifer, 
expressed as equation 7: 
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where Dh  is a dimensionless Laplace transform unit-step 
response for hydraulic head in a water table aquifer, Wn is a 
parameter related to aquifer width in the Laplace transform 
solution (this term goes to 1 for semi-infinite aquifers), xL is 
the extent of finite aquifer, p is the Laplace transform 
variable, and A is dimensionless canal bank leakance. 

Equation 7 is combined with the convolution integral 
(eq. 8) to predict water table responses to arbitrary changes 
in canal stage and recharge (difference between rainfall and 
ETo). The discretized convolution equation was expressed 
by Barlow and Moench (1998) as: 

 ( ) ( ) ( )
2

1 1
J

i D
k

h x,z, j h F ' k h x,z, j k t
=

= + − − + Δ  (8) 
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where j is the upper limit of time integration, k is the time 
step, Δt is the time step size (days), F′(k−1) is the time rate 
of change of canal stage and recharge (m d-1), F(k−1) is the 
canal stage or recharge at time step (k−1), and F(k) is the 
canal stage or recharge at time step k. The Biscayne aquifer 
was conceptualized as a semi-infinite water table aquifer 
with a thin vadose zone into which water instantaneously 
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entered or exited. The aquifer was also assumed to be 
bordered by a fully penetrating canal (C-111) with a semi-
pervious sediment layer. The time step size was one day. 
Since the solution obtained from equation 8 is in the 
Laplacian domain, it was inverted back to the real-time 
domain using the Stehfest algorithm (Stehfest, 1970). The 
software STWT1, developed by Barlow and Moench 
(1998), was used to implement the computation of water 
table head. 

To simulate water table response to canal stage and 
recharge variations using the STWT1 model requires a total 
of eleven input factors (refers to parameters and inputs). 
For the simulation, we considered parameters that we did 
not measure to be uncertain (Kx, Kz, Sy, b, Ks, d, and xo), 
while the inputs (x, hi, recharge, and well screen length) 
that were measured were considered certain. Canal bed 
sediment hydraulic conductivity and thickness are included 
in a single parameter called canal leakance (eq. 4). The two 
STWT1 outputs are water table head and canal seepage. 
However, sensitivity analysis and parameter estimation 
were based only on water table head, since canal seepage 
was not measured. 

GLOBAL SENSITIVITY ANALYSIS 
Two global sensitivity analysis (GSA) methods were 

implemented: (1) parameter screening using the Morris 
method and (2) variance-based global sensitivity analysis 
(Sobol’s method). The analysis was implemented in the 
following steps: (1) PDFs for uncertain parameters were 
constructed using data from the literature; (2) input 
parameter sets were obtained by sampling the multivariate 
input distributions according to the selected global method 
(i.e., Morris sampling for initial parameter screening and 
Sobol’s sampling for quantitative determination of 
sensitivity indices); (3) STWT1 model simulation was 
executed for each input parameter set; (4) using model 
output (i.e., NSE) for all parameter sets, Morris sensitivity 
analysis was performed in order to obtain qualitative 
ranking of parameters; and (5) using a subset of critical 
parameters identified in step 4, steps 2 to 4 were repeated 
and quantitative first-order and higher-order (parameter 
interaction) sensitivity indices were determined using 
Sobol’s method. Sensitivity analysis was implemented 
using SimLab v2.2 (SimLab, 2004). We interfaced SimLab 
with STWT1 using a program written in Matlab (R2012a, 
The Mathworks, Inc., Natick, Mass.). Using SimLab’s 
preprocessor and the PDFs and statistics of the uncertainty 
model input parameters in table 2, together with the 
sampling method selected, a sample input file was 
generated. A sample input file is a matrix comprising 

multiple input parameter sets obtained from random 
sampling of probability distributions. The Matlab interface 
program was used to automatically execute the model for 
each parameter set and to produce outputs in the desired 
SimLab format for post-processing, i.e., sensitivity 
analysis. For each simulation, the Matlab program was also 
used to calculate the NSE (between simulated and 
measured water table elevation) and root mean square error 
(RMSE), which were used as the model outputs in the 
sensitivity analysis. 

MORRIS METHOD 
The finite distribution of EE associated with each input 

factor (Fi) is obtained by randomly sampling the model 
input factor space. For each input factor, Morris (1991) 
proposed two sensitivity measures: μ, which assesses the 
overall effect of the factor on model output, and σ, which 
indicates the effects of a factor’s interactions with other 
factors (i.e., nonlinear effects). To estimate μ and σ, Morris 
(1991) suggested sampling r elementary effects from Fi 
distribution of each input factor, using a design that 
constructs r trajectories of (k+1) points in the input factor 
space, providing k elementary effects, one for each factor. 
In the original Morris (1991) method, the number of model 
executions (N) is computed as equation 10: 

 ( )1N r k= +  (10) 

Generally in the original Morris method, r is taken in the 
range of 4 to 10 (Saltelli et al., 2009). For this study, r of 8 
and k of 6 were used, resulting in 56 model simulations. 
Morris (1991) proposed plotting these two measures on a 
μ-σ Cartesian plane to aid interpretation. Campolongo et al. 
(2007) suggested using absolute values of elementary 
effects (μ*) to avoid the cancelling effects of opposite signs 
in case of non-monotonic models. This was implemented in 
SimLab. 

To compare the performance of the two Morris sampling 
methods, we repeated Morris screening using the improved 
sampling strategy proposed by Campolongo et al. (2007). 
The improved sampling strategy was implemented by 
initially generating a high number of Morris trajectories 
(M ≈ 500 to 1000), followed by choosing the best r 
trajectories (e.g., r = 10) with the greatest spread within the 
input factor space. A quantity D representing the sum of 
distances between couples of trajectories belonging to the 
same combination was calculated, following the procedure 
of Campolongo et al. (2007). D was calculated for all 
possible combinations of r trajectories, which results in 
high computational cost, especially for large models. A 
combination of trajectories corresponding to the global 

Table 2. Summary of STWT1 model uncertain parameters and their probability distributions. 

Parameter 
Base 
Value 

Range or 
Standard 
Deviation Units PDF Reference 

Horizontal hydraulic conductivity (Kx) 12187 1844 m d-1 Lognormal Fish and Stewart (1991) 
Vertical hydraulic conductivity (Kz) 614 78 to 1587 m d-1 Uniform Genereux and Guardiario (1998) 

Stream bank leakance (a) 217 83 to 360 - Uniform Genereux and Guardiario (1998) 
Specific yield (Sy) 0.15 0.05 to 0.57 - Triangular Bolster et al. (2001) 

Saturated thickness (b) 13.6 8 to 19 m Uniform Bolster et al. (2001) 
Half-width of canal (x0) 15.5 10 to 21 m Uniform Measured 
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maximum D is selected as the best set of r trajectories. To 
overcome the computational cost associated with the 
improved sampling strategy, Ruano et al. (2012) proposed a 
sampling strategy that considerably reduces the 
computational cost required to select optimum r trajectories 
out of M by developing a procedure that does not take into 
account all possible combinations of r trajectories but 
selects a combination of r trajectories that are as close as 
possible to the highest spread ones. This sampling strategy 
does not guarantee that the final trajectories selected 
represent the maximum distance between them, but it 
ensures that the distances are at least locally maximized. 
Since the issue of computational cost was not an issue in 
this study, given the small size of the STWT1 model, we 
applied the improved sampling strategy (with r = 10) of 
Campolongo et al. (2007), which ensured a global distance 
D for the selected optimum set of trajectories. The 
improved sampling strategy was implemented using Matlab 
algorithms. The Morris sensitivity analysis was developed 
by Saltelli et al. (2008) and is available at: http://sensitivity-
analysis.jrc.it/software/index.htm. 

SOBOL’S METHOD 
The difference between first-order and total sensitivity 

indices was used as a measure of interaction effects 
associated with an uncertain input parameter. TSI are a 
more reliable measure of the overall effect of a factor on 
model output than first-order sensitivity indices, especially 
when the interactions between the parameters are 
considerable (Saltelli et al., 2000). The number of model 
simulations required to implement Sobol’s method for 
computation of first-order and total sensitivity indices is 
expressed as equation 11: 

 ( )2 1N n k= +  (11) 

where N is the number of model executions, n is the sample 
size, and k is the number of input factors. Saltelli et al. 
(2005) recommend n = 500 to 1000 to get stable results. 
For this study, we used n = 512, and k depended on the 
number of important parameters identified from the Morris 
screening. 

GLUE METHODOLOGY 
The GLUE methodology was implemented in four steps: 

steps 1 to 3 were similar to those discussed earlier (under 
“Global Sensitivity Analysis”) for computing Sobol 
sensitivity indices. In step 4, an evaluation procedure was 
performed for every single simulation performed in step 3. 
The simulations, and thus the parameter sets, were rated 
according to the degree to which the simulated water table 
elevation matched the measured water table elevation. The 
NSE was used as the likelihood measure and was 
calculated by the Matlab code described earlier outside of 
the GLUE analysis. Simulations with NSE close to 1 were 
accepted, while simulations with NSE close to zero were 
rejected. Using the likelihood measure assigned to all 
acceptable parameter sets, a discrete joint likelihood 
function was generated (eq. 12): 

 ( ) ( )
2

2 2
2

1 ,  0o
o

L | y L | yε
ε

 σ
θ = − σ ≥ σ  θ =  σ 

 (12) 

where 2
εσ  is the error variance, and 2

oσ  is the variance of 

the observed water table elevation, NSE takes a value of 1 
for a perfect model fit; a value of less than 0 implies that 
the mean value of the observed data would be a better 
predictor than the simulation model (Krause et al., 2005; 
Stedinger et al., 2008). Since the discrete joint likelihood 
function can only be illustrated in a maximum of three 
dimensions, scatter plots (dot plots) were used to illustrate 
the estimated parameters. Finally, the likelihoods were 
projected onto the parameter axis, and discrete posterior 
PDFs and corresponding CDFs were generated for each 
parameter. We implemented the GLUE methodology using 
a software package called GLUEWIN (Ratto and Saltelli, 
2001). Within the GLUEWIN environment, only the 
sample file, model output file, and likelihood file were 
required to estimate parameter posterior distributions and 
statistics. 

RESULTS AND DISCUSSION 
PARAMETER SCREENING: MORRIS METHOD 

The rankings of the relative importance of STWT1 input 
parameters based on the Morris method and two sampling 
techniques are presented in figures 2 and 3, with the greater 
the separation from the origin of the μ* versus σ plane 
corresponding to greater importance of the parameter. The 
number of STWT1 model parameters identified as 
important for predicting water table elevation using NSE as 
our model output measure was reduced from six to four in 
both sampling techniques. 

Overall, Morris screening of parameters based on the 
random sampling technique and the improved sampling 
strategy by Campolongo et al. (2007) were similar (figs. 2 
and 3). However, the magnitudes of the sensitivity 
measures μ* and σ were higher for the improved sampling 
strategy, particularly for σ. This indicates that ensuring 
maximum dispersion of trajectories within the model input 
factor space was able to capture effects of parameters on 
model output better than the random sampling techniques 
implemented in the original Morris (1991) method. It is 
worth noting that all the STWT1 parameters within the μ*-
σ plane for both sampling techniques were below the 
imaginary 1:1 line within the μ*-σ plane, indicating that 
the parameter effects were primarily first-order, with 
minimum parameter interactions. Global sensitivity 
analysis of the STWT1 model using the Morris method 
shows a strong influence of specific yield (ASY) at all the 
six wells (figs. 3 and 4), where ASY is farthest along the 
μ*-axis and highest along the σ-axis. As specific yield 
characterizes the increase in water table elevation or 
drawdown due to recharge or pumping, respectively, its 
strong influence on predicting water table elevation is 
expected. Others have reported similar findings. Using one-
at-a-time (OAT) local sensitivity analysis methods and a 
two-dimensional MODFLOW model for the Biscayne 



984  TRANSACTIONS OF THE ASABE 

aquifer, Bolster et al. (2001) also indicated the sensitivity of 
water table elevations to specific yield especially during 
extreme fluctuations. Similarly, Kisekka and Migliaccio 
(2012) observed that MODFLOW-simulated water table 
elevation in the Biscayne aquifer was most sensitive to 
specific yield using PEST local sensitivity analysis. 

The other model parameters positioned away from the 
origin of the μ*-σ plane are aquifer saturated thickness, 
horizontal hydraulic conductivity, and canal leakance. 
Vertical hydraulic conductivity and half canal width were 
not important, given their location within the μ*-σ plane 
(figs. 2 and 3). These results confirm that groundwater flow 

in the Biscayne aquifer is primarily horizontal, i.e., Dupuit 
assumptions are valid. Bolster et al. (2001) confirmed 
Dupuit assumptions for the Biscayne aquifer by placing 
piezometers at different depth at the same location and 
observed that there were no distinguishable differences in 
head measured by piezometers at different depths. 

The sensitivity analysis approaches used in the previous 
studies did not provide qualitative relative rankings of all 
model parameters in the models applied to calculate water 
table elevation, as was achieved using the Morris method in 
this study. The practical application of the Morris results is 
directly related to management of flood events at the study 

Figure 2. Morris screening results for STWT1 model applied in the Biscayne aquifer (ASY = specific yield, AB = aquifer thickness, AKX = 
horizontal hydraulic conductivity, XAA = canal leakance, AKZ = vertical hydraulic conductivity, and XZERO = half canal width). 
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area in which canal stage is usually lowered to create 
storage before a storm event, and the associated transient 
aquifer response is primarily influenced by specific yield. 
Therefore, properly characterizing Biscayne aquifer 
specific yield and its interactions with other parameters 
provides improved prediction of transient aquifer 
responses. 

GLOBAL SENSITIVITY ANALYSIS: SOBOL’S INDICES 
Based on Morris ranking of parameters, a subset of 

STWT1 important parameters, i.e., specific yield (ASY), 

horizontal hydraulic conductivity (AKX), aquifer thickness 
(AB), and canal leakance (XAA), was used in further 
variance-based global sensitivity analysis using Sobol’s 
method. Sobol indices were computed for the four 
parameters at the six groundwater observation wells. 
Figure 4 depicts the fraction of the total output variance 
explained by each of the four parameters using both first-
order and total Sobol sensitivity indices (vertical axis). For 
each parameter, the first-order effects are presented first, 
followed by the total effects, and the difference between the 
two represents higher-order effects or parameter inter- 

Figure 3. Improved Morris sampling screening results for STWT1 model applied in the Biscayne aquifer (ASY = specific yield, AB = aquifer 
thickness, AKX = horizontal hydraulic conductivity, XAA = canal leakance, AKZ = vertical hydraulic conductivity, and XZERO = half canal 
width). 
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actions. Results from the Sobol analysis confirm and 
quantify results from the Morris analysis. At the six wells, 
specific yield explained over 60% of the total variance in 
predicted water table elevation (expressed using NSE and 
RMSE), followed by aquifer thickness explaining 
approximately 20%. The results also show that the effect of 
canal leakance decreases as the distances from the canal 
increases (fig. 4), e.g., wells C-111AW and C-111AE are 
500 and 2000 m from canal C-111, respectively. It is worth 
noting that the Sobol method is more robust than the Morris 
method since it is based on a large number of model 
simulations and a less structured sampling method (Saltelli 

et al., 2004; Muñoz-Carpena et al., 2007). Results from the 
Sobol analysis also indicate that the sum of all first-order 
parameter effects for the STWT1 model are approximately 
100% (fig. 4), indicating that the STWT1 model behaves as 
an additive model. This implies that the STWT1 model can 
be efficiently calibrated if reliable data are available 
(Muñoz-Carpena et al., 2007). 

PARAMETER ESTIMATION FOR STWT1 USING GLUE 
Parameter Uncertainty 

Posterior distributions for the four parameters at the six 
observation wells were produced for the 5120 model simu- 

Figure 4. Sobol indices for the canal-aquifer interaction model STWT1 at six groundwater observation wells in the Biscayne aquifer (ASY =
specific yield, AB = aquifer thickness, AKX = horizontal hydraulic conductivity, and XAA =canal leakance). 
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lations and for the top 10% (best performing in terms of fit 
between predicted and measured water table elevations) 
model simulations based on the likelihood measure NSE. In 
the following analysis, only posterior distributions 
corresponding to the top 10% of model simulations are 
presented. For brevity and to facilitate graphical repre-
sentation, only histograms and CDF plots for wells C-
111AW and C-111AE are shown in figures 5 and 6. In the 
GLUE analysis, the shape of the posterior distributions also 

indicated the degree of uncertainty of the parameter 
estimates: sharp and peaked distributions are associated 
with well identifiable parameters, while flat distributions 
indicate greater parameter uncertainty. Posterior distri-
butions for specific yield (ASY) were sharp and peaked, 
indicating less parameter uncertainty (fig. 5). AKX, AB, 
and XAA had less sharp and wider distributions compared 
to ASY, indicating more uncertainty compared to ASY. This 
is also confirmed by the standard deviations in  

Figure 5. Posterior probability density functions (PDF) and cumulative density functions (CDF) for STWT1 model parameters estimated using 
GLUE. The dots on the CDF plots represent 5% and 95% quartiles for specific yield (ASY), horizontal hydraulic conductivity (AKX), aquifer 
thickness (AB), and canal leakance (XAA). 
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table 3. Again, for brevity, dot plots for only well C-111AW 
(fig. 7) are shown as an example, indicating that variation 
in NSE was greater for specific yield and to a less extent 
for saturated thickness (AB), AKX, and XAA. Model 
response to variation in the four parameters was similar at 
all the six sites, probably due to the small variation in water 
table elevation at the different wells. The posterior CDF 
plots show mean values as well as 5% and 95% quintiles 
for the model parameters. GLUE-estimated parameters are 
shown in table 3. 

MODEL FIT 
From the posterior distributions, parameter estimates 

were inferred as model values corresponding to the top 
10% or best model simulations with the highest likelihood 
measure, which in this study was NSE closest to 1.0. As an 
example, figure 8 shows good fit between measured and 
predicted water table elevations at three of the six wells 
along the same transect from canal C-111. Water table 
elevation was predicted using the STWT1 model, and 
parameters values were obtained from the GLUE analysis. 

Figure 6. Posterior probability density functions (PDF) and cumulative density functions (CDF) for STWT1 model parameters estimated using
GLUE. The dots on the CDF plots represent 5% and 95% quartiles for specific yield (ASY), horizontal hydraulic conductivity (AKX), aquifer 
thickness (AB), and canal leakance (XAA). 
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The NSE values for all the wells are shown in table 3. 
Accuracy of model fit decreased with increasing distance 
from the canal, from NSE of 0.95 at 500 m from the canal 
(C-111AW) to 0.81 at 2000 m from the canal (C-111AE). 
The RMSE also increased from 3.5 cm at C-111AW to 6.7 
and 6.5 cm at AK6 and C-111AE, respectively. This model 
behavior would be expected because the model assumes 
that, as distance from the canal becomes large, the change 
in water table elevation approaches the initial water table in 
the system. The model appears to be more accurate within 
distances of 2000 m from the canal. The GLUE results 
show that both the model and likelihood function used in 
this study were realistic. 

COMPARISON OF ESTIMATED PARAMETERS  
TO LITERATURE VALUES 

The value of specific yield estimated in this study is 
within the range of values estimated using other methods in 
the literature. In this study, we estimated an average 
specific yield of 0.10. Bolster et al. (2001) used a complex 

canal drawdown field experiment to estimate specific yield 
as 0.15 for the Biscayne aquifer near Everglades National 
Park. Muñoz-Carpena and Li (2003) used high temporal 
resolution (15 min interval) groundwater data to estimate 
specific yield near our study site by dividing precipitation-
based recharge (after a large storm) by change in 
groundwater head along a transect in the Biscayne aquifer 
to obtain specific yield of 0.11 at several wells. Schroeder 
et al. (1958) reported specific yield values ranging between 
0.1 and 0.35 for the Biscayne aquifer. 

Table 3 shows that the values of horizontal hydraulic 
conductivity estimated in this study were within the range 
of 7,590 to 14,000 m d-1 obtained by Genereux and 
Guardiario (1998) using a large-scale canal drawdown 
experiment. Our values were closest to the values estimated 
by Fish and Stewart (1991) and Chin (1991), 12,187 and 
12,500 m d-1, who used stepped-drawdown pumping tests 
and a transmissivity approach, respectively. Fish and 
Stewart (1991) explained the difficulty in estimating 
aquifer parameters such as hydraulic conductivity for very 

Table 3. GLUE-estimated parameters for the canal-aquifer interaction model STWT1. 

Well 

Specific 
Yield 
(ASY) 

Horizontal Hydraulic 
Conductivity 
(AKX, m d-1) 

Aquifer 
Thickness 
(AB, m) 

Canal 
Leakance 
(XAA, m) 

Model 
NSE[a] 

Threshold 
C-111AW 0.106 ±0.032 12740 ±1598 15.83 ±2.40 165.6 ±65.85 0.95 to 0.96 

AK6 0.103 ±0.029 12760 ±1611 15.90 ±2.38 187.5 ±73.47 0.82 to 0.86 
C-111AE 0.100 ±0.028 12790 ±1602 15.97 ±2.34 203.1 ±76.79 0.81 to 0.90 

AK5 0.100 ±0.027 12780 ±1603 15.96 ±2.35 203.4 ±76.59 0.66 to 0.70 
VC2 0.102 ±0.029 12770 ±1607 15.92 ±2.37 187.5 ±73.51 0.80 to 0.82 
VC1 0.102 ±0.029 12770 ±1606 15.92 ±2.36 187.3 ±73.43 0.76 to 0.80 

[a] NSE = Nash-Sutcliffe coefficient of efficiency 

Figure 7. Dot plots from GLUE analysis showing change in the likelihood measure NSE (Nash-Sutcliffe coefficient) over the range of model 
parameters. The dots represent the 5120 model runs at well C-111AW. 
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high-yielding aquifers such as the Biscayne aquifer. In their 
pumping test studies, aquifer water levels recovered within 
1 to 2 min, which was too quick for practical measurements 
of drawdown. Therefore, the simple and inexpensive 
method employed in this study provides a globally based 
method for estimating aquifer parameters for high-yielding 
aquifers. 

The estimated aquifer thickness at our study site is also 
within the range estimated by Bolster et al. (2001) west of 
C-111 and is close to the approximate values of total 
thickness of the Biscayne aquifer estimated based on Fish 
and Stewart (1991). There is little literature on the values of 
C-111 canal leakance; however, our average value of 189 is 
close to the value of 148 estimated by Bolster et al. (2001) 
for the same canal. The similarity in the values estimated in 

this study using GLUE to values estimated using other 
methods confirms and provides confidence in our results. 
This work demonstrates a simple but robust procedure for 
characterizing parameters governing surface-groundwater 
interactions. The values estimated in this study can be used 
for predicting transient aquifer responses using more 
complex numerical models for flood event management, 
ecosystem management, and even water supply well field 
management. 

CONCLUSION 
Global sensitivity analysis using the Morris screening 

method (original and improved sampling) and Sobol’s 
variance-based sensitivity analysis were applied to the 

Figure 8. STWT1 predicted and measured water table elevation time series along a transect from canal C-111 at three wells located at distances 
500, 1000, and 2000 m for wells C-111AW, AK6 and C-111AE, respectively. 
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STWT1 approximate analytical model of canal-aquifer 
interaction to assess the influence of parameters on the 
exchange of water between canal C-111 and the Biscayne 
aquifer and to better quantify selected physical parameters. 
Using the qualitative Morris method, important STWT1 
parameters were ranked. Parameter rankings based on the 
original random sampling technique and the improved 
sampling strategy were the same, but the magnitudes of 
sensitivity measures were high for the latter, probably due 
to better characterization of parameter effects. Ranking 
indicated that only four parameters were important for 
explaining aquifer response to transient canal stage and 
recharge variations. Based on Sobol’s analysis, specific 
yield was identified as the most important parameter 
explaining transient aquifer responses to stresses. STWT1 
was determined to be an additive model; all parameters had 
primarily first-order effects, with negligible parameter 
interactions, implying that this model could be accurately 
calibrated using reliable measured data. Parameter values 
for the most sensitive parameters were estimated using the 
GLUE method. Posterior distributions from GLUE 
indicated sharp and narrow probability distributions for 
specific yield, implying that this parameter could be 
estimated with minimum uncertainty. The values of 
parameters estimated using GLUE resulted in good model 
fit, especially for wells within 2000 m of the canal, with 
0.8 < NSE < 0.95 and RMSE less than 7 cm. The estimated 
values were also close to values reported in the literature 
that were estimated using more complex field experiments. 
We expect that the parameter values determined in this 
study together with their probability distributions would be 
useful as starting values for numerical simulations or for 
quick prediction of transient aquifer responses using 
analytical models. The computational cost for global 
sensitivity analysis is never cheap. The total cost may not 
be obvious, but the expertise and resources required are 
expensive. However, these tools provide researchers with 
an idea of the key measurements that are needed to improve 
model predictions. 

ACKNOWLEDGEMENTS 
The authors would like to thank the South Florida Water 

Management District for providing the funding for this 
study, the University of Florida IFAS Tropical Research 
and Education Center, and the University of Florida 
Department of Agricultural and Biological Engineering, as 
well as Mr. Vito Strano and Mr. Sam Accursio for allowing 
us to use their lands, and Mrs. Tina Dispenza for her 
contribution to the data collection and processing. The 
authors would also like to thank the anonymous reviewers 
for providing suggestions that improved the manuscript. 

REFERENCES 
Allen, R. 2011. Ref-ET: Reference evapotranspiration calculation 

software. User manual. Kimberly, Ida.: University of Idaho, 
Idaho Agricultural Experiment Station. 

Barlow, P. M., and A. F. Moench. 1998. Analytical solutions and 
computer programs for hydraulic interaction of stream-aquifer 
systems. USGS Open-File Report 98-415A. Marlborough, 

Mass.: U.S. Geological Survey, Water Resources Division. 
Beven, K. 2006. A manifesto for the equifinality thesis. J. Hydrol. 

320(1-2): 18-36. 
Beven, K. J., and A. M. Binley. 1992. The future of distributed 

models: Model calibration and uncertainty prediction. Hydrol. 
Proc. 6(3): 279-298. 

Bolster, C., D. Genereux, and J. Saiers. 2001. Determination of 
specific yield for a limestone aquifer from a canal drawdown 
test. Ground Water 39(5): 768-777. 

Campolongo, F., J. Cariboni, and A. Saltelli. 2007. An effective 
screening design for sensitivity analysis of large models. 
Environ. Modeling and Software 22(10): 1509-1518. 

Chan, K., A. Saltelli, and S. Tarantola. 1997. Sensitivity analysis of 
model output: Variance-based methods make the difference. In 
Proc. 1997 Winter Simulation Conference, 261-268. S. 
Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds. 
Piscataway, N.J.: IEEE. 

Chan, K., S. Tarantola, A. Saltelli, and I. M. Sobol. 2000. Variance-
based methods. In Sensitivity Analysis, 167-197. A. Saltelli, K. 
Chan, and M. Scott, eds. New York, N.Y.: John Wiley and Sons. 

Chin, D. 1990. A method to estimate canal leakage into the 
Biscayne aquifer, Dade County, Florida. Water-Resources 
Investigations Report 90-4135. Tallahassee, Fla.: U.S. 
Geological Survey. 

Chin, D. 1991. Leakage of clogged channels that partially penetrate 
surficial aquifers. J. Hydraul. Eng. 117(4):467-488. 

Fish, J. E., and M. Stewart. 1991. Hydrogeology of the surficial 
aquifer system, Dade County, Florida. Water-Resources 
Investigations Report 190-4108. Tallahassee, Fla.: U.S. 
Geological Survey. 

Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Englewood 
Cliffs, N.J.: Prentice-Hall. 

Frey, H. C., and S. R. Patil. 2002. Identification and review of 
sensitivity analysis methods. Risk Analysis 22(3): 553-578. 

Genereux, D. P., and J. D. Guardiario. 1998. A canal drawdown 
experiment for determination of aquifer parameters. J. Hydrol. 
Eng. 3(4): 294-302. 

Ha, K., D. Koh, B. Yum, and K. Lee. 2007. Estimation of layered 
aquifer diffusivity and river resistance using flood wave 
response model. J. Hydrol. 337(3-4): 284-293. 

Hall, F. R., and A. F. Moench. 1972. Application of the convolution 
equation to stream-aquifer relationships. Water Resources Res. 
8(2): 487-493. 

Hantush, M. M. 2005. Modeling stream-aquifer interactions with 
linear response functions. J. Hydrol. 31(1-4): 59-79. 

Kisekka, I., and K. W. Migliaccio. 2012. C-111 spreader canal phase 
1 soil water and groundwater monitoring for planned S-18C 
water level increases. Report submitted to South Florida Water 
Management District as part of C-111 spreader canal project. 
Contract No. 4600002140. West Palm Beach, Fla.: South Florida 
Water Management District. 

Krause, P., D. P. Boyle, and F. Base. 2005. Comparison of different 
efficiency criteria for hydrological model assessment. Advances 
in Geosci. 5: 89-97. 

Lal, A. M. W. 2001. Modification of canal flow due to stream-
aquifer interaction. J. Hydraul. Eng. 127(7): 567-576. 

Lal, A. M. W. 2006. Determination of multiple aquifer parameters 
using generated water level disturbances. Water Resources Res. 
42(3): W03429, doi: 10.1029/2005WR004218. 

Merkel, R. 2000. Element and sediment accumulation rates in the 
Florida Everglades. Water, Air, and Soil Pollution 122(3-4): 327-
349. 

Moench, A. F., and P. M. Barlow. 2000. Aquifer response to stream 
stage and recharge variations: I. Analytical step-response 
functions. J. Hydrol. 230(3-4): 192-210. 

Morris, M. D. 1991. Factorial sampling plans for preliminary 



992  TRANSACTIONS OF THE ASABE 

computational experiments. Technometrics 33(2): 161-174. 
Muñoz-Carpena, R., and Y. Li. 2003. Study of the Frog Pond area 

hydrology and water quality modifications introduced by the C-
111 project detention pond implementation. Final project report. 
TREC-RMC-2003-01. Homestead, Fla.: University of Florida 
IFAS, Tropical Research and Education Center. 

Muñoz-Carpena, R., Z. Zajac, and Y. M. Kuo. 2007. Global 
sensitivity and uncertainty analyses of the water quality model 
VFSMOD. Trans. ASABE 50(5): 1719-1732. 

Olsthoorn, N. T. 2008. Do a bit more with convolution. Ground 
Water 46(1): 3-22. 

Pathak, S. C. 2008. South Florida environmental report, Volume I: 
Appendix 2-1. West Palm Beach, Fla.: South Florida Water 
Management District. 

Ruano, M. V., J. Ribes, A. Seco, and J. Ferrer. 2012. An improved 
sampling strategy based on trajectory design for application of 
the Morris method to systems with many input factors. Environ. 
Modeling and Software 37: 103-109. 

Ratto, M., and A. Saltelli. 2001. Model assessment in integrated 
procedures for environmental impact evaluation: Software 
prototypes. Estimation of human impact in the presence of 
natural fluctuations, IMPACT Deliverable 18. Project IST-1999-
11313. Brussels, Belgium: Joint Research Center of the 
European Commission. 

Saltelli, A., K. Chan, and E. M. Scott, eds. 2000. Sensitivity 
Analysis. New York, N.Y.: John Wiley and Sons. 

Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto. 2004. 
Sensitivity Analysis in Practice: A Guide to Assessing Scientific 
Models. Chichester, U.K.: John Wiley and Sons. 

Saltelli, A., M. Ratto, S. Tarantola, and F. Campolongo. 2005. 
Sensitivity analysis for chemical models. Chem. Rev. 105(7): 
2811-2827. 

Saltelli, A., T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. 
Ratto, M. Saisana, and S. Tarantola. 2008. Global Sensitivity 
Analysis: The Primer. Chichester, U.K.: John Wiley and Sons. 

Saltelli, A., F. Campolongo, and J. Cariboni. 2009. Screening 

important inputs in models with strong interaction properties. 
Reliability Eng. and Systems Safety 94(7): 1149-1155. 

Schroeder, M. C., H. Klein, and N. D. Hoy. 1958. Biscayne aquifer 
of Dade and Broward Counties, Florida. Report of Investigations 
No. 17. Tallahassee, Fla.: U.S. Geological Survey. Available at: 
http://ufdc.ufl.edu/UF00001201/00001. 

Serrano, S. E., and S. R. Workman. 1998. Modeling transient 
stream/aquifer interaction with the non-linear Boussinesq 
equation and its analytical solution. J. Hydrol. 206(3-4): 245-
255. 

SimLab. 2004. Simulation environment for uncertainty and 
sensitivity analysis. Version 2.2. Brussels, Belgium: Joint 
Research Center of the European Commission. 

Skinner, C., F. Bloetscher, and C. S. Pathak. 2008. Comparison of 
NEXRAD and rain gauge precipitation measurements in south 
Florida. J. Hydrol. Eng. 14(3): 248-260. 

Sobol, I. M. 1993. Sensitivity estimates for non-linear mathematical 
models. Math. Modeling and Comp. Exp. 4(1): 407-414. 

Stedinger, J. R., R. M. Vogel, S. Lee, and R. Batchelder. 2008. 
Appraisal of the generalized likelihood uncertainty estimation 
(GLUE) method. Water Resources Res. 44(12): W00B06, doi: 
10.1029/2008WR006822. 

Stehfest, H. 1970. Algorithm 368: Numerical inversion of Laplace 
transforms. Communications of the ACM 13(1): 47-49. 

Vesselinov, V. V., G. Pau, and S. Finsterle. 2012. AGNI: Coupling 
model analysis tools and high-performance subsurface flow and 
transport simulators for risk and performance assessments. In 
Proc. XIX Intl. Conf. on Computational Methods in Water 
Resources (CMWR 2012). Urbana-Champaign, Ill.: University 
of Illinois. 

Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley. 1998. 
Ground water and surface water: A single resource. USGS 
Circular 1139. Denver, Colo.: U.S. Geological Survey. 

Zlotnik, V. A., and H. Huang. 1999. Effect of partial penetration and 
streambed sediments on aquifer response to stream stage 
fluctuations. Ground Water 37(4): 599-605. 

  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


