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Abstract: Aberrations limit optical systems in many situations, for example when imaging in
biological tissue. Machine learning offers novel ways to improve imaging under such conditions
by learning inverse models of aberrations. Learning requires datasets that cover a wide range of
possible aberrations, which however becomes limiting for more strongly scattering samples, and
does not take advantage of prior information about the imaging process. Here, we show that
combining model-based adaptive optics with the optimization techniques of machine learning
frameworks can find aberration corrections with a small number of measurements. Corrections
are determined in a transmission configuration through a single aberrating layer and in a reflection
configuration through two different layers at the same time. Additionally, corrections are not
limited by a predetermined model of aberrations (such as combinations of Zernike modes).
Focusing in transmission can be achieved based only on reflected light, compatible with an
epidetection imaging configuration.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Introduction

Machine learning offers novel approaches to correct for aberrations encountered when imaging
though scattering materials, [1-4] from astronomy [5-9] to microscopy with transmitted (for
example [10-12]) and reflected light [13]. To find aberration corrections in these situations,
machine learning typically relies on large synthetic datasets. Large datasets are required, first,
because the many parameters of deep neural networks need to be adjusted to work under a wide
range of conditions and all these conditions need to be covered in the training data. Secondly,
machine learning models are typically agnostic about the underlying image generating process.
Therefore, even a priori known information, for example the transformations inside the optical
system, needs to be learned from data.

In practice, training datasets are often based on combinations of Zernike polynomials [5—13]
which might however not accurately capture all aspects of experimentally encountered aberrations.
Additionally, for more strongly scattering samples, which require increasingly higher orders of
Zernike modes, covering all potential scattering situations by sampling a sufficient number of
different mode combinations eventually results in very large datasets. This is in particular the
case if aberrations in multiple layers are combined, for example when using reflected light in an
epidetection configuration [13].

While finding inverse models through such data driven strategies is well suited for situations
where the underlying physical model is undetermined, the image formation process in an optical
system is typically at least partially known. This is the basis of model-based adaptive optics,
where optical systems modeling is combined with optimization to find an unknown phase
aberration [14-20].

Similar situations where models based on a well known underlying physical process are learned
from data are also encountered in other imaging modalities [21], and more broadly many areas of
engineering and physics (for example [22-34]). To take advantage of such prior information,

#403487 https://doi.org/10.1364/OE.403487
Journal © 2020 Received 22 Jul 2020; revised 17 Aug 2020; accepted 17 Aug 2020; published 21 Aug 2020


https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.403487&amp;domain=pdf&amp;date_stamp=2020-08-21

Research Article Vol. 28, No. 18/31 August 2020/ Optics Express 26437 |

Optics EXPRESS SN

methods have been developed that combine physical process models with machine learning
optimization.

For such optimization, first a model is described as a differentiable function mapping input to
output. Since the function is differentiable, one can take advantage of automatic differentiation,
which is more accurate and computationally efficient than finite differences [35-37], and is one of
the cornerstones of machine learning frameworks such as Tensorflow. Automatic differentiation
is used in these frameworks to compute gradients for optimization of a loss function with respect
to parameters of interest. The loss function compares model output to a target output and the
discrepancy is minimized by adjusting model parameters [22—34]).

Here, we employ this model optimization strategy for adaptive optics: we describe light
propagation through the optical system, including unknown aberrations represented as param-
eters, with a differentiable model (Fig. 1). For matching the input-output relationship of the
computational model to the experimental setup, we record a number of output images resulting
from corresponding input phase modulations and optimize model parameters using Tensorflow.
We show that this allows extracting an accurate description of the introduced aberrating layer(s)
as verified by focusing in transmission through a single layer, as well as in a reflection, through
two layers. In the latter epidetection configuration only reflected light is used for optimization
and transmission focusing.

Reflection camera Transmission

‘ camera

Fig. 1. Schematic of experimental setup. Light reflected off a spatial light modulator
(SLM) passes through an aberration (A) and is focused onto a camera (transmission camera,
shown with illustration of imaged light distribution). For experiments in an epidetection
configuration, light reflected off the mirror M at the sample plane is additionally recorded
with a second camera (reflection camera). BS = beam splitter, L = lens (see main text and
Methods for details).

Results

The experimental setup is shown schematically in Fig. 1. An expanded and collimated laser
beam is reflected off a spatial light modulator (SLM) with a beam splitter cube (BS;) and a part
of the beam is imaged onto a camera (transmission camera) over a beam splitter (BS3). For
experiments with reflected light, the remaining part of the beam is additionally sent to a mirror
at the sample plane (same focal plane as the transmission camera) which serves as a proxy for
a reflecting sample. Light reflected by the mirror is imaged onto a second camera (reflection
camera) with a beam splitter (BS;). Aberrations (a layer of nail polish on a microscope slide, see
Methods) are introduced between beam splitters BS; and BS3;. The beam undergoes aberrations
once to the transmission camera, and twice to the reflection camera.
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A single transmission pass through the setup is described by the function (see Methods for
details)

S(#sLM; Paberration) = |Pf1 (CXP [i¢aberration] exp [id1ens] Pf1 (Uo exp [i¢SLM]))|2 > (H

where P, is a propagation operator over the distance d, Uy is the complex amplitude of the
unmodulated beam at the SLM, ¢yeys is the phase representation of the lens Ly, and f; is its focal
length; ¢spm is the (known) SLM phase modulation, and @aperration iS the (unknown) introduced
aberration.

For computational efficiency, the aberration is simulated at the same plane as lens L; (see
Methods). Finding the unknown aberration which maximizes the similarity, measured with
Pearson’s correlation coefficient r, of the simulated camera images S(¢sp M, Paberration) and
experimentally recorded images I was solved in Tensorflow using automatic differentiation and
gradient-based optimization (see Methods):

¢aberration = i:g max(r [S(¢SLM» ¢aberration)7 I]) (2)
aberration

To further refine the focus after a first optimization step, a second step was performed with a
new set of modulations and corresponding images. In this second step, the correction obtained
in the first optimization step was added to all modulations displayed, ¢sim + @correction; - The
final correction was the sum of the first and second step correction @correction; + @Pcorrectiony- We
used 180 modulations for transmission and 540 modulations for reflection experiments in each
of the two iteration steps, respectively. Representative examples of the aberrations at the lens
plane (unmodified, direct result of model optimization after the first of two optimization steps,
see Methods) based on transmitted and reflected light, respectively, are shown in Fig. 2 a to n.
Representative examples of corrections displayed at the SLM (after two model optimization
steps and transfer of the correction to the SLM as described in Methods) for focusing based on
transmitted or reflected light, respectively, are shown in Fig. 3ato 1.

As seen for the two examples in Fig. 2 a, b and d, e, respectively, optimization (which results in
the corresponding phase profile in Fig. 2 c, f) leads to closely matching (correlation coefficient r
is indicated in Fig. 2 b, ) measured and predicted light distributions at the sample (transmission
camera) after applying the correction at the SLM. The similarity is quantified with the loss
function 1 — r in Fig. 2 o. To verify the achieved correction, the optimized aberration found
at the plane of lens L; was propagated back to the SLM (see Methods) and the corresponding
correction (Fig. 3 ¢ and f) was displayed. This led to a focus at the sample or camera plane
as shown with two representative examples in Fig. 3 b, e (Fig. 3 a, d shows the focus before
correction) together with an increase in enhancement by a factor of 10 and 3.4, respectively (see
Methods for definition of enhancement and details). (Note the difference in color scale between
different images, normalized to maximum (max) values indicated in the subfigures.)

In an epidetection configuration, as typical for imaging in biological samples, only reflected
light can be used for finding a correction. Reflected light however accumulates a first aberration
encountered in the excitation pass and a (generally different) second aberration in the reflection
pass [4,13]. These need to be disentangled for example to recover a transmission pass correction
required for generating a focus inside a sample. For focusing in transmission using only reflected
light therefore the function S (Eq. (1)) is extended (see Methods) to include the reflection pass from
the mirror at the sample plane through the aberration to the second camera (reflection camera),
now including an aberration in the transmission as well as in the reflection pass. To additionally
constrain the model we assumed symmetry in terms of distance to the focal plane between
aberrations in transmission and reflection. This model is fitted to match observed reflected
light distributions by optimizing at the same time two independent aberrations. Optimization is
performed as before (see Methods).
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Fig. 2. Model matching and optimization: a-f Transmission-based. a, d Two examples
of measured, aberrated transmission light distributions and b, e matching simulated light
distributions after first optimization step. ¢, f Corresponding phase profile (obtained at lens
plane, after first optimization step). g-n Reflection-based. g, k Two examples of measured,
aberrated, reflection light distributions and h, I matching simulated light distribution after
first optimization step. i, m Corresponding transmission and j, n reflection phase results
after first optimization step at the planes of lenses L; and L,, respectively. o Transmission,
orange: loss function for training of first example (a-c), and validation (dotted). Vertical
line separates first and second optimization step, see Methods. Transmission, teal: same as

orange for second example (d-f). Reflection, green: same for reflection experiment (g-j).

Reflection, violet: same for second example in reflection experiment (k-n). rin b, e, h, I is
Pearson’s correlation coefficient (with corresponding image in in a, d, g, k), field of view is
1766 um by 1766 um.
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Fig. 3. a-f Focusing in transmission. a, d Two examples of aberrations recorded in
transmission. b, e Focus after correction with blow-up of focal spot (white frame and inset).
¢, f Wavefront correction at SLM after two-step optimization. g-1 Focusing in transmission
using reflected light. g, j Two examples of aberrations recorded in transmission. h, k
Transmission focus after correction only using reflected light, with blow-up of focal spot
(white frame and inset). i, 1 Transmission wavefront correction at SLM after two-step
optimization recovered from only reflected light measurements. In each subfigure, max
indicates maximum of colorbar, i is enhancement (see Methods), field of view is 1766 um
by 1766 um.

Two representative examples of predicted and measured light distributions at the sample plane
(transmission camera) are shown in Fig. 2 g, h and k, 1, respectively, and the loss function
quantifying the similarity is shown in Fig. 2 o (correlation coefficient » between predicted
and measured distributions is indicated in Fig. 2 h, 1). The corresponding transmission and
reflection phase aberrations at the plane of lens L; and L, are shown in Fig. 2 i, j and m, n,
respectively. To verify the correction, we generated a focus at the sample plane by displaying
the corresponding transmission correction on the SLM (see Methods). Figure 3 shows two
representative examples (g-i and j-1) of aberrated focus, corrected focus, and corresponding
correction (resulting in an increase in enhancement by a factor of 10.4 and 8.7, respectively,
see Methods). In reflection-based transmission control, the obtained focus was not necessarily
centered in the field of view (as for example seen in Fig. 3 j, k), due to tilt introduced by the
sample that was not corrected. Importantly, in reflection-based transmission control experiments,
focusing in transmission is achieved only using reflected light, compatible with an epidetection
configuration.

In order to additionally validate the corrections that result from model optimization, we
compared transmission- and reflection-based focusing at the same location of an aberrating
sample. Two representative examples are shown in Fig. 4 a to d and e to h, respectively. In a
reflection configuration the tilt component of aberrations cancels between the forward and the
return pass and is therefore not detected [13,38]. For comparison of the resulting transmission-
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and reflection-based aberrations (direct result of model optimization), the tilt component of the
correction found using reflected light was therefore adjusted manually such that the similarity
between the aberrations (Fig. 4 b and d, and f and h, respectively) was clearly visible. As
seen in Fig. 4, both transmission- and reflection-based control resulted in similar transmission
aberrations.

Transmission-based Reflection-based Transmission-based Reflection-based
control control control control

Transmission focusing

Transmission aberration

Fig. 4. Comparison of transmission- and reflection-based control of focusing. a Corrected
focus: full filed of view and blow-up of focal spot (white frame and inset) and b corresponding
result of sample aberration at lens plane after optimization. ¢ Same as a, focusing is achieved
only using reflected light at the same field of view (or sample aberration) used in a and d
corresponding result of sample aberration at lens plane after optimization. For comparison
with b (not for focusing), tilt was adjusted manually. e-h Same as a-d for a second field
of view. In each subfigure, max indicates maximum of colorbar, 7 is enhancement (see
Methods), field of view is 1766 um by 1766 pm.

Methods

Experimental setup and data acquisition

The laser was from Toptica (iBeam smart, 640 nm), the spatial light modulator from Meadowlark
(SLM, ODP512-1064-P8), cameras were from Basler (acA2040-55um). All optical parts were
from Thorlabs: BS; in Fig. 1 was BS016, BS; and BS3 were EBS2. Lenses were visible achromats,
L; with focal length 300 mm (AC254-150-A) and L, with 150 mm (AC254-150-A). Data were
collected by placing an aberrating sample in the optical path between BS2 and BS3 (see Fig. 1),
displaying random SLM phase modulations, and recording the resulting 512 X 512 images with
the transmission camera, and additionally with the reflection camera for reflection experiments.
As indicated in Fig. 1, the aberrating sample was located approximately halfway between lens L;
and the mirror M, this location was however not specified in the model (see below). Random
SLM phase modulations were generated by summing the first 78 Zernike modes with random
coefficients drawn from a normal distribution with standard deviation 7 and displayed at a
resolution of 512 x 512 pixels on the SLM.

The light intensity in transmission and reflection can vary by several orders of magnitude,
exceeding the dynamic range of the cameras. Therefore, in order to capture the full range of
intensities, multiple frames with different exposure times were recorded (each frame with a 12-bit
per pixel resolution). In transmission, each frame was recorded with exposures of 60, 120, and
250 ms, respectively, and the resulting image was the sum of the recorded frames weighted by
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the inverse of the exposure time. Saturated pixels as well as pixels below the noise threshold
were discarded. For the reflection camera, images were taken with exposures of 60, 120, 250,
500, and 1000 ms, respectively. Additionally, transmission light intensity was reduced with a
neutral density filter wheel (NDM2/M, Thorlabs).

Computational model

Light travelling through the setup is modeled as a complex amplitude U(x, y, z), initialized with
Uy = U(x,y,0), and propagating through a sequence of planar phase objects and intermittent
free space along the optical axis (z-axis; X, y, z are spatial coordinates). A wavefront U(x, y, d)
interacting with a phase object ¢(x, y, d) at plane d is described as a multiplication

U(x,y,d)exp [i¢(x,y,d)] . 3)

Free space propagation of the wavefront over a distance d is calculated using the angular spectrum
method with the following operator [39]:

Utwyerd) = PaUG ) = [[ AGisinoeire (\/(/lfx)z ; (Afy>2) "
x Hexp [2n(fxx + fyy)] dfx dfy.

Here, A(fx,fy;z) is the Fourier transform of U(x,y,z), fx, fr are spatial frequencies, the
circ function is 1 inside the circle with the radius in the argument and O outside [39], and

H(fx.fr) = exp [1’271%\/ 1 - (Afx)* - (Afy)z] is the optical transfer function. The intensity
measured by the camera is given by

1(x,,2) = [U(x,y,2)|*. )

Model optimization

We used a Python library for diffractive optics [40] to calculate the known factors of (1). By
providing the focal lengths and setup dimensions, discretized versions of the optical transfer
functions for the propagation operators and the phase representation of the lenses were determined.
The resulting function which relates displayed, known SLM phase modulations and unknown
sample aberrations to camera images, was then transferred to Tensorflow. The position of
the aberrating sample, as seen in expression (1), was simulated at the plane of lens L;. This
saves computations and memory, since each intermediate plane requires additional wavefront
propagation calculations. Similarly, for computational efficiency, a single lens L, with focal
length f> = ]% was used to focus reflected light onto the reflection camera. While the parameters
of the optical model for transmission and reflection were adjusted manually to match the setup,
they can equally be tuned using the optimization approach described below, for example to obtain

a systems correction.
The model of light propagation in the setup, Eq. (1), was incorporated in the loss function

according to Eq. (2):
loss = 1 = r [S(#sLM, Paberration)s 1] 5 (6)

where ¢spm and Paperration, are the phase modulations at the SLM and due to the introduced
aberration, respectively. All variables are 512 X 512 real-valued tensors, and @aperration 1S the
optimization variable.

Similar to the training of neural networks, we used batches and split the data into training
and validation sets. The former is used to fit the model, while the latter is only passed through
the model in the validation step for calculating the validation loss. This ensures that the model
generalizes well and gives correct predictions not only on training data, but also on previously not
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introduced data. We used Adam optimizer with learning rate 0.1 and batch size 30. Optimization
with the loss function resulted in matching simulated and experimentally recorded images and
yielded the phase profile of the aberration in the setup. The quality of the solution was quantified
with the correlation between modelled and recorded images in the validation part of the dataset
and was used as the criterion for stopping the optimization. Convergence of the optimization
process depended on the magnitude and spatial frequencies of the aberration and the number of
samples. Typically a solution with »>0.6 was sufficient for focusing.

For experiments with reflected light, the simulation of the setup was extended to include the
reflected light pass,

S(¢SLM5 ¢transa ¢reﬂ) = | Pf1 (exp [i¢lensz] exXp [i¢ref]

@)
X P2.f, (eXP lighrans] €xp [iiens] P (Uo exp ligsim]))) 12,

and the loss function (6) is optimized with variables ¢ans and ¢res.

Evaluation

After @aperration 1S found through optimization at the lens plane, the corresponding correction at
the SLM is found by propagating the conjugate phase of the aberration backwards to the SLM
plane @correction = arg(P—s, (€xp [—iaverration])). The solution found by model optimization has
high frequency noise which comes from discretization noise in the light propagation calculation
and overfitting of the noise present in the actual system. Therefore, we additionally smooth the
found correction with a low-pass spatial frequency filter: discrete Fourier transform is applied
to exp [idcorrection] and frequencies exceeding 0.1 of the pattern resolution are discarded. When
displayed on the SLM, @¢orrection, this results in a compensation of the aberration.

Aberrations were introduced with a thin layer of transparent nail polish distributed on a
microscope slide (inserted between BS; and BS3). Two different aberrating samples were used for
transmission and reflection experiments. A weaker aberrating sample was used in reflection-based
focusing experiments to ensure that sufficient signal reached the reflection camera. A weaker
aberrating sample was therefore also used for comparing transmission- and reflection-based
control in Fig. 4. In this case only one optimization step was needed for transmission-based
focusing, whereas two optimization steps were used for reflection-based focusing. Generally,
the strength of aberrations varies depending on sample positioning. Optimization parameters
(such as number of phase modulations or learning rate) were only adjusted once for transmission
experiments, and once for reflection experiments. As a simple measure for quantifying the
shape of the uncorrected light distributions, we use its maximum extension as measured by
the length of the first principle component of the pixels above a 30 % intensity threshold,
o. To quantify the change in the distribution before and after correction we compared the
uncorrected and corrected distribution, oye] = 0y /0. To additionally quantify the quality of
the aberration correction, we also used an enhancement metric defined as ratio of maximum
intensity to mean intensity in the frame, n = max(/)/mean(/), comparing it before and after
correction 1re] = 1 /ny. The distribution of these values (171, 07el) for a series of 7 transmission
experiments was: (10.0, 25.3), (1.7, 6.5), (3.4, 12.1), (2.6, 10.4), (0.8, 1.2), (16.2, 25.4), (3.8,
9.8), (re1) = 5.5 £5.2, {07er) = 13.0 £ 8.5; and in a series of 7 reflection-based transmission
control experiments was: (10.5, 17.6), (10.4, 32.6), (11.6, 11.1), (7.2, 13.0), (8.7, 4.3), (4.4,
12.3), (1.9, 2.6), (re1) = 7.8 £3.3, (07e1) = 13.4 £ 9.2.

Discussion

Differentiable model-based approaches for image reconstruction have been introduced in several
domains of imaging [21], for example in ptychography [31]. Instead of directly optimizing
model parameters, an additional deep neural network (a deep image prior [41,42]) has also been
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introduced, for example for phase imaging [32,33] or ptychography [34]. Even without such
additional regularization, the optimization converged reliably to smooth phase patterns (Fig. 2 c,
f, i, m, j, n and Fig. 3 c, {, i, 1), but for example a DIP could also be combined with the introduced
method to further reduce the number of modulations used for optimization.

The similarity of the transmission corrections (Fig. 4) obtained based on transmitted or based
on reflected light, suggests that the optimization process is sufficiently constrained to converge to
the actual correction in both cases. For imaging with reflected light, it was additionally assumed
that the excitation and detection aberrations are located symmetrically, that is, at an equal distance
from the focal plane.

For reflection-based transmission control, aberrations in two different focal planes are in-
dependently computed at the same time. This is similar to multiconjugate adaptive optics,
where typically however an additional SLM is used to correct for a second focal plane [43—45].
Additionally, while we generated single focal spots, arbitrary other focal distributions could be
generated as well (for example for applications in optogenetics).

The number of required samples depends on the magnitude and spatial frequencies of the
aberrations, requiring more samples with stronger aberrations. This can be compared to the
training of deep neural networks, where the number of required samples for model training
similarly increases with increasing aberrations. Compared to deep neural networks, including a
physical model of the imaging process allows finding aberration corrections with a small number
of samples (albeit only for a single field of view at a time). Different from neural networks
which are trained on a predetermined distribution of aberrations (for example based on Zernike
polynomials), optimization is achieved independently in each pixel without prior assumptions
about aberrations.

Similar to other techniques that require multiple measurements for finding a correction [4,14],
a limitation of the presented approach for dynamic samples is the time it takes to find a correction.
In addition to reducing the number of modulations required for optimization as discussed above,
the optimization time, several minutes on a single GPU, could also be reduced by using multiple
GPUs. Generally, the gap between optimization and control (corresponding to rapidly changing
corrections in response to aberrations) is expected to narrow with increasing computational
power [46].

Thanks to advanced computational frameworks [40,47], the introduced model-based optimiza-
tion can easily be combined with any optical setup equipped with a spatial light modulator and a
camera without requiring additional hardware such as wavefront sensors or interferometers. For
example, the described technique could be combined with imaging through scattering materials
in a microscope with a high numerical aperture objective in an epidetection configuration [13]. In
summary, we expect that the developed method will be useful in many situation that can benefit
from correcting aberrations through single and multiple layers.
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