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Abstract 

We describe a multi-scale enhanced sampling (MSES) method where efficient topology-based 

coarse-grained models are coupled with all-atom ones to enhance the sampling of atomistic protein 

energy landscape. The bias from the coupling is removed by Hamiltonian replica exchange, thus 

allowing one to benefit simultaneously from faster transitions of coarse-grained modeling and 

accuracy of atomistic force fields. The method is demonstrated by calculating the conformational 

equilibria of several small but nontrivial β-hairpins with varied stabilities. 

 

 

Keywords: multi-scale, enhanced sampling, implicit solvent, protein folding, replica exchange, 

conformational ensemble, hairpin 
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Generating statistically representative conformational ensembles remains a major challenge in 

atomistic simulation of biomolecules 
1
. This is not only due to the large and complex 

conformational space, but also because of significant energy barriers that frequently separate 

different subspaces. Temperature replica exchange (T-RE) 
2-4

 is now widely accepted as a relatively 

straightforward yet powerful technique for enhanced sampling. Multiple replicas of the system are 

simulated independently at different temperatures, and periodically attempt to exchange simulation 

temperatures according to a Metropolis criterion that preserves the detailed balance. The resulting 

random walk in the temperature space helps each replica to escape local energy minima and thus 

facilitate conformational sampling. Extensive theoretical and simulation studies have confirmed that 

T-RE enhances sampling compared to constant temperature simulations as long as the activation 

enthalpies of conformational transitions are positive 
5-9

. Nonetheless, the efficiency of T-RE can be 

severely limited by the presence of sharp cooperative conformational transitions such as protein 

folding 
10, 11

. Importantly, this limitation cannot be overcome by various T-RE variants designed to 

accelerate either exchanges or diffusion in temperature space 
12

. In practice, virtually all T-RE 

protein simulations involve exchange attempt frequencies (~ps
-1

) that are several orders of 

magnitude faster than the slowest protein motions (folding; μs
-1

 or slower 
13

). As such, the 

efficiency of T-RE sampling of large-scale conformational transitions is rarely limited by diffusion 

in temperature space, but mainly by the inherent rates of spontaneous processes. 

Fundamentally, the limited efficiency of T-RE in sampling cooperative transitions such as protein 

folding can be attributed to large entropic components in the free energy barriers 
14, 15

. The folding 

rate only depends weakly on temperature and often displays anti-Arrhenius behaviors 
5, 16

, such that 

tempering is ineffective in driving transitions. Instead, coarse-grained (CG) models 
17

 are often 

utilized to significantly reduce the conformational space and allow faster reversible transitions; but 

this is achieved at the expense of reduced detail and accuracy. An ideal approach could involve CG 

modeling to overcome major entropic barriers and at the same time seamlessly propagates the 

transitions to atomistic simulations for detailed sampling of different conformational subspaces. A 

key requirement is that one must be able to recover canonical ensembles at the atomistic level. The 

promise of such multi-scale enhanced sampling (MSES) has been well recognized, and several 

clever ideas have been proposed towards this goal 
18-23

. The resolution exchange approach is 

particularly interesting 
19

. It involves independent simulations of the system at two or more 

resolutions and attempts to directly swap shared coordinates of low- and high-resolution models 
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according to Metropolis criteria. Resolution exchange in principle allows the possibility of injecting 

high-resolution simulation into novel conformational subspaces sampled at low-resolution. A key 

limitation is that conformations sampled at different resolutions must be similar to be exchangeable 

for large biomolecules, as excessive bad contacts would effectively prohibit successful exchange. A 

smart resolution replica exchange was proposed to improve exchange acceptance, where a ladder of 

mixed atomistic and CG potentials are used and CG-sampled configurations are relaxed prior to 

exchange attempt 
24

. However, the detailed balance is broken due to relaxation and only canonical 

sampling is achieved. More importantly, the aggressive approach of direct coordinate swap in 

resolution exchange, with or without relaxation, requires configurations sampled at different 

resolutions to closely track each other, which counteracts the purpose of rapid hopping among 

drastically different conformational subspaces sampled at the CG level. 

The efficacy of an MSES scheme, regardless of how sampling at different resolutions is coupled, 

depends critically on the ability of CG simulations to generate transitions that are consistent with 

inherent conformational dynamics of the atomistic model. Otherwise, CG simulations would 

attempt to engage the atomistic model along unfavorable pathways and become ineffective in 

accelerating atomistic transitions. For proteins, topology-based CG modeling has been highly 

successful and demonstrated impressive correspondence between experiment and theory for folding 

mechanisms 
25

. This approach is based on to the minimal frustration theory of protein folding 
26

, 

which argues that native interactions dictate the protein free energy landscape and that stabilization 

due to non-native contacts (“frustration”) should be minimal. Accordingly, the true protein energy 

landscape can be approximated by effective energy functions that only include native interactions. 

These effective energy functions, commonly referred to as Gō or Gō-like models, are highly 

efficient, and yet powerful enough to generate realistic reversible folding pathways. As such, they 

should be ideally suitable for driving conformational sampling on atomistic protein energy 

landscapes. Here, we describe an MSES approach that utilizes the efficient sequence-flavored Gō-

like model 
27

 to accelerate the sampling of atomistic protein conformational equilibria, and 

demonstrate its efficiency using a series of small but nontrivial β-hairpins with varied stabilities.  

Our approach is inspired by Moritsugu et al.’s multi-scale essential sampling method 
20

, where both 

the CG and atomistic representations of the protein are simulated simultaneously in a hybrid system. 

The atomistic and CG copies do not interact, and are only coupled through restraint potentials 

designed to restrict the divergence between CG and atomistic configurations. The overall potential 

function of the hybrid system is 
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                                                  ,                      (1) 

where UAT and UCG are the atomistic and CG potential functions, respectively. Only the coupling 

potential UMSES depends on both atomistic (rAT) and CG (rCG) coordinates. Given a proper coupling 

potential, the atomistic and CG copies can be restrained to track one and another when the overall 

coupling scaling factor λ = 1. Hamiltonian RE can be performed to communicate coupled 

conformational dynamics to the limit of λ = 0, where the CG and atomistic copies are fully 

independent and proper canonical ensembles are generated simultaneously at both resolutions. Our 

MSES approach incorporates both Hamiltonian and temperature RE to further accelerate 

conformational sampling. Specifically, N replicas of the hybrid system are simulated independently 

with increasing couple scaling factors and temperatures, {     }, i = 1, 2, …, N. λ1 = 0 and  λN = 1. 

Replicas periodically attempt to exchange simulation conditions according to 

𝑃𝑚↔𝑛    n  1 𝑒Δ𝑚𝑛 ,                                                      (2) 

where  𝑚𝑛  𝑚[    (             𝑚)      (    n     n  𝑚)]   𝑛[    (    n     n  𝑛)  

    (             𝑛)] and β = 1/kBT (kB is the Boltzmann constant). When the same temperature is 

used for all replicas, the exchange probability is determined by the coupling term only, allowing 

excellent scalability to large systems 
20

. 

Coupling the CG and atomistic models using restraint potentials is a significant advantage 

compared to direct coordinate swapping in resolution exchange. It allows one to control the impacts 

of large divergences between CG and atomistic configurations on the total energy, which 

dramatically improves exchange efficiency and provides superior scalability to large systems. 

Motivated by the notion that native contacts dictate protein folding transitions 
26

, the CG and 

atomistic copies are coupled by penalty functions that depend on the differences in Cα-Cα distances 

of residues involved in all native contacts:  

      ∑𝐸   𝑑   ∑
1

2
 𝑘  𝑑 

𝐴𝑇  𝑑 
𝐶𝐺 2,                                     (3) 

where  𝑑  𝑑 
𝐴𝑇  𝑑 

𝐶𝐺   n  𝑑 
𝐴𝑇and 𝑑 

𝐶𝐺are the Cα-Cα distances of the ith native contact in 

atomistic and CG copies, respectively. The force constant, ki, can be different for various subsets of 

native contacts, for example, to emphasize the relative importance of tertiary contacts vs. local 

secondary ones. For large proteins with hundreds of native contacts, the simple harmonic potential 

of Eqn. 3 can lead to large penalty energies and result in severe exchange bottlenecks, particularly 
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between the uncoupled (λ1 = 0) and coupled (λ > 0) conditions. For this, a restraint potential with a 

soft asymptote is used at large  𝑑 ,  

𝐸   𝑑     
 

  𝑑𝑖 
𝑠       𝑑      f   𝑑 > 𝑑𝑠.                               (4) 

In Eqn. 4, 𝑑𝑠 is the distance threshold where the penalty function 𝐸   𝑑   switches from the 

harmonic form ( qn. 3) to the soft asymptote. The switching exponent s controls how quickly the 

limiting slope,     , is approached at large  𝑑 . The parameters A and B are identified by requiring 

both 𝐸   𝑑   and its first derivative to be continuous at the switching distance ( 𝑑  𝑑𝑠 .  We note 

that similar penalty functions with soft asymptotes are widely employed in NMR structure 

calculations 
28

. The purpose is to avoid premature structural collapse due to a few large distance 

restraint violations and thus allow better conformational sampling to generate structures that are 

maximally consistent with all structural restraints. The simulations in the current work only involve 

exchanging a ladder of models with different λi. More sophisticated Hamiltonian RE schemes can 

be devised that involve additional parameters of the restraint potentials, particularly ki, 𝑑𝑠 and     , 

to more carefully control how conformational transitions are communicated between CG and 

atomistic copies for larger proteins. 

The MSES method has been implemented in CHARMM 
29

 and MMTSB 
30

. Its efficacy is examined 

here using a series of β-hairpins derived from the protein G B1 domain, including GB1p 

(GEWTYD DATK TFTVTE), GB1m1 (GEWTYD DATK TATVTE), and, GB1m3 (KKWTYN 

PATG KFTVQE) (loop regions underlined and key mutations highlighted in bold fonts). The wild-

type GB1p is  ~42% folded at 278K based on NMR chemical shift analysis 
31

. The Phe to Ala 

mutation in GB1m1 reduces the hairpin stability to ~6% folded, and the more rigid proline-

containing loop increases the stability of GB1m3 to ~86% folded 
31

. These β-hairpins, albeit small, 

resemble larger proteins in many essential aspects including cooperative folding transitions and 

microsecond folding timescales. The optimized generalized born with smooth switching (GBSW) 

atomistic implicit solvent force field appears to recapitulate both the structures and stabilities of 

these β-hairpins 
32

. However, the previous T-RE simulations failed to generate converged 

conformational ensembles for GB1p 
32

. In fact, no reversible folding/unfolding transition was 

sampled by T-RE for any of these β-hairpins, and the apparent convergence for GB1m1 and 

GB1m3 ensembles was mainly due to mixing of conformational states sampled at different 

temperatures. 



6 

A sequence-flavored Gō-like model was first generated by the MMTSB Gō-Model Builder 
27

 and 

then used in simulations of all three hairpins. The model represents each residue using a single Cα 

bead and adopts the Miyazawa-Jernigan (MJ) statistical potential 
33

 for residue-specific native 

interactions. The Gō-like model was coupled to the GBSW atomistic implicit solvent model (Fig. 

1a), by imposing the restraint potentials on all nine native contacts (see Eqns. 3-4). All MSES 

simulations were performed using 8 replicas with {     } = {0, 270}, {0.05, 290}, {0.1, 312}, 

{0.25, 336}, {0.4, 361}, {0.6, 388}, {0.8, 418}, and {1.0, 450}. These conditions were assigned by 

having roughly exponential distributions for both λ and T. The exchange acceptance rates were 

uniform and ~25% for all MSES simulations. Other parameters of the MSES restraint potential 

were: k = 1.0 kcal/mol/Å
2
, s = 1, 𝑑𝑠 = 2.0 Å and      = 0.1 kcal/mol/Å. We note that the soft 

asymptote has minimal impacts on the exchange and sampling efficiencies for these small hairpins. 

Langevin simulations were performed with a friction coefficient of 0.1 ps
-1

, and exchanges were 

attempted every 2 ps. For each peptide, two independent simulations were performed, starting from 

the folded (control) and fully extended (folding) structures, respectively. The length of all MSES 

simulations was 100 ns per replica. Control and folding T-RE simulations were also performed for 

GB1p as a reference. These simulations are summarized in Table 1. 

We first validate if MSES can indeed recover the correct canonical ensembles at the uncoupled 

condition. Reliable reference atomistic ensembles are not available for these hairpins due to 

apparent difficulty in achieving convergence using T-RE simulations 
32

. Therefore, we compare the 

CG ensembles derived from MSES simulations to a reference ensemble obtained from a 4-μs T-RE 

simulation of the Gō-like model alone. Over 1300 reversible folding transitions were sampled in the 

T-RE simulation and the resulting reference CG ensemble at 270 K is fully converged. As 

illustrated in Fig 1b, MSES simulations generated CG ensembles virtually identical to the reference. 

That is, bias due to coupling between atomistic and CG models is completely removed via 

Hamiltonian RE as expected. The co-evolution of the CG and atomistic copies during MSES 

simulations is illustrated in Fig. S1. As designed, the CG and atomistic conformations can diverge 

at low temperature/weak coupling conditions, but strongly track one and another at high 

temperature/strong coupling conditions. 

The efficacy of MSES in accelerating large-scale atomistic conformational transitions is first 

evaluated by calculating the number of reversible transitions between the folded (≥5 native 

hydrogen bonds) and unfolded (no hydrogen bond) states at the atomistic level. Summarized in 
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Table 1, the results show that T-RE simulations rarely sampled reversible folding transitions, with 

only one such event observed in the control and folding runs of GB1p. In contrast, many reversible 

transitions (~31 on average) were sampled in MSES simulations of all β-hairpins, reflecting almost 

two orders of magnitude enhancement in the efficiency of sampling atomistic transitions. Fig. 2 

depicts the evolution of the number of native hydrogen bonds from representative T-RE and MSES 

replicas. The T-RE replicas remain at either the folded or unfolded states throughout the simulation 

(Fig. 2a); whereas all MSES replicas undergo rapid reversible transitions between the folded and 

unfolded states (Fig. 2b), apparently driven by coupling to the efficient Gō-like model. To further 

evaluate the effects of MSES coupling on folding kinetics and efficiency, we performed multiple 

sets of folding simulations of GB1p at 270 K using the GBSW, Gō-like, and hybrid potentials (Eqn. 

1). 100 50-ns simulations were initiated from unfolded atomistic and CG structures randomly 

selected from pre-generated equilibrium ensembles (see Table S1 and Fig. S2). The results show 

that coupling with the CG model allowed the atomistic model to reach the folded state in 34% of the 

trajectories within  <18 ns on average, while all simulations in GBSW alone were trapped in various 

compact states and failed to fold within 50 ns. The dramatic improvement in atomistic folding 

efficiency was achieved with only a moderate 50% increase in the average folding time of the CG 

model (from 0.83 to 1.19 ns). Curiously, we observed that the CG model actually also underwent 

faster reversible folding transitions in MSES simulations, with an average rate of kTS ~ 0.084 ns
-1

 

compared to kTS ~ 0.041 ns
-1

 in the T-RE simulation of the Gō-like model alone. This is likely 

because that coupling with the atomistic model accelerates unfolding transitions at the CG level. 

Ideally, a fully converged RE simulation should involve all replicas sampling the same entire 

accessible conformational space. This limit is almost never achieved in atomistic T-RE simulations 

of nontrivial peptides and proteins, where individual replicas generally sample separate major 

conformational states throughout the simulations (e.g., see Fig. 3a-c). Amazingly, MSES 

simulations of all three β-hairpins display many characteristics of full convergence, with all replicas 

sampling similar, complete atomistic conformational spaces (Fig.3e-g and Fig. S3). When 

combining information from all replicas, T-RE and MSES simulations appear to cover similar 

conformational spaces (Fig. 3d and 3h), even though T-RE under samples most regions except the 

major free energy basins. Atomistic conformational ensembles derived from independent control 

and folding runs were compared to further evaluate the ability of MSES to achieve convergence in 

key thermodynamic properties. Fig. 4 compares the probability distributions of the number of native 
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hydrogen bonds. The results show that MSES does generate largely consistent ensembles from the 

control and folding runs. Especially for GB1p, large discrepancies that persist between control and 

folding T-RE runs (Fig. 4a) are greatly reduced (Fig. 4b). We also note that, although the same Gō-

like model was used for all three β-hairpins, the MSES simulations were able to recapitulate varied 

stabilities of these sequences in the GBSW implicit solvent as expected. Nonetheless, despite 

impressive conformational space coverage by all replicas in MSES simulations (Fig.3e-g and Fig. 

S3), substantial differences persist in ensembles derived from control and folding MSES runs, 

except for GB1m3 with a more rigid proline-containing loop. This illustrates the formidable 

challenges in generating converged equilibrium ensembles even for small but flexible peptides.  

In conclusion, we have developed an effective MSES approach that utilizes efficient topology-based 

CG models to accelerate the sampling of complex and rough atomistic energy landscapes. The CG 

and atomistic model are coupled using native contact-based restraint potentials that are motivated 

by the current understanding of protein folding mechanisms as well as lessons from NMR structure 

calculations and allow excellent scalability to larger and more complex systems. The flexible and 

soft nature of the coupling potentials (Eqns. 3 and 4) also provides robust tolerance of moderate 

discrepancies in folding pathways at CG and atomistic levels, including potential involvement of 

non-native interactions.  The bias from the coupling potential is removed by performing 

Hamiltonian/temperature RE, allowing one to benefit simultaneously from faster transitions of the 

CG model and the accuracy of the atomistic force field. Application to implicit solvent simulations 

of small but nontrivial GB1p series of β-hairpins demonstrates that MSES dramatically accelerate 

atomistic folding/unfolding transitions and improves the convergence of various thermodynamic 

properties of interest. We anticipate MSES to be highly useful whenever generation of well-

converged protein conformational ensembles is critical, including intensive current efforts that rely 

on peptide simulations to optimize implicit and explicit solvent protein force fields 
34, 35

. 

Acknowledgement 

This work was supported by the National Science Foundation (MCB 0952514). Part of the 

computing for this project was performed on the Beocat Research Cluster at Kansas State 

University, which is funded in part by NSF grants CNS-1006860, EPS-1006860, and EPS-0919443. 

This work is contribution number 14-176-J from the Kansas Agricultural Experiment Station. 



9 

Supporting Information Available: Three figures and a table showing coevolution of CG and 

atomistic models, conformational coverage, and folding kinetics and efficiency of CG and atomistic 

models in MSES. This material is available free of charge via the Internet at http://pubs.acs.org. 



10 

References 

1. Lei, H.; Duan, Y., Improved Sampling Methods for Molecular Simulation. Curr. Opin. 

Struct. Biol. 2007, 17, 187-91. 

2. Swendsen, R. H.; Wang, J. S., Replica Monte-Carlo Simulation of Spin-Glasses. Phys. Rev. 

Lett. 1986, 57, 2607-2609. 

3. Sugita, Y.; Okamoto, Y., Replica-Exchange Molecular Dynamics Method for Protein 

Folding. Chem. Phys. Lett. 1999, 314, 141-151. 

4. Hansmann, U. H. E.; Okamoto, Y., Numerical Comparisons of Three Recently Proposed 

Algorithms in the Protein Folding Problem. J. Comput. Chem. 1997, 18, 920-933. 

5. Zheng, W.; Andrec, M.; Gallicchio, E.; Levy, R. M., Simulating Replica Exchange 

Simulations of Protein Folding with a Kinetic Network Model. Proc. Natl. Acad. Sci. U. S. A. 2007, 

104, 15340-5. 

6. Zuckerman, D. M.; Lyman, E., A Second Look at Canonical Sampling of Biomolecules 

Using Replica Exchange Simulation. J. Chem. Theory Comput. 2006, 2, 1200-1202. 

7. Periole, X.; Mark, A. E., Convergence and Sampling Efficiency in Replica Exchange 

Simulations of Peptide Folding in Explicit Solvent. J. Chem. Phys. 2007, 126, 014903. 

8. Sindhikara, D.; Meng, Y. L.; Roitberg, A. E., Exchange Frequency in Replica Exchange 

Molecular Dynamics. J. Chem. Phys. 2008, 128. 

9. Nymeyer, H., How Efficient Is Replica Exchange Molecular Dynamics? An Analytic 

Approach. J. Chem. Theory Comput. 2008, 4, 626-636. 

10. Kim, J.; Keyes, T.; Straub, J. E., Generalized Replica Exchange Method. J. Chem. Phys. 

2010, 132, 224107. 

11. Denschlag, R.; Lingenheil, M.; Tavan, P., Efficiency Reduction and Pseudo-Convergence in 

Replica Exchange Sampling of Peptide Folding-Unfolding Equilibria. Chem. Phys. Lett. 2008, 458, 

244-248. 

12. Zhang, W.; Chen, J., Efficiency of Adaptive Temperature-Based Replica Exchange for 

Sampling Large-Scale Protein Conformational Transitions. J. Chem. Theory Comput. 2013, 9, 

2849-2856. 

13. Kubelka, J.; Hofrichter, J.; Eaton, W. A., The Protein Folding 'Speed Limit'. Curr. Opin. 

Struct. Biol. 2004, 14, 76-88. 

14. Bicout, D. J.; Szabo, A., Entropic Barriers, Transition States, Funnels, and Exponential 

Protein Folding Kinetics: A Simple Model. Protein Sci. 2000, 9, 452-65. 

15. Schuler, B.; Lipman, E. A.; Eaton, W. A., Probing the Free-Energy Surface for Protein 

Folding with Single-Molecule Fluorescence Spectroscopy. Nature 2002, 419, 743-747. 



11 

16. Beck, D. A.; White, G. W.; Daggett, V., Exploring the Energy Landscape of Protein Folding 

Using Replica-Exchange and Conventional Molecular Dynamics Simulations. J. Struct. Biol. 2007, 

157, 514-23. 

17. Ayton, G. S.; Noid, W. G.; Voth, G. A., Multiscale Modeling of Biomolecular Systems: In 

Serial and in Parallel. Curr. Opin. Struct. Biol. 2007, 17, 192-198. 

18. Lwin, T. Z.; Luo, R., Overcoming Entropic Barrier with Coupled Sampling at Dual 

Resolutions. J. Chem. Phys. 2005, 123, 194904. 

19. Lyman, E.; Ytreberg, F. M.; Zuckerman, D. M., Resolution Exchange Simulation. Phys. 

Rev. Lett. 2006, 96, 028105. 

20. Moritsugu, K.; Terada, T.; Kidera, A., Scalable Free Energy Calculation of Proteins Via 

Multiscale Essential Sampling. J. Chem. Phys. 2010, 133, 224105. 

21. Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J., Replica Exchange with Solute Tempering: A 

Method for Sampling Biological Systems in Explicit Water. Proc. Natl. Acad. Sci. U. S. A. 2005, 

102, 13749-13754. 

22. Kwak, W.; Hansmann, U. H., Efficient Sampling of Protein Structures by Model Hopping. 

Phys. Rev. Lett. 2005, 95, 138102. 

23. Meinke, J. H.; Hansmann, U. H., Protein Simulations Combining an All-Atom Force Field 

with a Go Term. J. Phys.: Condens. Matter 2007, 19, 285215. 

24. Liu, P.; Voth, G. A., Smart Resolution Replica Exchange: An Efficient Algorithm for 

Exploring Complex Energy Landscapes. J. Chem. Phys. 2007, 126, 045106. 

25. Hills, R. D.; Brooks, C. L., Insights from Coarse-Grained Go Models for Protein Folding 

and Dynamics. Int. J. Mol. Sci. 2009, 10, 889-905. 

26. Wolynes, P. G., Recent Successes of the Energy Landscape Theory of Protein Folding and 

Function. Q. Rev. Biophys. 2005, 38, 405-410. 

27. Karanicolas, J.; Brooks, C. L., The Origins of Asymmetry in the Folding Transition States of 

Protein L and Protein G. Protein Sci. 2002, 11, 2351-2361. 

28. Brunger, A. T.; Nilges, M., Computational Challenges for Macromolecular Structure 

Determination by X-Ray Crystallography and Solution Nmr-Spectroscopy. Q. Rev. Biophys. 1993, 

26, 49-125. 

29. Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, 

Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; 

Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; 

Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, 

H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M., Charmm: The Biomolecular Simulation 

Program. J. Comput. Chem. 2009, 30, 1545-1614. 



12 

30. Feig, M.; Karanicolas, J.; Brooks, C. L., Mmtsb Tool Set: Enhanced Sampling and 

Multiscale Modeling Methods for Applications in Structural Biology. J. Mol. Graphics Modell. 

2004, 22, 377-395. 

31. Fesinmeyer, R. M.; Hudson, F. M.; Andersen, N. H., Enhanced Hairpin Stability through 

Loop Design: The Case of the Protein G B1 Domain Hairpin. J. Am. Chem. Soc. 2004, 126, 7238-

43. 

32. Chen, J. H.; Im, W. P.; Brooks, C. L., Balancing Solvation and Intramolecular Interactions: 

Toward a Consistent Generalized Born Force Field. J. Am. Chem. Soc. 2006, 128, 3728-3736. 

33. Miyazawa, S.; Jernigan, R. L., Residue-Residue Potentials with a Favorable Contact Pair 

Term and an Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol. Biol. 

1996, 256, 623-644. 

34. Chen, J. H., Effective Approximation of Molecular Volume Using Atom-Centered 

Dielectric Functions in Generalized Born Models. J. Chem. Theory Comput. 2010, 6, 2790-2803. 

35. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., 

Optimization of the Additive Charmm All-Atom Protein Force Field Targeting Improved Sampling 

of the Backbone Φ, Ψ and  ide-Chain Χ1 and Χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 

8, 3257-3273. 

 



13 

Tables 

Table 1. Summary of T-RE and MSES simulations of GB1p, GB1m1 and GB1m3. All simulations 

involve 8 replicas and last 100 ns. NTS is the number of reversible folding transitions sampled by all 

replicas during the entire course of the simulation. The effective reversible transition rate kTS is 

calculated as NTS divided by total simulation time (800 ns in all cases). 

Sequence Protocol Run NTS kTS (ns
-1

) 

GB1p T-RE Control 1 0.0013 

  Folding 0 − 

GB1p MSES Control 43 0.054 

  Folding 33 0.041 

GB1m1 MSES Control 32 0.040 

  Folding 20 0.025 

GB1m3 MSES Control 34 0.043 

  Folding 26 0.033 
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Figures and Figure Captions 

 

Fig. 1. Folded structure and simulated ensembles of GB1p. a) Left: Atomistic structure of GB1p. 

Dashed lines indicate all seven native hydrogen bonds. Right: Hybrid model containing atomistic 

(cyan cartoon) and Cα-only CG (red beads) copies.  b) Probability distributions of the number of 

native contacts for CG ensembles derived from a reference T-RE simulation of the Gō model alone 

(solid line) and the MSES control simulation of GB1p (solid line with circles). 

 

 

Fig. 2. Numbers of native hydrogen bonds as a function of time for representative replicas from a) 

T-RE and b) MSES control simulations of GB1p. Gray lines depict the raw data, and black and red 

lines show the 50-ps running averages. 
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Fig. 3. Conformational space sampled by individual replicas in the T-RE (a-c) and MSES (e-g) 

control simulations of GB1p. Panels d) and h) were calculated by including all replicas. All 

atomistic conformations sampled during the last 80 ns of these simulations, regardless of the 

temperature or coupling scaling factor, were included to compute the pseudo-free energy surfaces, 

which are plot in the unit of kT. Contours are shown at 1, 3, 5, and 7 kT levels. 

 

 

Fig.4. Probability distributions of the number of native hydrogen bonds for GB1p (a-b), GB1m1 (c), 

and GB1m3 (d). These distributions were calculated from structure ensembles extracted from the 

last 80 ns of T-RE or MSES simulations at T = 270K (and λ = 0) (see Table 1 for detailed 

simulation setups). 
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