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We study monogeneity in period equations, ψe(x), the auxiliary equations introduced by Gauss to solve
cyclotomic polynomials by radicals. All monogenic ψe(x) of degrees 4 ≤ e ≤ 250 are determined for extended
intervals of primes p = ef + 1, and found to coincide either with cyclotomic polynomials, or with simple de
Moivre reduced forms of cyclotomic polynomials. The former case occurs for p = e + 1, and the latter for
p = 2e + 1. For e ≥ 4, we conjecture all monogenic period equations to be cyclotomic polynomials. Totally
real period equations are of interest in applications of quadratic discrete-time dynamical systems.
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1. Introduction

A recent paper in this Journal has shown that, in the partition generating limit1, several orbital

equations and clusters of orbital equations of the quadratic (logistic) map coincide with cyclotomic

period equations2. Period equations were introduced in 1801 by Gauss as auxiliary equations to solve

cyclotomic polynomials by radicals.

The purpose of this paper is to report a startling finding obtained by extensive empirical com-

putations: we find monogenic period equations to be either cyclotomic polynomials, or simple de

Moivre reduced forms of cyclotomic polynomials, thereby implying the existence of a hierarchical in-

terdependence among fields and subfields of cyclotomic polynomials, or orbital equations. This fact is

quite remarkable because, although cyclotomic polynomials are among the most extensively studied

polynomials for nearly 220 years, it seems to have hitherto escaped attention that, in essence, Gauss

auxiliary monogenic period equations are nothing else than just cyclotomic polynomials themselves.

2. Context and basic definitions

As shown by Dedekind3, it is always possible to fix a number field K of finite degree n over Q by

selecting an algebraic integer α ∈ K such that K = Q(α). In other words, a number field K may be

determined by selecting α as a root of a monic n-degree Q-irreducible polynomial f(x) and expressing

it in terms of n integers α1, α2, · · · , αn, independent of each other, forming a basis for OK , the ring

of integers in K. In this context, a key problem is to decide whether or not the ring OK is monogenic,

namely if there exists an element α ∈ K such that OK is a polynomial ring Z[α], i.e. if powers of

the type (1, α, · · · , αn−1) constitute a power integral basis4,5,6,7. Every algebraic number field has

an integral basis, not necessarily a power integral basis.

1
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In a monogenic field K, the field discriminant ∆ coincides with the standard discriminant D of

the minimal polynomial of α. For non-monogenic fields such identity does not hold. Generically, D

and ∆ are interconnected by the harmless-looking relation5,6,7,8

D = k2∆, (1)

for some k ∈ Z, called index by Dedekind3, and “ausserwesentlicher Theiler der Discriminante”,

inessential discriminant divisor, by Kronecker8. As pointed out by Vaughan9, “while D can be found

by straightforward (if tedious) computation, the value of k is quite another story. According to

Cohn10, page 77, for example, to determine k, one would have to test a finite number (which may

be very large) of elements of K to see if they are integral.” An additional complication to obtain

k is the fact that the choice of α is not unique and, therefore, there are several distinct minimal

polynomials from which to compute D. So, one may consider k as a sort of “quality measure” for

minimal polynomial representation and for monogeneity. As described in §4 of Dedekind’s paper3,

for quite some time he believed to be always possible to find a suitable α leading to a power basis.

This, until he found what became a popular textbook example of a non-monogenic field generated

by a root of x3 − x2 − 2x− 8 = 0, for which ∆ = −503, k2 = 4, and D = −4 · 503.

The computation of the index k and the verification whether or not a given number field has a

power basis are two hard problems4,5. A taste for the difficulties and the representative computation

times involved in such tasks may be obtained from a paper by Bilu et al. 11. Efficient algorithms

for determining generators of power integral bases involve solving Diophantine equations known as

index form equations5.

The first general algorithm for determining all power integral bases in number fields was given

in 1976 by Győry12. Subsequently, efficient algorithms were elaborated to determine power integral

bases for number fields of degree at most six and some special classes of higher degree number

fields4,5,11. Section 7.3 of the book by Evertse and Győry5 discusses significant results by Gras

on Abelian number fields of degree n, where n is relatively prime to 6. See also Ref. 13. Finally,

we mention a general and still largely open problem stated by Hasse: to give a characterization of

monogenic number fields5,6,7. Hasse’s problem has been considered, among others, by Nakahara and

co-authors in several contexts during the last 50 years or so. See Refs. 13,14,15,16,17 and references

therein. See also Evertse18.

This paper reports results of an extended investigation of the distribution of monogeneity in

cyclotomic period equations ψe(x), a wide class of functions underlying the solution of cyclotomic

polynomials19,20,21. We find that all monogenic period equations are either cyclotomic polynomials

or simple reduced forms of cyclotomic polynomials. Here, monogenic period equations are obtained

with the help of an expression for the field discriminant ∆e of period equations2, Eq. (3) below. Since

the polynomial discriminant D may be easily computed, knowledge of ∆e gives at once

k2 = D/∆e, (2)

which is a convenient tool to sort out all equations with index k = 1. In what follows, we present

results obtained for such monogenic period equations. Equations (2) and (3) grant access to families of

equations of arbitrarily high degrees e, opening the possibility of studying monogeneity well beyond

the aforementioned low-degree limits. Note that for high degrees the division in Eq. (2) involves

exceedingly large integers.



February 12, 2020 1:32 WSPC/INSTRUCTION FILE monogenic˙arxiv

Monogenic period equations are cyclotomic polynomials 3

3. Field discriminants of cyclotomic period equations

Let g be a primitive root of a prime p = ef+1, and r = exp(2πi/p). In the Disquisitiones Arithmeticæ,

Gauss defined e sums ηi called “periods”19,20,21,2,22:

ηi =

f−1
∑

k=0

rg
ke+i

, i = 0, 1, · · · , e− 1,

With them, he defined period equations ψe(x), polynomials of degree e whose roots are the periods

ηi

ψe(x) =

e−1
∏

k=0

(x− ηk) = xe + xe−1 + α2x
e−2 + · · · + αe, αℓ ∈ Z.

Period equations ψe(x) constitute a wide class of equations for which the computation of the field

discriminant ∆e presents no difficulties, being given by2

∆e =

{

−pe−1, if (e − 1) mod 4 = 1 and f mod 2 = 1,

pe−1, if otherwise.
(3)

Together with Eq. (2), this discriminant provides a handy criterion to sort out k2 = 1 monogenic

equations through a simple division of two (possibly very large) integers.

4. Properties of monogenic period equations

Table 1 lists monogenic period equations as a function of e for the first few equations of a much

longer list, containing seven equations for every e ≤ 250. The table also displays the signature of

ψe(x). The signature7 of a polynomial is the doublet (nR, nP ), sometimes written more economically

as nR, informing the number nR of real roots of ψe(x), and the number nP of pairs of complex roots.

Table 1 illustrates regularities that are consistently observed for e up to 250.

Among the equations obtained for a given e we find no more than two types of polynomials leading

to k = 1. They have either totally complex roots, nR = 0, or totally real, nR = e. Polynomials with

nR = 0 are highlighted differently, to reflect the sign of their discriminants.

For e = 2, period equations are quadratic and, as known, are all monogenic4. For e = 3, we

determined the growth of the number of k = 1 equations as a function of e, up to e = 9000. Such

growth obeys a power-law distribution, implying the existence of an infinite number of monogenic

cubic equations.

For e ≥ 4, we find no more than two monogenic equations for each value of e, as illustrated in

Table 1. From the Table one recognizes a trend observed also for higher values of e: the absence of

monogenic equations for several values of e. For instance, for e ≤ 100 we find no monogenic period

equations for e = 7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67,

71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, and 97. Analogously, there are 62 cases of missing

cyclotomic polynomials with degree ≤ 100.

Period equations are not difficult to generate fast and explicitly up to very high degrees. As

already mentioned, this means that Eqs. (2) and (3) open the possibility to investigate monogeneity

systematically for an important family of equations well beyond the aforementioned low-degree limits.

5. Monogenic period equations are cyclotomic polynomials

Gauss showed how to decompose and to solve explicitly in terms of radicals cyclotomic poly-

nomials xp − 1 = 0, for prime p. The procedure is described in §343 of his Disquisitiones

Arithmeticæ19,20,21,22. To this end, he introduced period equations as mere auxiliary equations.
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Table 1. Monogenic period equations as a function of e for primes p = ef + 1 and signature nR. Highlighted equations have
signature nR = 0 and coincide with cyclotomic polynomials Φp(x). Non-highlighted equations and signature nR = e are reduced

cyclotomic polynomials.

e p nR D = ∆e ψe(x)

4 5 0 53 x4 + x3 + x2 + x+ 1
5 11 5 114 x5 + x4 − 4x3 − 3x2 + 3x+ 1
6 7 0 −75 x6 + x5 + x4 + x3 + x2 + x+ 1
6 13 6 135 x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1
8 17 8 177 x8 + x7 − 7x6 − 6x5 + 15x4 + 10 x3 − 10 x2 − 4x+ 1
9 19 9 198 x9 + x8 − 8x7 − 7x6 + 21x5 + 15 x4 − 20 x3 − 10 x2 + 5x+ 1
10 11 0 −119 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

11 23 11 2310 x11 + x10 − 10 x9 − 9x8 + 36x7 + 28x6 − 56 x5 − 35 x4 + 35 x3 + 15 x2 − 6x− 1
12 13 0 1311 x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
14 29 14 2913 x14 + x13 − 13 x12 − 12x11 + 66x10 + 55 x9 − 165 x8 − 120 x7

+210 x6 + 126 x5 − 126x4 − 56x3 + 28x2 + 7x− 1
15 31 15 3114 x15 + x14 − 14 x13 − 13x12 + 78x11 + 66 x10 − 220x9 − 165x8 + 330 x7

+210 x6 − 252 x5 − 126x4 + 84x3 + 28x2 − 8x− 1
16 17 0 1715 x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7

+x6 + x5 + x4 + x3 + x2 + x+ 1
18 19 0 −1917 x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7

+x6 + x5 + x4 + x3 + x2 + x+ 1
18 37 18 3717 x18 + x17 − 17 x16 − 16x15 + 120x14 + 105 x13 − 455 x12 − 364x11 + 1001 x10

+715 x9 − 1287 x8 − 792x7 + 924 x6 + 462 x5 − 330 x4 − 120x3 + 45x2 + 9x− 1
20 41 20 4119 x20 + x19 − 19 x18 − 18x17 + 153x16 + 136 x15 − 680 x14 − 560x13 + 1820 x12

+1365 x11 − 3003 x10 − 2002 x9 + 3003 x8 + 1716 x7 − 1716 x6 − 792x5

+495 x4 + 165 x3 − 55x2 − 10 x+ 1
21 43 21 4320 x21 + x20 − 20 x19 − 19x18 + 171x17 + 153 x16 − 816 x15 − 680x14 + 2380 x13

+1820 x12 − 4368 x11 − 3003 x10 + 5005 x9 + 3003 x8 − 3432 x7 − 1716 x6

+1287 x5 + 495x4 − 220x3 − 55x2 + 11x+ 1
22 23 0 −2321 x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10

+x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
23 47 23 4722 x23 + x22 − 22 x21 − 21x20 + 210x19 + 190 x18 − 1140 x17 − 969 x16 + 3876 x15

+3060 x14 − 8568 x13 − 6188 x12 + 12376 x11 + 8008 x10 − 11440 x9 − 6435 x8

+6435 x7 + 3003 x6 − 2002 x5 − 715x4 + 286x3 + 66x2 − 12x− 1
26 53 26 5325 x26 + x25 − 25 x24 − 24x23 + 276x22 + 253 x21 − 1771 x20 − 1540 x19 + 7315 x18

+5985 x17 − 20349 x16 − 15504 x15 + 38760 x14 + 27132 x13 − 50388 x12

−31824 x11 + 43758 x10 + 24310 x9 − 24310 x8 − 11440 x7 + 8008 x6

+3003 x5 − 1365 x4 − 364 x3 + 91 x2 + 13 x− 1
28 29 0 2927 x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 + x17 + x16

+x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
29 59 29 5928 x29 + x28 − 28 x27 − 27x26 + 351x25 + 325 x24 − 2600 x23 − 2300 x22 + 12650 x21

+10626 x20 − 42504 x19 − 33649 x18 + 100947 x17 + 74613 x16 − 170544 x15

−116280 x14 + 203490 x13 + 125970 x12 − 167960 x11 − 92378 x10 + 92378 x9

+43758 x8 − 31824 x7 − 12376 x6 + 6188 x5 + 1820 x4 − 560 x3 − 105x2 + 15x+ 1
30 31 0 −3129 x30 + x29 + x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 + x17 + x16

+x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
30 61 30 6129 x30 + x29 − 29 x28 − 28x27 + 378x26 + 351 x25 − 2925 x24 − 2600 x23 + 14950 x22

+12650 x21 − 53130 x20 − 42504 x19 + 134596 x18 + 100947 x17 − 245157 x16

−170544 x15 + 319770 x14 + 203490 x13 − 293930 x12 − 167960 x11 + 184756 x10

+92378 x9 − 75582 x8 − 31824 x7 + 18564 x6 + 6188 x5 − 2380 x4 − 560 x3 + 120 x2 + 15x− 1
33 67 33 6732 x33 + x32 − 32 x31 − 31x30 + 465x29 + 435 x28 − 4060 x27 − 3654 x26 + 23751 x25 + 20475 x24

−98280 x23 − 80730 x22 + 296010 x21 + 230230 x20 − 657800 x19 − 480700 x18 + 1081575 x17

+735471 x16 − 1307504 x15 − 817190 x14 + 1144066 x13 + 646646 x12 − 705432 x11

−352716 x10 + 293930 x9 + 125970 x8 − 77520 x7 − 27132 x6 + 11628 x5 + 3060 x4

−816 x3 − 136 x2 + 17x+ 1

This fact notwithstanding, by examining Table 1 we deduce that all monogenic period equations

ψe(x) are nothing else than cyclotomic polynomials Φp(x), interconnected either by p = e + 1 or

p = 2e+ 1. This latter interconnection may be identified as follows.
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Consider, e.g., e = 5 and p = 2 · 5 + 1 = 11, when the corresponding cyclotomic polynomial is

Φ11(x) =
x11 − 1

x− 1
= x10 + x9 + · · · + x2 + x+ 1.

By changing variables according to a standard de Moivre transformation23

z = x+ 1/x, (4)

and replacing z by x in the equation so obtained, one finds

ψ5(x) = x5 + x4 − 4 x3 − 3 x2 + 3 x+ 1.

This quintic, listed in Table 1, was solved explicitly by radicals in a Mémoire read in November 1770

by Vandermonde24,25.

Conversely, changing x in ψ5(x) according to the dual transformation

x = z + 1/z (5)

(and replacing z by x) one recovers the cyclotomic Φ11(x). Thus, it is an easy matter to pass from one

polynomial to the other one, showing that, essentially, monogenic period equations are cyclotomic

polynomials. Here is another example.

In 1796, almost three decades after Vandermonde26, Gauss recorded in his mathematical

diary27,28,29 that the regular 17-gon can be constructed by ruler and compass alone. In print,

his construction appeared19 only in 1801. The solution amounts to reducing by two, four times in

succession, the degree of the 17-gon cyclotomic polynomial, namely

Φ17(x) =
x17 − 1

x− 1
= x16 + x15 + · · · + x2 + x+ 1.

Applying de Moivre’s transformation, Eq. (4), to Φ17(x) one gets the first of such reductions, also

present in Table 1:

ψ8(x) = x8 + x7 − 7 x6 − 6 x5 + 15 x4 + 10 x3 − 10 x2 − 4 x+ 1.

Many additional examples are obtained in a similar way, by using the dual transformation, Eq. (5),

to unfold ψe(x) with signature nR = e for all equations listed in Table 1, thereby obtaining the

associated cyclotomic Φ2e+1(x). The dual transformation worked also for all additional equations up

to e = 250 (not all in Table 1). For instance, e = 96 is the largest value ≤ 100 with two monogenic

period equations. For signature nR = 0 and f = 1 we find

ψ96(x) = x96 + x95 + x94 + x93 + x92 + · · · + x4 + x3 + x2 + x+ 1,

while for nR = 96 and f = 2 we find

ψ96(x) = x96 + x95 − 95x94 − 94x93 + 4371x92 + 4278x91 − 129766x90 + · · ·

− 18009460x6 − 2118760x5 + 230300x4 + 18424x3 − 1176x2 − 48x+ 1.

Similar doublets occur for e = 6, 18, 30, 36, 78, 96, 138, 156, 198, 210, 228, 270, 306, 330, . . . . There are

187 doublets for e ≤ 104, 1164 for e ≤ 105, 7750 for e ≤ 106, etc.

6. Conclusions

The compelling computational evidence reported here leads us to conjecture that for e ≥ 4 there are

two classes of coincidences between monogenic period equations ψe(x) and cyclotomic polynomials

Φp(x) interconnected by p = ef+1: The class of totally complex period equations, for which p = e+1,

and the class of totally real period equations, for which p = 2e+ 1. For all other values of f in these
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classes, we only found non-monogenic period equations and no connections to cyclotomic polynomials.

For e = 3, as already mentioned, it is possible to find an apparently unbounded supply of monogenic

period equations with f > 2. Totally real period equations are of significant interest for applications

in quadratic discrete-time dynamical systems in the partition generating limit1,2,30,31,32.
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